Caracterización estructural de afloramientos rocosos mediante herramientas de percepción remota
Se elaboró un modelo digital tridimensional (3D) de un afloramiento de rocas sedimentarias del Grupo Guadalupe en la Cordillera Oriental de Colombia, mediante la captura de imágenes aéreas utilizando un vehículo aéreo no tripulado (VANT), con el fin de realizar su caracterización estructural. Para e...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Militar Nueva Granada
- Repositorio:
- Repositorio UMNG
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unimilitar.edu.co:10654/31993
- Acceso en línea:
- http://hdl.handle.net/10654/31993
- Palabra clave:
- Fotogrametría
Afloramiento virtual
Geología estructural
DOM
VOM
VANT
FOTOGRAMETRIA
GEOLOGIA
Photogrammetry
Structural geology
Virtual outcrop
UAV
VOM
DOM
- Rights
- License
- Derechos Reservados - Universidad Militar Nueva Granada, 2019
id |
UNIMILTAR2_f8264669d5369811b8e3046e39d61c81 |
---|---|
oai_identifier_str |
oai:repository.unimilitar.edu.co:10654/31993 |
network_acronym_str |
UNIMILTAR2 |
network_name_str |
Repositorio UMNG |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Caracterización estructural de afloramientos rocosos mediante herramientas de percepción remota |
dc.title.titleenglish.spa.fl_str_mv |
Structural characterization of outcrops with remote perception tools |
title |
Caracterización estructural de afloramientos rocosos mediante herramientas de percepción remota |
spellingShingle |
Caracterización estructural de afloramientos rocosos mediante herramientas de percepción remota Fotogrametría Afloramiento virtual Geología estructural DOM VOM VANT FOTOGRAMETRIA GEOLOGIA Photogrammetry Structural geology Virtual outcrop UAV VOM DOM |
title_short |
Caracterización estructural de afloramientos rocosos mediante herramientas de percepción remota |
title_full |
Caracterización estructural de afloramientos rocosos mediante herramientas de percepción remota |
title_fullStr |
Caracterización estructural de afloramientos rocosos mediante herramientas de percepción remota |
title_full_unstemmed |
Caracterización estructural de afloramientos rocosos mediante herramientas de percepción remota |
title_sort |
Caracterización estructural de afloramientos rocosos mediante herramientas de percepción remota |
dc.contributor.advisor.none.fl_str_mv |
Riaño Pérez, Felipe Alfredo |
dc.contributor.role.none.fl_str_mv |
Rayo, Lorena |
dc.subject.spa.fl_str_mv |
Fotogrametría Afloramiento virtual Geología estructural DOM VOM VANT |
topic |
Fotogrametría Afloramiento virtual Geología estructural DOM VOM VANT FOTOGRAMETRIA GEOLOGIA Photogrammetry Structural geology Virtual outcrop UAV VOM DOM |
dc.subject.lemb.spa.fl_str_mv |
FOTOGRAMETRIA GEOLOGIA |
dc.subject.keyword.spa.fl_str_mv |
Photogrammetry Structural geology Virtual outcrop UAV VOM DOM |
description |
Se elaboró un modelo digital tridimensional (3D) de un afloramiento de rocas sedimentarias del Grupo Guadalupe en la Cordillera Oriental de Colombia, mediante la captura de imágenes aéreas utilizando un vehículo aéreo no tripulado (VANT), con el fin de realizar su caracterización estructural. Para esto, se usó un software especializado para el modelado e interpretación de información tridimensional. Se obtuvieron 62 datos estructurales, 30 de estos corresponden a estratificación, y 32 a familias de fracturas. Se encontró que la secuencia sedimentaria buza uniformemente hacia el occidente (288/59, dirección de buzamiento/buzamiento), y presenta tres familias de fracturas principales: familia 1 (84/70), familia 2 (192/76) y familia 3 (38/62). Este estudio demuestra la utilidad de aplicación de técnicas de percepción remota al campo de las geociencias. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-08-29T17:52:07Z 2019-12-30T18:00:54Z |
