Detección Automática de Puntos faciales

El artículo presenta un método para detección de puntos en expresiones faciales usando el conjunto de imágenes Cohn-Kanade extendido. Para ello, se eligieron 334 imágenes de la base faces con las 6 expresiones faciales: alegría, tristeza, sorpresa, miedo, ira, asco y pose neutral. Se emplea el algor...

Full description

Autores:
Ramos Almeida, Daniela
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Militar Nueva Granada
Repositorio:
Repositorio UMNG
Idioma:
spa
OAI Identifier:
oai:repository.unimilitar.edu.co:10654/18038
Acceso en línea:
http://hdl.handle.net/10654/18038
Palabra clave:
EXPRESION FACIAL
ALGORITMOS (COMPUTADORES)
Facial Expression
HOG oriented gradient histogram
Viola Jones algorithm
Classification
Facial Points
Segmentation
Expresiones faciales
HOG histograma de gradientes orientados
algoritmo de Viola Jones
Clasificación
puntos faciales
segmentación
Rights
License
Derechos Reservados - Universidad Militar Nueva Granada, 2018
id UNIMILTAR2_db361ded158049f35fc7d2f91ac9c711
oai_identifier_str oai:repository.unimilitar.edu.co:10654/18038
network_acronym_str UNIMILTAR2
network_name_str Repositorio UMNG
repository_id_str
dc.title.spa.fl_str_mv Detección Automática de Puntos faciales
dc.title.translated.spa.fl_str_mv Automatic Detection of Facial Points
title Detección Automática de Puntos faciales
spellingShingle Detección Automática de Puntos faciales
EXPRESION FACIAL
ALGORITMOS (COMPUTADORES)
Facial Expression
HOG oriented gradient histogram
Viola Jones algorithm
Classification
Facial Points
Segmentation
Expresiones faciales
HOG histograma de gradientes orientados
algoritmo de Viola Jones
Clasificación
puntos faciales
segmentación
title_short Detección Automática de Puntos faciales
title_full Detección Automática de Puntos faciales
title_fullStr Detección Automática de Puntos faciales
title_full_unstemmed Detección Automática de Puntos faciales
title_sort Detección Automática de Puntos faciales
dc.creator.fl_str_mv Ramos Almeida, Daniela
dc.contributor.advisor.spa.fl_str_mv Sierra, Eduard Leonardo
dc.contributor.author.spa.fl_str_mv Ramos Almeida, Daniela
dc.contributor.other.spa.fl_str_mv Sánchez, Wilman Helioth
dc.subject.lemb.spa.fl_str_mv EXPRESION FACIAL
ALGORITMOS (COMPUTADORES)
topic EXPRESION FACIAL
ALGORITMOS (COMPUTADORES)
Facial Expression
HOG oriented gradient histogram
Viola Jones algorithm
Classification
Facial Points
Segmentation
Expresiones faciales
HOG histograma de gradientes orientados
algoritmo de Viola Jones
Clasificación
puntos faciales
segmentación
dc.subject.keywords.spa.fl_str_mv Facial Expression
HOG oriented gradient histogram
Viola Jones algorithm
Classification
Facial Points
Segmentation
dc.subject.proposal.spa.fl_str_mv Expresiones faciales
HOG histograma de gradientes orientados
algoritmo de Viola Jones
Clasificación
puntos faciales
segmentación
description El artículo presenta un método para detección de puntos en expresiones faciales usando el conjunto de imágenes Cohn-Kanade extendido. Para ello, se eligieron 334 imágenes de la base faces con las 6 expresiones faciales: alegría, tristeza, sorpresa, miedo, ira, asco y pose neutral. Se emplea el algoritmo de Viola-Jones para extraer la región de interés del rostro, se identifica la expresión asociada al rostro. Cuando se identifican las expresiones se buscan 21 puntos faciales aproximados a partir de segmentaciones de las partes del rostro. Se presenta las bases teóricas, el desarrollo y los resultados del método.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-10-05T15:07:13Z
2019-12-26T22:04:54Z
dc.date.available.none.fl_str_mv 2018-10-05T15:07:13Z
2019-12-26T22:04:54Z
dc.date.issued.none.fl_str_mv 2018-09-20
dc.type.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.dcmi-type-vocabulary.spa.fl_str_mv Text
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10654/18038
url http://hdl.handle.net/10654/18038
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv M. Usman, S. Latif y J. Qadir, "Using deep autoencoders for facial expression recognition," 2017 13th International Conference on Emerging Technologies (ICET), Islamabad, 2017, pp. 1-6. doi: 10.1109/ICET.2017.8281753.
