Revisión bibliográfica de las medidas para la mitigación de la huella hídrica aplicables para el contexto colombiano

La huella hídrica permite medir como se utiliza el agua para la producción de productos en diferentes sectores económicos. Este artículo presenta una revisión bibliográfica de medidas de mitigación de la huella hídrica propuestas en diferentes regiones del mundo, con el objetivo de evaluar su aplica...

Full description

Autores:
González Castañeda, Daniel Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad Militar Nueva Granada
Repositorio:
Repositorio UMNG
Idioma:
spa
OAI Identifier:
oai:repository.umng.edu.co:10654/47052
Acceso en línea:
https://hdl.handle.net/10654/47052
Palabra clave:
HUELLA HIDRICA - MITIGACION - COLOMBIA
GESTION SOSTENIBLE DEL AGUA - COLOMBIA
USO EFICIENTE DEL AGUA - ESTRATEGIAS DE REDUCCION - COLOMBIA
RECURSOS HIDRICOS - CONSERVACION Y MANEJO - COLOMBIA
REVISIONES BIBLIOGRAFICAS - GESTION DEL AGUA
Huella hídrica
Water footprint
Huella hídrica azul
Huella hídrica verde
Huella hídrica gris
Uso del agua
Mitigación de la huella hídrica
Blue water footprint
Green water footprint
Gray water footprint
Water use
Water footprint mitigation
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIMILTAR2_cd8e13afeae6f74f9fd794dc155ae358
oai_identifier_str oai:repository.umng.edu.co:10654/47052
network_acronym_str UNIMILTAR2
network_name_str Repositorio UMNG
repository_id_str
dc.title.spa.fl_str_mv Revisión bibliográfica de las medidas para la mitigación de la huella hídrica aplicables para el contexto colombiano
dc.title.eng.fl_str_mv Bibliographic review of water footprint mitigation measures applicable to the colombian context
title Revisión bibliográfica de las medidas para la mitigación de la huella hídrica aplicables para el contexto colombiano
spellingShingle Revisión bibliográfica de las medidas para la mitigación de la huella hídrica aplicables para el contexto colombiano
HUELLA HIDRICA - MITIGACION - COLOMBIA
GESTION SOSTENIBLE DEL AGUA - COLOMBIA
USO EFICIENTE DEL AGUA - ESTRATEGIAS DE REDUCCION - COLOMBIA
RECURSOS HIDRICOS - CONSERVACION Y MANEJO - COLOMBIA
REVISIONES BIBLIOGRAFICAS - GESTION DEL AGUA
Huella hídrica
Water footprint
Huella hídrica azul
Huella hídrica verde
Huella hídrica gris
Uso del agua
Mitigación de la huella hídrica
Blue water footprint
Green water footprint
Gray water footprint
Water use
Water footprint mitigation
title_short Revisión bibliográfica de las medidas para la mitigación de la huella hídrica aplicables para el contexto colombiano
title_full Revisión bibliográfica de las medidas para la mitigación de la huella hídrica aplicables para el contexto colombiano
title_fullStr Revisión bibliográfica de las medidas para la mitigación de la huella hídrica aplicables para el contexto colombiano
title_full_unstemmed Revisión bibliográfica de las medidas para la mitigación de la huella hídrica aplicables para el contexto colombiano
title_sort Revisión bibliográfica de las medidas para la mitigación de la huella hídrica aplicables para el contexto colombiano
dc.creator.fl_str_mv González Castañeda, Daniel Felipe
dc.contributor.advisor.none.fl_str_mv Sanabria, Cindy Marleyi
dc.contributor.author.none.fl_str_mv González Castañeda, Daniel Felipe
dc.subject.lemb.spa.fl_str_mv HUELLA HIDRICA - MITIGACION - COLOMBIA
GESTION SOSTENIBLE DEL AGUA - COLOMBIA
USO EFICIENTE DEL AGUA - ESTRATEGIAS DE REDUCCION - COLOMBIA
RECURSOS HIDRICOS - CONSERVACION Y MANEJO - COLOMBIA
REVISIONES BIBLIOGRAFICAS - GESTION DEL AGUA
topic HUELLA HIDRICA - MITIGACION - COLOMBIA
GESTION SOSTENIBLE DEL AGUA - COLOMBIA
USO EFICIENTE DEL AGUA - ESTRATEGIAS DE REDUCCION - COLOMBIA
RECURSOS HIDRICOS - CONSERVACION Y MANEJO - COLOMBIA
REVISIONES BIBLIOGRAFICAS - GESTION DEL AGUA
Huella hídrica
Water footprint
Huella hídrica azul
Huella hídrica verde
Huella hídrica gris
Uso del agua
Mitigación de la huella hídrica
Blue water footprint
Green water footprint
Gray water footprint
Water use
Water footprint mitigation
dc.subject.proposal.spa.fl_str_mv Huella hídrica
Water footprint
Huella hídrica azul
Huella hídrica verde
Huella hídrica gris
Uso del agua
dc.subject.proposal.eng.fl_str_mv Mitigación de la huella hídrica