dc.date.available.none.fl_str_mv |
2019-08-29T17:52:07Z 2019-12-30T18:00:54Z |
dc.date.created.none.fl_str_mv |
2019-06-15 |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.spa.spa.fl_str_mv |
Trabajo de grado |
dc.type.dcmi-type-vocabulary.spa.fl_str_mv |
Text |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10654/31993 |
url |
http://hdl.handle.net/10654/31993 |
dc.language.spa.fl_str_mv |
spa |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Militar Nueva Granada, 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas |
rights_invalid_str_mv |
Derechos Reservados - Universidad Militar Nueva Granada, 2019 https://creativecommons.org/licenses/by-nc-nd/2.5/co/ Atribución-NoComercial-SinDerivadas http://purl.org/coar/access_right/c_abf2 |
dc.format.spa.fl_str_mv |
pdf |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Calle 100 |
dc.publisher.spa.fl_str_mv |
Universidad Militar Nueva Granada |
dc.publisher.department.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.program.spa.fl_str_mv |
Especialización en Geomática |
institution |
Universidad Militar Nueva Granada |
dc.source.bibliographicCitation.spa.fl_str_mv |
Bellian, J. A., Kerans, C., & Jennette, D. C. (2005). Digital Outcrop Models: Applications of Terrestrial Scanning Lidar Technology in Stratigraphic Modeling. Journal of Sedimentary Research, 75(2), 166–176. doi.org/10.2110/jsr.2005.013 Buckley, S. J., Enge, H. D., Carlsson, C., & Howell, J. A. (2010). Terrestrial laser scanning for use in virtual outcrop geology. Photogrammetric Record, 25(131), 225–239. doi.org/10.1111/j.1477-9730.2010.00585.x Buckley, S. J., Howel, J. A., Enge, H. D., & Kurz, T. H. (2008). Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. Journal of the Geological Society, 165(3), 625–638. doi.org/10.1144/0016-76492007-100 Cawood, A., & Bond, C. (2018). eRocK: an oline, open-access repostory of virtual outcrops and geological samples in 3D. Geophysical Research Abstracts, 20. Recuperado de www.e-rock.org Corradetti, A. (2016). 3D structural characterization of outcrops by means of close-range multi-view stereo-photogrammetry (University of Naples Federico II). Recuperado de http://www.fedoa.unina.it/10683/1/Corradetti_Amerigo_28.pdf Favalli, M., Fornaciai, A., Isola, I., Tarquini, S., & Nannipieri, L. (2012). Multiview 3D reconstruction in geosciences. Computers and Geosciences, 44, 168–176. doi.org/10.1016/j.cageo.2011.09.012 García-Sellés, D., Falivene, O., Arbués, P., Gratacos, O., Tavani, S., & Muñoz, J. A. (2011). Supervised identification and reconstruction of near-planar geological surfaces from terrestrial laser scanning. Computers and Geosciences, 37(10), 1584–1594. doi.org/10.1016/j.cageo.2011.03.007 Groshong, R. H. (2006). 