Simulación de sistema de tomografía por impedancia eléctrica sin contacto orientado a la detección de cáncer de próstata

Este proyecto propone la simulación de un sistema de tomografía por impedancia eléctrica (TIE) sin contacto que utiliza mediciones de propiedades eléctricas de tejidos para clasificar pacientes sanos, con hiperplasia y con cáncer de próstata, el sistema consta de varias etapas clave, incluida la sel...

Full description

Autores:
Cuervo Lara, Sebastian Sneyder
Garcia Hidalgo, Manuel Alejandro
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad Militar Nueva Granada
Repositorio:
Repositorio UMNG
Idioma:
spa
OAI Identifier:
oai:repository.umng.edu.co:10654/47157
Acceso en línea:
https://hdl.handle.net/10654/47157
Palabra clave:
TOMOGRAFIA POR IMPEDANCIA ELECTRICA - SIMULACION
CANCER DE PROSTATA - DIAGNOSTICO - METODOS NO INVASIVOS
IMAGEN MEDICA - PROCESAMIENTO DE SEÑALES
BIOMEDICINA - APLICACIONES DE LA IMPEDANCIA ELECTRICA
Sistema de tomografía por impedancia eléctrica
Clasificación de cáncer de próstata
Machine learning
Seguridad del diagnóstico
Validación y selección de modelos
Electrical impedance tomography system
Prostate cancer classification
Machine learning
Diagnosis safety
Model validation and selection
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIMILTAR2_965d8ab36f5aaa7e728efb75d6a4dc29
oai_identifier_str oai:repository.umng.edu.co:10654/47157
network_acronym_str UNIMILTAR2
network_name_str Repositorio UMNG
repository_id_str
dc.title.spa.fl_str_mv Simulación de sistema de tomografía por impedancia eléctrica sin contacto orientado a la detección de cáncer de próstata
dc.title.eng.fl_str_mv Simulation of a non-contact electrical impedance tomography system for prostate cancer detection
title Simulación de sistema de tomografía por impedancia eléctrica sin contacto orientado a la detección de cáncer de próstata
spellingShingle Simulación de sistema de tomografía por impedancia eléctrica sin contacto orientado a la detección de cáncer de próstata
TOMOGRAFIA POR IMPEDANCIA ELECTRICA - SIMULACION
CANCER DE PROSTATA - DIAGNOSTICO - METODOS NO INVASIVOS
IMAGEN MEDICA - PROCESAMIENTO DE SEÑALES
BIOMEDICINA - APLICACIONES DE LA IMPEDANCIA ELECTRICA
Sistema de tomografía por impedancia eléctrica
Clasificación de cáncer de próstata
Machine learning
Seguridad del diagnóstico
Validación y selección de modelos
Electrical impedance tomography system
Prostate cancer classification
Machine learning
Diagnosis safety
Model validation and selection
title_short Simulación de sistema de tomografía por impedancia eléctrica sin contacto orientado a la detección de cáncer de próstata
title_full Simulación de sistema de tomografía por impedancia eléctrica sin contacto orientado a la detección de cáncer de próstata
title_fullStr Simulación de sistema de tomografía por impedancia eléctrica sin contacto orientado a la detección de cáncer de próstata
title_full_unstemmed Simulación de sistema de tomografía por impedancia eléctrica sin contacto orientado a la detección de cáncer de próstata
title_sort Simulación de sistema de tomografía por impedancia eléctrica sin contacto orientado a la detección de cáncer de próstata
dc.creator.fl_str_mv Cuervo Lara, Sebastian Sneyder
Garcia Hidalgo, Manuel Alejandro
dc.contributor.advisor.none.fl_str_mv Gómez Portilla, Jhon Andrés
dc.contributor.author.none.fl_str_mv Cuervo Lara, Sebastian Sneyder
Garcia Hidalgo, Manuel Alejandro
