Estudio de la variación de la expresión de genes ortólogos en variedades resistentes y susceptibles de Dianthus caryophyllus elicitadas con Fusarium oxysporum f.sp. dianthi en condiciones in vitro
Colombia es el primer productor mundial de clavel y el patógeno, Fusarium oxysporum f.sp. dianthi (Fod) causa grandes pérdidas en el cultivo comercial de esta planta. La producción de variedades resistentes al hongo es una de las formas más efectivas para controlar los daños producidos por el parási...
- Autores:
-
Gomez Corredor, William Andres
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Militar Nueva Granada
- Repositorio:
- Repositorio UMNG
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unimilitar.edu.co:10654/41286
- Acceso en línea:
- http://hdl.handle.net/10654/41286
- Palabra clave:
- Plant resistance
Dianthus caryophyllus
Defense response
RT-qPCR
Differential expression
Orthologous genes
DIANTHUS CARYOPHYLLUS
RESISTENCIA A LA ENFERMEDAD
FUSARIUM OXYSPORUM
IN VITRO
Resistencia vegetal
Dianthus caryophyllus
Respuesta de defensa
RT-qPCR
Expresión diferencial
Genes ortólogos
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UNIMILTAR2_a4ae69cd1459b5e7dfe499ae0f08377a |
---|---|
oai_identifier_str |
oai:repository.unimilitar.edu.co:10654/41286 |
network_acronym_str |
UNIMILTAR2 |
network_name_str |
Repositorio UMNG |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio de la variación de la expresión de genes ortólogos en variedades resistentes y susceptibles de Dianthus caryophyllus elicitadas con Fusarium oxysporum f.sp. dianthi en condiciones in vitro |
dc.title.translated.spa.fl_str_mv |
Study of the variation of orthologic gene expression in resistant and susceptible varieties of Dianthus caryophyllus elictified with Fusarium oxysporum f.sp. dianthi under in vitro conditions |
title |
Estudio de la variación de la expresión de genes ortólogos en variedades resistentes y susceptibles de Dianthus caryophyllus elicitadas con Fusarium oxysporum f.sp. dianthi en condiciones in vitro |
spellingShingle |
Estudio de la variación de la expresión de genes ortólogos en variedades resistentes y susceptibles de Dianthus caryophyllus elicitadas con Fusarium oxysporum f.sp. dianthi en condiciones in vitro Plant resistance Dianthus caryophyllus Defense response RT-qPCR Differential expression Orthologous genes DIANTHUS CARYOPHYLLUS RESISTENCIA A LA ENFERMEDAD FUSARIUM OXYSPORUM IN VITRO Resistencia vegetal Dianthus caryophyllus Respuesta de defensa RT-qPCR Expresión diferencial Genes ortólogos |
title_short |
Estudio de la variación de la expresión de genes ortólogos en variedades resistentes y susceptibles de Dianthus caryophyllus elicitadas con Fusarium oxysporum f.sp. dianthi en condiciones in vitro |
title_full |
Estudio de la variación de la expresión de genes ortólogos en variedades resistentes y susceptibles de Dianthus caryophyllus elicitadas con Fusarium oxysporum f.sp. dianthi en condiciones in vitro |
title_fullStr |
Estudio de la variación de la expresión de genes ortólogos en variedades resistentes y susceptibles de Dianthus caryophyllus elicitadas con Fusarium oxysporum f.sp. dianthi en condiciones in vitro |
title_full_unstemmed |
Estudio de la variación de la expresión de genes ortólogos en variedades resistentes y susceptibles de Dianthus caryophyllus elicitadas con Fusarium oxysporum f.sp. dianthi en condiciones in vitro |
title_sort |
Estudio de la variación de la expresión de genes ortólogos en variedades resistentes y susceptibles de Dianthus caryophyllus elicitadas con Fusarium oxysporum f.sp. dianthi en condiciones in vitro |
dc.creator.fl_str_mv |
Gomez Corredor, William Andres |
dc.contributor.advisor.none.fl_str_mv |
Filgueira Duarte, Juan Jose |
dc.contributor.author.none.fl_str_mv |
Gomez Corredor, William Andres |
dc.subject.keywords.spa.fl_str_mv |
Plant resistance Dianthus caryophyllus Defense response RT-qPCR Differential expression Orthologous genes |
topic |
Plant resistance Dianthus caryophyllus Defense response RT-qPCR Differential expression Orthologous genes DIANTHUS CARYOPHYLLUS RESISTENCIA A LA ENFERMEDAD FUSARIUM OXYSPORUM IN VITRO Resistencia vegetal Dianthus caryophyllus Respuesta de defensa RT-qPCR Expresión diferencial Genes ortólogos |
dc.subject.agrovoc.spa.fl_str_mv |
DIANTHUS CARYOPHYLLUS RESISTENCIA A LA ENFERMEDAD FUSARIUM OXYSPORUM IN VITRO |
dc.subject.proposal.spa.fl_str_mv |
Resistencia vegetal Dianthus caryophyllus Respuesta de defensa RT-qPCR Expresión diferencial Genes ortólogos |
description |
Colombia es el primer productor mundial de clavel y el patógeno, Fusarium oxysporum f.sp. dianthi (Fod) causa grandes pérdidas en el cultivo comercial de esta planta. La producción de variedades resistentes al hongo es una de las formas más efectivas para controlar los daños producidos por el parásito. A pesar de que se han realizado trabajos que han descrito el desarrollo de la enfermedad en clavel causadas por Fod, así como estudios sobre los cambios histológicos y bioquímicos en las variedades resistentes y susceptibles, los genes que gobiernan la respuesta de defensa en contra del ataque del patógeno no se han caracterizado aún. Sabemos por trabajos anteriores en nuestro grupo de investigación, que la resistencia del clavel a Fod esta mediada por tres pares de genes autosómicos con herencia simple y aditiva, pero es necesario reconocer estos genes de tal forma que se pueda utilizar este conocimiento para conducir apropiadamente los programas de mejoramiento del clavel comercial. En el presente trabajo se obtuvo el material biológico, usando células indiferenciadas de clavel y Fod cepa 2019, evaluado los oligos por amplificación por PCR en ADN genómico, posteriormente se evaluaron 22 parejas de oligos identificados en trabajos previos como housekeeping, genes relacionados con resistencia a parásitos y genes que codifican a proteínas relacionadas con patogenicidad mediante RT-qPCR, relacionados con la respuesta de defensa a Fod en las variedades resistentes UMNG395 y UMNGF1B2 y variedades susceptibles UMNGSH2 y UMNG6515 del programa de mejoramiento del clavel de la UMNG. Demostrando que la expresión unos genes en fenotipos resistentes no está asociado a la resistencia, sino que un conjunto de genes son parte de un metabolismo relacionado con la respuesta de defensa frente al patógeno, que abarca procesos de señalización, regulación, inducción, transcripción de genes. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-12-14 |
dc.date.accessioned.none.fl_str_mv |
2022-09-02T14:25:30Z |
dc.date.available.none.fl_str_mv |
2022-09-02T14:25:30Z |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.*.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10654/41286 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Militar Nueva Granada |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Militar Nueva Granada |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unimilitar.edu.co |
url |
http://hdl.handle.net/10654/41286 |
identifier_str_mv |
instname:Universidad Militar Nueva Granada reponame:Repositorio Institucional Universidad Militar Nueva Granada repourl:https://repository.unimilitar.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
1. Abad, L., D'Urzo, M., Liu, D., Narasimhan, M., Reuveni, M., Zhu, J. y Bressan, R. (1996). Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Science, 118(1), 11-23. Disponible en: https://doi.org/10.1016/0168-9452(96)04420-2 2. Agati, G., Azzarello, E., Pollastri, S. y Tattini, M. (2012). Flavonoids as antioxidants in plants: location and functional significance. Plant Science, 196, 67-76. Disponible en: https://doi.org/10.1016/j.plantsci.2012.07.014 3. Agrios, G. (1996). Fitopatología. Enfermedades causadas por Ascomycetes y hongos imperfectos. Editorial Limusa. (2): 441 – 447. 4. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. y Walter, P. (2002). Molecular biology of the cell. New York: Garland Science 5. Almagro, L., Gómez Ros, L. V., Belchi-Navarro, S., Bru, R., Ros Barceló, A. y Pedreño, M. A. (2009). Class III peroxidases in plant defense reactions. Journal of experimental botany, 60(2), 377–390. Disponible en: https://doi.org/10.1093/jxb/ern277 6. Angulo, L. (2012). Clonación del ADNc que codifica para la enzima Antocianidin Sintasa (ANS) de mango (Mangifera indica L.). Universidad de Sonora. Disponible en:https://1library.co/document/yev7d3rz-clonacion-adnc-codifica-enzima-antocianidin-sintasa-mangifera-indica.html 7. Arbeláez, G. (1987) Fungal and bacterial diseases carnation in Colombia. Acta Horticulturae 216: 151-157. Disponible en: https://doi.org/10.17660/ActaHortic.1987.216.20 8. Arbeláez, G. (1993). Avances en el manejo del marchitamiento vascular del clavel, ocasionado por Fusarium oxysporum f. sp. dianthi. Agronomía Colombiana, 2(2), 188. 9. Ardila, H. D., Martínez, S. T. y Higuera, B. L. (2011). Spatio-temporal regulation of phenylalanine ammonia lyase enzyme in Carnation (Dianthus caryophyllus L.) during its interaction with the pathogen Fusarium oxysporum f. sp. dianthi. Revista Colombiana de Química, 40(1), 7-24. Disponible en:http://www.scielo.org.co/scielo.php?script=sci_arttextypid=S0120-28042011000100001 10. Ardila, H., Baquero, B. y Martínez, S. (2007). Phenylalanine ammonium liase induction on carnation (Dianthus caryophyllus L) by elicitors from Fusarium oxysporum f. sp. dianthi race 2. Revista Colombiana de Química, 36(2), 151-167. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttextypid=S0120-28042007000200002 11. Ardila-Barrantes, H. (2013). Contribución al estudio de algunos componentes bioquímicos y moleculares de la resistencia del clavel (Dianthus caryophyllus L) al patógeno Fusarium oxysporum f. sp. dianthi. Departamento de Química. Disponible en:https://repositorio.unal.edu.co/handle/unal/60056 12. Arfaoui, A., El Hadrami, A., Mabrouk, Y., Sifi, B., Boudabous, A., El Hadrami, I.y Chérif, M. (2007). Treatment of chickpea with Rhizobium isolates enhances the expression of phenylpropanoid defense-related genes in response to infection by Fusarium oxysporum f. sp. ciceris. Plant Physiology and Biochemistry, 45(6–7), 470–479. Disponible en: https://doi.org/10.1016/j.plaphy.2007.04.004 13. Arici, S. E., Erdoğan, O., & Tuncel, Z. N. (2019). Natural, environmental and practical biological control options for fusarium wilt disease of carnation (Fusarium oxysporum f. sp. dianthi). Disponible en: http://hdl.handle.net/11499/30407 14. Asocolflores (2018). Producción para San Valentín caería hasta en un 20%. Disponible en:http://asocolflores.org/comunicaciones/noticias/produccion-para-san-valentin-caeria-hasta-en-un-20/11/1. 15. Azofeifa, Á. (2009). Problemas de oxidación y oscurecimiento de explantes cultivados in vitro. Agronomía mesoamericana, 20(1), 153-175. Disponible en: http://dx.doi.org/10.15517/am.v20i1.4990 16. Baayen, R. P., Elgersma, D. M., Demmink, J. F. y Sparnaaij, L. D. (1988). Differences in pathogenesis observed among susceptible interactions of carnation with four races of Fusarium oxysporum f. sp. dianthi. Netherlands Journal of Plant Pathology, 94(2), 81-94. Disponible en: https://doi.org/10.1007/BF01998398 17. Baayen, R. y De Maat, A. (1987). Passive transport of microconidia of Fusarium oxysporum f. sp. dianthi in carnation after root inoculation. Netherlands Journal of Plant Pathology, 93(1), 3-13. Disponible en: https://doi.org/10.1007/BF01998138 18. Baayen, R. y Elgersma, D. (1985). Colonization and histopathology of susceptible and resistant carnation cultivars infected with Fusarium oxysporum f. sp. dianthi. Netherlands Journal of Plant Pathology, 91(3), 119-135. Disponible en: https://doi.org/10.1007/BF01976386 19. Bai, T. T., Xie, W. B., Zhou, P. P., Wu, Z. L., Xiao, W. C., Zhou, L.y Li, H. P. (2013). Transcriptome and expression profile analysis of highly resistant and susceptible banana roots challenged with Fusarium oxysporum f. sp. cubense tropical race 4. Plos one, 8(9), e73945. Disponible en: https://doi.org/10.1371/journal.pone.0073945 20. Balasubramanian, V., Vashisht, D., Cletus, J. y Sakthivel, N. (2012). Plant β-1, 3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnology letters, 34(11), 1983-1990. Disponible en: https://doi.org/10.1007/s10529-012-1012-6 21. Bilbao, O. y Castro, C. (1996). Estudios preliminares para la obtención de semilla híbrida de clavel estándar bajo las condiciones de la sabana de Bogotá. Trabajo de grado de Ingeniero Agrónomo. Universidad Nacional de Colombia (Bogotá). 39-43; 46; 68-70. 22. Boller T, y He SY (2009). Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science.;324:742-744. Disponible en: http://dx.doi.org/10.1126/science.1171647 23. Borda, F. y Arbeláez, G. (1993). Determinación del antagonismo del aislamiento T 95 de Trichoderma harzianum sobre Fusarium oxysporum f. sp. cucumerinum en plantas de pepino cohombro. Agronomía Colombiana, 10(1), 45-51. Disponible en:https://revistas.unal.edu.co/index.php/agrocol/article/view/21238. 24. Bueso, E., Alejandro, S., Carbonell, P., Perez‐Amador, M. A., Fayos, J., Bellés, J. M., ...y Serrano, R. (2007). The lithium tolerance of the Arabidopsis cat2 mutant reveals a cross‐talk between oxidative stress and ethylene. The Plant Journal, 52(6), 1052-1065. Disponible en: https://doi.org/10.1111/j.1365-313X.2007.03305.x 25. Bustin, S. A., Benes, V., Nolan, T. y Pfaffl, M. W. (2005). Quantitative real-time RT-PCR–a perspective. Journal of molecular endocrinology, 34(3), 597-601. Disponible en:https://doi.org/10.1677/jme.1.01755 26. Cappuccino, J. G. y Welsh, C. T. (2017). Microbiology: A laboratory manual. Pearson Education. Disponible en:https://www.pearson.com/us/higher-education/program/Cappuccino-Microbiology-A-Laboratory-Manual-11th-Edition/PGM96372.html 27. Carmona, M. y Sautua, F. (2017). La problemática de la resistencia de hongos a fungicidas. Causas y efectos en cultivos extensivos. Agronomía & Ambiente, 37(1). Agronomía & Ambiente. Revista de la Facultad de Agronomía (UBA) ISSN 2344-9039 28. Castellanos Domínguez, Ó. F., Fonseca Rodríguez, S. L. yBuriticá Ospina, S. (2010). Agenda prospectiva de investigacióny desarrollo tecnológico para la cadena productiva de floresy follajes con énfasis en clavel. Biogestión. Disponible en: https://repositorio.unal.edu.co/handle/unal/69948. 29. Chakraborty, S., Nguyen, B., Wasti, S. D., & Xu, G. (2019). Plant leucine-rich repeat receptor kinase (LRR-RK): structure, ligand perception, and activation mechanism. Molecules, 24(17), 3081. Disponible en: https://doi.org/10.3390/molecules24173081 30. Chandran, D., Inada, N., Hather, G., Kleindt, C. K. yWildermuth, M. C. (2010). Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proceedings of the National Academy of Sciences, 107(1), 460-465. Disponible en: https://doi.org/10.1073/pnas.0912492107 31. Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W. y Ecker, J. R. (1997). Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ethylene-insensitive3 and related proteins. Cell, 89(7), 1133-1144. Disponible en: https://doi.org/10.1016/S0092-8674(00)80300-1 32. Chen, D., Shao, Q., Yin, L., Younis, A.y Zheng, B. (2019). Función de las poliaminas en las plantas: metabolismo, regulación del desarrolloy roles en las respuestas al estrés abiótico. Frontiers in Plant Science, 9, 1945. Disponible en: https://doi.org/10.3389/fpls.2018.01945 33. Chen, Z., Zheng, Z., Huang, J., Lai, Z. yFan, B. (2009). Biosynthesis of salicylic acid in plants. Plant signalingy behavior, 4(6), 493-496. Disponible en: https://doi.org/10.4161/psb.4.6.8392 34. Cheng, Z., Yu, X., Li, S. y Wu, Q. (2018). Genome-wide transcriptome analysis and identification of benzothiadiazole-induced genes and pathways potentially associated with defense response in banana. BMC genomics, 19(1), 454. Disponible en: https://doi.org/10.1186/s12864-018-4830-7 35. Chinchilla, D., Bauer, Z., Regenass, M., Boller, T. yFelix, G. (2006). The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. The Plant Cell, 18(2), 465-476. Disponible en: https://doi.org/10.1105/tpc.105.036574 36. Cotes, A.M., Jiménez, P., Rodríguez, M.X., Díaz, A., Zapata, J., Gómez, M., Grijalba, E., Villamizar, L., González, C., Smith, A., Mejía, C., Mesa, P., Cruz, L.C. (2012) Estrategias de control biológico de Fusarium oxysporum en el cultivo de la Uchuva (Physalis peruviana). Bogotá: Corpoica.23-82 p. ISBN: 978-958-740-093-9. Disponible en: http://hdl.handle.net/20.500.12324/12610 37. Cowley, T. y Walters, D. (2008). Polyamine metabolism in an incompatible interaction between barley and the powdery mildew fungus, Blumeria graminis f. sp. hordei. Journal of Phytopathology, 150, 581–586. Disponible en: https://doi.org/10.1046/j.1439-0434.2002.00816.x 38. Curir, P., Dolci, M., Corea, G., Galeotti, F. yLanzotti, V. (2006). The plant antifungal isoflavone genistein is metabolized by Armillaria mellea Vahl to give non-fungitoxic products. Plant Biosystems, 140(2), 156-162. Disponible en: https://doi.org/10.1080/11263500600756363 39. DANE. (2020). Boletín Técnico de Exportaciones. DANE: Información para todos. Consultado: 05/01/2021. Disponible en: https://www.dane.gov.co/files/investigaciones/boletines/exportaciones/bol_exp_nov20.pdf 40. Dao, T. T. H., Linthorst, H. J. M. y Verpoorte, R. (2011). Chalcone synthase and its functions in plant resistance. Phytochemistry Reviews, 10(3), 397-412. Disponible en: https://doi.org/10.1007/s11101-011-9211-7 41. Dauleux, M. J. (2013). Partial resistance to clubroot in Arabidopsis is based on changes in the host primary metabolism and targeted cell division and expansion capacity. Functional e integrative genomics, 13(2), 191–205. Disponible en: https://doi.org/10.1007/s10142-013-0312-9 42. De Granada, E., De Amézquita, M.., Mendoza, G y Zapata, H. (2001). Fusarium oxysporum el hongo que nos falta conocer. Acta biológica colombiana, 6(1), 7-25. Disponible en:https://revistas.unal.edu.co/index.php/actabiol/article/view/63462 43. de Jesús-Pires, C., Ferreira-Neto, J., Pacifico Bezerra-Neto, J., Kido, E. A., de Oliveira Silva, R. L., Pandolfi, V., Wanderley-Nogueira, A. C., Binneck, E., da Costa, A. F., Pio-Ribeiro, G., Pereira-Andrade, G., Sittolin, I. M., Freire-Filho, F. y Benko-Iseppon, A. M. (2020). Plant Thaumatin-like Proteins: Function, Evolution and Biotechnological Applications. Current protein ypeptide science, 21(1), 36–51. Disponible en: https://doi.org/10.2174/1389203720666190318164905 44. Department of health and Ageing (DHA). 