Blue water footprint
Green water footprint
Gray water footprint
Water use
Water footprint mitigation
description La huella hídrica permite medir como se utiliza el agua para la producción de productos en diferentes sectores económicos. Este artículo presenta una revisión bibliográfica de medidas de mitigación de la huella hídrica propuestas en diferentes regiones del mundo, con el objetivo de evaluar su aplicabilidad en Colombia. Se examinaron a través de una revisión de la literatura publicada las estrategias planteadas para reducir la huella hídrica, especialmente en los sectores agropecuarios, los cuales tienen la mayor huella hídrica en el mundo. Se identificaron medidas como la tecnificación de cultivos, la mejora en la eficiencia del uso del agua y el cambio en los hábitos de consumo. Se obtuvo que, aunque existen prácticas eficaces aplicables al contexto colombiano, se requieren investigaciones enfocadas en identificar y diseñar las medidas más efectivas de mitigación de la huella hídrica para cada sector económico.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-12-02
dc.date.accessioned.none.fl_str_mv 2025-03-25T14:13:43Z
dc.date.available.none.fl_str_mv 2025-03-25T14:13:43Z
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Especialización
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10654/47052
dc.identifier.instname.spa.fl_str_mv instname:Universidad Militar Nueva Granada
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.umng.edu.co
url https://hdl.handle.net/10654/47052
identifier_str_mv instname:Universidad Militar Nueva Granada
reponame:Repositorio Institucional Universidad Militar Nueva Granada
repourl:https://repository.umng.edu.co
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Allan, J. A. (2003). Virtual Water - the Water, Food, and Trade Nexus. Useful Concept or Misleading Metaphor? Water International, 28 (1), 106–113.
Behera, S. S., Ojha, C. S. P., Prasad, K. S. H., y Dash, S. S. (2023). Yield, water, and carbon footprint of rainfed rice production under the lens of mid-century climate change: a case study in the eastern coastal agro-climatic zone, Odisha, India. Environmental Monitoring and Assessment, 195 (5), 544.
Briscoe, J. (2005). India's water economy, bracing for a turbulent future.
Cao, X., Huang, X., Huang, H., Liu, J., Guo, X., Wang, W., y She, D. (2018). Changes and driving mechanism of water footprint scarcity in crop production: A study of Jiangsu Province, China. Ecological Indicators, 95 444–454.
Da Silva, V. D. P. R., De Oliveira, S. D., Hoekstra, A. Y., Dantas Neto, J., Campos, J. H. B., Braga, C. C., De Araújo, L. E., Aleixo, D. d. O., De Brito, J. I. B., y De Souza, M. D. (2016). Water footprint and virtual water trade of Brazil. Water, 8 (11), 517.
Departamento Nacional de Planeación. (2023). Plan Nacional de Desarrollo 2022-2026 "Colombia Potencia Mundial de la Vida". Bogotá́, Colombia: Gobierno de Colombia.
Devineni, N., Lall, U., Etienne, E., Shi, D., y Xi, C. (2015). America's water risk: Current demand and climate variability. Geophysical Research Letters, 42 (7), 2285– 2293.
Dhawan, V. (2017). Water and agriculture in India: background paper for the South Asia expert panel during the Global Forum for Food and Agriculture (GFFA) 2017.
Dong, H., Geng, Y., Sarkis, J., Fujita, T., Okadera, T., y Xue, B. (2013). Regional water footprint evaluation in China: A case of Liaoning. Science of the Total Environment, 442 215–224.
Duque Escobar, G. (2018). Huella hídrica en Colombia. Bogotá,Colombia Departamento de Ingeniería Civil. Universidad Nacional de Colombia.
Ercin, A. E., Hoekstra, A. Y. (2016). European Water Footprint Scenarios for 2050. Water, 8 (6).
Flach, R., Ran, Y., Godar, J., Karlberg, L., y Suavet, C. (2016). Towards more spatially explicit assessments of virtual water flows: linking local water use and scarcity to global demand of Brazilian farming commodities. Environmental Research Letters, 11 (7), 075003.
Gibin, D., Simonetto, A., Zanini, B., y Gilioli, G. (2022). A framework assessing the footprints of food consumption. An application on water footprint in Europe. Environmental Impact Assessment Review, 93 106735.