D. I. S. Saputra y K. M. Amin, "Face detection and tracking using live video acquisition in camera closed circuit television and webcam," 2016 1st International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, 2016, pp. 154-157. doi: 10.1109/ICITISEE.2016.7803065
M. Owayjan, A. Kashour, N. Al Haddad, M. Fadel y G. Al Souki, "The design and development of a Lie Detection System using facial micro- expressions," 2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), Beirut, 2012, pp. 33-38. doi: 10.1109/ICTEA.2012.6462897
U. Martinez-Hernandez y T. J. Prescott, "Expressive touch: Control of robot emotional expression by touch," 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO- MAN), New York, NY, 2016, pp. 974-979.doi: 10.1109/ROMAN.2016.7745227
M. D. Samad, N. Diawara, J. L. Bobzien, J.W. Harrington, M. A. Witherow, y K. M. Iftekharuddin "A Feasibility Study of Autism Behavioral Markers in Spontaneous Facial, Visual, and Hand Movement Response Data", IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 2, pp. 353-361, 2018. doi: 10.1109/TNSRE.2017.276848
Y. Kumar y S. Sharma, "A systematic survey of facial expression recognition techniques" 2017 International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 2017, pp. 1074-1079. doi: 10.1109/ICCMC.2017.8282636
A. Majumder, L. Behera y V. K. Subramanian, "Automatic Facial Expression Recognition System Using Deep Network-Based Data Fusion", IEEE Transactions on Cybernetics, vol. 48, no. 1, pp. 103-114, 2018.
P. Ekman y W. Friesen, "Constants across cultures in the face and emotion.", Journal of Personality and Social Psychology, vol. 17, no. 2, pp. 124-129, 1971.
G. Donato, M. S. Bartlett, J. C. Hager, P. Ekman y T. J. Sejnowski, "Classifying facial actions", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 10, pp. 974-989, 1999. doi: 10.1109/34.799905.
D. A. R. Wati y D. Abadianto, "Design of face detection and recognition system for smart home security application," 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, 2017, pp. 342-347. doi: 10.1109/ICITISEE.2017.8285524
A. Micheal y P. Geetha, "Multi-view face detection using Normalized Pixel Difference feature," 2017 International Conference on Communication and Signal Processing (ICCSP), Chennai, 2017, pp. 0988-0992. doi: 10.1109/ICCSP.2017.8286520.
L. Cuimei, Q. Zhiliang, J. Nan y W. Jianhua, "Human face detection algorithm via Haar cascade classifier combined with three additional classifiers," 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Yangzhou, 2017, pp. 483-487. doi: 10.1109/ICEMI.2017.8265863
M. Dahmane y J. Meunier, "Emotion recognition using dynamic grid- based HoG features," Face and Gesture 2011, Santa Barbara, CA, 2011, pp. 884-888. doi: 10.1109/FG.2011.5771368.
H. Candra, M. Yuwono, R. Chai, H. T. Nguyen, y S. Su, "Classification of facial-emotion expression in the application of psychotherapy using Viola-Jones and Edge-Histogram of Oriented Gradient," 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, 2016, pp. 423-426. doi: 10.1109/EMBC.2016.7590730
S. L. Phung and A. Bouzerdoum, "A Pyramidal Neural Network For Visual Pattern Recognition," in IEEE Transactions on Neural Networks, vol. 18, no. 2, pp. 329-343, March 2007. doi: 10.1109/TNN.2006.884677
D. Cherifi, F. Cherfaoui, S. Yacini y A. Nait-Ali, "Fusion of face recognition methods at score level," 2016 International Conference on Bio-engineering for Smart Technologies (BioSMART), Dubai, 2016, pp. 1-5. doi: 10.1109/BIOSMART.2016.7835458
J. Zhu y Z. Chen, "Real Time Face Detection System Using Adaboost and Haar-like Features," 2015 2nd International Conference on Information Science and Control Engineering, Shanghai, 2015, pp. 404- 407. doi: 10.1109/ICISCE.2015.95
P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, y I. Matthews, The Extended Cohn-Kanade Dataset (CK+): A complete expression dataset for action unit and emotion-specified expression. Proceedings of the Third International Workshop on CVPR for Human Communicative Behavior Analysis (CVPR4HB 2010), San Francisco, USA, 2010, pp. 94- 101.