dc.contributor.other.none.fl_str_mv Moreno Ortiz, Juan Pablo
dc.subject.lemb.spa.fl_str_mv TOMOGRAFIA POR IMPEDANCIA ELECTRICA - SIMULACION
CANCER DE PROSTATA - DIAGNOSTICO - METODOS NO INVASIVOS
IMAGEN MEDICA - PROCESAMIENTO DE SEÑALES
BIOMEDICINA - APLICACIONES DE LA IMPEDANCIA ELECTRICA
topic TOMOGRAFIA POR IMPEDANCIA ELECTRICA - SIMULACION
CANCER DE PROSTATA - DIAGNOSTICO - METODOS NO INVASIVOS
IMAGEN MEDICA - PROCESAMIENTO DE SEÑALES
BIOMEDICINA - APLICACIONES DE LA IMPEDANCIA ELECTRICA
Sistema de tomografía por impedancia eléctrica
Clasificación de cáncer de próstata
Machine learning
Seguridad del diagnóstico
Validación y selección de modelos
Electrical impedance tomography system
Prostate cancer classification
Machine learning
Diagnosis safety
Model validation and selection
dc.subject.proposal.spa.fl_str_mv Sistema de tomografía por impedancia eléctrica
Clasificación de cáncer de próstata
Machine learning
Seguridad del diagnóstico
Validación y selección de modelos
dc.subject.proposal.eng.fl_str_mv Electrical impedance tomography system
Prostate cancer classification
Machine learning
Diagnosis safety
Model validation and selection
description Este proyecto propone la simulación de un sistema de tomografía por impedancia eléctrica (TIE) sin contacto que utiliza mediciones de propiedades eléctricas de tejidos para clasificar pacientes sanos, con hiperplasia y con cáncer de próstata, el sistema consta de varias etapas clave, incluida la selección de características anatómicas y bioeléctricas, diseño del sistema EIT, análisis exploratorio de datos e implementación de modelos de machine learning. El enfoque de machine learning da como resultados porcentajes de precisión del 85% para arboles de decisión, random forest y k-vecinos cercanos, considerando el sesgo para evitar el overfitting, asimismo se obtienen porcentajes altos para las demás métricas de calidad y un adecuado uso de la muestra demostrado por la validación cruzada.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-12-13
dc.date.accessioned.none.fl_str_mv 2025-04-01T14:13:13Z
dc.date.available.none.fl_str_mv 2025-04-01T14:13:13Z
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10654/47157
dc.identifier.instname.spa.fl_str_mv instname:Universidad Militar Nueva Granada
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.umng.edu.co
url https://hdl.handle.net/10654/47157
identifier_str_mv instname:Universidad Militar Nueva Granada
reponame:Repositorio Institucional Universidad Militar Nueva Granada
repourl:https://repository.umng.edu.co
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv American Cancer Society. (n.d.). ¿Qué es el cáncer de próstata? [What is prostate cancer?]. American Cancer Society | Information and Resources about for Cancer: Breast, Colon, Lung, Prostate, Skin. URL: https://www.cancer.org/es/cancer/cancer-de prostata/acerca/que-es-cancer-de prostata.html#:~:text=Casi%20todos%20los%20c%C3%A1nceres%20de,Carcino mas%20de%20c%C3%A9lulas%20peque%C3%B1as
American Society of Clinical Oncology. (2021). Guía de Cáncer de Próstata [Prostate Cancer Guide]. Revista Oncológica Estadounidense, 4(5), 1–32. URL: www.cancer.net
Ferrís-i-Tortajada, J., Berbel-Tornero, O., Garcia-i-Castell, J., López-Andreu, J., Sobrino Najul, E., Ortega-Garcia, J. (2011). Factores de riesgo ambientales no dietéticos en el cáncer de próstata [Non-dietary environmental risk factors in prostate cancer]. Actas Urologicas de España, 35(5), 289-295.