3-D Structural Geology : a Practical Guide to Surface and Subsurface Map Interpretation (Second edi). doi.org/10.1007/978-3-540-31055-6 Haneberg, W. C. (2008). Using close range terrestrial digital photogrammetry for 3-D rock slope modeling and discontinuity mapping in the United States. Bulletin of Engineering Geology and the Environment, 67(4), 457–469. doi.org/10.1007/s10064-008-0157-y Haneberg, W. C., Norrish, N. I., & Findley, D. P. (2006). Digital Outcrop Characterization for 3-D Structural Mapping and Rock Slope Design Along Interstate 90 Near Snoqualmie Pass, Washington. Proceedings 57th Annual Highway Geology Symposium, 1–14. Recuperado de http://www.wnrockeng.com/files/Digital Outcrop Characterizati.pdf Hodgetts, D. (n.d.). VRGeoscience (Computer software). Recuperado de http://www.vrgeoscience.com/ Hodgetts, D., Gawthorpe, R. L., Wilson, P., & Rarity, F. (2007). Integrating Digital and Traditional Field Techniques Using Virtual Reality Geological Studio (VRGS). 69th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2007. doi.org/10.3997/2214-4609.201401718 Hodgetts, D. (2011). Quantitative geology from digital outcrop data for the characterisation of hydrocarbon reservoirs. Geophysical Research Abstracts, 13, 4065–4065. Recuperado de http://meetingorganizer.copernicus.org/EGU2011/EGU2011-4065.pdf Ingeominas. (2008). Geología de la Plancha 228 Sanfatfé de Bogotá Noreste. Escala 1:100.000. Jones, R. R., Pringle, J. K., McCaffrey, K. J. W., Inber, J., Wightman, R. H., Guo, J., & Long, J. J. (2011). Extending Digital Outcrop Geology into the Subsurface. In A. J. Martinsen, Ole J. Pulham & M. D. Haughton, Peter D.W. Sullivan (Eds.), Outcrops Revitalized: Tools, Techniques and Applications (Vol. 10, pp. 31–50). doi.org/10.2110/sepmcsp.10.031 Jones, R. R., Wawrzyniec, T. F., Holliman, N. S., McCaffrey, K. J. W., Imber, J., & Holdsworth, R. E. (2008). Describing the dimensionality of geospatial data in the earth sciences—Recommendations for nomenclature. Geosphere, 4(2), 354. doi.org/10.1130/ges00158.1 Kurz, T. H., Dewit, J., Buckley, S. J., Thurmond, J. B., Hunt, D. W., & Swennen, R. (2012). Hyperspectral image analysis of different carbonate lithologies (limestone, karst and hydrothermal dolomites): The Pozalagua Quarry case study (Cantabria, North-west Spain). Sedimentology, 59(2), 623–645. doi.org/10.1111/j.1365-3091.2011.01269.x McCaffrey, K. J. W., Jones, R. R., Holdsworth, R. E., Wilson, R. W., Clegg, P., Imber, J., … Trinks, I. (2005). Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork. Journal of the Geological Society, 162(6), 927–938. doi.org/10.1144/0016-764905-017 Menichetti, M., Piacentini, D., De Donatis, M., & Tirincanti, E. (2016). Virtual Outcrop And 3D Structural Analysis Of Monte Vettore Extensional Active Faults. Conference: 35° Convegno Gruppo Nazionale Di Geofisica Della Terra Solida, 64–67. Recuperado de http://www3.ogs.trieste.it/gngts/files/2016/SSp/Riassunti/Menichetti.pdf Minisini, D., Wang, M., Bergman, S. C., & Aiken, C. (2014). Geological data extraction from lidar 3-D photorealistic models: A case study in an organic-rich mudstone, Eagle Ford Formation, Texas. Geosphere, 10(3), 610–626. doi.org/10.1130/GES00937.1 Pringle, J. K., Clark, J. D., Westerman, A. R., Stanbrook, D. A., Gardiner, A. R., & Morgan, B. E. F. (2001). Virtual outcrops: 3-D reservoir analogues. Journal of the Virtual Explorer, 4(9). doi.org/10.3809/jvirtex.2001.00036 Ragan, D. (2009). Structural Geology: An Introduction to Geometrical Techniques (Fourth edi). Cambridge University Press. Tavani, S., Granado, P., Corradetti, A., Girundo, M., Iannace, A., Arbués, P., … Mazzoli, S. (2014). Building a virtual outcrop, extracting geological information from it, and sharing the results in Google Earth via OpenPlot and Photoscan: An example from the Khaviz Anticline (Iran). Computers and Geosciences, 63, 44–53. doi.org/10.1016/j.cageo.2013.10.013 