H. Yang y A. Wang, "Cascade Face Detection Based on Histograms of Oriented Gradients and Support Vector Machine," 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Krakow, 2015, pp. 766-770. doi: 10.1109/3PGCIC.2015.14
A. Sharifara , M. Mohd Rahim y Y. Anisi, "A general review of human face detection including a study of neural networks and Haar feature- based cascade classifier in face detection," 2014 International Symposium on Biometrics and Security Technologies (ISBAST), Kuala Lumpur, 2014, pp. 73-78. doi: 10.1109/ISBAST.2014.7013097
P. Carcagnì, M. Del Coco, C. Distante and M. Leo, "Facial expression recognition and histograms of oriented gradients: a comprehensive study", SpringerPlus, vol. 4, no. 1, 2015.
Dalal, N. & Triggs, B. Histograms of oriented gradients for human detection 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005, 1, 886-893 vol. 1
Canny, J. A Computational Approach to Edge Detection IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI- 8, 679-698
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Militar Nueva Granada, 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas
rights_invalid_str_mv Derechos Reservados - Universidad Militar Nueva Granada, 2018
https://creativecommons.org/licenses/by-nc-nd/2.5/co/
Atribución-NoComercial-SinDerivadas
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Calle 100
dc.publisher.department.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.program.spa.fl_str_mv Ingeniería Multimedia
dc.publisher.faculty.spa.fl_str_mv Ingeniería - Ingeniería en Multimedia
dc.publisher.grantor.spa.fl_str_mv Universidad Militar Nueva Granada
institution Universidad Militar Nueva Granada
bitstream.url.fl_str_mv http://repository.unimilitar.edu.co/bitstream/10654/18038/1/RamosAlmeidaDaniela2018.pdf.jpg
http://repository.unimilitar.edu.co/bitstream/10654/18038/2/RamosAlmeidaDaniela2018.pdf
http://repository.unimilitar.edu.co/bitstream/10654/18038/3/license.txt
bitstream.checksum.fl_str_mv d7b659866e8f3e83e502af0ecc282fd0
dba467344e050ea4fb6ef52fc465d7e2
755421b5a8b45ce61d1a5793576f9a78
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UMNG
repository.mail.fl_str_mv bibliodigital@unimilitar.edu.co
_version_ 1837098504008237056
spelling Sierra, Eduard LeonardoRamos Almeida, DanielaIngeniero MultimediaSánchez, Wilman HeliothCalle 1002018-10-05T15:07:13Z2019-12-26T22:04:54Z2018-10-05T15:07:13Z2019-12-26T22:04:54Z2018-09-20http://hdl.handle.net/10654/18038El artículo presenta un método para detección de puntos en expresiones faciales usando el conjunto de imágenes Cohn-Kanade extendido. Para ello, se eligieron 334 imágenes de la base faces con las 6 expresiones faciales: alegría, tristeza, sorpresa, miedo, ira, asco y pose neutral. Se emplea el algoritmo de Viola-Jones para extraer la región de interés del rostro, se identifica la expresión asociada al rostro. Cuando se identifican las expresiones se buscan 21 puntos faciales aproximados a partir de segmentaciones de las partes del rostro. Se presenta las bases teóricas, el desarrollo y los resultados del método.Universidad Militar Nueva Granada1. Introducción, 2. Materiales y Métodos, 3. Resultados, 4.Conclusiones.This article develops a method for detection of facial landmarks in facial expressions using the Cohn-Kanade extended image base. For this, first it took images of 334 faces with the 6 facial expressions: joy, disgust, anger, fear, surprise, sadness and neutral pose. By means of the Viola-Jones algorithm