Gobin, A., Kersebaum, K. C., Eitzinger, J., Trnka, M., Hlavinka, P., Takáč, J., Kroes, J., Ventrella, D., Marta, A. D., Deelstra, J., Lalić, B., Nejedlik, P., Orlandini, S., Peltonen-Sainio, P., Rajala, A., Saue, T., Şaylan, L., Stričevic, R., Vučetić, V., y Zoumides, C. (2017). Variability in the Water Footprint of Arable Crop Production across European Regions. Water, 9 (2).
Grubert, E., Sanders, K. T. (2018). Water use in the United States energy system: a national assessment and unit process inventory of water consumption and withdrawals. Environmental Science & Technology, 52 (11), 6695–6703.
Hoekstra, A., Hung, P. Q. (2002). Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. Water Science and Technology, 49 203–209.
Hoekstra, A. Y. (2008). Water Netural: Reducing and Offseting the Impacts of Water Footprints. UNESCO-IHE Institute for Water Education.
Hoekstra, A. Y. (2009). Human appropriation of natural capital: A comparison of ecological footprint and water footprint analysis. Ecological Economics, 68 (7), 1963–1974.
Hoekstra, A. Y. (2011). The water footprint assessment manual: Setting the global standard. Routledge.
Hoekstra, A. Y., & Chapagain, A. K. (2011). Globalization of water: Sharing the planet's freshwater resources. John Wiley & Sons.
Hoekstra, A., Mekonnen, M. (2012). The Water Footprint of Humanity. Proceedings of the National Academy of Sciences of the United States of America, 109 3232–7.
IDEAM. (2022). Estudio Nacional del Agua 2022. Bogotá, Colombia: Instituto de Hidrología, Meteorología y Estudios Ambientales.
Kashyap, D., Agarwal, T. (2021). Carbon footprint and water footprint of rice and wheat production in Punjab, India. Agricultural Systems, 186 102959.
Konar, M., Marston, L. (2020). The Water Footprint of the United States. Water, 12 (11),
Klemeš, J. J., Varbanov, P. S., Lam, H. L., y Yusup, S. (2016). Energy, Water and Environmental Footprint Interactions: Implications for the Major Economy Sectors of Europe, South East Asia and Worldwide. Procedia Engineering, 148 1199–1205.
Lohrmann, A., Child, M., y Breyer, C. (2021). Assessment of the water footprint for the European power sector during the transition towards a 100% renewable energy system. Energy, 233 121098.
Marston, L., Ao, Y., Konar, M., Mekonnen, M. M., y Hoekstra, A. Y. (2018). High‐resolution water footprints of production of the United States. Water Resources Research, 54 (3), 2288–2316.
Mehla, M. K., Kothari, M., Singh, P. K., Bhakar, S. R., y Yadav, K. K. (2023). Water footprint assessment and its importance in Indian context: a meta-review. Water Supply, 23 (8), 3113–3127.
Mehta, L. (2014). Water and Human Development. World Development, 59 59–69.
Mekonnen, M. M., & Fulton, J. (2020). The effect of diet changes and food loss reduction in reducing the water footprint of an average American. Virtual Water (pp. 144– 154). Routledge.
Mekonnen, M. M., Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15 (5), 1577–1600.
Mekonnen, M. M., Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2 (2), e1500323.
Mekonnen, M. M., Neale, C. M., Ray, C., Erickson, G. E., y Hoekstra, A. Y. (2019). Water productivity in meat and milk production in the US from 1960 to 2016. Environment International, 132 105084.
Mekonnen, M. M., Pahlow, M., Aldaya, M. M., Zarate, E., y Hoekstra, A. Y. (2015). Sustainability, efficiency and equitability of water consumption and pollution in Latin America and the Caribbean. Sustainability, 7 (2), 2086–2112.
Moglia, M., Cook, S., y Tapsuwan, S. (2018). Promoting Water Conservation: Where to from here? Water, 10 (11),
National Bureau of Statistics of China. (2019). China statistical yearbook 2019. National Bureau of Statistics of China.
Nayak, A. K., Tripathi, R., Debenath, M., Swain, C. K., Dhal, B., Vijaykumar, S., Nayak, A. D., Mohanty, S., Shahid, M., Kumar, A., Rajak, M., Moharana, K. C., Chatterjee, D., Munda, S., Guru, P., Khanam, R., Lal, B., Gautam, P., Pattanaik, S.,Shukla,A.K.,Pathak, H. (2023). Carbon and water footprints of major crop production in India. Pedosphere, 33 (3), 448–462.