Devita, V., Lawrence, T., Rosenberg, S. (2015). Devita, Hellman and Rosenberg´s Cancer Principles & Practice of Oncology (10th ed.). Wolters Kluwer Health.
A. A. and Casciato, D. (2013). Manual de Oncología Clínica - 7º Ed. [Clinical Oncology Manual - 7th Ed.]. WOLTERS KLUWER.
Cui, T., Kovell, R. C., Terlecki, R. P. (2016). Is it time to abandon the digital rectal examination? Lessons from the PLCO Cancer Screening Trial and peer-reviewed literature. Urology, 32(10), 1663–1669. doi: 10.1080/03007995.2016.1198312
Lomas, D. J., & Ahmed, H. U. (2020). All change in the prostate cancer diagnostic pathway. Nature Reviews Clinical Oncology, 17(6), 372–381. doi: 10.1038/s41571-020-0332-z
Lee, B. R., et al. (1999). Bioimpedance: Novel use of a minimally invasive technique for cancer localization in the intact prostate. Prostate, 39(3), 213–218. doi: 10.1002/(SICI)1097- 0045(19990515)39:3<213::AID-PROS10>3.0.CO;2-8
Moncada, M. E. (2010). Dialnet-MedicionDeImpedanciaElectricaEnTejidoBiologicoRevi 5062987. Rev. Tecno Lógicas, 25(25), 51–76
Pathiraja, A. A., Weerakkody, R. A., Von Roon, A. C., Ziprin, P., Bayford, R. (2020). The clinical application of electrical impedance technology in the detection of malignant neoplasms: a systematic review. Journal of Translational Medicine, 18(1). doi: 10.1186/s12967-020-02395-9
Wan, Y., et al. (2012). Combined ultrasound and transrectal electrical impedance imaging of the prostate. In 2012 38th Annual Northeast Bioengineering Conference (NEBEC) (pp. 181–182). doi: 10.1109/NEBC.2012.6207023
Yang, Y. (2017). An Advanced Digital Electrical Impedance Tomography System for Biomedical Imaging. The University of Edinburgh
Duongthipthewa, O., Uliss, P., Pattarasritanawong, P., Sukaimod, P., Ouypornkochagorn, T. (2020). Analysis of Current Patterns to Determine the Bladder Volume by Electrical Impedance Tomography (EIT). ACM International Conference Proceedings, 122–127. doi: 10.1145/3397391.3397433
Luo, Y., et al. (2018). Non-invasive electrical impedance tomography for multi-scale detection of liver fat content. Theranostics, 8(6), 1636–1647. doi: 10.7150/thno.22233
Zifan, A., Liatsis, P., Almarzouqi, H. (2019). Realistic forward and inverse model mesh generation for rapid three-dimensional thoracic electrical impedance imaging. Computational Biology and Medicine, 107, 97–108. doi: 10.1016/j.compbiomed.2019.02.007
Chitturi, V., Farrukh, N. (2017). Spatial resolution in electrical impedance tomography: A topical review. Journal of Electrical Bioimpedance, 8(1), 66–78. doi: 10.5617/jeb.3350
Adler, A., & Boyle, A. (2017). Electrical impedance tomography: Tissue properties to image measures. IEEE Transactions on Biomedical Engineering, 64(11), 2494–2504. doi: 10.1109/TBME.2017.2728323
Mosquera, V., Gonzalez, C. M., & Ortega, E. I. (2019). EIDORS-Matlab interface for forward problem solving of electrical impedance tomography. URL: https://www.researchgate.net/publication/336725029_EIDORS Matlab_interface_for_forward_problem_solving_of_electrical_impedance_tomogra phy
Syed, H., Borsic, A., Hartov, A., & Halter, R. J. (2012). Anatomically accurate hard priors for transrectal electrical impedance tomography (TREIT) of the prostate. Physiological Measurement, 33(5), 719–738. doi: 10.1088/0967-3334/33/5/719