Woodcock, N. H. (1976). The Accuracy of Structural Field Measurements. The Journal of Geology, 84(3), 350–355. doi.org/10.1086/628200 Xu, X., Aiken, C. L. V., Bhattacharya, J. P., Corbeanu, R. M., Nielsen, K. C., McMechan, G. A., & Abdelsalam, M. G. (2000). Creating virtual 3-D outcrop. The Leading Edge, 19(2), 197–202. doi.org/10.1190/1.1438576 Xu, X., Aiken, C. L. V., & Nielsen, K. C. (1999). Real time and the virtual outcrop improve geological field mapping. Eos, Transactions American Geophysical Union, 80(29), 317,322-324. doi.org/10.1029/99EO00232 |
bitstream.url.fl_str_mv |
http://repository.unimilitar.edu.co/bitstream/10654/31993/1/license.txt http://repository.unimilitar.edu.co/bitstream/10654/31993/2/LopezPulidoAlbeiroAntonio2019.pdf http://repository.unimilitar.edu.co/bitstream/10654/31993/3/LopezPulidoAlbeiroAntonio2019.pdf.jpg |
bitstream.checksum.fl_str_mv |
520e8f0b4e8d2d5c25366f2f78f584b0 8bbbe59f94088a917e818a8f268a9be4 42e435ca8b8c975bb8c0822b87dcd6bc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UMNG |
repository.mail.fl_str_mv |
bibliodigital@unimilitar.edu.co |
_version_ |
1837098499817078784 |
spelling |
Riaño Pérez, Felipe AlfredoRayo, LorenaLópez Pulido, Albeiro Antonioalhebre@hotmail.comEspecialista en GeomáticaCalle 1002019-08-29T17:52:07Z2019-12-30T18:00:54Z2019-08-29T17:52:07Z2019-12-30T18:00:54Z2019-06-15http://hdl.handle.net/10654/31993Se elaboró un modelo digital tridimensional (3D) de un afloramiento de rocas sedimentarias del Grupo Guadalupe en la Cordillera Oriental de Colombia, mediante la captura de imágenes aéreas utilizando un vehículo aéreo no tripulado (VANT), con el fin de realizar su caracterización estructural. Para esto, se usó un software especializado para el modelado e interpretación de información tridimensional. Se obtuvieron 62 datos estructurales, 30 de estos corresponden a estratificación, y 32 a familias de fracturas. Se encontró que la secuencia sedimentaria buza uniformemente hacia el occidente (288/59, dirección de buzamiento/buzamiento), y presenta tres familias de fracturas principales: familia 1 (84/70), familia 2 (192/76) y familia 3 (38/62). Este estudio demuestra la utilidad de aplicación de técnicas de percepción remota al campo de las geociencias.Davant S.A.S.A three-dimensional (3D) digital model of an outcrop of sedimentary rocks of the Guadalupe Group in the Eastern Cordillera of Colombia was elaborated, by capturing images of an unmanned aerial vehicle (UAV), in order to carry out its structural characterization. For this, specialized software was used for modelling and interpretation of three-dimensional information. 62 structural data were obtained, 30 of these corresponding to stratification, and 32 to sets of fractures. It was found that the sedimentary sequence dip uniformly towards the west (288/59, direction of dip / dip), and presents three sets of major fractures: set 1 (84/70), set 2 (192/76) and set 3 (38/62). This study demonstrates the usefulness of remote sensing techniques in the field of geosciences.pdfapplication/pdfspaspaUniversidad Militar Nueva GranadaFacultad de IngenieríaEspecialización en GeomáticaDerechos Reservados - Universidad Militar Nueva Granada, 2019https://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadashttp://purl.org/coar/access_right/c_abf2FotogrametríaAfloramiento virtualGeología estructuralDOMVOMVANTFOTOGRAMETRIAGEOLOGIAPhotogrammetryStructural geologyVirtual outcropUAVVOMDOMCaracterización