Rodríguez, P. O., Holzman, M. E., Aldaya, M. M., y Rivas, R. E. (2024). Water footprint in rainfed summer and winter crops: The role of soil moisture. Agricultural Water Management, 296 108787.
Roehrkasten, S., Schaeuble, D., y Helgenberger, S. (2015). Secure and sustainable power generation in a water-constrained world. IASS
Shu, R., Cao, X., y Wu, M. (2021). Clarifying Regional Water Scarcity in Agriculture based on the Theory of Blue, Green and Grey Water Footprints. Water Resources Management, 35 (3), 1101–1118.
Vanham, D., Bidoglio, G. (2013). A review on the indicator water footprint for the EU28. Ecological Indicators, 26 61–75.
Vanham, D., Mekonnen, M. M., y Hoekstra, A. Y. (2013). The water footprint of the EU for different diets. Ecological Indicators, 32 1–8.
Verma, S., Kampman, D. A., van der Zaag, P., y Hoekstra, A. Y. (2009). Going against the flow: A critical analysis of inter-state virtual water trade in the context of India’s National River Linking Program. Physics and Chemistry of the Earth, Parts A/B/C, 34 (4-5), 261–269.
Wackernagel, M., Rees, W. (2004). What is an ecological footprint. The Sustainable Urban Development Reader, 211 219.
Wang, J., Rothausen, S. G. S. A., Conway, D., Zhang, L., Xiong, W., Holman, I. P., y Li, Y. (2012). China’s water–energy nexus: greenhouse-gas emissions from groundwater use for agriculture. Environmental Research Letters, 7 (1), 014035.
Water Footprint Implementation. (2024). Water Footprint Compensation.www./waterfootprintimplementation.com/water-footprint-compensation/
Xu, H., Wu, M., y Ha, M. (2019). A county‐level estimation of renewable surface water and groundwater availability associated with potential large‐scale bioenergy feedstock production scenarios in the United States. Gcb Bioenergy, 11 (4), 606–622.
Xu, M., & Li, C. (2020). The Concepts of Virtual Water and Water Footprint. In M. Xu, & C. Li (Eds.), Application of the Water Footprint: Water Stress Analysis and Allocation (pp. 9–16). Springer Singapore.
Xu, Z., Chen, X., Wu, S. R., Gong, M., Du, Y., Wang, J., Li, Y., y Liu, J. (2019). Spatial-temporal assessment of water footprint, water scarcity and crop water productivity in a major crop production region. Journal of Cleaner Production, 224 375–383.
Zhang, G., Wang, X., Zhang, L., Xiong, K., Zheng, C., Lu, F., Zhao, H., Zheng, H., y Ouyang, Z. (2018). Carbon and water footprints of major cereal crops production in China. Journal of Cleaner Production, 194 613–623.
Zoumides, C., Bruggeman, A., Hadjikakou, M., y Zachariadis, T. (2014). Policy-relevant indicators for semi-arid nations: The water footprint of crop production and supply utilization of Cyprus. Ecological Indicators, 43 205–214.
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 International
Acceso abierto
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv applicaction/pdf
dc.coverage.spatial.spa.fl_str_mv Colombia
China
India
Brasil
Europa
Estados Unidos
dc.coverage.sede.spa.fl_str_mv Calle 100
dc.publisher.program.spa.fl_str_mv Especialización en Gestión Integral Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.grantor.spa.fl_str_mv Universidad Militar Nueva Granada
institution Universidad Militar Nueva Granada
bitstream.url.fl_str_mv https://repository.umng.edu.co/bitstreams/52251203-e2e5-4f45-8dbf-fba6478864bd/download
https://repository.umng.edu.co/bitstreams/22d7c89f-6065-4b52-8c49-249550e82d8a/download
https://repository.umng.edu.co/bitstreams/deb077c6-1047-4a2d-93d6-b6f34aa37e9d/download
bitstream.checksum.fl_str_mv 13a69bdc0232a78063af439685c06550
81e3acf9df1aa1fe959862fa43bb5e45
011b74939e4bab775821524051c3dc9b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UMNG
repository.mail.fl_str_mv bibliodigital@unimilitar.edu.co
_version_ 1851052692333395968