the region of interest of the face was extracted. This region is classified in a expression. Once the classification of the expression is done, 21 facial points are calculated by means of a segmentation method of facial components. The present report shows the theoretical basis, the development, and the results of the method.Pregradoapplication/pdfspaDerechos Reservados - Universidad Militar Nueva Granada, 2018https://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadashttp://purl.org/coar/access_right/c_abf2Detección Automática de Puntos facialesAutomatic Detection of Facial Pointsinfo:eu-repo/semantics/bachelorThesisTrabajo de gradoTexthttp://purl.org/coar/resource_type/c_7a1fEXPRESION FACIALALGORITMOS (COMPUTADORES)Facial ExpressionHOG oriented gradient histogramViola Jones algorithmClassificationFacial PointsSegmentationExpresiones facialesHOG histograma de gradientes orientadosalgoritmo de Viola JonesClasificaciónpuntos facialessegmentaciónFacultad de IngenieríaIngeniería MultimediaIngeniería - Ingeniería en MultimediaUniversidad Militar Nueva GranadaM. Usman, S. Latif y J. Qadir, "Using deep autoencoders for facial expression recognition," 2017 13th International Conference on Emerging Technologies (ICET), Islamabad, 2017, pp. 1-6. doi: 10.1109/ICET.2017.8281753.D. I. S. Saputra y K. M. Amin, "Face detection and tracking using live video acquisition in camera closed circuit television and webcam," 2016 1st International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, 2016, pp. 154-157. doi: 10.1109/ICITISEE.2016.7803065M. Owayjan, A. Kashour, N. Al Haddad, M. Fadel y G. Al Souki, "The design and development of a Lie Detection System using facial micro- expressions," 2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), Beirut, 2012, pp. 33-38. doi: 10.1109/ICTEA.2012.6462897U. Martinez-Hernandez y T. J. Prescott, "Expressive touch: Control of robot emotional expression by touch," 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO- MAN), New York, NY, 2016, pp. 974-979.doi: 10.1109/ROMAN.2016.7745227M. D. Samad, N. Diawara, J. L. Bobzien, J.W. Harrington, M. A. Witherow, y K. M. Iftekharuddin "A Feasibility Study of Autism Behavioral Markers in Spontaneous Facial, Visual, and Hand Movement Response Data", IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 2, pp. 353-361, 2018. doi: 10.1109/TNSRE.2017.276848Y. Kumar y S. Sharma, "A systematic survey of facial expression recognition techniques" 2017 International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 2017, pp. 1074-1079. doi: 10.1109/ICCMC.2017.8282636A. Majumder, L. Behera y V. K. Subramanian, "Automatic Facial Expression Recognition System Using Deep Network-Based Data Fusion", IEEE Transactions on Cybernetics, vol. 48, no. 1, pp. 103-114, 2018.P. Ekman y W. Friesen, "Constants across cultures in the face and emotion.", Journal of Personality and Social Psychology, vol. 17, no. 2, pp. 124-129, 1971.G. Donato, M. S. Bartlett, J. C. Hager, P. Ekman y T. J. Sejnowski, "Classifying facial actions", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 10, pp. 974-989, 1999. doi: 10.1109/34.799905.D. A. R. Wati y D. Abadianto, "Design of face detection and recognition system for smart home security application," 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, 2017, pp. 342-347. doi: 10.1109/ICITISEE.2017.8285524A. Micheal y P. Geetha, "Multi-view face detection using Normalized Pixel Difference feature," 2017 International