estructural de afloramientos rocosos mediante herramientas de percepción remotaStructural characterization of outcrops with remote perception toolsinfo:eu-repo/semantics/bachelorThesisTrabajo de gradoTexthttp://purl.org/coar/resource_type/c_7a1fBellian, J. A., Kerans, C., & Jennette, D. C. (2005). Digital Outcrop Models: Applications of Terrestrial Scanning Lidar Technology in Stratigraphic Modeling. Journal of Sedimentary Research, 75(2), 166–176. doi.org/10.2110/jsr.2005.013Buckley, S. J., Enge, H. D., Carlsson, C., & Howell, J. A. (2010). Terrestrial laser scanning for use in virtual outcrop geology. Photogrammetric Record, 25(131), 225–239. doi.org/10.1111/j.1477-9730.2010.00585.xBuckley, S. J., Howel, J. A., Enge, H. D., & Kurz, T. H. (2008). Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. Journal of the Geological Society, 165(3), 625–638. doi.org/10.1144/0016-76492007-100Cawood, A., & Bond, C. (2018). eRocK: an oline, open-access repostory of virtual outcrops and geological samples in 3D. Geophysical Research Abstracts, 20. Recuperado de www.e-rock.orgCorradetti, A. (2016). 3D structural characterization of outcrops by means of close-range multi-view stereo-photogrammetry (University of Naples Federico II). Recuperado de http://www.fedoa.unina.it/10683/1/Corradetti_Amerigo_28.pdfFavalli, M., Fornaciai, A., Isola, I., Tarquini, S., & Nannipieri, L. (2012). Multiview 3D reconstruction in geosciences. Computers and Geosciences, 44, 168–176. doi.org/10.1016/j.cageo.2011.09.012García-Sellés, D., Falivene, O., Arbués, P., Gratacos, O., Tavani, S., & Muñoz, J. A. (2011). Supervised identification and reconstruction of near-planar geological surfaces from terrestrial laser scanning. Computers and Geosciences, 37(10), 1584–1594. doi.org/10.1016/j.cageo.2011.03.007Groshong, R. H. (2006). 3-D Structural Geology : a Practical Guide to Surface and Subsurface Map Interpretation (Second edi). doi.org/10.1007/978-3-540-31055-6Haneberg, W. C. (2008). Using close range terrestrial digital photogrammetry for 3-D rock slope modeling and discontinuity mapping in the United States. Bulletin of Engineering Geology and the Environment, 67(4), 457–469. doi.org/10.1007/s10064-008-0157-yHaneberg, W. C., Norrish, N. I., & Findley, D. P. (2006). Digital Outcrop Characterization for 3-D Structural Mapping and Rock Slope Design Along Interstate 90 Near Snoqualmie Pass, Washington. Proceedings 57th Annual Highway Geology Symposium, 1–14. Recuperado de http://www.wnrockeng.com/files/Digital Outcrop Characterizati.pdfHodgetts, D. (n.d.). VRGeoscience (Computer software). Recuperado de http://www.vrgeoscience.com/Hodgetts, D., Gawthorpe, R. L., Wilson, P., & Rarity, F. (2007). Integrating Digital and Traditional Field Techniques Using Virtual Reality Geological Studio (VRGS). 69th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2007. doi.org/10.3997/2214-4609.201401718Hodgetts, D. (2011). Quantitative geology from digital outcrop data for the characterisation of hydrocarbon reservoirs. Geophysical Research Abstracts, 13, 4065–4065. Recuperado de http://meetingorganizer.copernicus.org/EGU2011/EGU2011-4065.pdfIngeominas. (2008). Geología de la Plancha 228 Sanfatfé de Bogotá Noreste. Escala 1:100.000.Jones, R. R., Pringle, J. K., McCaffrey, K. J. W., Inber, J., Wightman, R. H., Guo, J., & Long, J. J. (2011). Extending Digital Outcrop Geology into the Subsurface. In A. J. Martinsen, Ole J. Pulham & M. D. Haughton, Peter D.W. Sullivan (Eds.), Outcrops