spelling Sanabria, Cindy MarleyiGonzález Castañeda, Daniel FelipeEspecialista en Gestión Integral AmbientalColombiaChinaIndiaBrasilEuropaEstados UnidosCalle 1002025-03-25T14:13:43Z2025-03-25T14:13:43Z2024-12-02https://hdl.handle.net/10654/47052instname:Universidad Militar Nueva Granadareponame:Repositorio Institucional Universidad Militar Nueva Granadarepourl:https://repository.umng.edu.coLa huella hídrica permite medir como se utiliza el agua para la producción de productos en diferentes sectores económicos. Este artículo presenta una revisión bibliográfica de medidas de mitigación de la huella hídrica propuestas en diferentes regiones del mundo, con el objetivo de evaluar su aplicabilidad en Colombia. Se examinaron a través de una revisión de la literatura publicada las estrategias planteadas para reducir la huella hídrica, especialmente en los sectores agropecuarios, los cuales tienen la mayor huella hídrica en el mundo. Se identificaron medidas como la tecnificación de cultivos, la mejora en la eficiencia del uso del agua y el cambio en los hábitos de consumo. Se obtuvo que, aunque existen prácticas eficaces aplicables al contexto colombiano, se requieren investigaciones enfocadas en identificar y diseñar las medidas más efectivas de mitigación de la huella hídrica para cada sector económico.The water footprint measures how water is used for the production of products in different economic sectors. This article presents a literature review of water footprint mitigation measures proposed in different regions of the world, with the objective of evaluating their applicability in Colombia. A review of the published literature examined the strategies proposed to reduce the water footprint, especially in the agricultural sectors, which have the largest water footprint in the world. Measures such as crop technification, improved water use efficiency and changes in consumption habits were identified. It was found that, although there are effective practices applicable to the Colombian context, research is needed to identify and design the most effective water footprint mitigation measures for each economic sector.Especializaciónapplicaction/pdfspahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 InternationalAcceso abiertohttp://purl.org/coar/access_right/c_abf2Revisión bibliográfica de las medidas para la mitigación de la huella hídrica aplicables para el contexto colombianoBibliographic review of water footprint mitigation measures applicable to the colombian contextHUELLA HIDRICA - MITIGACION - COLOMBIAGESTION SOSTENIBLE DEL AGUA - COLOMBIAUSO EFICIENTE DEL AGUA - ESTRATEGIAS DE REDUCCION - COLOMBIARECURSOS HIDRICOS - CONSERVACION Y MANEJO - COLOMBIAREVISIONES BIBLIOGRAFICAS - GESTION DEL AGUAHuella hídricaWater footprintHuella hídrica azulHuella hídrica verdeHuella hídrica grisUso del aguaMitigación de la huella hídricaBlue water footprintGreen water footprintGray water footprintWater useWater footprint mitigationTesis/Trabajo de grado - Monografía - Especializacióninfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fEspecialización en Gestión Integral AmbientalFacultad de IngenieríaUniversidad Militar Nueva GranadaAllan, J. A. (2003). Virtual Water - the Water, Food, and Trade Nexus. Useful Concept or Misleading Metaphor? Water International, 28 (1), 106–113.Behera, S. S., Ojha, C. S. P., Prasad, K. S. H., y Dash, S. S. (2023). Yield, water, and carbon footprint of rainfed rice production under the lens of mid-century climate change: a case study in the eastern coastal agro-climatic zone, Odisha, India. Environmental Monitoring and Assessment, 195 (5), 544.Briscoe, J. (2005). India's water economy, bracing for a turbulent future.Cao, X., Huang, X., Huang, H., Liu, J., Guo, X., Wang, W., y She, D. (2018). Changes and driving mechanism of water footprint scarcity in crop production: A study of Jiangsu Province, China. Ecological Indicators, 95 444–454.Da Silva, V. D. P. R., De Oliveira, S. D., Hoekstra, A. Y., Dantas Neto, J., Campos, J. H. B., Braga, C. C., De Araújo, L. E., Aleixo, D. d. O., De Brito, J. I. B., y De Souza, M. D. (2016). Water footprint and virtual water trade of Brazil. Water, 8 (11), 517.Departamento Nacional de Planeación. (2023). Plan Nacional de