2006. The Biology and ecology of Dianthus caryophyllus L. (Carnation). Department of Health and Ageing, Office of the Gene Technology Regulator. Disponible en:http://bch.cbd.int/database/attachment/?id=20040 45. Di Pietro, A. and Roncero, M.I. (2003). Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum mediates resistance to plant defense compounds. Molecular Microbiology. 47(1): 257-66. Disponible en: https://doi.org/10.1046/j.1365-2958.2003.03299.x 46. Dixon, R. A. y Lamb, C. J. (1990). Molecular communication in interactions between plants and microbial pathogens. Annual review of plant biology, 41(1), 339-367. Disponible en: https://doi.org/10.1146/annurev.pp.41.060190.002011 47. Dmitriev, A. A., Krasnov, G. S., Rozhmina, T. A., Novakovskiy, R. O., Snezhkina, A. V., Fedorova, M. S.y Melnikova, N. V. (2017). Differential gene expression in response to Fusarium oxysporum infection in resistant and susceptible genotypes of flax (Linum usitatissimum L.). BMC Plant Biology, 17(2), 29-40. Disponible en: https://doi.org/10.1186/s12870-017-1192-2 48. Dorokhov, Y. L., Sheshukova, E. V. y Komarova, T. V. (2018). Methanol in plant life. Frontiers in plant science, 9, 1623. Disponible en: https://doi.org/10.3389/fpls.2018.01623 49. Du, X., Miao, M., Ma, X., Liu, Y., Kuhl, J. C., Martin, G. B. y Xiao, F. (2012). Plant programmed cell death caused by an autoactive form of Prf is suppressed by co-expression of the Prf LRR domain. Molecular plant, 5(5), 1058-1067. Disponible en: https://doi.org/10.1093/mp/sss014 50. Duan, Y., Jiang, Y., Ye, S., Karim, A., Ling, Z., He, Y. y Luo, K. (2015). PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana. Plant cell reports, 34(5), 831-841. Disponible en: https://doi.org/10.1007/s00299-015-1745-5 51. Duarte, Y., Echevarría, A. y Martínez, B. (2016). Identificación y caracterización de aislamientos de Fusarium spp. presentes en garbanzo (Cicer arietinum L.) en Cuba. Revista de Protección Vegetal, 31(3), 173-183. Disponible en:http://scielo.sld.cu/scielo.php?script=sci_arttexty pid=S1010-27522016000300004 52. Durrant, W. E. y Dong, X. (2004). Systemic acquired resistance. Annu. Rev. Phytopathol., 42, 185-209. Disponible en: https://doi.org/10.1146/annurev.phyto.42.040803.140421 53. Dzhavakhiya, V. Ozeretskovskaya, O. y Zinovyeva, S. (2007). Immune response. In Comprehensive and Molecular Phytopathology (pp. 265-314). Elsevier. Disponible en: https://doi.org/10.1016/B978-044452132-3/50014-6 54. Edel-Hermann, V. y Lecomte, C. (2019). Current status of Fusarium oxysporum formae speciales and races. Phytopathology, 109(4), 512-530. Disponible en: https://doi.org/10.1094/PHYTO-08-18-0320-RVW 55. Erazo, J., Palacios, S., Pastor, N., Giordano, D., Rovera, M., Reynoso, M. y Torres, M. (2021). Biocontrol mechanisms of Trichoderma harzianum ITEM 3636 against peanut brown root rot caused by fusarium solani RC 386. Biological Control, 104774. Disponible en: https://doi.org/10.1016/j.biocontrol.2021.104774 56. Expósito-Rodríguez, M., Borges, A. A., Borges-Pérez, A. y Pérez, J. A. (2008). Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC plant biology, 8(1), 1-12. Disponible en: https://doi.org/10.1186/1471-2229-8-131 57. Falcone-Ferreyra, M. L., Rius, S. yCasati, P. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in plant science, 3, 222. Disponible en: https://doi.org/10.3389/fpls.2012.00222 58. Fernández-Larrea, O. (2001). Microorganismos antagonistas para el control fitosanitario. Manejo Integrado de Plagas. Costa Rica. CATIE. No. 62 p. 96 - 100. Disponible en: http://hdl.handle.net/11554/6578 59. Ferrari, S., Sella, L., Janni, M., De Lorenzo, G., Favaron, F. y D’ovidio, R. (2012). Transgenic expression of polygalacturonase‐inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum. Plant Biology, 14, 31-38. Disponible en: https://doi.org/10.1111/j.1438-8677.2011.00449.x 60. Ferrari, S., Vairo, D., Ausubel, F. M., Cervone, F. y De Lorenzo, G. (2003). Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. The Plant Cell, 15(1), 93-106. Disponible en: https://doi.org/10.1105/tpc.005165 61. Filgueira, J., Quinche, C. y Soto, J. (2007). ¿Es el Fusarium verticillioides responsable del decaimiento de la variedad Nelson en la Sabana de Bogotá? Asocolflores. 69: 51-54. 62. Filgueira, J.J. (2009). Estudio y manejo de la pudrición basal producida por hongos del complejo Fusarium en clavel comercial en la Sabana de Bogotá. Asocolflores. 72: p53-54. 63. Filgueira, J.J. (2011). Experiencias en mejoramiento del clavel (Dianthus caryophyllus). Ed. Universidad Militar Nueva Granada, 1ª Ed. Bogotá Colombia. ISBN 978-958-8403-41-0. 64. Flury, P., Klauser, D., Schulze, B., Boller, T. yBartels, S. (2013). The anticipation of danger: microbe-associated molecular pattern perception enhances AtPep-triggered oxidative burst. Plant Physiology, 161(4), 2023-2035. Disponible en: https://doi.org/10.1104/pp.113.216077 65. García, D., Arbeláez, M. y Arbeláez, G. (1995). Tratamiento físico y químico del suelo para el control Del marchitamiento vascular del clavel causado por el Hongo Fusarium oxysporum f. sp. dianthi. Agronomía Colombiana, 12(1), 08-20. Disponible en:https://revistas.unal.edu.co/index.php/agrocol/article/view/28033 66. Garg R. y Jain M. (2013) RNA-Seq for Transcriptome Analysis in Non-model Plants. In: Rose R. (eds) Legume Genomics. Methods in Molecular Biology (Methods and Protocols), vol 1069. Humana Press, Totowa, NJ. Disponible en: https://doi.org/10.1007/978-1-62703-613-9_4 67. Garibaldi, A. y Gullino, M. (1987, May). Fusarium wilt of carnation: present situation, problems and perspectives (°). In III International Symposium on Carnation Culture 216 (pp. 45-54). Disponible en: https://doi.org/10.17660/ActaHortic.1987.216.6 68. Gkizi, D., Lehmann, S., L’Haridon, F., Serrano, M., Paplomatas, E. J., Métraux, J. P., & Tjamos, S. E. (2016). The innate immune signaling system as a regulator of disease resistance and induced systemic resistance activity against Verticillium dahliae. Molecular Plant-Microbe Interactions, 29(4), 313-323. Disponible en: https://doi.org/10.1094/MPMI-11-15-0261-R 69. Glazebrook, J. yAusubel, F. M. (1994). Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proceedings of the National Academy of Sciences, 91(19), 8955-8959. Disponible en: https://doi.org/10.1073/pnas.91.19.8955 70. Goff, K. E. yRamonell, K. M. (2007). The role and regulation of receptor-like kinases in plant defense. Gene regulation and systems biology, 1, Disponible en: https://doi.org/10.1177%2F117762500700100015 71. Goicoechea, N., Aguirreolea, J., Cenoz, S. y Garcia-Mina, J. M. (2000). Verticillium dahliae modifies the concentrations of proline, soluble sugars, starch, soluble protein and abscisic acid in pepper plants. European Journal of Plant Pathology, 106(1), 19-25. Disponible en: https://doi.org/10.1023/A:1008724816041 72. Gonzalez, M. E., Jasso‐Robles, F. I., Flores‐Hernández, E., Rodríguez‐Kessler, M. y Pieckenstain, F. L. (2021). Current status and perspectives on the role of polyamines in plant immunity. Annals of Applied Biology, 178(2), 244-255. Disponible en: https://doi.org/10.1111/aab.12670 73. Greenberg, A. K. (2013). Phylogenetics, Biogeography, and Rates of Evolution in the Plant Clade Caryophyllaceae. Yale University. Disponible en: https://doi.org/10.1086/596332 74. Grube, R. C., Radwanski, E. R. y Jahn, M. (2000). Comparative genetics of disease resistance within the Solanaceae. Genetics, 155(2), 873-887. Disponible en: https://doi.org/10.1093/genetics/155.2.873 75. Hawkins, N. y Fraaije, B. (2015). The evolution of fungicide resistance. Advances in applied microbiology, 90, 29-92. Disponible en: https://doi.org/10.1016/bs.aambs.2014.09.001 76. He, K. y Wu, Y. (2016). Receptor-like kinases and regulation of plant innate immunity. The Enzymes, 40, 105-142. Disponible en: https://doi.org/10.1016/bs.enz.2016.09.003 77. Hibi, T., Kosugi, S., Iwai, T., Kawata, M., Seo, S., Mitsuhara, I. y Ohashi, Y. (2007). Involvement of EIN3 homologues in basic PR gene expression and flower development in tobacco plants. Journal of experimental botany, 58(13), 3671-3678. Disponible en: https://doi.org/10.1093/jxb/erm216 78. Holmes, D. R., Grubb, L. E. y Monaghan, J. (2018). The jasmonate receptor COI1 is required for AtPep1-induced immune responses in Arabidopsis thaliana. BMC research notes, 11(1), 1-7. Disponible en: https://doi.org/10.1186/s13104-018-3628-7 79. Huang, C. y Lindhout, P. (1997). Screening for resistance in wild Lycopersicon species to Fusarium oxysporum f. sp. lycopersici race 1 and race 2. Euphytica, 93(2), 145-153. Disponible en: https://doi.org/10.1023/A:1002943805229 80. Huxley, A. J. y Griffiths, M. (1992). Dictionary of gardening. Stockton Press. ISBN 0-333-47494-5. Disponible en:https://agris.fao.org/agris-search/search.do?recordID=US201300704289 81. Imran, M., Tang, K. y Liu, J. Y. (2016). Comparative genome-wide analysis of the malate dehydrogenase gene families in cotton. PLoS One, 11(11), e0166341. Disponible en: https://doi.org/10.1371/journal.pone.0166341 82. Instituto Colombiano Agropecuario (2021). Soporte para la exportación de flores y ornamentales al mundo para San Valentín. Ministerio de agricultura de Colombia. Consultado: 24/03/2021. Disponible en: https://www.ica.gov.co/noticias/ica-san-valentin-flores-colombia-llegan-100-paises. 83. Integrated Taxonomic Information System (ITIS). http://www.itis.gov. Accedida en abril del 2020. 84. Iwazaki, Y., Kosugi, Y., Waki, K., Yoshioka, T., & Satoh, S. (2004). Generation and ethylene production of transgenic carnations harboring ACC synthase cDNA in sense or antisense orientation. J. Appl. Hort, 6, 67-71. Disponible en: https://bit.ly/3nwE68l 85. Jabeen, N., Chaudhary, Z., Gulfraz, M., Rashid, H. y Mirza, B. (2015). Expression of rice chitinase gene in genetically engineered tomato confers enhanced resistance to Fusarium wilt and early blight. The plant pathology journal, 31(3), 252. Disponible en: https://dx.doi.org/10.5423%2FPPJ.OA.03.2015.0026 86. Jagadeeswaran, G., Raina, S., Acharya, B., Maqbool, S., Mosher, S., Appel, H. y Raina, R. (2007). Arabidopsis GH3‐LIKE DEFENSE GENE 1 is required for accumulation of salicylic acid, activation of defense responses and resistance to Pseudomonas syringae. The Plant Journal, 51(2), 234-246. Disponible en: https://doi.org/10.1111/j.1365-313X.2007.03130.x 87. Ji, H. M., Zhao, M., Gao, Y., Cao, X. X., Mao, H. Y., Zhou, Y. y Liu, P. (2018). FRG3, a target of slmiR482e-3p, provides resistance against the fungal pathogen Fusarium oxysporum in tomato. Frontiers in plant science, 9, 26. Disponible en: https://doi.org/10.3389/fpls.2018.00026 88. Jiang, Y., Duan, Y., Yin, J., Ye, S., Zhu, J., Zhang, F., ...y Luo, K. (2014). Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. Journal of Experimental Botany, 65(22), 6629-6644. Disponible en: https://doi.org/10.1093/jxb/eru381 89. Jones J, Vance R, Dangl J. (2016). Intracellular innate immune surveillance devices in plants and animals. Science. 354:117-125. Disponible en: https://science.sciencemag.org/lookup/doi/10.1126/science.aaf6395 90. Jones, J. D. y Dangl, J. L. (2006). The plant immune system. nature, 444(7117), 323-329. Disponible en: https://doi.org/10.1038/nature05286 91. Joubert, D., Slaughter, R., Kemp, G., Becker, J., Krooshof, G., Bergmann, C., ...y Vivier, M. A. (2006). The grapevine polygalacturonase-inhibiting protein (VvPGIP1) reduces Botrytis cinerea susceptibility in transgenic tobacco and differentially inhibits fungal polygalacturonases. Transgenic research, 15(6), 687-702. Disponible en: https://doi.org/10.1007/s11248-006-9019-1 92. Journet, E. P., Neuburger, M. y Douce, R. (1981). Role of glutamate-oxaloacetate transaminase and malate dehydrogenase in the regeneration of NAD+ for glycine oxidation by spinach leaf mitochondria. Plant physiology, 67(3), 467-469. Disponible en: https://doi.org/10.1104/pp.67.3.467 93. Jovanović, S. V., Kukavica, B., Vidović, M., Morina, F., & Menckhoff, L. (2018). Class III peroxidases: functions, localization and redox regulation of isoenzymes. In Antioxidants and antioxidant enzymes in higher plants (pp. 269-300). Springer, Cham. Disponible en: https://doi.org/10.1007/978-3-319-75088-0_13 94. Jun, S., Sattler, S., Cortez, G., Vermerris, W., Sattler, S. y Kang, C. (2018). Biochemical and structural analysis of substrate specificity of a phenylalanine ammonia-lyase. Plant physiology, 176(2), 1452-1468. Disponible en: https://doi.org/10.1104/pp.17.01608 95. Kadota, Y. y Shirasu, K. (2012). The HSP90 complex of plants. BiocJiica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(3), 689-697. Disponible en: https://doi.org/10.1016/j.bbamcr.2011.09.016 96. Kalunke, R. M., Tundo, S., Benedetti, M., Cervone, F., De Lorenzo, G.y D'Ovidio, R. (2015). An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens. Frontiers in plant science, 6, 146. Disponible en: https://doi.org/10.3389/fpls.2015.00146 97. Kaur, N., Reumann, S. y Hu, J. (2009). Peroxisome biogenesis and function. The Arabidopsis book/American Society of Plant Biologists, 7. Disponible en: https://dx.doi.org/10.1199%2Ftab.0123 98. Kim, S., Shang, Y., Joo, S., Kim, S. y Nam, K. (2017). Overexpression of BAK1 causes salicylic acid accumulation and deregulation of cell death control genes. Biochemical and biophysical research communications, 484(4), 781-786. Disponible en: https://doi.org/10.1016/j.bbrc.2017.01.166 99. Kosugi, S. y Ohashi, Y. (2000). Cloning and DNA-binding properties of a tobacco Ethylene-Insensitive3 (EIN3) homolog. Nucleic Acids Research, 28(4), 960-967. Disponible en: https://doi.org/10.1093/nar/28.4.960 100. Kozeko, L. Y. (2019). The role of HSP90 chaperones in stability and plasticity of ontogenesis of plants under normal and stressful conditions (Arabidopsis thaliana). Cytology and Genetics, 53(2), 143-161. Disponible en: https://doi.org/10.3103/S0095452719020063 101. Krol, E., Mentzel, T., Chinchilla, D., Boller, T., Felix, G., Kemmerling, B., ...y Hedrich, R. (2010). Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. Journal of Biological Chemistry, 285(18), 13471-13479. Disponible en: https://doi.org/10.1074/jbc.M109.097394 102. Lamb, C., Lawton, M., Dron, M. y Dixon, R. (1989). Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell, 56(2), 215-224. Disponible en: https://doi.org/10.1016/0092-8674(89)90894-5 103. Lamborn, L. (1901). American Carnation culture. The evolution of Dianthus caryophyllus sempler florens. Applewood books. (4) 13 – 30 104. Langner, T.y Göhre, V. (2016). Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Current genetics, 62(2), 243-254. Disponible en: https://doi.org/10.1007/s00294-015-0530-x 105. Lazarovits, G., Conn, K. L., Abbasi, P. A., & Tenuta, M. (2005). Understanding the mode of action of organic soil amendments provides the way for improved management of soilborne plant pathogens. Acta Horticulturae, 698, 215. Disponible en: https://acortar.link/9k1X0b 106. Lee, J. Yoo, B., Rojas, M, Gomez-Ospina, N., Staehelin, L. y Lucas, W. (2003). Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPP1. Science, 299(5605), 392-396. Disponible en: doi:10.1126/science.1077813. 107. Lee, S. y Park, K. (1998). Characterization and Expression of the Polyamine Biosynthetic Genes from Senescing Carnation Flowers. In Proceedings of the Zoological Society Korea Conference (pp. 15-24). The Korean Society for Integrative Biology. Disponible en:https://www.koreascience.or.kr/article/CFKO199811921842356.page 108. Lee, W., Rudd, J., Hammond-Kosack, K. y Kanyuka, K. (2014). Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. Molecular Plant-Microbe Interactions, 27(3), 236-243. Disponible en: https://doi.org/10.1094/MPMI-07-13-0201-R 109. Legaz, M., De Armas, R., Piñón, D. y Vicente, C. (1998). Relationships between phenolics-conjugated polyamines and sensitivity of sugarcane to smut (Ustilago scitaminea). Journal of Experimental Botany, 49, 1723–1728. Disponible en: https://doi.org/10.1093/jxb/49.327.1723 110. Leslie, J. F., & Summerell, B. A. (2006). The fusarium laboratory manual. Blackwell publishing. ISBN-13:978-0-8138-1919-8. Disponible en: https://bit.ly/3jBHDRt 111. Li, C., Shao, J., Wang, Y., Li, W., Guo, D., Yan, B., ... y Peng, M. (2013). Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense. BMC genomics, 14(1), 851. Disponible en: https://doi.org/10.1186/1471-2164-14-851 112. Li, H. y Smigocki, A. C. (2018). Sugar beet polygalacturonase-inhibiting proteins with 11 LRRs confer Rhizoctonia, Fusarium and Botrytis resistance in Nicotiana plants. Physiological and Molecular Plant Pathology, 102, 200-208. Disponible en: https://doi.org/10.1016/j.pmpp.2018.03.001 113. Lin, Z., Zhong, S. y Grierson, D. (2009). Recent advances in ethylene research. Journal of experimental botany, 60(12), 3311-3336. Disponible en: https://doi.org/10.1093/jxb/erp204 114. Lingam, S., Mohrbacher, J., Brumbarova, T., Potuschak, T., Fink-Straube, C., Blondet, E., y Bauer, P. (2011). Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. The Plant Cell, 23(5), 1815-1829. Disponible en: https://doi.org/10.1105/tpc.111.084715 115. Linneo, C. (1753). "Tomus I". Especie Plantarum (en latín). Estocolmo: Laurentii Salvii. pag. 410. ISSN 2074-8647 116. Lo, S.y Nicholson, R. (1998). Reduction of light-induced anthocyanin accumulation in inoculated sorghum mesocotyls: implications for a compensatory role in the defense response. Plant Physiology, 116(3), 979-989. Disponible en: https://doi.org/10.1104/pp.116.3.979 117. Loake, G. y Grant, M. (2007). Salicylic acid in plant defence—the players and protagonists. Current opinion in plant biology, 10(5), 466-472. Disponible en: https://doi.org/10.1016/j.pbi.2007.08.008 118. Lordachescu, M. y Verlinden, S. (2005). Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure. Journal of experimental botany, 56(418), 2011–2018. Disponible en: https://doi.org/10.1093/jxb/eri199 119. Luna-Esquivel, E. N., Ojeda-Barrios, D. L., Guerrero-Prieto, V. M., Ruíz-Anchondo, T. y Martínez-Téllez, J. J. (2014). Poliaminas como indicadores de estrés en plantas. Revista Chapingo. Serie horticultura, 20(3), 283-295. Disponible en: https://doi.org/10.5154/r.rchsh.2013.05.019 120. Mahesh, H. M., Murali, M., Pal, M. A. C., Melvin, P., & Sharada, M. S. (2017). Salicylic acid seed priming instigates defense mechanism by inducing PR-Proteins in Solanum melongena L. upon infection with Verticillium dahliae Kleb. Plant Physiology and Biochemistry, 117, 12-23. Disponible en: https://doi.org/10.1016/j.plaphy.2017.05.012 121. Martínez, J. D. (2018). Análisis del aumento de las actividades informales y su vínculo con las exportaciones del sector floricultor en la Sabana de Bogotá durante los años 2008-2016. Disponible en: https://ciencia.lasalle.edu.co/finanzas_comercio/200 122. Matern, U. (1994). Dianthus species (Carnation): in vitro culture and the biosynthesis of dianthalexin and other secondary metabolites. In Medicinal and aromatic plants VII (pp. 170-184). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-30369-6_12 123. Mato, M., Onozaki, T., Ozeki, Y., Higeta, D., Itoh, Y., Hisamatsu, T. y Shibata, M. (2001). Flavonoid biosynthesis in pink-flowered cultivars derived from'William Sim'carnation (Dianthus caryophyllus). Journal of the Japanese Society for Horticultural Science, 70(3), 315-319. Disponible en: https://doi.org/10.2503/jjshs.70.315 124. Menéndez, E., Navarro, J., López, J. y Dalmau, A. (2020). Mecanismos de defensa en plantas. Proteínas relacionadas con la patogenicidad. Revista de Investigaciones de la Universidad Le Cordon Bleu, 7(2), 98-109. Disponible en: https://doi.org/10.36955/RIULCB.2020v7n2.010 125. Meng, X. y Zhang, S. (2013). MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol.51:245-266. Disponible en: https://doi.org/10.1146/annurev-phyto-082712-102314 126. Mhamdi, A., Hager, J., Chaouch, S., Queval, G., Han, Y., Taconnat, L. y Noctor, G. (2010). Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant physiology, 153(3), 1144-1160. Disponible en: https://doi.org/10.1104/pp.110.153767 127. Mhamdi, A., Noctor, G. y Baker, A. (2012). Plant catalases: peroxisomal redox guardians. Archives of Biochemistry and Biophysics, 525(2), 181-194. Disponible en: https://doi.org/10.1016/j.abb.2012.04.015 128. Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Van Breusegem, F. y Noctor, G. (2010). Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. Journal of experimental botany, 61(15), 4197-4220. Disponible en: https://doi.org/10.1093/jxb/erq282 129. Michel-López, C. Y., González-Mendoza, D., Zapata-Pérez, O., Rubio-Piña, J., Cervantes-Díaz, L. y Bermúdez-Guzmán, M. D. J. (2018). Evaluation of three protocols for the rapid extraction of total tissue RNA from Prosopis juliflora (SW). Revista mexicana de ciencias agrícolas, 9(6), 1259-1267. Disponible en: https://doi.org/10.29312/remexca.v9i6.788 130. Ministerio de agricultura y desarrollo rural (Minagricultura). (2020) Dirección de cadenas Agrícolas y Forestales. Cadena de flores. Disponible en: https://sioc.minagricultura.gov.co/Flores/Documentos/2019-12-30%20Cifras%20Sectoriales.pdf. Consultado: 05/09/2020. 131. Mittler, R., Herr, E. Orvar, B. L., Van Camp, Willekens, H., Inzé, D. y Ellis, B. (1999). Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proceedings of the National Academy of Sciences, 96(24), 14165-14170. Disponible en: https://doi.org/10.1073/pnas.96.24.14165 132. Monroy - Mena, S. (2020). Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f. sp. dianthi. Departamento de Química. Disponible en: https://repositorio.unal.edu.co/handle/unal/77930 133. Monroy-Mena, S., Chacón-Parra, A. L., Farfán-Angarita, J. P., Martínez-Peralta, S. T., & Ardila-Barrantes, H. (2019). Selección de genes de referencia para análisis transcripcionales en el modelo clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi. Revista Colombiana de Química, 48(2), 5-14. Disponible en: https://doi.org/10.15446/rev.colomb.quim.v48n2.72771 134. Morán, J. K. (2018). Análisis de la producción de flores y exportaciones hacia los países bajos, período 2012-2016 (Bachelor's thesis, Universidad de Guayaquil. Facultad de Ciencias Económicas). Disponible en:http://repositorio.ug.edu.ec/handle/redug/28710 135. Morimoto, H., Narumi-Kawasaki, T., Takamura, T. y Fukai, S. (2018). Analysis of flower color variation in carnation (Dianthus caryophyllus L.) cultivars derived from continuous bud mutations. The Horticulture Journal, UTD-007. Disponible en: https://doi.org/10.2503/hortj.UTD-007 136. Morkunas, I. y Ratajczak, L. (2014). The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiologiae Plantarum, 36(7), 1607-1619. Disponible en: https://doi.org/10.1007/s11738-014-1559-z 137. Moschou, P., Wu, J., Cona, A., Tavladoraki, P., Angelini, R. y Roubelakis-Angelakis, K. A. (2012). The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. Journal of experimental botany, 63(14), 5003-5015. Disponible en: https://doi.org/10.1093/jxb/ers202 138. Murashige, T. y Skoog, F. (1962). A revised medium for rapid growth and bio assaysbioassays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497. Disponible en: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x 139. Negi, N. y Khurana, P. (2021). A salicylic acid inducible mulberry WRKY transcription factor, Mi WRKY53 is involved in plant defence response. Plant Cell Reports, 1-21. Disponible en: https://doi.org/10.1007/s00299-021-02710-8 140. Offen, W., Martinez‐Fleites, C., Yang, M., Kiat‐Lim, E., Davis, B. G., Tarling, C. A., y Davies, G. J. (2006). Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. The EMBO journal, 25(6), 1396-1405. Disponible en: https://doi.org/10.1038/sj.emboj.7600970 141. Ogata, J., Itoh, Y., Ishida, M., Yoshida, H. y Ozeki, Y. (2004). Cloning and heterologous expression of cDNAs encoding flavonoid glucosyltransferases from Dianthus caryophyllus. Plant Biotechnology, 21(5), 367-375. Disponible en: https://doi.org/10.5511/plantbiotechnology.21.367 142. Ono, E., Fukuchi-Mizutani, M., Nakamura, N., Fukui, Y., Yonekura-Sakakibara, K., Yamaguchi, M., y Tanaka, Y. (2006). Yellow flowers generated by expression of the aurone biosynthetic pathway. Proceedings of the National Academy of Sciences, 103(29), 11075-11080. Disponible en: https://doi.org/10.1073/pnas.0604246103 143. Ori, N., Eshed, Y., Paran, I., Presting, G., Aviv, D., Tanksley, S. y Fluhr, R. (1997). The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. The Plant Cell, 9(4), 521-532. Disponible en: https://doi.org/10.1105/tpc.9.4.521 144. Oumouloud, A., El-Otmani, M., Chikh-Rouhou, H., Claver, A. G., Torres, R. G., Perl-Treves, R. y Alvarez, J. M. (2013). Breeding melon for resistance to Fusarium wilt: recent developments. Euphytica, 192(2), 155-169. Disponible en: https://doi.org/10.1007/s10681-013-0904-4 145. Owen, C. A., Spano, T., Hajjar, S. E., Tunaru, V., Harytunyan, S., Filali, L. y Kalaitzis, P. (2004). Expression of genes for alcohol dehydrogenase and pyruvate decarboxylase in petals of cut carnation flowers in response to hypoxia and anoxia. Physiologia Plantarum, 122(4), 412-418. Disponible en: https://doi.org/10.1111/j.1399-3054.2004.00423.x 146. Pandey, V. P., Awasthi, M., Singh, S., Tiwari, S. y Dwivedi, U. N. (2017). A comprehensive review on function and application of plant peroxidases. Biochem Anal Biochem, 6(1), 308. Disponible en: http://dx.doi.org/10.4172/2161-1009.1000308 147. Pathuri, I. P., Reitberger, I. E., Hückelhoven, R. y Proels, R. K. (2011). Alcohol dehydrogenase 1 of barley modulates susceptibility to the parasitic fungus Blumeria graminis f. sp. hordei. Journal of experimental botany, 62(10), 3449-3457. Disponible en: https://doi.org/10.1093/jxb/err017 148. Perchepied, L., y Pitrat, M. (2004). Polygenic inheritance of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in melon. Phytopathology, 94(12), 1331-1336.Disponible en: https://doi.org/10.1094/PHYTO.2004.94.12.1331 149. Pérez, A. B., Sanz, R., & Díez, M. A. (2003). Bromuro de metileno como fumigante de suelos: alternativas y usos. Vida rural, (171), 22-24. ISSN 1133-8938, Nº 171, 2003, págs. 22-24 150. Perez-Nadales, E., Nogueira, M. F. A., Baldin, C., Castanheira, S., El Ghalid, M., Grund, E. y Naik, V. (2014). Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genetics and Biology, 70, 42-67. Disponible en: https://doi.org/10.1016/j.fgb.2014.06.011 151. Perilla, L. (2014). Evaluación de polimorfismos con marcadores microsatélites asociados a la Resistencia a Fusarium oxysporum en líneas híbridas de Dianthus caryophyllus. Facultad de Ciencias Básicas y Aplicadas. Universidad militar Nueva Granada. (UMNG). (Bachelor's thesis) 152. Pottorff, M. O., Li, G., Ehlers, J. D., Close, T. J. y Roberts, P. A. (2014). Genetic mapping, synteny, and physical location of two loci for Fusarium oxysporum f. sp. tracheiphilum race 4 resistance in cowpea [Vigna unguiculata (L.) Walp]. Molecular breeding, 33(4), 779-791. Disponible en: https://doi.org/10.1007/s11032-013-9991-0 153. Pottorff, M., Wanamaker, S., Ma, Y. Q., Ehlers, J. D., Roberts, P. A. y Close, T. J. (2012). Genetic and physical mapping of candidate genes for resistance to Fusarium oxysporum f. sp. tracheiphilum race 3 in cowpea [Vigna unguiculata (L.) Walp]. PLoS One, 7(7), e41600. Disponible en: https://doi.org/10.1371/journal.pone.0041600 154. Quirós, M. L. (2001). La Floricultura en Colombia en el marco de la globalización: Aproximaciones hacia un análisis microy macroeconómico. Revista universidad EAFIT, 37(122), 59-68. Disponible en: http://hdl.handle.net/10784/17295 155. Quiroz, L.C., Corrales, R.L.y Sánchez-Leal, C. (2018). Fitopatógenos y aguas de riego NOVA Revista Universidad Eafit. 16(29): 71-89. 156. Rao, J., Liu, D., Zhang, N., He, H., Ge, F. y Chen, C. (2013). Identification of genes differentially expressed in a resistant reaction to Fusarium oxysporum in Lilium regale by SSH. Ieri Procedia, 5, 95-101. Disponible en: https://doi.org/10.1016/j.ieri.2013.11.076 157. Rathinam, M., Rao, U. y Sreevathsa, R. (2020). Novel biotechnological strategies to combat biotic stresses: polygalacturonase inhibitor (PGIP) proteins as a promising comprehensive option. Applied microbiology and biotechnology, 104(6), 2333-2342. Disponible en: https://doi.org/10.1007/s00253-020-10396-3 158. Redagrícola Colombia. (2020). Mejoramiento genético en clavel: Del laboratorio al mercado. Redagrícola: Especial Flores Colombianas, 6(1), 17. Disponible en: https://www.redagricola.com/co/assets/uploads/2020/11/racol06.pdf. 159. Reinhard, K. y Matern, U. (1989). The biosynthesis of phytoalexins in Dianthus caryophyllus L. cell cultures: induction of benzoyl-CoA: anthranilate N-benzoyltransferase activity. Archives of biochemistry and biophysics, 275(1), 295-301. Disponible en: https://doi.org/10.1016/0003-9861(89)90376-7 160. Ríos, D. y Filgueira, J. (2019). Estudio de las características reproductivas de híbridos de clavel (Dianthus caryophyllus). Temas Agrarios, 24(1), 27-33. Disponible en: https://doi.org/10.21897/rta.v24i1.1775 161. Rios, M. Y. y Olivo, H. F. (2014). Natural and synthetic alkamides: applications in pain therapy. Studies in natural products chemistry, 43, 79-121. Disponible en: https://doi.org/10.1016/B978-0-444-63430-6.00003-5 162. Romero - Rincón, A. (2020). Efecto de la aplicación de elicitores de origen biótico en la biosíntesis de flavonoides en clavel (Dianthus caryophyllus L) durante la interacción con Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia (Tesis maestría). Disponible en: https://repositorio.unal.edu.co/handle/unal/78330 163. Rossi, F., Marina, M. y Pieckenstain, F. L. (2015). Role of Arginine decarboxylase (ADC) in Arabidopsis thaliana defence against the pathogenic bacterium Pseudomonas viridiflava. Plant biology (Stuttgart, Germany), 17(4), 831–839. Disponible en: https://doi.org/10.1111/plb.12289 164. Ryan, C. A. (1987). Oligosaccharide signalling in plants. Annual Review of Cell Biology, 3(1), 295-317. Disponible en: https://doi.org/10.1146/annurev.cb.03.110187.001455 165. Salehzadeh, A. (2012). Interaction of polygalacturonase enzymes from Fusarium oxysporum with tomato polygalacturonase inhibiting protein. African Journal of Agricultural Research, 7(13). Disponible en: https://doi.org/10.5897/AJAR11.1971 166. Salim, A. P., Saminaidu, K., Marimuthu, M., Perumal, Y., Rethinasamy, V., Palanisami, J. R. y Vadivel, K. (2011). Defense responses in tomato landrace and wild genotypes to early blight pathogen Alternaria solani infection and accumulation of pathogenesis-related proteins. Archives of Phytopathology and Plant Protection, 44(12), 1147-1164. Disponible en: https://doi.org/10.1080/03235408.2010.482763 167. Sanmartín, L. (2008). Nuevas aportaciones al metabolismo secundario del tomate. Identificacióny estudio de moléculas implicadas en la respuesta a la infección con Pseudomonas syrinagae pv. tomato (Doctoral dissertation). Disponible en: https://dialnet.unirioja.es/servlet/tesis?codigo=18191 168. Schaller, G. E. (2012). Ethylene and the regulation of plant development. BMC biology, 10(1), 1-3. Disponible en: https://doi.org/10.1186/1741-7007-10-9 169. Seifi, H. S. y Shelp, B. J. (2019). Spermine differentially refines plant defense responses against biotic and abiotic stresses. Frontiers in Plant Science, 10, 117. Disponible en: https://doi.org/10.3389/fpls.2019.00117 170. Seo, P. J., Lee, A. K., Xiang, F. y Park, C. M. (2008). Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. Plant and Cell Physiology, 49(3), 334-344. Disponible en: https://doi.org/10.1093/pcp/pcn011 171. Sestili, S., Polverari, A., Luongo, L., Ferrarini, A., Scotton, M., Hussain, J. y Belisario, A. (2011). Distinct colonization patterns and cDNA-AFLP transcriptome profiles incompatible and incompatible interactions between melon and different races of Fusarium oxysporum f. sp. melonis. BMC genomics, 12(1), 122. Disponible en: https://doi.org/10.1186/1471-2164-12-122 172. Shadle, G. L., Wesley, S. V., Korth, K. L., Chen, F., Lamb, C., & Dixon, R. A. (2003). Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry, 64(1), 153-161.Disponible en: https://doi.org/10.1016/S0031-9422(03)00151-1 173. Shadle, G., Wesley, S., Korth, K., Chen, F, Lamb, C. y Dixon, R. (2003). Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry, 64(1), 153-161. Disponible en: https://doi.org/10.1016/S0031-9422(03)00151-1 174. Shanmugam, V. (2005). Role of extracytoplasmic leucine rich repeat proteins in plant defence mechanisms. Microbiological research, 160(1), 83-94. Disponible en: https://doi.org/10.1016/j.micres.2004.09.014 175. Sharma, A., Tyagi, S., Alok, A., Singh, K. y Upadhyay, S. K. (2020). Thaumatin-like protein kinases: Molecular characterization and transcriptional profiling in five cereal crops. Plant Science, 290, 110317. Disponible en: https://doi.org/10.1016/j.plantsci.2019.110317 176. Sharma, I. y Ahmad, P. (2014). Catalase: a versatile antioxidant in plants. In Oxidative damage to plants (pp. 131-148). Academic Press. Disponible en: https://doi.org/10.1016/B978-0-12-799963-0.00004-6 177. Shen, Y. y Diener, A. C. (2013). Arabidopsis thaliana resistance to Fusarium oxysporum 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection. PLoS genetics, 9(5), e1003525. Disponible en: https://doi.org/10.1371/journal.pgen.1003525 178. Sheshukova, E., Komarova, T., Pozdyshev, D., Ershova, N., Shindyapina, A., Tashlitsky, V. y Dorokhov, Y. (2017). The intergenic interplay between aldose 1-epimerase-like protein and pectin methylesterase in abiotic and biotic stress control. Frontiers in plant science, 8, 1646. Disponible en: https://doi.org/10.3389/fpls.2017.01646 179. Shibuya, K. (1998). A cDNA encoding a putative ethylene receptor related to petal senescence in carnation (Dianthus caryphyllus L.) flowers. Plant Physiol., 116, 867. Disponible en: https://ci.nii.ac.jp/naid/10006287189/ 180. Shivakumar, P. D., Geetha, H. M. y Shetty, H. S. (2003). Peroxidase activity and isozyme analysis of pearl millet seedlings and their implications in downy mildew disease resistance. Plant Science, 164(1), 85-93. Disponible en: https://doi.org/10.1016/S0168-9452(02)00339-4 181. Silva, M., Arraes, F, de Araújo-Campos, M., Grossi-de-Sa, M., Fernandez, D., de Souza Cândido, E. y Grossi-de-Sa, M. (2018). Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant science. Disponible en: https://doi.org/10.1016/j.plantsci.2018.02.013 182. Singh, S. y Farsodia, M. (2018). Polyamine’s metabolism and their relation with reactive oxygen species and other cellular molecules during plant interactions with pathogens. International Journal of Plant and Environment, 4, 76–90. Disponible en: https://doi.org/10.18811/ijpen.v4i01.12420 183. Solano, R., Stepanova, A., Chao, Q. y Ecker, J. R. (1998). Nuclear events in ethylene signaling: a transcriptional cascade mediated by ethylene-insensitive3 and ethylene-response-factor1. Genes y development, 12(23), 3703-3714. Disponible en: https://doi.org/10.1101/gad.12.23.3703 184. Song, J. (2006). Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease response in Arabidopsis thaliana. Molecules y Cells (Springer Science y Business Media BV), 22(2). Vol. 22 Issue 2, p233-238. 6p. 185. Soto, J. Pabón, F. y Filgueira, J. (2009). Relación Entre el Color de la Flor del Clavel (Dianthus caryophyllus) y la Tolerancia a Patógenos del Género Fusarium. Revista Facultad De Ciencias Básicas, 5(1-2), 116-129. Disponible en: https://doi.org/10.18359/rfcb.2125 186. Soto, J. y Filgueira, J. (2016). Evaluación de la capacidad de reproducción de híbridos y variedades de clavel (Dianthus caryophyllus L.) como búsqueda de parentales útiles para un programa de cría. Disponible en: http://hdl.handle.net/10654/37528. 187. Stich, K., Eidenberger, T., Wurst, F. y Forkmann, G. (1992). Enzymatic conversion of dihydroflavonols to flavan-3, 4-diols using flower extracts of Dianthus caryophyllus L.(carnation). Planta, 187(1), 103-108. Disponible en: https://link.springer.com/article/10.1007/BF00201630 188. Stitt, M. y Zeeman, S. C. (2012). Starch turnover: pathways, regulation and role in growth. Current opinion in plant biology, 15(3), 282-292. Disponible en: https://doi.org/10.1016/j.pbi.2012.03.016 189. Svingen, T., Letting, H., Hadrup, N., Hass, U. y Vinggaard, A. M. (2015). Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions. PeerJ, 3, e855. Disponible en: https://doi.org/10.7717/peerj.855 190. Swarbrick, P., Schulze‐Lefert P. y Scholes, J. (2006). Metabolic consequences of susceptibility and resistance (race‐specific and broad‐spectrum) in barley leaves challenged with powdery mildew. Plant, Cell y Environment, 29(6), 1061-1076. Disponible en: https://doi.org/10.1111/j.1365-3040.2005.01472.x 191. Taiz, L., Zeiger, E., Møller, I. M. y Murphy, A. (2015). Plant physiology and development (No. Ed. 6). Sinauer Associates Incorporated. ISBN: 9781605353531 192. Tameling, W. I., Elzinga, S. D., Darmin, P. S., Vossen, J. H., Tekken, F. L., Haring, M. A. y Cornelissen, B. J. (2002). The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity. The Plant Cell, 14(11), 2929-2939. Disponible en: https://doi.org/10.1105/tpc.005793 193. Tanase, K., Nishitani, C., Hirakawa, H., Isobe, S., Tabata, S., Ohmiya, A. y Onozaki, T. (2012). Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology. BMC genomics, 13(1), 292. Disponible en: https://doi.org/10.1186/1471-2164-13-292 194. Tekeoglu, M., Tullu, A., Kaiser, W. y Muehlbauer, F. (2000). Inheritance and linkage of two genes that confer resistance to Fusarium wilt in chickpea. Crop science, 40(5), 1247-1251. Disponible en: https://doi.org/10.2135/cropsci2000.4051247x 195. Tesfaye, M., Temple, S., Allan, D., Vance, C. y Samac, D. (2001). Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant physiology, 127(4), 1836-1844. Disponible en: https://doi.org/10.1104/pp.010376 196. Thapa, G., Gunupuru, L., Hehir, J., Kahla, A., Mullins, E. y Doohan, F. (2018). A pathogen-responsive leucine rich receptor like kinase contributes to Fusarium resistance in cereals. Frontiers in plant science, 9, 867. Disponible en: https://doi.org/10.3389/fpls.2018.00867 197. Tirado-Perea, A. y Perea Dallos, M. (2011). Cultivo de tejidos vegetales in vitro: manual de prácticas de laboratorio (No. 634.77396 S211c). Bogotá, CO: Universidad Nacional de Colombia, 2011. Disponible en: https://repositorio.unal.edu.co/handle/unal/79882 198. Togami, J., Okuhara, H., Nakamura, N., Ishiguro, K., Hirose, C., Ochiai, M. y Tanaka, Y. (2011). Isolation of cDNAs encoding tetrahydroxychalcone 2′-glucosyltransferase activity from carnation, cyclamen, and catharanthus. Plant biotechnology, 28(2), 231-238. Disponible en: https://doi.org/10.5511/plantbiotechnology.11.0106b 199. Toussoun, T., Nelson, P., y Marasas, W. (1983). Fusarium species: an illustrated manual for identification. The Pennsylvania state universidad press. ISBN 0-271-00349-9 200. Van der Does, D., Boutrot, F., Engelsdorf, T., Rhodes, J., McKenna, J. F., Vernhettes, S.y Segonzac, C. (2017). The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS genetics, 13(6), e1006832. Disponible en: https://doi.org/10.1371/journal.pgen.1006832 201. Van verk, M. C., Bol, J. F. y Linthorst, H. J. (2011). WRKY transcription factors involved in activation of SA biosynthesis genes. BMC plant biology, 11(1), 1-12. Disponible en: https://doi.org/10.1186/1471-2229-11-89 202. Vanegas, L. (2019). Aproximación bioquímica al estudio de las rutas de señalización involucradas en la resistencia del clavel (Dianthus caryophyllus L.) al patógeno Fusarium oxysporum f. sp. dianthi. Departamento de Química. Disponible en: https://repositorio.unal.edu.co/handle/unal/76509 203. Vásquez A, Soto J, López C. (2018). Unraveling the molecules hidden in the gray shadows of quantitative disease resistance. Acta Biol Colomb.;23:5-16. Disponible en: https://doi.org/10.15446/abc.v23n1.66487 204. Villa-Martínez, A., Pérez-Leal, R., Morales-Morales, H. A., Basurto-Sotelo, M., Soto-Parra, J. M., & Martínez-Escudero, E. (2015). Situación actual en el control de Fusarium spp. y evaluación de la actividad antifúngica de extractos vegetales. Acta Agronómica, 64(2), 194-205. Disponible en: https://doi.org/10.15446/acag.v64n2.43358 e–ISSN 2323–0118 205. Waki, K., Shibuya, K., Yoshioka, T., Hashiba, T. y Satoh, S. (2001). Cloning of a cDNA encoding EIN3‐like protein (DC‐EIL1) and decrease in its mRNA level during senescence in carnation flower tissues. Journal of Experimental Botany, 52(355), 377-379. Disponible en: https://doi.org/10.1093/jexbot/52.355.377 206. Wang, D., Amornsiripanitch, N. y Dong, X. (2006). A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS pathogens, 2(11), e123. Disponible en: https://doi.org/10.1371/journal.ppat.0020123 207. Wang, K. L. C., Li, H. y Ecker, J. R. (2002). Ethylene biosynthesis and signaling networks. The plant cell, 14, S131-S151. Disponible en: https://doi.org/10.1105/tpc.001768 208. Wang, Q., Zhao, Y., Yi, Q., Li, K. Z., Yu, Y. X. y Chen, L. M. (2010). Overexpression of malate dehydrogenase in transgenic tobacco leaves: enhanced malate synthesis and augmented Al-resistance. Acta Physiologiae Plantarum, 32(6), 1209-1220. Disponible en: https://doi.org/10.1007/s11738-010-0522-x 209. Wang, X., Tang, C., Deng, L., Cai, G., Liu, X., Liu, B. y Kang, Z. (2010). Characterization of a pathogenesis‐related thaumatin‐like protein gene TaPR5 from wheat induced by stripe rust fungus. Physiologia Plantarum, 139(1), 27-38. Disponible en: https://doi.org/10.1111/j.1399-3054.2009.01338.x 210. Wang, Z. A., Li, Q., Ge, X. Y., Yang, C. L., Luo, X. L., Zhang, A. H. y Wu, J. H. (2015). The mitochondrial malate dehydrogenase 1 gene GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton. Scientific reports, 5(1), 1-14. Disponible en: https://doi.org/10.1038/srep10343 211. Watson, J. D.; Baker, T. A.; Bell, S. P.; Gann, A.; Levine, M.y Losick, R. (2004). Molecular Biology of the Gene (Fifth edition edición). San Francisco: Benjamin Cummings. ISBN 0-321-22368-3. 212. Wei, C., Kuang, H., Li, F. y Chen, J. (2014). The I2 resistance gene homologues in Solanum have complex evolutionary patterns and are targeted by miRNAs. BMC genomics, 15(1), 743. Disponible en: https://doi.org/10.1186/1471-2164-15-743 213. Westfall, C., Herrmann, J., Chen, Q., Wang, S. y Jez, J. (2010). Modulating plant hormones by enzyme action: the GH3 family of acyl acid amido synthetases. Plant signaling ybehavior, 5(12), 1607-1612. Disponible en: https://doi.org/10.4161/psb.5.12.13941 214. Wojtasik, W., Kulma, A., Namysł, K., Preisner, M. y Szopa, J. (2015). Polyamine metabolism in flax in response to treatment with pathogenic and non-pathogenic Fusarium strains. Frontiers in Plant Science, 6, 291. Disponible en: https://doi.org/10.3389/fpls.2015.00291 215. Wu, Y. y Zhou, J. (2013). Receptor‐Like Kinases in Plant Innate Immunity. Journal of integrative plant biology, 55(12), 1271-1286. Disponible en: https://doi.org/10.1111/jipb.12123 216. Yagi, M., Kosugi, S., Hirakawa., Ohmiya, A., Tanase, K., Harada, T y Yamaguchi, H. (2014). Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Research, 21(3), 231-241. Disponible en: https://doi.org/10.1093/dnares/dst053 217. Yagi, M., Yamamoto, T., Isobe, S., Hirakawa, H., Tabata, S., Tanase, K., Yamaguchi, H. y Onozaki, T. (2013). Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.). BMC Genomics 14: 734-736. Disponible en: https://doi.org/10.1186/1471-2164-14-734 218. Yang, C., Ma, B., He, S. J., Xiong, Q., Duan, K. X., Yin, C. C. y Zhang, J. S. (2015). maohuzi6/ethylene insensitive3-like1 and ethylene insensitive3-like2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiology, 169(1), 148-165. Disponible en: https://doi.org/10.1104/pp.15.00353 219. Yang, Q., Grimmig, B. y Matern, U. (1998). Anthranilate N-hydroxycinnamoyl/benzoyltransferase gene from carnation: rapid elicitation of transcription and promoter analysis. Plant molecular biology, 38(6), 1201-1214. Disponible en: https://doi.org/10.1023/A:1006003731919 220. Yang, Q., Reinhard, K., Schiltz, E. y Matern, U. (1997). Characterization and heterologous expression of hydroxycinnamoyl/benzoyl-CoA: anthranilate N-hydroxycinnamoyl/benzoyltransferase from elicited cell cultures of carnation, Dianthus caryophyllus L. Plant molecular biology, 35(6), 777-789. Disponible en: https://doi.org/10.1023/A:1005878622437 221. Yang, Y., Shah, J. y Klessig, D. F. (1997). Signal perception and transduction in plant defense responses. Genesy development, 11(13), 1621-1639. 222. Yao, Y. X., Li, M., Zhai, H., You, C. X. y Hao, Y. J. (2011). Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis. Journal of plant physiology, 168(5), 474-480. Disponible en: https://doi.org/10.1016/j.jplph.2010.08.008 223. Yoffe, D., Frim, R., Ukeles, S. D., Dagani, M. J., Barda, H. J., Benya, T. J., & Sanders, D. C. (2013). Bromine compounds. Ullmann's Encyclopedia of Industrial Chemistry, 1-31. Disponible en: https://doi.org/10.1002/14356007.a04_405.pub2 224. Yogendra, K., Kumar, A., Sarkar, K., Li, Y., Pushpa, D., Mosa, K. A.y Kushalappa, A. C. (2015). Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato. Journal of experimental botany, 66(22), 7377-7389. Disponible en: https://doi.org/10.1093/jxb/erv434 225. Yu, W., Tao, Y., Luo, L., Hrovat, J., Xue, A. y Luo, H. (2021). Evaluation of housekeeping gene expression stability in carnation (Dianthus caryophyllus). New Zealand Journal of Crop and Horticultural Science, 1-14. Disponible en: https://doi.org/10.1080/01140671.2021.1883069 226. Yuan, M., Lu, Y., Zhu, X., Wan, H., Shakeel, M., Zhan, S.y Li, J. (2014). Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) using reverse-transcription quantitative PCR. PloS one, 9(1), e86503. Disponible en: https://doi.org/10.1371/journal.pone.0086503 227. Zalepa-King, L. y Citovsky, V. (2013). A plasmodesmal glycosyltransferase-like protein. PLoS One, 8(2), e58025. Disponible en: https://doi.org/10.1371/journal.pone.0058025 228. Zeiss, D. R., Piater, L. A. y Dubery, I. A. (2020). Hydroxycinnamate amides: intriguing conjugates of plant protective metabolites. Trends in Plant Science. Disponible en: https://doi.org/10.1016/j.tplants.2020.09.011 229. Zhang, C., Zhang, L., Wang, D., Ma, H., Liu, B., Shi, Z., y Chen, Q. (2018). Evolutionary history of the glycoside hydrolase 3 (GH3) family based on the sequenced genomes of 48 plants and identification of jasmonic acid related GH3 proteins in Solanum tuberosum. International journal of molecular sciences, 19(7), 1850. Disponible en: https://doi.org/10.3390/ijms19071850 230. Zhang, Z., Ortiz, O., Goyal, R., & Kohn, J. (2014). Biodegradable polymers. Handbook of polymer applications in medicine and medical devices, 303-335. Disponible en: https://doi.org/10.1016/B978-0-323-22805-3.00013-X 231. Zuker, A., Tzfira, T., Scovel, G., Ovadis, M., Shklarman, E., Itzhaki, H., & Vainstein, A. (2001). RolC-transgenic carnation with improved horticultural traits: quantitative and qualitative analyses of greenhouse-grown plants. Journal of the American Society for Horticultural Science, 126(1), 13-18. Disponible en: https://doi.org/10.21273/JASHS.126.1.13 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.accessrights.*.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 Attribution-NonCommercial-NoDerivatives 4.0 International Acceso abierto |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
applicaction/pdf |
dc.coverage.sede.spa.fl_str_mv |
Campus UMNG |
dc.publisher.program.spa.fl_str_mv |
Biología Aplicada |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Militar Nueva Granada |
institution |
Universidad Militar Nueva Granada |
bitstream.url.fl_str_mv |
http://repository.unimilitar.edu.co/bitstream/10654/41286/2/license.txt http://repository.unimilitar.edu.co/bitstream/10654/41286/1/GomezCorredorWilliamAndres2021.pdf |
bitstream.checksum.fl_str_mv |
a609d7e369577f685ce98c66b903b91b 1307ec3fb4c1ff2087743422f2c36bea |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UMNG |
repository.mail.fl_str_mv |
bibliodigital@unimilitar.edu.co |
_version_ |
1837098429725016064 |
spelling |