Conference on Communication and Signal Processing (ICCSP), Chennai, 2017, pp. 0988-0992. doi: 10.1109/ICCSP.2017.8286520.L. Cuimei, Q. Zhiliang, J. Nan y W. Jianhua, "Human face detection algorithm via Haar cascade classifier combined with three additional classifiers," 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Yangzhou, 2017, pp. 483-487. doi: 10.1109/ICEMI.2017.8265863M. Dahmane y J. Meunier, "Emotion recognition using dynamic grid- based HoG features," Face and Gesture 2011, Santa Barbara, CA, 2011, pp. 884-888. doi: 10.1109/FG.2011.5771368.H. Candra, M. Yuwono, R. Chai, H. T. Nguyen, y S. Su, "Classification of facial-emotion expression in the application of psychotherapy using Viola-Jones and Edge-Histogram of Oriented Gradient," 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, 2016, pp. 423-426. doi: 10.1109/EMBC.2016.7590730S. L. Phung and A. Bouzerdoum, "A Pyramidal Neural Network For Visual Pattern Recognition," in IEEE Transactions on Neural Networks, vol. 18, no. 2, pp. 329-343, March 2007. doi: 10.1109/TNN.2006.884677D. Cherifi, F. Cherfaoui, S. Yacini y A. Nait-Ali, "Fusion of face recognition methods at score level," 2016 International Conference on Bio-engineering for Smart Technologies (BioSMART), Dubai, 2016, pp. 1-5. doi: 10.1109/BIOSMART.2016.7835458J. Zhu y Z. Chen, "Real Time Face Detection System Using Adaboost and Haar-like Features," 2015 2nd International Conference on Information Science and Control Engineering, Shanghai, 2015, pp. 404- 407. doi: 10.1109/ICISCE.2015.95P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, y I. Matthews, The Extended Cohn-Kanade Dataset (CK+): A complete expression dataset for action unit and emotion-specified expression. Proceedings of the Third International Workshop on CVPR for Human Communicative Behavior Analysis (CVPR4HB 2010), San Francisco, USA, 2010, pp. 94- 101.H. Yang y A. Wang, "Cascade Face Detection Based on Histograms of Oriented Gradients and Support Vector Machine," 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Krakow, 2015, pp. 766-770. doi: 10.1109/3PGCIC.2015.14A. Sharifara , M. Mohd Rahim y Y. Anisi, "A general review of human face detection including a study of neural networks and Haar feature- based cascade classifier in face detection," 2014 International Symposium on Biometrics and Security Technologies (ISBAST), Kuala Lumpur, 2014, pp. 73-78. doi: 10.1109/ISBAST.2014.7013097P. Carcagnì, M. Del Coco, C. Distante and M. Leo, "Facial expression recognition and histograms of oriented gradients: a comprehensive study", SpringerPlus, vol. 4, no. 1, 2015.Dalal, N. & Triggs, B. Histograms of oriented gradients for human detection 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005, 1, 886-893 vol. 1Canny, J. A Computational Approach to Edge Detection IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI- 8, 679-698THUMBNAILRamosAlmeidaDaniela2018.pdf.jpgIM Thumbnailimage/jpeg5828http://repository.unimilitar.edu.co/bitstream/10654/18038/1/RamosAlmeidaDaniela2018.pdf.jpgd7b659866e8f3e83e502af0ecc282fd0MD51ORIGINALRamosAlmeidaDaniela2018.pdfArticulo Deteccion Puntosapplication/pdf707208http://repository.unimilitar.edu.co/bitstream/10654/18038/2/RamosAlmeidaDaniela2018.pdfdba467344e050ea4fb6ef52fc465d7e2MD52LICENSElicense.txttext/plain2915http://repository.unimilitar.edu.co/bitstream/10654/18038/3/license.txt755421b5a8b45ce61d1a5793576f9a78MD5310654/18038oai:repository.unimilitar.edu.co:10654/180382020-06-30 