Desarrollo 2022-2026 "Colombia Potencia Mundial de la Vida". Bogotá́, Colombia: Gobierno de Colombia.Devineni, N., Lall, U., Etienne, E., Shi, D., y Xi, C. (2015). America's water risk: Current demand and climate variability. Geophysical Research Letters, 42 (7), 2285– 2293.Dhawan, V. (2017). Water and agriculture in India: background paper for the South Asia expert panel during the Global Forum for Food and Agriculture (GFFA) 2017.Dong, H., Geng, Y., Sarkis, J., Fujita, T., Okadera, T., y Xue, B. (2013). Regional water footprint evaluation in China: A case of Liaoning. Science of the Total Environment, 442 215–224.Duque Escobar, G. (2018). Huella hídrica en Colombia. Bogotá,Colombia Departamento de Ingeniería Civil. Universidad Nacional de Colombia.Ercin, A. E., Hoekstra, A. Y. (2016). European Water Footprint Scenarios for 2050. Water, 8 (6).Flach, R., Ran, Y., Godar, J., Karlberg, L., y Suavet, C. (2016). Towards more spatially explicit assessments of virtual water flows: linking local water use and scarcity to global demand of Brazilian farming commodities. Environmental Research Letters, 11 (7), 075003.Gibin, D., Simonetto, A., Zanini, B., y Gilioli, G. (2022). A framework assessing the footprints of food consumption. An application on water footprint in Europe. Environmental Impact Assessment Review, 93 106735.Gobin, A., Kersebaum, K. C., Eitzinger, J., Trnka, M., Hlavinka, P., Takáč, J., Kroes, J., Ventrella, D., Marta, A. D., Deelstra, J., Lalić, B., Nejedlik, P., Orlandini, S., Peltonen-Sainio, P., Rajala, A., Saue, T., Şaylan, L., Stričevic, R., Vučetić, V., y Zoumides, C. (2017). Variability in the Water Footprint of Arable Crop Production across European Regions. Water, 9 (2).Grubert, E., Sanders, K. T. (2018). Water use in the United States energy system: a national assessment and unit process inventory of water consumption and withdrawals. Environmental Science & Technology, 52 (11), 6695–6703.Hoekstra, A., Hung, P. Q. (2002). Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. Water Science and Technology, 49 203–209.Hoekstra, A. Y. (2008). Water Netural: Reducing and Offseting the Impacts of Water Footprints. UNESCO-IHE Institute for Water Education.Hoekstra, A. Y. (2009). Human appropriation of natural capital: A comparison of ecological footprint and water footprint analysis. Ecological Economics, 68 (7), 1963–1974.Hoekstra, A. Y. (2011). The water footprint assessment manual: Setting the global standard. Routledge.Hoekstra, A. Y., & Chapagain, A. K. (2011). Globalization of water: Sharing the planet's freshwater resources. John Wiley & Sons.Hoekstra, A., Mekonnen, M. (2012). The Water Footprint of Humanity. Proceedings of the National Academy of Sciences of the United States of America, 109 3232–7.IDEAM. (2022). Estudio Nacional del Agua 2022. Bogotá, Colombia: Instituto de Hidrología, Meteorología y Estudios Ambientales.Kashyap, D., Agarwal, T. (2021). Carbon footprint and water footprint of rice and wheat production in Punjab, India. Agricultural Systems, 186 102959.Konar, M., Marston, L. (2020). The Water Footprint of the United States. Water, 12 (11),Klemeš, J. J., Varbanov, P. S., Lam, H. L., y Yusup, S. (2016). Energy, Water and Environmental Footprint Interactions: Implications for the Major Economy Sectors of Europe, South East Asia and Worldwide. Procedia Engineering, 148 1199–1205.Lohrmann, A., Child, M., y Breyer, C. (2021). Assessment of the water footprint for the European power sector during the transition towards a 100% renewable energy system. Energy, 233 121098.Marston, L., Ao, Y., Konar, M., Mekonnen, M. M., y Hoekstra, A. Y. (2018). High‐resolution water footprints of production of the United States. Water Resources Research, 54 (3), 2288–2316.Mehla, M. K., Kothari, M., Singh, P. K., Bhakar, S. R., y Yadav, K. K. (2023). Water footprint assessment and its importance in Indian context: a meta-review. Water Supply, 23 (8), 3113–3127.Mehta, L. (2014). Water and Human Development. World Development, 59 