Filgueira Duarte, Juan JoseGomez Corredor, William AndresBiólogo2022-09-02T14:25:30Z2022-09-02T14:25:30Z2021-12-14http://hdl.handle.net/10654/41286instname:Universidad Militar Nueva Granadareponame:Repositorio Institucional Universidad Militar Nueva Granadarepourl:https://repository.unimilitar.edu.coColombia es el primer productor mundial de clavel y el patógeno, Fusarium oxysporum f.sp. dianthi (Fod) causa grandes pérdidas en el cultivo comercial de esta planta. La producción de variedades resistentes al hongo es una de las formas más efectivas para controlar los daños producidos por el parásito. A pesar de que se han realizado trabajos que han descrito el desarrollo de la enfermedad en clavel causadas por Fod, así como estudios sobre los cambios histológicos y bioquímicos en las variedades resistentes y susceptibles, los genes que gobiernan la respuesta de defensa en contra del ataque del patógeno no se han caracterizado aún. Sabemos por trabajos anteriores en nuestro grupo de investigación, que la resistencia del clavel a Fod esta mediada por tres pares de genes autosómicos con herencia simple y aditiva, pero es necesario reconocer estos genes de tal forma que se pueda utilizar este conocimiento para conducir apropiadamente los programas de mejoramiento del clavel comercial. En el presente trabajo se obtuvo el material biológico, usando células indiferenciadas de clavel y Fod cepa 2019, evaluado los oligos por amplificación por PCR en ADN genómico, posteriormente se evaluaron 22 parejas de oligos identificados en trabajos previos como housekeeping, genes relacionados con resistencia a parásitos y genes que codifican a proteínas relacionadas con patogenicidad mediante RT-qPCR, relacionados con la respuesta de defensa a Fod en las variedades resistentes UMNG395 y UMNGF1B2 y variedades susceptibles UMNGSH2 y UMNG6515 del programa de mejoramiento del clavel de la UMNG. Demostrando que la expresión unos genes en fenotipos resistentes no está asociado a la resistencia, sino que un conjunto de genes son parte de un metabolismo relacionado con la respuesta de defensa frente al patógeno, que abarca procesos de señalización, regulación, inducción, transcripción de genes.CAPÍTULO 1: REVISIÓN BIBLIOGRÁFICA 18 1. Clavel (Dianthus caryophyllus L.) 18 1.1. Importancia económica del clavel 19 1.2. Mejoramiento genético del clavel 20 2. Fusarium oxysporum 22 2.1. Fusarium oxysporum f.sp. dianthi (Fod) 23 2.2. Problemática causada por Fusarium oxysporum 23 2.3. Enfermedad causada por Fusarium oxysporum 24 2.4. Implicaciones en el cultivo de clavel 25 3. Manejo Enfermedad 27 3.1. Manejo tradicional de la enfermedad 27 3.2. Manejo biotecnológico de la enfermedad 28 4. Mecanismos de defensa Planta – Patógeno 29 4.1. Resistencia genética a Fusarium oxysporum 31 4.2. Mecanismos de regulación de la defensa vegetal contra factores de estrés 33 4.3. Algunas rutas de defensa en plantas, asociadas a metabolitos secundarios y dirigidas contra fitopatógenos 36 5. Uso de herramientas moleculares 37 CAPÍTULO II. ESCRITO TRABAJO DE GRADO 38 1. RESUMEN - ABSTRACT 39 2. INTRODUCCIÓN 39 3. OBJETIVOS 41 3.1. Objetivo general 42 3.2. Objetivos Específicos 42 4. MATERIALES Y MÉTODOS 42 4.1. Obtención del Material Biológico. 43 4.2. Propagación in vitro de células indiferenciadas (CIS) de variedades Resistentes y Susceptibles 43 4.3. Obtención de Fusarium oxysporum a partir de muestras de plantas infectadas. 44 4.4. Obtención de cultivos monospóricos de Fusarium oxysporum 44 4.5. Ensayo de reinfección y aislamiento de Fusarium oxysporum f.sp. dianthi (Fod) 45 4.6. Pruebas de Elicitación 45 4.7. Extracción y cuantificación de ADN de CIS 46 4.8. Extracción y cuantificación de ARN total de CIS. 46 4.9. Amplificación por PCR 47 4.10. RT-qPCR 48 4.10.1. Genes evaluados 49 4.11. Análisis de resultados de expresión 50 CAPÍTULO 3: RESULTADOS Y DISCUSIÓN 52 1. Obtención material biológico 52 1.1. Propagación in vitro de células indiferenciadas (CIS) de variedades resistentes y susceptibles 52 1.2. Obtención de Fusarium oxysporum a partir de muestras de plantas infectadas. 53 1.3. Caracterización morfológica 53 1.4. Obtención de cultivos monospóricos de Fusarium oxysporum 54 1.5. Ensayo de reinfección y aislamiento de Fusarium oxysporum f.sp. dianthi (Fod) 55 1.6. Ensayo de Elicitación 56 2. Evaluación material genético 58 2.1. Extracción y Cuantificación de ADN de CIS. 58 2.2. Amplificación por PCR de secuencias génicas 59 2.2.1. PCR de genes “Housekeeping” 59 2.2.2. PCR de genes asociados a la resistencia a parásitos 61 2.2.3. PCR de genes asociados con proteínas relacionadas con patogenicidad 63 2.3. Extracción y cuantificación de ARN total de CIS 67 3. Análisis de expresión 68 3.1. Genes “Housekeeping” 68 3.1.1. Alcohol deshidrogenasa 69 3.1.2. Arginina descarboxilasa 71 3.1.3. Tetrahidroxichalcona 2-glucosiltransferasa 72 3.1.4. “Ethylene Insensitive 3-like 2” 74 3.2. Genes relacionados con la resistencia a parásitos 76 3.2.1. Antranilato N-hidroxicinamoil / Benzoiltransferasa 77 3.2.2. Gen receptor de etileno 78 3.2.3. Flavonol 3-Glucosiltransferasa 79 3.2.4. Fenilalanina amonio liasa 81 3.2.5. Antocianidin sintasa 83 3.3. Genes relacionados con proteínas de patogenicidad 85 3.3.1. β-(1 3)-D-Glucanasa 86 3.3.2. Quitinasa 88 3.3.3. Hidrolasas de glucósido de β-glicosidasa 90 3.3.4. Aldosa 1-epimerasa 91 3.3.5. “Thaumatin Like Protein” 93 3.3.6. β- amilasa 95 3.3.7. Homólogo a peroxidasas 97 3.3.8. Catalasa 100 3.3.9. Malato deshidrogenasa 102 3.3.10. Vía de señalización mediada por ácido jasmonico 104 3.3.11. Proteína inhibidora de poligalacturonasas 106 3.3.12. Vía de señalización mediada por ácido salicílico 108 3.3.13. “Receptor- like Kinase” 111 4. CONCLUSIONES 113 5. BIBLIOGRAFÍA 114 6. ANEXOS 141 6.1. Gráficas análisis de expresión RT-qPCR 141 6.1.1. Gráficas RT-qPCR genes “Housekeeping” 141 6.1.2. Gráficas de RT-qPCR de Genes relacionados con resistencia a parásitos 146 6.1.3. Genes relacionados con proteínas de patogenicidad 151 6.1.4. Gráficas ecuación lineal genes 162Colombia is the world's leading producer of carnation and the pathogen, Fusarium oxysporum f.sp. dianthi (Fod) causes great losses in the commercial cultivation of this plant. The production of varieties resistant to the fungus is one of the most effective ways to control the damage caused by the parasite. Although work has been done describing the development of the disease in carnation caused by Fod, as well as studies on the histological and biochemical changes in resistant and susceptible varieties, the genes that govern the defense response against the pathogen attack have not yet been characterized. We know from previous work in our research group that carnation resistance to Fod is mediated by three pairs of autosomal genes with simple and additive inheritance, but it is necessary to recognize these genes so that this knowledge can be used to properly conduct commercial carnation breeding programs. In the present work, biological material was obtained, using undifferentiated cells of carnation and Fod strain 2019, evaluated the oligos by PCR amplification in genomic DNA, then 22 pairs of oligos identified in previous works as housekeeping were evaluated, genes related to parasite resistance and genes encoding proteins related to pathogenicity were evaluated by RT-qPCR, related to the defense response to Fod in resistant varieties UMNG395 and UMNGF1B2 and susceptible varieties UMNGSH2 and UMNG6515 of the UMNG carnation breeding program. It shows that the expression of some genes in resistant phenotypes is not associated with resistance, but that a set of genes are part of metabolism related to the defense response against the pathogen, which includes processes of signaling, regulation, induction, and transcription of genes.Pregradoapplicaction/pdfspahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Attribution-NonCommercial-NoDerivatives 4.0 InternationalAcceso abiertoEstudio de la variación de la expresión de genes ortólogos en variedades resistentes y susceptibles de Dianthus caryophyllus elicitadas con Fusarium oxysporum f.sp. dianthi en condiciones in vitroStudy of the variation of orthologic gene expression in resistant and susceptible varieties of Dianthus caryophyllus elictified with Fusarium oxysporum f.sp. dianthi under in vitro conditionsTesis/Trabajo de grado - Monografía - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fPlant resistanceDianthus caryophyllusDefense responseRT-qPCRDifferential expressionOrthologous genesDIANTHUS CARYOPHYLLUSRESISTENCIA A LA ENFERMEDADFUSARIUM OXYSPORUMIN VITROResistencia vegetalDianthus caryophyllusRespuesta de defensaRT-qPCRExpresión diferencialGenes ortólogosBiología AplicadaFacultad de Ciencias BásicasUniversidad Militar Nueva Granada1. Abad, L., D'Urzo, M., Liu, D., Narasimhan, M., Reuveni, M., Zhu, J. y Bressan, R. (1996). Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Science, 118(1), 11-23. Disponible en: https://doi.org/10.1016/0168-9452(96)04420-22. Agati, G., Azzarello, E., Pollastri, S. y Tattini, M. (2012). Flavonoids as antioxidants in plants: location and functional significance. Plant Science, 196, 67-76. Disponible en: https://doi.org/10.1016/j.plantsci.2012.07.0143. Agrios, G. (1996). Fitopatología. Enfermedades causadas por Ascomycetes y hongos imperfectos. Editorial Limusa. (2): 441 – 447.4. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. y Walter, P. (2002). Molecular biology of the cell. New York: Garland Science5. Almagro, L., Gómez Ros, L. V., Belchi-Navarro, S., Bru, R., Ros Barceló, A. y Pedreño, M. A. (2009). Class III peroxidases in plant defense reactions. Journal of experimental botany, 60(2), 377–390. Disponible en: https://doi.org/10.1093/jxb/ern2776. Angulo, L. (2012). Clonación del ADNc que codifica para la enzima Antocianidin Sintasa (ANS) de mango (Mangifera indica L.). Universidad de Sonora. Disponible en:https://1library.co/document/yev7d3rz-clonacion-adnc-codifica-enzima-antocianidin-sintasa-mangifera-indica.html7. Arbeláez, G. (1987) Fungal and bacterial diseases carnation in Colombia. Acta Horticulturae 216: 151-157. Disponible en: https://doi.org/10.17660/ActaHortic.1987.216.208. Arbeláez, G. (1993). Avances en el manejo del marchitamiento vascular del clavel, ocasionado por Fusarium oxysporum f. sp. dianthi. Agronomía Colombiana, 2(2), 188.9. Ardila, H. D., Martínez, S. T. y Higuera, B. L. (2011). Spatio-temporal regulation of phenylalanine ammonia lyase enzyme in Carnation (Dianthus caryophyllus L.) during its interaction with the pathogen Fusarium oxysporum f. sp. dianthi. Revista Colombiana de Química, 40(1), 7-24. Disponible en:http://www.scielo.org.co/scielo.php?script=sci_arttextypid=S0120-2804201100010000110. Ardila, H., Baquero, B. y Martínez, S. (2007). Phenylalanine ammonium liase induction on carnation (Dianthus caryophyllus L) by elicitors from Fusarium oxysporum f. sp. dianthi race 2. Revista Colombiana de Química, 36(2), 151-167. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttextypid=S0120-2804200700020000211. Ardila-Barrantes, H. (2013). Contribución al estudio de algunos componentes bioquímicos y moleculares de la resistencia del clavel (Dianthus caryophyllus L) al patógeno Fusarium oxysporum f. sp. dianthi. Departamento de Química. Disponible en:https://repositorio.unal.edu.co/handle/unal/6005612. Arfaoui, A., El Hadrami, A., Mabrouk, Y., Sifi, B., Boudabous, A., El Hadrami, I.y Chérif, M. (2007). Treatment of chickpea with Rhizobium isolates enhances the expression of phenylpropanoid defense-related genes in response to infection by Fusarium oxysporum f. sp. ciceris. Plant Physiology and Biochemistry, 45(6–7), 470–479. Disponible en: https://doi.org/10.1016/j.plaphy.2007.04.00413. Arici, S. E., Erdoğan, O., & Tuncel, Z. N. (2019). Natural, environmental and practical biological control options for fusarium wilt disease of carnation (Fusarium oxysporum f. sp. dianthi). Disponible en: http://hdl.handle.net/11499/3040714. Asocolflores (2018). Producción para San Valentín caería hasta en un 20%. Disponible en:http://asocolflores.org/comunicaciones/noticias/produccion-para-san-valentin-caeria-hasta-en-un-20/11/1.15. Azofeifa, Á. (2009). Problemas de oxidación y oscurecimiento de explantes cultivados in vitro. Agronomía mesoamericana, 20(1), 153-175. Disponible en: http://dx.doi.org/10.15517/am.v20i1.499016. Baayen, R. P., Elgersma, D. M., Demmink, J. F. y Sparnaaij, L. D. (1988). Differences in pathogenesis observed among susceptible interactions of carnation with four races of Fusarium oxysporum f. sp. dianthi. Netherlands Journal of Plant Pathology, 94(2), 81-94. Disponible en: https://doi.org/10.1007/BF0199839817. Baayen, R. y De Maat, A. (1987). Passive transport of microconidia of Fusarium oxysporum f. sp. dianthi in carnation after root inoculation. Netherlands Journal of Plant Pathology, 93(1), 3-13. Disponible en: https://doi.org/10.1007/BF0199813818. Baayen, R. y Elgersma, D. (1985). Colonization and histopathology of susceptible and resistant carnation cultivars infected with Fusarium oxysporum f. sp. dianthi. Netherlands Journal of Plant Pathology, 91(3), 119-135. Disponible en: https://doi.org/10.1007/BF0197638619. Bai, T. T., Xie, W. B., Zhou, P. P., Wu, Z. L., Xiao, W. C., Zhou, L.y Li, H. P. (2013). Transcriptome and expression profile analysis of highly resistant and susceptible banana roots challenged with Fusarium oxysporum f. sp. cubense tropical race 4. Plos one, 8(9), e73945. Disponible en: https://doi.org/10.1371/journal.pone.007394520. Balasubramanian, V., Vashisht, D., Cletus, J. y Sakthivel, N. (2012). Plant β-1, 3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnology letters, 34(11), 1983-1990. Disponible en: https://doi.org/10.1007/s10529-012-1012-621. Bilbao, O. y Castro, C. (1996). Estudios preliminares para la obtención de semilla híbrida de clavel estándar bajo las condiciones de la sabana de Bogotá. Trabajo de grado de Ingeniero Agrónomo. Universidad Nacional de Colombia (Bogotá). 39-43; 46; 68-70.22. Boller T, y He SY (2009). Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science.;324:742-744. Disponible en: http://dx.doi.org/10.1126/science.117164723. Borda, F. y Arbeláez, G. (1993). Determinación del antagonismo del aislamiento T 95 de Trichoderma harzianum sobre Fusarium oxysporum f. sp. cucumerinum en plantas de pepino cohombro. Agronomía Colombiana, 10(1), 45-51. Disponible en:https://revistas.unal.edu.co/index.php/agrocol/article/view/21238.24. Bueso, E., Alejandro, S., Carbonell, P., Perez‐Amador, M. A., Fayos, J., Bellés, J. M., ...y Serrano, R. (2007). The lithium tolerance of the Arabidopsis cat2 mutant reveals a cross‐talk between oxidative stress and ethylene. The Plant Journal, 52(6), 1052-1065. Disponible en: https://doi.org/10.1111/j.1365-313X.2007.03305.x25. Bustin, S. A., Benes, V., Nolan, T. y Pfaffl, M. W. (2005). Quantitative real-time RT-PCR–a perspective. Journal of molecular endocrinology, 34(3), 597-601. Disponible en:https://doi.org/10.1677/jme.1.0175526. Cappuccino, J. G. y Welsh, C. T. (2017). Microbiology: A laboratory manual. Pearson Education. Disponible en:https://www.pearson.com/us/higher-education/program/Cappuccino-Microbiology-A-Laboratory-Manual-11th-Edition/PGM96372.html27. Carmona, M. y Sautua, F. (2017). La problemática de la resistencia de hongos a fungicidas. Causas y efectos en cultivos extensivos. Agronomía & Ambiente, 37(1). Agronomía & Ambiente. Revista de la Facultad de Agronomía (UBA) ISSN 2344-903928. Castellanos Domínguez, Ó. F., Fonseca Rodríguez, S. L. yBuriticá Ospina, S. (2010). Agenda prospectiva de investigacióny desarrollo tecnológico para la cadena productiva de floresy follajes con énfasis en clavel. Biogestión. Disponible en: https://repositorio.unal.edu.co/handle/unal/69948.29. Chakraborty, S., Nguyen, B., Wasti, S. D., & Xu, G. (2019). Plant leucine-rich repeat receptor kinase (LRR-RK): structure, ligand perception, and activation mechanism. Molecules, 24(17), 3081. Disponible en: https://doi.org/10.3390/molecules2417308130. Chandran, D., Inada, N., Hather, G., Kleindt, C. K. yWildermuth, M. C. (2010). Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proceedings of the National Academy of Sciences, 107(1), 460-465. Disponible en: https://doi.org/10.1073/pnas.091249210731. Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W. y Ecker, J. R. (1997). Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ethylene-insensitive3 and related proteins. Cell, 89(7), 1133-1144. Disponible en: https://doi.org/10.1016/S0092-8674(00)80300-132. Chen, D., Shao, Q., Yin, L., Younis, A.y Zheng, B. (2019). Función de las poliaminas en las plantas: metabolismo, regulación del desarrolloy roles en las respuestas al estrés abiótico. Frontiers in Plant Science, 9, 1945. Disponible en: https://doi.org/10.3389/fpls.2018.0194533. Chen, Z., Zheng, Z., Huang, J., Lai, Z. yFan, B. (2009). Biosynthesis of salicylic acid in plants. Plant signalingy behavior, 4(6), 493-496. Disponible en: https://doi.org/10.4161/psb.4.6.839234. Cheng, Z., Yu, X., Li, S. y Wu, Q. (2018). Genome-wide transcriptome analysis and identification of benzothiadiazole-induced genes and pathways potentially associated with defense response in banana. BMC genomics, 19(1), 454. Disponible en: https://doi.org/10.1186/s12864-018-4830-735. Chinchilla, D., Bauer, Z., Regenass, M., Boller, T. yFelix, G. (2006). The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. The Plant Cell, 18(2), 465-476. Disponible en: https://doi.org/10.1105/tpc.105.03657436. Cotes, A.M., Jiménez, P., Rodríguez, M.X., Díaz, A., Zapata, J., Gómez, M., Grijalba, E., Villamizar, L., González, C., Smith, A., Mejía, C., Mesa, P., Cruz, L.C. (2012) Estrategias de control biológico de Fusarium oxysporum en el cultivo de la Uchuva (Physalis peruviana). Bogotá: Corpoica.23-82 p. ISBN: 978-958-740-093-9. Disponible en: http://hdl.handle.net/20.500.12324/1261037. Cowley, T. y Walters, D. (2008). Polyamine metabolism in an incompatible interaction between barley and the powdery mildew fungus, Blumeria graminis f. sp. hordei. Journal of Phytopathology, 150, 581–586. Disponible en: https://doi.org/10.1046/j.1439-0434.2002.00816.x38. Curir, P., Dolci, M., Corea, G., Galeotti, F. yLanzotti, V. (2006). The plant antifungal isoflavone genistein is metabolized by Armillaria mellea Vahl to give non-fungitoxic products. Plant Biosystems, 140(2), 156-162. Disponible en: https://doi.org/10.1080/1126350060075636339. DANE. (2020). Boletín Técnico de Exportaciones. DANE: Información para todos. Consultado: 05/01/2021. Disponible en: https://www.dane.gov.co/files/investigaciones/boletines/exportaciones/bol_exp_nov20.pdf40. Dao, T. T. H., Linthorst, H. J. M. y Verpoorte, R. (2011). Chalcone synthase and its functions in plant resistance. Phytochemistry Reviews, 10(3), 397-412. Disponible en: https://doi.org/10.1007/s11101-011-9211-741. Dauleux, M. J. (2013). Partial resistance to clubroot in Arabidopsis is based on changes in the host primary metabolism and targeted cell division and expansion capacity. Functional e integrative genomics, 13(2), 191–205. Disponible en: https://doi.org/10.1007/s10142-013-0312-942. De Granada, E., De Amézquita, M.., Mendoza, G y Zapata, H. (2001). Fusarium oxysporum el hongo que nos falta conocer. Acta biológica colombiana, 6(1), 7-25. Disponible en:https://revistas.unal.edu.co/index.php/actabiol/article/view/6346243. de Jesús-Pires, C., Ferreira-Neto, J., Pacifico Bezerra-Neto, J., Kido, E. A., de Oliveira Silva, R. L., Pandolfi, V., Wanderley-Nogueira, A. C., Binneck, E., da Costa, A. F., Pio-Ribeiro, G., Pereira-Andrade, G., Sittolin, I. M., Freire-Filho, F. y Benko-Iseppon, A. M. (2020). Plant Thaumatin-like Proteins: Function, Evolution and Biotechnological Applications. Current protein ypeptide science, 21(1), 36–51. Disponible en: https://doi.org/10.2174/138920372066619031816490544. Department of health and Ageing (DHA). 