Revitalized: Tools, Techniques and Applications (Vol. 10, pp. 31–50). doi.org/10.2110/sepmcsp.10.031Jones, R. R., Wawrzyniec, T. F., Holliman, N. S., McCaffrey, K. J. W., Imber, J., & Holdsworth, R. E. (2008). Describing the dimensionality of geospatial data in the earth sciences—Recommendations for nomenclature. Geosphere, 4(2), 354. doi.org/10.1130/ges00158.1Kurz, T. H., Dewit, J., Buckley, S. J., Thurmond, J. B., Hunt, D. W., & Swennen, R. (2012). Hyperspectral image analysis of different carbonate lithologies (limestone, karst and hydrothermal dolomites): The Pozalagua Quarry case study (Cantabria, North-west Spain). Sedimentology, 59(2), 623–645. doi.org/10.1111/j.1365-3091.2011.01269.xMcCaffrey, K. J. W., Jones, R. R., Holdsworth, R. E., Wilson, R. W., Clegg, P., Imber, J., … Trinks, I. (2005). Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork. Journal of the Geological Society, 162(6), 927–938. doi.org/10.1144/0016-764905-017Menichetti, M., Piacentini, D., De Donatis, M., & Tirincanti, E. (2016). Virtual Outcrop And 3D Structural Analysis Of Monte Vettore Extensional Active Faults. Conference: 35° Convegno Gruppo Nazionale Di Geofisica Della Terra Solida, 64–67. Recuperado de http://www3.ogs.trieste.it/gngts/files/2016/SSp/Riassunti/Menichetti.pdfMinisini, D., Wang, M., Bergman, S. C., & Aiken, C. (2014). Geological data extraction from lidar 3-D photorealistic models: A case study in an organic-rich mudstone, Eagle Ford Formation, Texas. Geosphere, 10(3), 610–626. doi.org/10.1130/GES00937.1Pringle, J. K., Clark, J. D., Westerman, A. R., Stanbrook, D. A., Gardiner, A. R., & Morgan, B. E. F. (2001). Virtual outcrops: 3-D reservoir analogues. Journal of the Virtual Explorer, 4(9). doi.org/10.3809/jvirtex.2001.00036Ragan, D. (2009). Structural Geology: An Introduction to Geometrical Techniques (Fourth edi). Cambridge University Press.Tavani, S., Granado, P., Corradetti, A., Girundo, M., Iannace, A., Arbués, P., … Mazzoli, S. (2014). Building a virtual outcrop, extracting geological information from it, and sharing the results in Google Earth via OpenPlot and Photoscan: An example from the Khaviz Anticline (Iran). Computers and Geosciences, 63, 44–53. doi.org/10.1016/j.cageo.2013.10.013Woodcock, N. H. (1976). The Accuracy of Structural Field Measurements. The Journal of Geology, 84(3), 350–355. doi.org/10.1086/628200Xu, X., Aiken, C. L. V., Bhattacharya, J. P., Corbeanu, R. M., Nielsen, K. C., McMechan, G. A., & Abdelsalam, M. G. (2000). Creating virtual 3-D outcrop. The Leading Edge, 19(2), 197–202. doi.org/10.1190/1.1438576Xu, X., Aiken, C. L. V., & Nielsen, K. C. (1999). Real time and the virtual outcrop improve geological field mapping. Eos, Transactions American Geophysical Union, 80(29), 317,322-324. doi.org/10.1029/99EO00232EspecializaciónIngeniería - Especialización en GeomáticaLICENSElicense.txttext/plain2898http://repository.unimilitar.edu.co/bitstream/10654/31993/1/license.txt520e8f0b4e8d2d5c25366f2f78f584b0MD51ORIGINALLopezPulidoAlbeiroAntonio2019.pdfArtículoapplication/pdf1204723http://repository.unimilitar.edu.co/bitstream/10654/31993/2/LopezPulidoAlbeiroAntonio2019.pdf8bbbe59f94088a917e818a8f268a9be4MD52THUMBNAILLopezPulidoAlbeiroAntonio2019.pdf.jpgIM Thumbnailimage/jpeg6116http://repository.unimilitar.edu.co/bitstream/10654/31993/3/LopezPulidoAlbeiroAntonio2019.pdf.jpg42e435ca8b8c975bb8c0822b87dcd6bcMD5310654/31993oai:repository.unimilitar.edu.co:10654/319932019-12-30 13:00:54.996Repositorio