59–69.Mekonnen, M. M., & Fulton, J. (2020). The effect of diet changes and food loss reduction in reducing the water footprint of an average American. Virtual Water (pp. 144– 154). Routledge.Mekonnen, M. M., Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15 (5), 1577–1600.Mekonnen, M. M., Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2 (2), e1500323.Mekonnen, M. M., Neale, C. M., Ray, C., Erickson, G. E., y Hoekstra, A. Y. (2019). Water productivity in meat and milk production in the US from 1960 to 2016. Environment International, 132 105084.Mekonnen, M. M., Pahlow, M., Aldaya, M. M., Zarate, E., y Hoekstra, A. Y. (2015). Sustainability, efficiency and equitability of water consumption and pollution in Latin America and the Caribbean. Sustainability, 7 (2), 2086–2112.Moglia, M., Cook, S., y Tapsuwan, S. (2018). Promoting Water Conservation: Where to from here? Water, 10 (11),National Bureau of Statistics of China. (2019). China statistical yearbook 2019. National Bureau of Statistics of China.Nayak, A. K., Tripathi, R., Debenath, M., Swain, C. K., Dhal, B., Vijaykumar, S., Nayak, A. D., Mohanty, S., Shahid, M., Kumar, A., Rajak, M., Moharana, K. C., Chatterjee, D., Munda, S., Guru, P., Khanam, R., Lal, B., Gautam, P., Pattanaik, S.,Shukla,A.K.,Pathak, H. (2023). Carbon and water footprints of major crop production in India. Pedosphere, 33 (3), 448–462.Rodríguez, P. O., Holzman, M. E., Aldaya, M. M., y Rivas, R. E. (2024). Water footprint in rainfed summer and winter crops: The role of soil moisture. Agricultural Water Management, 296 108787.Roehrkasten, S., Schaeuble, D., y Helgenberger, S. (2015). Secure and sustainable power generation in a water-constrained world. IASSShu, R., Cao, X., y Wu, M. (2021). Clarifying Regional Water Scarcity in Agriculture based on the Theory of Blue, Green and Grey Water Footprints. Water Resources Management, 35 (3), 1101–1118.Vanham, D., Bidoglio, G. (2013). A review on the indicator water footprint for the EU28. Ecological Indicators, 26 61–75.Vanham, D., Mekonnen, M. M., y Hoekstra, A. Y. (2013). The water footprint of the EU for different diets. Ecological Indicators, 32 1–8.Verma, S., Kampman, D. A., van der Zaag, P., y Hoekstra, A. Y. (2009). Going against the flow: A critical analysis of inter-state virtual water trade in the context of India’s National River Linking Program. Physics and Chemistry of the Earth, Parts A/B/C, 34 (4-5), 261–269.Wackernagel, M., Rees, W. (2004). What is an ecological footprint. The Sustainable Urban Development Reader, 211 219.Wang, J., Rothausen, S. G. S. A., Conway, D., Zhang, L., Xiong, W., Holman, I. P., y Li, Y. (2012). China’s water–energy nexus: greenhouse-gas emissions from groundwater use for agriculture. Environmental Research Letters, 7 (1), 014035.Water Footprint Implementation. (2024). Water Footprint Compensation.www./waterfootprintimplementation.com/water-footprint-compensation/Xu, H., Wu, M., y Ha, M. (2019). A county‐level estimation of renewable surface water and groundwater availability associated with potential large‐scale bioenergy feedstock production scenarios in the United States. Gcb Bioenergy, 11 (4), 606–622.Xu, M., & Li, C. (2020). The Concepts of Virtual Water and Water Footprint. In M. Xu, & C. Li (Eds.), Application of the Water Footprint: Water Stress Analysis and Allocation (pp. 9–16). Springer Singapore.Xu, Z., Chen, X., Wu, S. R., Gong, M., Du, Y., Wang, J., Li, Y., y Liu, J. (2019). Spatial-temporal assessment of water footprint, water scarcity and crop water productivity in a major crop production region. Journal of Cleaner Production, 224 375–383.Zhang, G., Wang, X., Zhang, L., Xiong, K., Zheng, C., Lu, F., Zhao, H., Zheng, H., y Ouyang, Z. (2018). Carbon and water footprints of major cereal crops production in China. Journal of Cleaner Production, 194 613–623.Zoumides, C., Bruggeman, A., Hadjikakou, M., y Zachariadis, T. (2014). Policy-relevant indicators for semi-arid nations: The water footprint of crop production and supply