2006. The Biology and ecology of Dianthus caryophyllus L. (Carnation). Department of Health and Ageing, Office of the Gene Technology Regulator. Disponible en:http://bch.cbd.int/database/attachment/?id=2004045. Di Pietro, A. and Roncero, M.I. (2003). Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum mediates resistance to plant defense compounds. Molecular Microbiology. 47(1): 257-66. Disponible en: https://doi.org/10.1046/j.1365-2958.2003.03299.x46. Dixon, R. A. y Lamb, C. J. (1990). Molecular communication in interactions between plants and microbial pathogens. Annual review of plant biology, 41(1), 339-367. Disponible en: https://doi.org/10.1146/annurev.pp.41.060190.00201147. Dmitriev, A. A., Krasnov, G. S., Rozhmina, T. A., Novakovskiy, R. O., Snezhkina, A. V., Fedorova, M. S.y Melnikova, N. V. (2017). Differential gene expression in response to Fusarium oxysporum infection in resistant and susceptible genotypes of flax (Linum usitatissimum L.). BMC Plant Biology, 17(2), 29-40. Disponible en: https://doi.org/10.1186/s12870-017-1192-248. Dorokhov, Y. L., Sheshukova, E. V. y Komarova, T. V. (2018). Methanol in plant life. Frontiers in plant science, 9, 1623. Disponible en: https://doi.org/10.3389/fpls.2018.0162349. Du, X., Miao, M., Ma, X., Liu, Y., Kuhl, J. C., Martin, G. B. y Xiao, F. (2012). Plant programmed cell death caused by an autoactive form of Prf is suppressed by co-expression of the Prf LRR domain. Molecular plant, 5(5), 1058-1067. Disponible en: https://doi.org/10.1093/mp/sss01450. Duan, Y., Jiang, Y., Ye, S., Karim, A., Ling, Z., He, Y. y Luo, K. (2015). PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana. Plant cell reports, 34(5), 831-841. Disponible en: https://doi.org/10.1007/s00299-015-1745-551. Duarte, Y., Echevarría, A. y Martínez, B. (2016). Identificación y caracterización de aislamientos de Fusarium spp. presentes en garbanzo (Cicer arietinum L.) en Cuba. Revista de Protección Vegetal, 31(3), 173-183. Disponible en:http://scielo.sld.cu/scielo.php?script=sci_arttexty pid=S1010-2752201600030000452. Durrant, W. E. y Dong, X. (2004). Systemic acquired resistance. Annu. Rev. Phytopathol., 42, 185-209. Disponible en: https://doi.org/10.1146/annurev.phyto.42.040803.14042153. Dzhavakhiya, V. Ozeretskovskaya, O. y Zinovyeva, S. (2007). Immune response. In Comprehensive and Molecular Phytopathology (pp. 265-314). Elsevier. Disponible en: https://doi.org/10.1016/B978-044452132-3/50014-654. Edel-Hermann, V. y Lecomte, C. (2019). Current status of Fusarium oxysporum formae speciales and races. Phytopathology, 109(4), 512-530. Disponible en: https://doi.org/10.1094/PHYTO-08-18-0320-RVW55. Erazo, J., Palacios, S., Pastor, N., Giordano, D., Rovera, M., Reynoso, M. y Torres, M. (2021). Biocontrol mechanisms of Trichoderma harzianum ITEM 3636 against peanut brown root rot caused by fusarium solani RC 386. Biological Control, 104774. Disponible en: https://doi.org/10.1016/j.biocontrol.2021.10477456. Expósito-Rodríguez, M., Borges, A. A., Borges-Pérez, A. y Pérez, J. A. (2008). Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC plant biology, 8(1), 1-12. Disponible en: https://doi.org/10.1186/1471-2229-8-13157. Falcone-Ferreyra, M. L., Rius, S. yCasati, P. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in plant science, 3, 222. Disponible en: https://doi.org/10.3389/fpls.2012.0022258. Fernández-Larrea, O. (2001). Microorganismos antagonistas para el control fitosanitario. Manejo Integrado de Plagas. Costa Rica. CATIE. No. 62 p. 96 - 100. Disponible en: http://hdl.handle.net/11554/657859. Ferrari, S., Sella, L., Janni, M., De Lorenzo, G., Favaron, F. y D’ovidio, R. (2012). Transgenic expression of polygalacturonase‐inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum. Plant Biology, 14, 31-38. Disponible en: https://doi.org/10.1111/j.1438-8677.2011.00449.x60. Ferrari, S., Vairo, D., Ausubel, F. M., Cervone, F. y De Lorenzo, G. (2003). Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. The Plant Cell, 15(1), 93-106. Disponible en: https://doi.org/10.1105/tpc.00516561. Filgueira, J., Quinche, C. y Soto, J. (2007). ¿Es el Fusarium verticillioides responsable del decaimiento de la variedad Nelson en la Sabana de Bogotá? Asocolflores. 69: 51-54.62. Filgueira, J.J. (2009). Estudio y manejo de la pudrición basal producida por hongos del complejo Fusarium en clavel comercial en la Sabana de Bogotá. Asocolflores. 72: p53-54.63. Filgueira, J.J. (2011). Experiencias en mejoramiento del clavel (Dianthus caryophyllus). Ed. Universidad Militar Nueva Granada, 1ª Ed. Bogotá Colombia. ISBN 978-958-8403-41-0.64. Flury, P., Klauser, D., Schulze, B., Boller, T. yBartels, S. (2013). The anticipation of danger: microbe-associated molecular pattern perception enhances AtPep-triggered oxidative burst. Plant Physiology, 161(4), 2023-2035. Disponible en: https://doi.org/10.1104/pp.113.21607765. García, D., Arbeláez, M. y Arbeláez, G. (1995). Tratamiento físico y químico del suelo para el control Del marchitamiento vascular del clavel causado por el Hongo Fusarium oxysporum f. sp. dianthi. Agronomía Colombiana, 12(1), 08-20. Disponible en:https://revistas.unal.edu.co/index.php/agrocol/article/view/2803366. Garg R. y Jain M. (2013) RNA-Seq for Transcriptome Analysis in Non-model Plants. In: Rose R. (eds) Legume Genomics. Methods in Molecular Biology (Methods and Protocols), vol 1069. Humana Press, Totowa, NJ. Disponible en: https://doi.org/10.1007/978-1-62703-613-9_467. Garibaldi, A. y Gullino, M. (1987, May). Fusarium wilt of carnation: present situation, problems and perspectives (°). In III International Symposium on Carnation Culture 216 (pp. 45-54). Disponible en: https://doi.org/10.17660/ActaHortic.1987.216.668. Gkizi, D., Lehmann, S., L’Haridon, F., Serrano, M., Paplomatas, E. J., Métraux, J. P., & Tjamos, S. E. (2016). The innate immune signaling system as a regulator of disease resistance and induced systemic resistance activity against Verticillium dahliae. Molecular Plant-Microbe Interactions, 29(4), 313-323. Disponible en: https://doi.org/10.1094/MPMI-11-15-0261-R69. Glazebrook, J. yAusubel, F. M. (1994). Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proceedings of the National Academy of Sciences, 91(19), 8955-8959. Disponible en: https://doi.org/10.1073/pnas.91.19.895570. Goff, K. E. yRamonell, K. M. (2007). The role and regulation of receptor-like kinases in plant defense. Gene regulation and systems biology, 1, Disponible en: https://doi.org/10.1177%2F11776250070010001571. Goicoechea, N., Aguirreolea, J., Cenoz, S. y Garcia-Mina, J. M. (2000). Verticillium dahliae modifies the concentrations of proline, soluble sugars, starch, soluble protein and abscisic acid in pepper plants. European Journal of Plant Pathology, 106(1), 19-25. Disponible en: https://doi.org/10.1023/A:100872481604172. Gonzalez, M. E., Jasso‐Robles, F. I., Flores‐Hernández, E., Rodríguez‐Kessler, M. y Pieckenstain, F. L. (2021). Current status and perspectives on the role of polyamines in plant immunity. Annals of Applied Biology, 178(2), 244-255. Disponible en: https://doi.org/10.1111/aab.1267073. Greenberg, A. K. (2013). Phylogenetics, Biogeography, and Rates of Evolution in the Plant Clade Caryophyllaceae. Yale University. Disponible en: https://doi.org/10.1086/59633274. Grube, R. C., Radwanski, E. R. y Jahn, M. (2000). Comparative genetics of disease resistance within the Solanaceae. Genetics, 155(2), 873-887. Disponible en: https://doi.org/10.1093/genetics/155.2.87375. Hawkins, N. y Fraaije, B. (2015). The evolution of fungicide resistance. Advances in applied microbiology, 90, 29-92. Disponible en: https://doi.org/10.1016/bs.aambs.2014.09.00176. He, K. y Wu, Y. (2016). Receptor-like kinases and regulation of plant innate immunity. The Enzymes, 40, 105-142. Disponible en: https://doi.org/10.1016/bs.enz.2016.09.00377. Hibi, T., Kosugi, S., Iwai, T., Kawata, M., Seo, S., Mitsuhara, I. y Ohashi, Y. (2007). Involvement of EIN3 homologues in basic PR gene expression and flower development in tobacco plants. Journal of experimental botany, 58(13), 3671-3678. Disponible en: https://doi.org/10.1093/jxb/erm21678. Holmes, D. R., Grubb, L. E. y Monaghan, J. (2018). The jasmonate receptor COI1 is required for AtPep1-induced immune responses in Arabidopsis thaliana. BMC research notes, 11(1), 1-7. Disponible en: https://doi.org/10.1186/s13104-018-3628-779. Huang, C. y Lindhout, P. (1997). Screening for resistance in wild Lycopersicon species to Fusarium oxysporum f. sp. lycopersici race 1 and race 2. Euphytica, 93(2), 145-153. Disponible en: https://doi.org/10.1023/A:100294380522980. Huxley, A. J. y Griffiths, M. (1992). Dictionary of gardening. Stockton Press. ISBN 0-333-47494-5. Disponible en:https://agris.fao.org/agris-search/search.do?recordID=US20130070428981. Imran, M., Tang, K. y Liu, J. Y. (2016). Comparative genome-wide analysis of the malate dehydrogenase gene families in cotton. PLoS One, 11(11), e0166341. Disponible en: https://doi.org/10.1371/journal.pone.016634182. Instituto Colombiano Agropecuario (2021). Soporte para la exportación de flores y ornamentales al mundo para San Valentín. Ministerio de agricultura de Colombia. Consultado: 24/03/2021. Disponible en: https://www.ica.gov.co/noticias/ica-san-valentin-flores-colombia-llegan-100-paises.83. Integrated Taxonomic Information System (ITIS). http://www.itis.gov. Accedida en abril del 2020.84. Iwazaki, Y., Kosugi, Y., Waki, K., Yoshioka, T., & Satoh, S. (2004). Generation and ethylene production of transgenic carnations harboring ACC synthase cDNA in sense or antisense orientation. J. Appl. Hort, 6, 67-71. Disponible en: https://bit.ly/3nwE68l85. Jabeen, N., Chaudhary, Z., Gulfraz, M., Rashid, H. y Mirza, B. (2015). Expression of rice chitinase gene in genetically engineered tomato confers enhanced resistance to Fusarium wilt and early blight. The plant pathology journal, 31(3), 252. Disponible en: https://dx.doi.org/10.5423%2FPPJ.OA.03.2015.002686. Jagadeeswaran, G., Raina, S., Acharya, B., Maqbool, S., Mosher, S., Appel, H. y Raina, R. (2007). Arabidopsis GH3‐LIKE DEFENSE GENE 1 is required for accumulation of salicylic acid, activation of defense responses and resistance to Pseudomonas syringae. The Plant Journal, 51(2), 234-246. Disponible en: https://doi.org/10.1111/j.1365-313X.2007.03130.x87. Ji, H. M., Zhao, M., Gao, Y., Cao, X. X., Mao, H. Y., Zhou, Y. y Liu, P. (2018). FRG3, a target of slmiR482e-3p, provides resistance against the fungal pathogen Fusarium oxysporum in tomato. Frontiers in plant science, 9, 26. Disponible en: https://doi.org/10.3389/fpls.2018.0002688. Jiang, Y., Duan, Y., Yin, J., Ye, S., Zhu, J., Zhang, F., ...y Luo, K. (2014). Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. Journal of Experimental Botany, 65(22), 6629-6644. Disponible en: https://doi.org/10.1093/jxb/eru38189. Jones J, Vance R, Dangl J. (2016). Intracellular innate immune surveillance devices in plants and animals. Science. 354:117-125. Disponible en: https://science.sciencemag.org/lookup/doi/10.1126/science.aaf639590. Jones, J. D. y Dangl, J. L. (2006). The plant immune system. nature, 444(7117), 323-329. Disponible en: https://doi.org/10.1038/nature0528691. Joubert, D., Slaughter, R., Kemp, G., Becker, J., Krooshof, G., Bergmann, C., ...y Vivier, M. A. (2006). The grapevine polygalacturonase-inhibiting protein (VvPGIP1) reduces Botrytis cinerea susceptibility in transgenic tobacco and differentially inhibits fungal polygalacturonases. Transgenic research, 15(6), 687-702. Disponible en: https://doi.org/10.1007/s11248-006-9019-192. Journet, E. P., Neuburger, M. y Douce, R. (1981). Role of glutamate-oxaloacetate transaminase and malate dehydrogenase in the regeneration of NAD+ for glycine oxidation by spinach leaf mitochondria. Plant physiology, 67(3), 467-469. Disponible en: https://doi.org/10.1104/pp.67.3.46793. Jovanović, S. V., Kukavica, B., Vidović, M., Morina, F., & Menckhoff, L. (2018). Class III peroxidases: functions, localization and redox regulation of isoenzymes. In Antioxidants and antioxidant enzymes in higher plants (pp. 269-300). Springer, Cham. Disponible en: https://doi.org/10.1007/978-3-319-75088-0_1394. Jun, S., Sattler, S., Cortez, G., Vermerris, W., Sattler, S. y Kang, C. (2018). Biochemical and structural analysis of substrate specificity of a phenylalanine ammonia-lyase. Plant physiology, 176(2), 1452-1468. Disponible en: https://doi.org/10.1104/pp.17.0160895. Kadota, Y. y Shirasu, K. (2012). The HSP90 complex of plants. BiocJiica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(3), 689-697. Disponible en: https://doi.org/10.1016/j.bbamcr.2011.09.01696. Kalunke, R. M., Tundo, S., Benedetti, M., Cervone, F., De Lorenzo, G.y D'Ovidio, R. (2015). An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens. Frontiers in plant science, 6, 146. Disponible en: https://doi.org/10.3389/fpls.2015.0014697. Kaur, N., Reumann, S. y Hu, J. (2009). Peroxisome biogenesis and function. The Arabidopsis book/American Society of Plant Biologists, 7. Disponible en: https://dx.doi.org/10.1199%2Ftab.012398. Kim, S., Shang, Y., Joo, S., Kim, S. y Nam, K. (2017). Overexpression of BAK1 causes salicylic acid accumulation and deregulation of cell death control genes. Biochemical and biophysical research communications, 484(4), 781-786. Disponible en: https://doi.org/10.1016/j.bbrc.2017.01.16699. Kosugi, S. y Ohashi, Y. (2000). Cloning and DNA-binding properties of a tobacco Ethylene-Insensitive3 (EIN3) homolog. Nucleic Acids Research, 28(4), 960-967. Disponible en: https://doi.org/10.1093/nar/28.4.960100. Kozeko, L. Y. (2019). The role of HSP90 chaperones in stability and plasticity of ontogenesis of plants under normal and stressful conditions (Arabidopsis thaliana). Cytology and Genetics, 53(2), 143-161. Disponible en: https://doi.org/10.3103/S0095452719020063101. Krol, E., Mentzel, T., Chinchilla, D., Boller, T., Felix, G., Kemmerling, B., ...y Hedrich, R. (2010). Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. Journal of Biological Chemistry, 285(18), 13471-13479. Disponible en: https://doi.org/10.1074/jbc.M109.097394102. Lamb, C., Lawton, M., Dron, M. y Dixon, R. (1989). Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell, 56(2), 215-224. Disponible en: https://doi.org/10.1016/0092-8674(89)90894-5103. Lamborn, L. (1901). American Carnation culture. The evolution of Dianthus caryophyllus sempler florens. Applewood books. (4) 13 – 30104. Langner, T.y Göhre, V. (2016). Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Current genetics, 62(2), 243-254. Disponible en: https://doi.org/10.1007/s00294-015-0530-x105. Lazarovits, G., Conn, K. L., Abbasi, P. A., & Tenuta, M. (2005). Understanding the mode of action of organic soil amendments provides the way for improved management of soilborne plant pathogens. Acta Horticulturae, 698, 215. Disponible en: https://acortar.link/9k1X0b106. Lee, J. Yoo, B., Rojas, M, Gomez-Ospina, N., Staehelin, L. y Lucas, W. (2003). Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPP1. Science, 299(5605), 392-396. Disponible en: doi:10.1126/science.1077813.107. Lee, S. y Park, K. (1998). Characterization and Expression of the Polyamine Biosynthetic Genes from Senescing Carnation Flowers. In Proceedings of the Zoological Society Korea Conference (pp. 15-24). The Korean Society for Integrative Biology. Disponible en:https://www.koreascience.or.kr/article/CFKO199811921842356.page108. Lee, W., Rudd, J., Hammond-Kosack, K. y Kanyuka, K. (2014). Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. Molecular Plant-Microbe Interactions, 27(3), 236-243. Disponible en: https://doi.org/10.1094/MPMI-07-13-0201-R109. Legaz, M., De Armas, R., Piñón, D. y Vicente, C. (1998). Relationships between phenolics-conjugated polyamines and sensitivity of sugarcane to smut (Ustilago scitaminea). Journal of Experimental Botany, 49, 1723–1728. Disponible en: https://doi.org/10.1093/jxb/49.327.1723110. Leslie, J. F., & Summerell, B. A. (2006). The fusarium laboratory manual. Blackwell publishing. ISBN-13:978-0-8138-1919-8. Disponible en: https://bit.ly/3jBHDRt111. Li, C., Shao, J., Wang, Y., Li, W., Guo, D., Yan, B., ... y Peng, M. (2013). Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense. BMC genomics, 14(1), 851. Disponible en: https://doi.org/10.1186/1471-2164-14-851112. Li, H. y Smigocki, A. C. (2018). Sugar beet polygalacturonase-inhibiting proteins with 11 LRRs confer Rhizoctonia, Fusarium and Botrytis resistance in Nicotiana plants. Physiological and Molecular Plant Pathology, 102, 200-208. Disponible en: https://doi.org/10.1016/j.pmpp.2018.03.001113. Lin, Z., Zhong, S. y Grierson, D. (2009). Recent advances in ethylene research. Journal of experimental botany, 60(12), 3311-3336. Disponible en: https://doi.org/10.1093/jxb/erp204114. Lingam, S., Mohrbacher, J., Brumbarova, T., Potuschak, T., Fink-Straube, C., Blondet, E., y Bauer, P. (2011). Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. The Plant Cell, 23(5), 1815-1829. Disponible en: https://doi.org/10.1105/tpc.111.084715115. Linneo, C. (1753). "Tomus I". Especie Plantarum (en latín). Estocolmo: Laurentii Salvii. pag. 410. ISSN 2074-8647116. Lo, S.y Nicholson, R. (1998). Reduction of light-induced anthocyanin accumulation in inoculated sorghum mesocotyls: implications for a compensatory role in the defense response. Plant Physiology, 116(3), 979-989. Disponible en: https://doi.org/10.1104/pp.116.3.979117. Loake, G. y Grant, M. (2007). Salicylic acid in plant defence—the players and protagonists. Current opinion in plant biology, 10(5), 466-472. Disponible en: https://doi.org/10.1016/j.pbi.2007.08.008118. Lordachescu, M. y Verlinden, S. (2005). Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure. Journal of experimental botany, 56(418), 2011–2018. Disponible en: https://doi.org/10.1093/jxb/eri199119. Luna-Esquivel, E. N., Ojeda-Barrios, D. L., Guerrero-Prieto, V. M., Ruíz-Anchondo, T. y Martínez-Téllez, J. J. (2014). Poliaminas como indicadores de estrés en plantas. Revista Chapingo. Serie horticultura, 20(3), 283-295. Disponible en: https://doi.org/10.5154/r.rchsh.2013.05.019120. Mahesh, H. M., Murali, M., Pal, M. A. C., Melvin, P., & Sharada, M. S. (2017). Salicylic acid seed priming instigates defense mechanism by inducing PR-Proteins in Solanum melongena L. upon infection with Verticillium dahliae Kleb. Plant Physiology and Biochemistry, 117, 12-23. Disponible en: https://doi.org/10.1016/j.plaphy.2017.05.012121. Martínez, J. D. (2018). Análisis del aumento de las actividades informales y su vínculo con las exportaciones del sector floricultor en la Sabana de Bogotá durante los años 2008-2016. Disponible en: https://ciencia.lasalle.edu.co/finanzas_comercio/200122. Matern, U. (1994). Dianthus species (Carnation): in vitro culture and the biosynthesis of dianthalexin and other secondary metabolites. In Medicinal and aromatic plants VII (pp. 170-184). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-30369-6_12123. Mato, M., Onozaki, T., Ozeki, Y., Higeta, D., Itoh, Y., Hisamatsu, T. y Shibata, M. (2001). Flavonoid biosynthesis in pink-flowered cultivars derived from'William Sim'carnation (Dianthus caryophyllus). Journal of the Japanese Society for Horticultural Science, 70(3), 315-319. Disponible en: https://doi.org/10.2503/jjshs.70.315124. Menéndez, E., Navarro, J., López, J. y Dalmau, A. (2020). Mecanismos de defensa en plantas. Proteínas relacionadas con la patogenicidad. Revista de Investigaciones de la Universidad Le Cordon Bleu, 7(2), 98-109. Disponible en: https://doi.org/10.36955/RIULCB.2020v7n2.010125. Meng, X. y Zhang, S. (2013). MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol.51:245-266. Disponible en: https://doi.org/10.1146/annurev-phyto-082712-102314126. Mhamdi, A., Hager, J., Chaouch, S., Queval, G., Han, Y., Taconnat, L. y Noctor, G. (2010). Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant physiology, 153(3), 1144-1160. Disponible en: https://doi.org/10.1104/pp.110.153767127. Mhamdi, A., Noctor, G. y Baker, A. (2012). Plant catalases: peroxisomal redox guardians. Archives of Biochemistry and Biophysics, 525(2), 181-194. Disponible en: https://doi.org/10.1016/j.abb.2012.04.015128. Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Van Breusegem, F. y Noctor, G. (2010). Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. Journal of experimental botany, 61(15), 4197-4220. Disponible en: https://doi.org/10.1093/jxb/erq282129. Michel-López, C. Y., González-Mendoza, D., Zapata-Pérez, O., Rubio-Piña, J., Cervantes-Díaz, L. y Bermúdez-Guzmán, M. D. J. (2018). Evaluation of three protocols for the rapid extraction of total tissue RNA from Prosopis juliflora (SW). Revista mexicana de ciencias agrícolas, 9(6), 1259-1267. Disponible en: https://doi.org/10.29312/remexca.v9i6.788130. Ministerio de agricultura y desarrollo rural (Minagricultura). (2020) Dirección de cadenas Agrícolas y Forestales. Cadena de flores. Disponible en: https://sioc.minagricultura.gov.co/Flores/Documentos/2019-12-30%20Cifras%20Sectoriales.pdf. Consultado: 05/09/2020.131. Mittler, R., Herr, E. Orvar, B. L., Van Camp, Willekens, H., Inzé, D. y Ellis, B. (1999). Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proceedings of the National Academy of Sciences, 96(24), 14165-14170. Disponible en: https://doi.org/10.1073/pnas.96.24.14165132. Monroy - Mena, S. (2020). Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f. sp. dianthi. Departamento de Química. Disponible en: https://repositorio.unal.edu.co/handle/unal/77930133. Monroy-Mena, S., Chacón-Parra, A. L., Farfán-Angarita, J. P., Martínez-Peralta, S. T., & Ardila-Barrantes, H. (2019). Selección de genes de referencia para análisis transcripcionales en el modelo clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi. Revista Colombiana de Química, 48(2), 5-14. Disponible en: https://doi.org/10.15446/rev.colomb.quim.v48n2.72771134. Morán, J. K. (2018). Análisis de la producción de flores y exportaciones hacia los países bajos, período 2012-2016 (Bachelor's thesis, Universidad de Guayaquil. Facultad de Ciencias Económicas). Disponible en:http://repositorio.ug.edu.ec/handle/redug/28710135. Morimoto, H., Narumi-Kawasaki, T., Takamura, T. y Fukai, S. (2018). Analysis of flower color variation in carnation (Dianthus caryophyllus L.) cultivars derived from continuous bud mutations. The Horticulture Journal, UTD-007. Disponible en: https://doi.org/10.2503/hortj.UTD-007136. Morkunas, I. y Ratajczak, L. (2014). The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiologiae Plantarum, 36(7), 1607-1619. Disponible en: https://doi.org/10.1007/s11738-014-1559-z137. Moschou, P., Wu, J., Cona, A., Tavladoraki, P., Angelini, R. y Roubelakis-Angelakis, K. A. (2012). The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. Journal of experimental botany, 63(14), 5003-5015. Disponible en: https://doi.org/10.1093/jxb/ers202138. Murashige, T. y Skoog, F. (1962). A revised medium for rapid growth and bio assaysbioassays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497. Disponible en: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x139. Negi, N. y Khurana, P. (2021). A salicylic acid inducible mulberry WRKY transcription factor, Mi WRKY53 is involved in plant defence response. Plant Cell Reports, 1-21. Disponible en: https://doi.org/10.1007/s00299-021-02710-8140. Offen, W., Martinez‐Fleites, C., Yang, M., Kiat‐Lim, E., Davis, B. G., Tarling, C. A., y Davies, G. J. (2006). Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. The EMBO journal, 25(6), 1396-1405. Disponible en: https://doi.org/10.1038/sj.emboj.7600970141. Ogata, J., Itoh, Y., Ishida, M., Yoshida, H. y Ozeki, Y. (2004). Cloning and heterologous expression of cDNAs encoding flavonoid glucosyltransferases from Dianthus caryophyllus. Plant Biotechnology, 21(5), 367-375. Disponible en: https://doi.org/10.5511/plantbiotechnology.21.367142. Ono, E., Fukuchi-Mizutani, M., Nakamura, N., Fukui, Y., Yonekura-Sakakibara, K., Yamaguchi, M., y Tanaka, Y. (2006). Yellow flowers generated by expression of the aurone biosynthetic pathway. Proceedings of the National Academy of Sciences, 103(29), 11075-11080. Disponible en: https://doi.org/10.1073/pnas.0604246103143. Ori, N., Eshed, Y., Paran, I., Presting, G., Aviv, D., Tanksley, S. y Fluhr, R. (1997). The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. The Plant Cell, 9(4), 521-532. Disponible en: https://doi.org/10.1105/tpc.9.4.521144. Oumouloud, A., El-Otmani, M., Chikh-Rouhou, H., Claver, A. G., Torres, R. G., Perl-Treves, R. y Alvarez, J. M. (2013). Breeding melon for resistance to Fusarium wilt: recent developments. Euphytica, 192(2), 155-169. Disponible en: https://doi.org/10.1007/s10681-013-0904-4145. Owen, C. A., Spano, T., Hajjar, S. E., Tunaru, V., Harytunyan, S., Filali, L. y Kalaitzis, P. (2004). Expression of genes for alcohol dehydrogenase and pyruvate decarboxylase in petals of cut carnation flowers in response to hypoxia and anoxia. Physiologia Plantarum, 122(4), 412-418. Disponible en: https://doi.org/10.1111/j.1399-3054.2004.00423.x146. Pandey, V. P., Awasthi, M., Singh, S., Tiwari, S. y Dwivedi, U. N. (2017). A comprehensive review on function and application of plant peroxidases. Biochem Anal Biochem, 6(1), 308. Disponible en: http://dx.doi.org/10.4172/2161-1009.1000308147. Pathuri, I. P., Reitberger, I. E., Hückelhoven, R. y Proels, R. K. (2011). Alcohol dehydrogenase 1 of barley modulates susceptibility to the parasitic fungus Blumeria graminis f. sp. hordei. Journal of experimental botany, 62(10), 3449-3457. Disponible en: https://doi.org/10.1093/jxb/err017148. Perchepied, L., y Pitrat, M. (2004). Polygenic inheritance of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in melon. Phytopathology, 94(12), 1331-1336.Disponible en: https://doi.org/10.1094/PHYTO.2004.94.12.1331149. Pérez, A. B., Sanz, R., & Díez, M. A. (2003). Bromuro de metileno como fumigante de suelos: alternativas y usos. Vida rural, (171), 22-24. ISSN 1133-8938, Nº 171, 2003, págs. 22-24150. Perez-Nadales, E., Nogueira, M. F. A., Baldin, C., Castanheira, S., El Ghalid, M., Grund, E. y Naik, V. (2014). Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genetics and Biology, 70, 42-67. Disponible en: https://doi.org/10.1016/j.fgb.2014.06.011151. Perilla, L. (2014). Evaluación de polimorfismos con marcadores microsatélites asociados a la Resistencia a Fusarium oxysporum en líneas híbridas de Dianthus caryophyllus. Facultad de Ciencias Básicas y Aplicadas. Universidad militar Nueva Granada. (UMNG). (Bachelor's thesis)152. Pottorff, M. O., Li, G., Ehlers, J. D., Close, T. J. y Roberts, P. A. (2014). Genetic mapping, synteny, and physical location of two loci for Fusarium oxysporum f. sp. tracheiphilum race 4 resistance in cowpea [Vigna unguiculata (L.) Walp]. Molecular breeding, 33(4), 779-791. Disponible en: https://doi.org/10.1007/s11032-013-9991-0153. Pottorff, M., Wanamaker, S., Ma, Y. Q., Ehlers, J. D., Roberts, P. A. y Close, T. J. (2012). Genetic and physical mapping of candidate genes for resistance to Fusarium oxysporum f. sp. tracheiphilum race 3 in cowpea [Vigna unguiculata (L.) Walp]. PLoS One, 7(7), e41600. Disponible en: https://doi.org/10.1371/journal.pone.0041600154. Quirós, M. L. (2001). La Floricultura en Colombia en el marco de la globalización: Aproximaciones hacia un análisis microy macroeconómico. Revista universidad EAFIT, 37(122), 59-68. Disponible en: http://hdl.handle.net/10784/17295155. Quiroz, L.C., Corrales, R.L.y Sánchez-Leal, C. (2018). Fitopatógenos y aguas de riego NOVA Revista Universidad Eafit. 16(29): 71-89.156. Rao, J., Liu, D., Zhang, N., He, H., Ge, F. y Chen, C. (2013). Identification of genes differentially expressed in a resistant reaction to Fusarium oxysporum in Lilium regale by SSH. Ieri Procedia, 5, 95-101. Disponible en: https://doi.org/10.1016/j.ieri.2013.11.076157. Rathinam, M., Rao, U. y Sreevathsa, R. (2020). Novel biotechnological strategies to combat biotic stresses: polygalacturonase inhibitor (PGIP) proteins as a promising comprehensive option. Applied microbiology and biotechnology, 104(6), 2333-2342. Disponible en: https://doi.org/10.1007/s00253-020-10396-3158. Redagrícola Colombia. (2020). Mejoramiento genético en clavel: Del laboratorio al mercado. Redagrícola: Especial Flores Colombianas, 6(1), 17. Disponible en: https://www.redagricola.com/co/assets/uploads/2020/11/racol06.pdf.159. Reinhard, K. y Matern, U. (1989). The biosynthesis of phytoalexins in Dianthus caryophyllus L. cell cultures: induction of benzoyl-CoA: anthranilate N-benzoyltransferase activity. Archives of biochemistry and biophysics, 275(1), 295-301. Disponible en: https://doi.org/10.1016/0003-9861(89)90376-7160. Ríos, D. y Filgueira, J. (2019). Estudio de las características reproductivas de híbridos de clavel (Dianthus caryophyllus). Temas Agrarios, 24(1), 27-33. Disponible en: https://doi.org/10.21897/rta.v24i1.1775161. Rios, M. Y. y Olivo, H. F. (2014). Natural and synthetic alkamides: applications in pain therapy. Studies in natural products chemistry, 43, 79-121. Disponible en: https://doi.org/10.1016/B978-0-444-63430-6.00003-5162. Romero - Rincón, A. (2020). Efecto de la aplicación de elicitores de origen biótico en la biosíntesis de flavonoides en clavel (Dianthus caryophyllus L) durante la interacción con Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia (Tesis maestría). Disponible en: https://repositorio.unal.edu.co/handle/unal/78330163. Rossi, F., Marina, M. y Pieckenstain, F. L. (2015). Role of Arginine decarboxylase (ADC) in Arabidopsis thaliana defence against the pathogenic bacterium Pseudomonas viridiflava. Plant biology (Stuttgart, Germany), 17(4), 831–839. Disponible en: https://doi.org/10.1111/plb.12289164. Ryan, C. A. (1987). Oligosaccharide signalling in plants. Annual Review of Cell Biology, 3(1), 295-317. Disponible en: https://doi.org/10.1146/annurev.cb.03.110187.001455165. Salehzadeh, A. (2012). Interaction of polygalacturonase enzymes from Fusarium oxysporum with tomato polygalacturonase inhibiting protein. African Journal of Agricultural Research, 7(13). Disponible en: https://doi.org/10.5897/AJAR11.1971166. Salim, A. P., Saminaidu, K., Marimuthu, M., Perumal, Y., Rethinasamy, V., Palanisami, J. R. y Vadivel, K. (2011). Defense responses in tomato landrace and wild genotypes to early blight pathogen Alternaria solani infection and accumulation of pathogenesis-related proteins. Archives of Phytopathology and Plant Protection, 44(12), 1147-1164. Disponible en: https://doi.org/10.1080/03235408.2010.482763167. Sanmartín, L. (2008). Nuevas aportaciones al metabolismo secundario del tomate. Identificacióny estudio de moléculas implicadas en la respuesta a la infección con Pseudomonas syrinagae pv. tomato (Doctoral dissertation). Disponible en: https://dialnet.unirioja.es/servlet/tesis?codigo=18191168. Schaller, G. E. (2012). Ethylene and the regulation of plant development. BMC biology, 10(1), 1-3. Disponible en: https://doi.org/10.1186/1741-7007-10-9169. Seifi, H. S. y Shelp, B. J. (2019). Spermine differentially refines plant defense responses against biotic and abiotic stresses. Frontiers in Plant Science, 10, 117. Disponible en: https://doi.org/10.3389/fpls.2019.00117170. Seo, P. J., Lee, A. K., Xiang, F. y Park, C. M. (2008). Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. Plant and Cell Physiology, 49(3), 334-344. Disponible en: https://doi.org/10.1093/pcp/pcn011171. Sestili, S., Polverari, A., Luongo, L., Ferrarini, A., Scotton, M., Hussain, J. y Belisario, A. (2011). Distinct colonization patterns and cDNA-AFLP transcriptome profiles incompatible and incompatible interactions between melon and different races of Fusarium oxysporum f. sp. melonis. BMC genomics, 12(1), 122. Disponible en: https://doi.org/10.1186/1471-2164-12-122172. Shadle, G. L., Wesley, S. V., Korth, K. L., Chen, F., Lamb, C., & Dixon, R. A. (2003). Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry, 64(1), 153-161.Disponible en: https://doi.org/10.1016/S0031-9422(03)00151-1173. Shadle, G., Wesley, S., Korth, K., Chen, F, Lamb, C. y Dixon, R. (2003). Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry, 64(1), 153-161. Disponible en: https://doi.org/10.1016/S0031-9422(03)00151-1174. Shanmugam, V. (2005). Role of extracytoplasmic leucine rich repeat proteins in plant defence mechanisms. Microbiological research, 160(1), 83-94. Disponible en: https://doi.org/10.1016/j.micres.2004.09.014175. Sharma, A., Tyagi, S., Alok, A., Singh, K. y Upadhyay, S. K. (2020). Thaumatin-like protein kinases: Molecular characterization and transcriptional profiling in five cereal crops. Plant Science, 290, 110317. Disponible en: https://doi.org/10.1016/j.plantsci.2019.110317176. Sharma, I. y Ahmad, P. (2014). Catalase: a versatile antioxidant in plants. In Oxidative damage to plants (pp. 131-148). Academic Press. Disponible en: https://doi.org/10.1016/B978-0-12-799963-0.00004-6177. Shen, Y. y Diener, A. C. (2013). Arabidopsis thaliana resistance to Fusarium oxysporum 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection. PLoS genetics, 9(5), e1003525. Disponible en: https://doi.org/10.1371/journal.pgen.1003525178. Sheshukova, E., Komarova, T., Pozdyshev, D., Ershova, N., Shindyapina, A., Tashlitsky, V. y Dorokhov, Y. (2017). The intergenic interplay between aldose 1-epimerase-like protein and pectin methylesterase in abiotic and biotic stress control. Frontiers in plant science, 8, 1646. Disponible en: https://doi.org/10.3389/fpls.2017.01646179. Shibuya, K. (1998). A cDNA encoding a putative ethylene receptor related to petal senescence in carnation (Dianthus caryphyllus L.) flowers. Plant Physiol., 116, 867. Disponible en: https://ci.nii.ac.jp/naid/10006287189/180. Shivakumar, P. D., Geetha, H. M. y Shetty, H. S. (2003). Peroxidase activity and isozyme analysis of pearl millet seedlings and their implications in downy mildew disease resistance. Plant Science, 164(1), 85-93. Disponible en: https://doi.org/10.1016/S0168-9452(02)00339-4181. Silva, M., Arraes, F, de Araújo-Campos, M., Grossi-de-Sa, M., Fernandez, D., de Souza Cândido, E. y Grossi-de-Sa, M. (2018). Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant science. Disponible en: https://doi.org/10.1016/j.plantsci.2018.02.013182. Singh, S. y Farsodia, M. (2018). Polyamine’s metabolism and their relation with reactive oxygen species and other cellular molecules during plant interactions with pathogens. International Journal of Plant and Environment, 4, 76–90. Disponible en: https://doi.org/10.18811/ijpen.v4i01.12420183. Solano, R., Stepanova, A., Chao, Q. y Ecker, J. R. (1998). Nuclear events in ethylene signaling: a transcriptional cascade mediated by ethylene-insensitive3 and ethylene-response-factor1. Genes y development, 12(23), 3703-3714. Disponible en: https://doi.org/10.1101/gad.12.23.3703184. Song, J. (2006). Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease response in Arabidopsis thaliana. Molecules y Cells (Springer Science y Business Media BV), 22(2). Vol. 22 Issue 2, p233-238. 6p.185. Soto, J. Pabón, F. y Filgueira, J. (2009). Relación Entre el Color de la Flor del Clavel (Dianthus caryophyllus) y la Tolerancia a Patógenos del Género Fusarium. Revista Facultad De Ciencias Básicas, 5(1-2), 116-129. Disponible en: https://doi.org/10.18359/rfcb.2125186. Soto, J. y Filgueira, J. (2016). Evaluación de la capacidad de reproducción de híbridos y variedades de clavel (Dianthus caryophyllus L.) como búsqueda de parentales útiles para un programa de cría. Disponible en: http://hdl.handle.net/10654/37528.187. Stich, K., Eidenberger, T., Wurst, F. y Forkmann, G. (1992). Enzymatic conversion of dihydroflavonols to flavan-3, 4-diols using flower extracts of Dianthus caryophyllus L.(carnation). Planta, 187(1), 103-108. Disponible en: https://link.springer.com/article/10.1007/BF00201630188. Stitt, M. y Zeeman, S. C. (2012). Starch turnover: pathways, regulation and role in growth. Current opinion in plant biology, 15(3), 282-292. Disponible en: https://doi.org/10.1016/j.pbi.2012.03.016189. Svingen, T., Letting, H., Hadrup, N., Hass, U. y Vinggaard, A. M. (2015). Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions. PeerJ, 3, e855. Disponible en: https://doi.org/10.7717/peerj.855190. Swarbrick, P., Schulze‐Lefert P. y Scholes, J. (2006). Metabolic consequences of susceptibility and resistance (race‐specific and broad‐spectrum) in barley leaves challenged with powdery mildew. Plant, Cell y Environment, 29(6), 1061-1076. Disponible en: https://doi.org/10.1111/j.1365-3040.2005.01472.x191. Taiz, L., Zeiger, E., Møller, I. M. y Murphy, A. (2015). Plant physiology and development (No. Ed. 6). Sinauer Associates Incorporated. ISBN: 9781605353531192. Tameling, W. I., Elzinga, S. D., Darmin, P. S., Vossen, J. H., Tekken, F. L., Haring, M. A. y Cornelissen, B. J. (2002). The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity. The Plant Cell, 14(11), 2929-2939. Disponible en: https://doi.org/10.1105/tpc.005793193. Tanase, K., Nishitani, C., Hirakawa, H., Isobe, S., Tabata, S., Ohmiya, A. y Onozaki, T. (2012). Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology. BMC genomics, 13(1), 292. Disponible en: https://doi.org/10.1186/1471-2164-13-292194. Tekeoglu, M., Tullu, A., Kaiser, W. y Muehlbauer, F. (2000). Inheritance and linkage of two genes that confer resistance to Fusarium wilt in chickpea. Crop science, 40(5), 1247-1251. Disponible en: https://doi.org/10.2135/cropsci2000.4051247x195. Tesfaye, M., Temple, S., Allan, D., Vance, C. y Samac, D. (2001). Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant physiology, 127(4), 1836-1844. Disponible en: https://doi.org/10.1104/pp.010376196. Thapa, G., Gunupuru, L., Hehir, J., Kahla, A., Mullins, E. y Doohan, F. (2018). A pathogen-responsive leucine rich receptor like kinase contributes to Fusarium resistance in cereals. Frontiers in plant science, 9, 867. Disponible en: https://doi.org/10.3389/fpls.2018.00867197. Tirado-Perea, A. y Perea Dallos, M. (2011). Cultivo de tejidos vegetales in vitro: manual de prácticas de laboratorio (No. 634.77396 S211c). Bogotá, CO: Universidad Nacional de Colombia, 2011. Disponible en: https://repositorio.unal.edu.co/handle/unal/79882198. Togami, J., Okuhara, H., Nakamura, N., Ishiguro, K., Hirose, C., Ochiai, M. y Tanaka, Y. (2011). Isolation of cDNAs encoding tetrahydroxychalcone 2′-glucosyltransferase activity from carnation, cyclamen, and catharanthus. Plant biotechnology, 28(2), 231-238. Disponible en: https://doi.org/10.5511/plantbiotechnology.11.0106b199. Toussoun, T., Nelson, P., y Marasas, W. (1983). Fusarium species: an illustrated manual for identification. The Pennsylvania state universidad press. ISBN 0-271-00349-9200. Van der Does, D., Boutrot, F., Engelsdorf, T., Rhodes, J., McKenna, J. F., Vernhettes, S.y Segonzac, C. (2017). The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS genetics, 13(6), e1006832. Disponible en: https://doi.org/10.1371/journal.pgen.1006832201. Van verk, M. C., Bol, J. F. y Linthorst, H. J. (2011). WRKY transcription factors involved in activation of SA biosynthesis genes. BMC plant biology, 11(1), 1-12. Disponible en: https://doi.org/10.1186/1471-2229-11-89202. Vanegas, L. (2019). Aproximación bioquímica al estudio de las rutas de señalización involucradas en la resistencia del clavel (Dianthus caryophyllus L.) al patógeno Fusarium oxysporum f. sp. dianthi. Departamento de Química. Disponible en: https://repositorio.unal.edu.co/handle/unal/76509203. Vásquez A, Soto J, López C. (2018). Unraveling the molecules hidden in the gray shadows of quantitative disease resistance. Acta Biol Colomb.;23:5-16. Disponible en: https://doi.org/10.15446/abc.v23n1.66487204. Villa-Martínez, A., Pérez-Leal, R., Morales-Morales, H. A., Basurto-Sotelo, M., Soto-Parra, J. M., & Martínez-Escudero, E. (2015). Situación actual en el control de Fusarium spp. y evaluación de la actividad antifúngica de extractos vegetales. Acta Agronómica, 64(2), 194-205. Disponible en: https://doi.org/10.15446/acag.v64n2.43358 e–ISSN 2323–0118205. Waki, K., Shibuya, K., Yoshioka, T., Hashiba, T. y Satoh, S. (2001). Cloning of a cDNA encoding EIN3‐like protein (DC‐EIL1) and decrease in its mRNA level during senescence in carnation flower tissues. Journal of Experimental Botany, 52(355), 377-379. Disponible en: https://doi.org/10.1093/jexbot/52.355.377206. Wang, D., Amornsiripanitch, N. y Dong, X. (2006). A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS pathogens, 2(11), e123. Disponible en: https://doi.org/10.1371/journal.ppat.0020123207. Wang, K. L. C., Li, H. y Ecker, J. R. (2002). Ethylene biosynthesis and signaling networks. The plant cell, 14, S131-S151. Disponible en: https://doi.org/10.1105/tpc.001768208. Wang, Q., Zhao, Y., Yi, Q., Li, K. Z., Yu, Y. X. y Chen, L. M. (2010). Overexpression of malate dehydrogenase in transgenic tobacco leaves: enhanced malate synthesis and augmented Al-resistance. Acta Physiologiae Plantarum, 32(6), 1209-1220. Disponible en: https://doi.org/10.1007/s11738-010-0522-x209. Wang, X., Tang, C., Deng, L., Cai, G., Liu, X., Liu, B. y Kang, Z. (2010). Characterization of a pathogenesis‐related thaumatin‐like protein gene TaPR5 from wheat induced by stripe rust fungus. Physiologia Plantarum, 139(1), 27-38. Disponible en: https://doi.org/10.1111/j.1399-3054.2009.01338.x210. Wang, Z. A., Li, Q., Ge, X. Y., Yang, C. L., Luo, X. L., Zhang, A. H. y Wu, J. H. (2015). The mitochondrial malate dehydrogenase 1 gene GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton. Scientific reports, 5(1), 1-14. Disponible en: https://doi.org/10.1038/srep10343211. Watson, J. D.; Baker, T. A.; Bell, S. P.; Gann, A.; Levine, M.y Losick, R. (2004). Molecular Biology of the Gene (Fifth edition edición). San Francisco: Benjamin Cummings. ISBN 0-321-22368-3.212. Wei, C., Kuang, H., Li, F. y Chen, J. (2014). The I2 resistance gene homologues in Solanum have complex evolutionary patterns and are targeted by miRNAs. BMC genomics, 15(1), 743. Disponible en: https://doi.org/10.1186/1471-2164-15-743213. Westfall, C., Herrmann, J., Chen, Q., Wang, S. y Jez, J. (2010). Modulating plant hormones by enzyme action: the GH3 family of acyl acid amido synthetases. Plant signaling ybehavior, 5(12), 1607-1612. Disponible en: https://doi.org/10.4161/psb.5.12.13941214. Wojtasik, W., Kulma, A., Namysł, K., Preisner, M. y Szopa, J. (2015). Polyamine metabolism in flax in response to treatment with pathogenic and non-pathogenic Fusarium strains. Frontiers in Plant Science, 6, 291. Disponible en: https://doi.org/10.3389/fpls.2015.00291215. Wu, Y. y Zhou, J. (2013). Receptor‐Like Kinases in Plant Innate Immunity. Journal of integrative plant biology, 55(12), 1271-1286. Disponible en: https://doi.org/10.1111/jipb.12123216. Yagi, M., Kosugi, S., Hirakawa., Ohmiya, A., Tanase, K., Harada, T y Yamaguchi, H. (2014). Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Research, 21(3), 231-241. Disponible en: https://doi.org/10.1093/dnares/dst053217. Yagi, M., Yamamoto, T., Isobe, S., Hirakawa, H., Tabata, S., Tanase, K., Yamaguchi, H. y Onozaki, T. (2013). Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.). BMC Genomics 14: 734-736. Disponible en: https://doi.org/10.1186/1471-2164-14-734218. Yang, C., Ma, B., He, S. J., Xiong, Q., Duan, K. X., Yin, C. C. y Zhang, J. S. (2015). maohuzi6/ethylene insensitive3-like1 and ethylene insensitive3-like2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiology, 169(1), 148-165. Disponible en: https://doi.org/10.1104/pp.15.00353219. Yang, Q., Grimmig, B. y Matern, U. (1998). Anthranilate N-hydroxycinnamoyl/benzoyltransferase gene from carnation: rapid elicitation of transcription and promoter analysis. Plant molecular biology, 38(6), 1201-1214. Disponible en: https://doi.org/10.1023/A:1006003731919220. Yang, Q., Reinhard, K., Schiltz, E. y Matern, U. (1997). Characterization and heterologous expression of hydroxycinnamoyl/benzoyl-CoA: anthranilate N-hydroxycinnamoyl/benzoyltransferase from elicited cell cultures of carnation, Dianthus caryophyllus L. Plant molecular biology, 35(6), 777-789. Disponible en: https://doi.org/10.1023/A:1005878622437221. Yang, Y., Shah, J. y Klessig, D. F. (1997). Signal perception and transduction in plant defense responses. Genesy development, 11(13), 1621-1639.222. Yao, Y. X., Li, M., Zhai, H., You, C. X. y Hao, Y. J. (2011). Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis. Journal of plant physiology, 168(5), 474-480. Disponible en: https://doi.org/10.1016/j.jplph.2010.08.008223. Yoffe, D., Frim, R., Ukeles, S. D., Dagani, M. J., Barda, H. J., Benya, T. J., & Sanders, D. C. (2013). Bromine compounds. Ullmann's Encyclopedia of Industrial Chemistry, 1-31. Disponible en: https://doi.org/10.1002/14356007.a04_405.pub2224. Yogendra, K., Kumar, A., Sarkar, K., Li, Y., Pushpa, D., Mosa, K. A.y Kushalappa, A. C. (2015). Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato. Journal of experimental botany, 66(22), 7377-7389. Disponible en: https://doi.org/10.1093/jxb/erv434225. Yu, W., Tao, Y., Luo, L., Hrovat, J., Xue, A. y Luo, H. (2021). Evaluation of housekeeping gene expression stability in carnation (Dianthus caryophyllus). New Zealand Journal of Crop and Horticultural Science, 1-14. Disponible en: https://doi.org/10.1080/01140671.2021.1883069226. Yuan, M., Lu, Y., Zhu, X., Wan, H., Shakeel, M., Zhan, S.y Li, J. (2014). Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) using reverse-transcription quantitative PCR. PloS one, 9(1), e86503. Disponible en: https://doi.org/10.1371/journal.pone.0086503227. Zalepa-King, L. y Citovsky, V. (2013). A plasmodesmal glycosyltransferase-like protein. PLoS One, 8(2), e58025. Disponible en: https://doi.org/10.1371/journal.pone.0058025228. Zeiss, D. R., Piater, L. A. y Dubery, I. A. (2020). Hydroxycinnamate amides: intriguing conjugates of plant protective metabolites. Trends in Plant Science. Disponible en: https://doi.org/10.1016/j.tplants.2020.09.011229. Zhang, C., Zhang, L., Wang, D., Ma, H., Liu, B., Shi, Z., y Chen, Q. (2018). Evolutionary history of the glycoside hydrolase 3 (GH3) family based on the sequenced genomes of 48 plants and identification of jasmonic acid related GH3 proteins in Solanum tuberosum. International journal of molecular sciences, 19(7), 1850. Disponible en: https://doi.org/10.3390/ijms19071850230. Zhang, Z., Ortiz, O., Goyal, R., & Kohn, J. (2014). Biodegradable polymers. Handbook of polymer applications in medicine and medical devices, 303-335. Disponible en: https://doi.org/10.1016/B978-0-323-22805-3.00013-X231. Zuker, A., Tzfira, T., Scovel, G., Ovadis, M., Shklarman, E., Itzhaki, H., & Vainstein, A. (2001). RolC-transgenic carnation with improved horticultural traits: quantitative and qualitative analyses of greenhouse-grown plants. Journal of the American Society for Horticultural Science, 126(1), 13-18. Disponible en: https://doi.org/10.21273/JASHS.126.1.13Campus UMNGLICENSElicense.txtlicense.txttext/plain; charset=utf-83420http://repository.unimilitar.edu.co/bitstream/10654/41286/2/license.txta609d7e369577f685ce98c66b903b91bMD52ORIGINALGomezCorredorWilliamAndres2021.pdfGomezCorredorWilliamAndres2021.pdfTrabajo de gradoapplication/pdf4313248http://repository.unimilitar.edu.co/bitstream/10654/41286/1/GomezCorredorWilliamAndres2021.pdf1307ec3fb4c1ff2087743422f2c36beaMD5110654/41286oai:repository.unimilitar.edu.co:10654/412862022-09-02 09:25:31.561Repositorio Institucional UMNGbibliodigital@unimilitar.edu.coRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hLCB0cmFiYWpvIGRlIGdyYWRvIG8gY3VhbHF1aWVyIG90cm8gZG9jdW1lbnRvCmNvbiBjYXLDoWN0ZXIgYWNhZMOpbWljbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sIGhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2bwp5IGRlIHN1cyBhbmV4b3MgZW4gZm9ybWF0byBkaWdpdGFsIG8gZWxlY3Ryw7NuaWNvLgoKRUwgRVNUVURJQU5URSAtIEFVVE9SLCBtYW5pZmllc3RhIHF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuCmVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvcgpsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KCkVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4KY3VhbnRvIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgZW4gY3Vlc3Rpw7NuLCBFTCBFU1RVRElBTlRFIC0gQVVUT1IsCmFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7CnBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCkFkZW3DoXMsICJMQSBVTklWRVJTSURBRCBNSUxJVEFSIE5VRVZBIEdSQU5BREEgY29tbyBpbnN0aXR1Y2nDs24gcXVlIGFsbWFjZW5hLCB5CnJlY29sZWN0YSBkYXRvcyBwZXJzb25hbGVzLCBhdGVuZGllbmRvIGxvIHByZWNlcHR1YWRvIGVuIGxhIGxleSAxNTgxIGRlIDIwMTIgeSBlbApEZWNyZXRvIDEzNzcgZGUgMjAxMywgcXVlIGRlc2Fycm9sbGFuIGVsIHByaW5jaXBpbyBjb25zdGl0dWNpb25hbCBxdWUgdGllbmVuIHRvZGFzCmxhcyBwZXJzb25hcyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIgeSByZWN0aWZpY2FyIHRvZG8gdGlwbyBkZSBpbmZvcm1hY2nDs24gcmVjb2dpZGEKbywgcXVlIGhheWEgc2lkbyBvYmpldG8gZGUgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBlbiBiYW5jb3MgbyBiYXNlcyBkZQpkYXRvcyB5IGVuIGdlbmVyYWwgZW4gYXJjaGl2b3MgZGUgZW50aWRhZGVzIHDDumJsaWNhcyBvIHByaXZhZGFzLCByZXF1aWVyZSBvYnRlbmVyCnN1IGF1dG9yaXphY2nDs24sIHBhcmEgcXVlLCBkZSBtYW5lcmEgbGlicmUsIHByZXZpYSwgZXhwcmVzYSwgdm9sdW50YXJpYSwgeQpkZWJpZGFtZW50ZSBpbmZvcm1hZGEsIHBlcm1pdGEgYSB0b2RhcyBudWVzdHJhcyBkZXBlbmRlbmNpYXMgYWNhZMOpbWljYXMgeQphZG1pbmlzdHJhdGl2YXMsIHJlY29sZWN0YXIsIHJlY2F1ZGFyLCBhbG1hY2VuYXIsIHVzYXIsIGNpcmN1bGFyLCBzdXByaW1pciwgcHJvY2VzYXIsCmNvbXBpbGFyLCBpbnRlcmNhbWJpYXIsIGRhciB0cmF0YW1pZW50bywgYWN0dWFsaXphciB5IGRpc3BvbmVyIGRlIGxvcyBkYXRvcyBxdWUKaGFuIHNpZG8gc3VtaW5pc3RyYWRvcyB5IHF1ZSBzZSBoYW4gaW5jb3Jwb3JhZG8gZW4gbnVlc3RyYXMgYmFzZXMgbyBiYW5jb3MgZGUKZGF0b3MsIG8gZW4gcmVwb3NpdG9yaW9zIGVsZWN0csOzbmljb3MgZGUgdG9kbyB0aXBvIGNvbiBxdWUgY3VlbnRhIGxhIFVuaXZlcnNpZGFkLgoKRXN0YSBpbmZvcm1hY2nDs24gZXMgeSBzZXLDoSB1dGlsaXphZGEgZW4gZWwgZGVzYXJyb2xsbyBkZSBsYXMgZnVuY2lvbmVzIHByb3BpYXMgZGUKbGEgVW5pdmVyc2lkYWQgZW4gc3UgY29uZGljacOzbiBkZSBpbnN0aXR1Y2nDs24gZGUgZWR1Y2FjacOzbiBzdXBlcmlvciwgZGUgZm9ybWEKZGlyZWN0YSBvIGEgdHJhdsOpcyBkZSB0ZXJjZXJvcyIuCgpTaSBzdSBkb2N1bWVudG8gZXMgZGUgYWNjZXNvIHJlc3RyaW5naWRvICwgc3UgdHJhYmFqbyBzZSBkZXBvc2l0YXLDoSBlbiBlbApSZXBvc2l0b3JpbyBVTU5HIMO6bmljYW1lbnRlIGNvbiBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRvY3VtZW50YWwgeSBtZW1vcmlhCmluc3RpdHVjaW9uYWwsIGVudGVuZGllbmRvIHF1ZSwgc2Vyw6EgY29uc3VsdGFkbyBkZSBmb3JtYSBjb250cm9sYWRhIHNvbGFtZW50ZSBwb3IKbGEgY29tdW5pZGFkIE5lb2dyYW5hZGluYS4KClNpIHN1IGRvY3VtZW50byBlcyBkZSBhY2Nlc28gYWJpZXJ0bywgcGFyYSBwZXJtaXRpciBhbCBSZXBvc2l0b3JpbyBVTU5HIHJlcHJvZHVjaXIsCnRyYWR1Y2lyIHkgZGlzdHJpYnVpciBzdSBlbnbDrW8gYSB0cmF2w6lzIGRlbCBtdW5kbywgbmVjZXNpdGFtb3Mgc3UgY29uZm9ybWlkYWQgZW4KbG9zIHNpZ3VpZW50ZXMgdMOpcm1pbm9zOgoKWSBhdXRvcml6YSBhIGxhIFVOSVZFUlNJREFEIE1JTElUQVIgTlVFVkEgR1JBTkFEQSwgcGFyYSBxdWUgZW4gbG9zIHTDqXJtaW5vcwplc3RhYmxlY2lkb3MgZW46CgpMZXkgMjMgZGUgMTk4Mi0gTGV5IDQ0IGRlIDE5OTMgLUxleSAxOTE1IGRlIDIwMTggLSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLQpEZWNyZXRvIDQ2MCBkZSAxOTk1IHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgdXRpbGljZSB5IHVzZSBwb3IKY3VhbHF1aWVyIG1lZGlvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sCmNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlCmRvY3VtZW50by4KCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc8OzbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlCnVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byB2aXJ0dWFsLAplbGVjdHLDs25pY28sIGRpZ2l0YWwsIHkgY3V5byB1c28gc2UgZGUgZW4gcmVkLCBpbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBldGMuLAp5IGVuIGdlbmVyYWwgZW4gY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxvcyBUw6lybWlub3MgeSBjb25kaWNpb25lcywgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwKYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYSBiaWJsaW9kaWdpdGFsQHVuaW1pbGl0YXIuZWR1LmNvCgpBY2VwdGUgVMOpcm1pbm9zIHkgY29uZGljaW9uZXMgc2VsZWNjaW9uYW5kbyAiQWNlcHRvIiB5IHB1bHNhbmRvICJDb21wbGV0YXIgZW52w61vIi4K |