12:56:23.029Repositorio Institucional UMNGbibliodigital@unimilitar.edu.coRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sIGhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIApzdXMgYW5leG9zIGVuIGZvcm1hdG8gZGlnaXRhbCBvIGVsZWN0csOzbmljby4KClkgYXV0b3JpemEgYSBsYSBVTklWRVJTSURBRCBNSUxJVEFSIE5VRVZBIEdSQU5BREEsIHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuOgoKTGV5IDIzIGRlIDE5ODItIExleSA0NCBkZSAxOTkzLSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLSBEZWNyZXRvIDQ2MCBkZSAxOTk1IHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgCnV0aWxpY2UgeSB1c2UgcG9yIGN1YWxxdWllciBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLCBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhLCAKdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLgoKUEFSw4FHUkFGTzogTGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBzZSBoYWNlIGV4dGVuc2l2YSBubyBzw7NsbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0bwpvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIHZpcnR1YWwsIGVsZWN0csOzbmljbywgZGlnaXRhbCwgeSBjdXlvIHVzbyBzZSBkZSBlbiByZWQsIGludGVybmV0LCBleHRyYW5ldCwgaW50cmFuZXQsIGV0Yy4sIAp5IGVuIGdlbmVyYWwgZW4gY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4KCkVMIEVTVFVESUFOVEUgLSBBVVRPUiwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIApkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLgoKUEFSw4FHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgCnNvYnJlIGxhIG9icmEgZW4gY3Vlc3Rpw7NuLCBFTCBFU1RVRElBTlRFIC0gQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gCmF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpBZGVtw6FzLCBMQSBVTklWRVJTSURBRCBNSUxJVEFSIE5VRVZBIEdSQU5BREEgY29tbyBpbnN0aXR1Y2nDs24gcXVlIGFsbWFjZW5hLCB5IHJlY29sZWN0YSBkYXRvcyBwZXJzb25hbGVzLCBhdGVuZGllbmRvIApsbyBwcmVjZXB0dWFkbyBlbiBsYSBsZXkgMTU4MSBkZSAyMDEyIHkgZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIHF1ZSBkZXNhcnJvbGxhbiBlbCBwcmluY2lwaW8gY29uc3RpdHVjaW9uYWwgcXVlIHRpZW5lbiB0b2RhcyBsYXMgCnBlcnNvbmFzIGEgY29ub2NlciwgYWN0dWFsaXphciB5IHJlY3RpZmljYXIgdG9kbyB0aXBvIGRlIGluZm9ybWFjacOzbiByZWNvZ2lkYSBvLCBxdWUgaGF5YSBzaWRvIG9iamV0byBkZSB0cmF0YW1pZW50byBkZSBkYXRvcyAKcGVyc29uYWxlcyBlbiBiYW5jb3MgbyBiYXNlcyBkZSBkYXRvcyB5IGVuIGdlbmVyYWwgZW4gYXJjaGl2b3MgZGUgZW50aWRhZGVzIHDDumJsaWNhcyBvIHByaXZhZGFzLCByZXF1aWVyZSBvYnRlbmVyIHN1IGF1dG9yaXphY2nDs24sIApwYXJhIHF1ZSwgZGUgbWFuZXJhIGxpYnJlLCBwcmV2aWEsIGV4cHJlc2EsIHZvbHVudGFyaWEsIHkgZGViaWRhbWVudGUgaW5mb3JtYWRhLCBwZXJtaXRhIGEgdG9kYXMgbnVlc3RyYXMgZGVwZW5kZW5jaWFzIGFjYWTDqW1pY2FzIAp5IGFkbWluaXN0cmF0aXZhcywgcmVjb2xlY3RhciwgcmVjYXVkYXIsIGFsbWFjZW5hciwgdXNhciwgY2lyY3VsYXIsIHN1cHJpbWlyLCBwcm9jZXNhciwgY29tcGlsYXIsIGludGVyY2FtYmlhciwgZGFyIHRyYXRhbWllbnRvLCBhY3R1YWxpemFyIAp5IGRpc3BvbmVyIGRlIGxvcyBkYXRvcyBxdWUgaGFuIHNpZG8gc3VtaW5pc3RyYWRvcyB5IHF1ZSBzZSBoYW4gaW5jb3Jwb3JhZG8gZW4gbnVlc3RyYXMgYmFzZXMgbyBiYW5jb3MgZGUgZGF0b3MsIG8gZW4gcmVwb3NpdG9yaW9zIAplbGVjdHLDs25pY29zIGRlIHRvZG8gdGlwbyBjb24gcXVlIGN1ZW50YSBsYSBVbml2ZXJzaWRhZC4KIApFc3RhIGluZm9ybWFjacOzbiBlcyB5IHNlcsOhIHV0aWxpemFkYSBlbiBlbCBkZXNhcnJvbGxvIGRlIGxhcyBmdW5jaW9uZXMgcHJvcGlhcyBkZSBsYSBVbml2ZXJzaWRhZCBlbiBzdSBjb25kaWNpw7NuIGRlIGluc3RpdHVjacOzbiBkZSAKZWR1Y2FjacOzbiBzdXBlcmlvciwgZGUgZm9ybWEgZGlyZWN0YSBvIGEgdHJhdsOpcyBkZSB0ZXJjZXJvcy4KIApMZcOtZG8gbG8gYW50ZXJpb3IsICJDb25zaWVudG8geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIE1pbGl0YXIgTnVldmEgR3JhbmFkYSBkZSBtYW5lcmEgcHJldmlhLCBleHByZXNhIGUgaW5lcXXDrXZvY2EgcGFyYSBxdWUgCm1pcyBkYXRvcyBwZXJzb25hbGVzIHNlYW4gdHJhdGFkb3MgY29uZm9ybWUgYSBsbyBwcmV2aXN0byBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8iLgo=