utilization of Cyprus. Ecological Indicators, 43 205–214.ORIGINALGonzalezCastañedaDanielFelipe2024.pdfGonzalezCastañedaDanielFelipe2024.pdfapplication/pdf290942https://repository.umng.edu.co/bitstreams/52251203-e2e5-4f45-8dbf-fba6478864bd/download13a69bdc0232a78063af439685c06550MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82987https://repository.umng.edu.co/bitstreams/22d7c89f-6065-4b52-8c49-249550e82d8a/download81e3acf9df1aa1fe959862fa43bb5e45MD52THUMBNAILGonzalezCastañedaDanielFelipe2024.pdf.jpgGonzalezCastañedaDanielFelipe2024.pdf.jpgIM Thumbnailimage/jpeg5172https://repository.umng.edu.co/bitstreams/deb077c6-1047-4a2d-93d6-b6f34aa37e9d/download011b74939e4bab775821524051c3dc9bMD5310654/47052oai:repository.umng.edu.co:10654/470522025-03-26 03:00:29.903http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repository.umng.edu.coRepositorio Institucional UMNGbibliodigital@unimilitar.edu.coPHNwYW4gY2xhc3M9Im1iLTUgcHJlc2VydmUtbGluZS1icmVha3MiPgo8aDIgY2xhc3M9InRleHQtY2VudGVyIj5MaWNlbmNpYSBkZSBkZXDDs3NpdG88L2gyPgoKRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hLCB0cmFiYWpvIGRlIGdyYWRvIG8gY3VhbHF1aWVyIG90cm8gZG9jdW1lbnRvIGNvbiBjYXLDoWN0ZXIgYWNhZMOpbWljbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sIGhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZW4gZm9ybWF0byBkaWdpdGFsIG8gZWxlY3Ryw7NuaWNvLgoKU2kgc3UgZG9jdW1lbnRvIHRpZW5lIGFjY2VzbyByZXN0cmluZ2lkbywgc2UgZGVwb3NpdGFyw6EgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTU5HIMO6bmljYW1lbnRlIGNvbiBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRvY3VtZW50YWwgeSBtZW1vcmlhIGluc3RpdHVjaW9uYWwsIGVudGVuZGllbmRvIHF1ZSwgc2Vyw6EgY29uc3VsdGFkbyBkZSBmb3JtYSBjb250cm9sYWRhIHNvbGFtZW50ZSBwb3IgbGEgY29tdW5pZGFkIE5lb2dyYW5hZGluYS4KClNpIHN1IGRvY3VtZW50byBlcyBkZSBhY2Nlc28gYWJpZXJ0bywgcGFyYSBwZXJtaXRpciBhIGxhIDxiPlVOSVZFUlNJREFEIE1JTElUQVIgTlVFVkEgR1JBTkFEQSAtIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU1ORzwvYj4gYSByZXByb2R1Y2lyLCB0cmFkdWNpciB5IGRpc3RyaWJ1aXIgc3UgZW52w61vIGEgdHJhdsOpcyBkZWwgbXVuZG8gYmFqbyBsYSBMZXkgMjMgZGUgMTk4Mi0gTGV5IDQ0IGRlIDE5OTMgLUxleSAxOTE1IGRlIDIwMTggLSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLSBEZWNyZXRvIDQ2MCBkZSAxOTk1IHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgbmVjZXNpdGFtb3Mgc3UgY29uZm9ybWlkYWQgeSBhdXRvcml6YWNpw7NuIGVuIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCjx1bCBjbGFzcz0ibWItbjIiPgo8bGk+IEVMIEVTVFVESUFOVEUgLSBBVVRPUiwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9saT4KPGxpPkVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4gY3VhbnRvIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgZW4gY3Vlc3Rpw7NuLCBFTCBFU1RVRElBTlRFIC0gQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS48L2xpPgo8bGk+SGFjZXIgY2FtYmlvcyBkZSB2ZXJzacOzbiBkaWdpdGFsIGRlbCBkb2N1bWVudG8sIGNvbiBwcm9ww7NzaXRvcyBkZSBzZWd1cmlkYWQsIHByZXNlcnZhY2nDs24geSBjb25zZXJ2YWNpw7NuLjwvbGk+CjxsaT5MYSBjZXNpw7NuIGRlIGRlcmVjaG9zIGRlIGF1dG9yIGRlYmVyw6EgZWZlY3R1YXJzZSBwb3IgZWwgY3JlYWRvciBkZSBsYSBvYnJhLCBxdWllbiBkZSBtYW5lcmEgZXhwcmVzYSBpbmRpY2Fyw6EgZWwgYWxjYW5jZSBkZSBkaWNoYSBjZXNpw7NuLjwvbGk+CjxsaT5MYSBVbml2ZXJzaWRhZCBNaWxpdGFyIE51ZXZhIEdyYW5hZGEgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuPC9saT4KPGxpPkxhIGF1dG9yaXphY2nDs24gc2UgaGFjZSBhIHTDrXR1bG8gZ3JhdHVpdG8sIHBvciBsbyB0YW50bywgbG9zIGF1dG9yZXMgcmVudW5jaWFuIGEgcmVjaWJpciBiZW5lZmljaW8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIGRlIHVzbyBjb24gcXVlIHNlIHB1YmxpY2EgKENyZWF0aXZlIENvbW1vbnMpLjwvbGk+CjwvdWw+CgpMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHPDs2xvIGEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgc2lubyB0YW1iacOpbiBwYXJhIGZvcm1hdG8gdmlydHVhbCwgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCB5IGN1eW8gdXNvIHNlIGRlIGVuIHJlZCwgaW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgZXRjLiwgeSBlbiBnZW5lcmFsIGVuIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuCgpTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYSA8YSBocmVmPSJtYWlsdG86YmlibGlvZGlnaXRhbEB1bmltaWxpdGFyLmVkdS5jbyI+YmlibGlvZGlnaXRhbEB1bmltaWxpdGFyLmVkdS5jbzwvYT4KPC9zcGFuPgo=