Institucional UMNGbibliodigital@unimilitar.edu.coRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sIGhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlCnN1cyBhbmV4b3MgZW4gZm9ybWF0byBkaWdpdGFsIG8gZWxlY3Ryw7NuaWNvLgoKWSBhdXRvcml6YSBhIGxhIFVOSVZFUlNJREFEIE1JTElUQVIgTlVFVkEgR1JBTkFEQSwgcGFyYSBxdWUgZW4gbG9zIHTDqXJtaW5vcyBlc3RhYmxlY2lkb3MgZW46CgpMZXkgMjMgZGUgMTk4Mi0gTGV5IDQ0IGRlIDE5OTMtIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMtIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLAp1dGlsaWNlIHkgdXNlIHBvciBjdWFscXVpZXIgbWVkaW8gY29ub2NpZG8gbyBwb3IgY29ub2NlciwgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwKdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLgoKUEFSw4FHUkFGTzogTGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBzZSBoYWNlIGV4dGVuc2l2YSBubyBzw7NsbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0bwpvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIHZpcnR1YWwsIGVsZWN0csOzbmljbywgZGlnaXRhbCwgeSBjdXlvIHVzbyBzZSBkZSBlbiByZWQsIGludGVybmV0LCBleHRyYW5ldCwgaW50cmFuZXQsIGV0Yy4sCnkgZW4gZ2VuZXJhbCBlbiBjdWFscXVpZXIgZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyLgoKRUwgRVNUVURJQU5URSAtIEFVVE9SLCBtYW5pZmllc3RhIHF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIKZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KClBBUsOBR1JBRk86IEVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4gY3VhbnRvIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yCnNvYnJlIGxhIG9icmEgZW4gY3Vlc3Rpw7NuLCBFTCBFU1RVRElBTlRFIC0gQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60KYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCkFkZW3DoXMsIExBIFVOSVZFUlNJREFEIE1JTElUQVIgTlVFVkEgR1JBTkFEQSBjb21vIGluc3RpdHVjacOzbiBxdWUgYWxtYWNlbmEsIHkgcmVjb2xlY3RhIGRhdG9zIHBlcnNvbmFsZXMsIGF0ZW5kaWVuZG8KbG8gcHJlY2VwdHVhZG8gZW4gbGEgbGV5IDE1ODEgZGUgMjAxMiB5IGVsIERlY3JldG8gMTM3NyBkZSAyMDEzLCBxdWUgZGVzYXJyb2xsYW4gZWwgcHJpbmNpcGlvIGNvbnN0aXR1Y2lvbmFsIHF1ZSB0aWVuZW4gdG9kYXMgbGFzCnBlcnNvbmFzIGEgY29ub2NlciwgYWN0dWFsaXphciB5IHJlY3RpZmljYXIgdG9kbyB0aXBvIGRlIGluZm9ybWFjacOzbiByZWNvZ2lkYSBvLCBxdWUgaGF5YSBzaWRvIG9iamV0byBkZSB0cmF0YW1pZW50byBkZSBkYXRvcwpwZXJzb25hbGVzIGVuIGJhbmNvcyBvIGJhc2VzIGRlIGRhdG9zIHkgZW4gZ2VuZXJhbCBlbiBhcmNoaXZvcyBkZSBlbnRpZGFkZXMgcMO6YmxpY2FzIG8gcHJpdmFkYXMsIHJlcXVpZXJlIG9idGVuZXIgc3UgYXV0b3JpemFjacOzbiwKcGFyYSBxdWUsIGRlIG1hbmVyYSBsaWJyZSwgcHJldmlhLCBleHByZXNhLCB2b2x1bnRhcmlhLCB5IGRlYmlkYW1lbnRlIGluZm9ybWFkYSwgcGVybWl0YSBhIHRvZGFzIG51ZXN0cmFzIGRlcGVuZGVuY2lhcyBhY2Fkw6ltaWNhcwp5IGFkbWluaXN0cmF0aXZhcywgcmVjb2xlY3RhciwgcmVjYXVkYXIsIGFsbWFjZW5hciwgdXNhciwgY2lyY3VsYXIsIHN1cHJpbWlyLCBwcm9jZXNhciwgY29tcGlsYXIsIGludGVyY2FtYmlhciwgZGFyIHRyYXRhbWllbnRvLCBhY3R1YWxpemFyCnkgZGlzcG9uZXIgZGUgbG9zIGRhdG9zIHF1ZSBoYW4gc2lkbyBzdW1pbmlzdHJhZG9zIHkgcXVlIHNlIGhhbiBpbmNvcnBvcmFkbyBlbiBudWVzdHJhcyBiYXNlcyBvIGJhbmNvcyBkZSBkYXRvcywgbyBlbiByZXBvc2l0b3Jpb3MKZWxlY3Ryw7NuaWNvcyBkZSB0b2RvIHRpcG8gY29uIHF1ZSBjdWVudGEgbGEgVW5pdmVyc2lkYWQuCgpFc3RhIGluZm9ybWFjacOzbiBlcyB5IHNlcsOhIHV0aWxpemFkYSBlbiBlbCBkZXNhcnJvbGxvIGRlIGxhcyBmdW5jaW9uZXMgcHJvcGlhcyBkZSBsYSBVbml2ZXJzaWRhZCBlbiBzdSBjb25kaWNpw7NuIGRlIGluc3RpdHVjacOzbiBkZQplZHVjYWNpw7NuIHN1cGVyaW9yLCBkZSBmb3JtYSBkaXJlY3RhIG8gYSB0cmF2w6lzIGRlIHRlcmNlcm9zLgoKTGXDrWRvIGxvIGFudGVyaW9yLCAiQ29uc2llbnRvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBNaWxpdGFyIE51ZXZhIEdyYW5hZGEgZGUgbWFuZXJhIHByZXZpYSwgZXhwcmVzYSBlIGluZXF1w612b2NhIHBhcmEgcXVlCm1pcyBkYXRvcyBwZXJzb25hbGVzIHNlYW4gdHJhdGFkb3MgY29uZm9ybWUgYSBsbyBwcmV2aXN0byBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8iLgoK |