Borsic, A., Halter, R., Wan, Y., Hartov, A., & Paulsen, K. D. (2010). Electrical impedance tomography reconstruction for three-dimensional imaging of the prostate. Physiological Measurement, 31(8), S1–S16. doi: 10.1088/0967-3334/31/8/S01
Rosa, B. M. G. G., & Yang, G. Z. (2020). Bladder Volume Monitoring Using Electrical Impedance Tomography with Simultaneous Multi-Tone Tissue Stimulation and DFT-Based Impedance Calculation Inside an FPGA. IEEE Transactions on Biomedical Circuits and Systems, 14(4), 775–786. doi: 10.1109/TBCAS.2020.3008831
Sharma, S. K., Konki, S. K., Khambampati, A. K., & Kim, K. Y. (2020). Bladder Boundary Estimation by Gravitational Search Algorithm Using Electrical Impedance Tomography. IEEE Transactions on Instrumentation and Measurement, 69(12), 9657–9667. doi: 10.1109/TIM.2020.3006326
Satapathy, S., Singh, H., Kumar, R., & Mittal, B. R. (2021). Diagnostic Accuracy of 68Ga PSMA PET/CT for Initial Detection in Patients With Suspected Prostate Cancer: A Systematic Review and Meta-Analysis. American Journal of Roentgenology, 216(3), 599– 607. doi: 10.2214/AJR.20.23912
International Agency for Research on Cancer. (2021). Cancer Today. GLOBOCAN 2020. URL: https://gco.iarc.fr/today/online-analysis-multi bars?v=2020&mode=cancer&mode_population=countries&population=900&popul ations=170&key=cum_risk&sex=1&cancer=39&type=0&statistic=5&prevalence=0&population_group=2&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_ite m
Ministerio de Salud y Proyección Social. (n.d.). Perfil de incidencia del cáncer en Colombia. URL: https://www.sispro.gov.co/observatorios/oncancer/indicadores/Paginas/Cáncer-de próstata.aspx#:~:text=Incidencia,afectados%20por%20100.000%20habita
Cancer.Net. (n.d.). Cáncer de próstata: Estadísticas. URL: https://www.cancer.net/es/tipos-de-cancer/cancer-prostate/estadísticas
Prcic, A., Begic, E., & Hiros, M. (2016). Usefulness of Total PSA Value in Prostate Diseases Diagnosis. Acta Informatica Medica, 24(3), 156. doi: 10.5455/AIM.2016.24.156-161
World Health Organization. (n.d.). Enfermedades no transmisibles. URL: https://www.who.int/es/news-room/fact-sheets/detail/noncommunicable-diseases
Ministerio de Salud y Protección Social. (n.d.). Prevención de enfermedades no transmisibles. URL: https://www.minsalud.gov.co/salud/publica/PENT/Paginas/Enfermedades-no transmisibles.aspx
Cuenta de Alto Costo. (2021). Una mirada al cáncer de próstata en Colombia. URL: https://cuentadealtocosto.org/cancer/una-mirada-al-cancer-de-prostata-en colombia
Halter, R. J., & Kim, Y. J. (2014). Toward microendoscopic electrical impedance tomography for intraoperative surgical margin assessment. IEEE Transactions on Biomedical Engineering, 61(11), 2779–2786. doi: 10.1109/TBME.2014.2329461
Mishra, V., Schned, A. R., Hartov, A., Heaney, J. A., Seigne, J., & Halter, R. J. (2013). Electrical property sensing biopsy needle for prostate cancer detection. Prostate, 73(15), 1603–1613. doi: 10.1002/pros.22695
Halter, R. J., Schned, A., Heaney, J., Hartov, A., Schutz, S., & Paulsen, K. D. (2008). Electrical Impedance Spectroscopy of Benign and Malignant Prostatic Tissues. The Journal of Urology, 179(4), 1580–1586. doi: 10.1016/j.juro.2007.11.043
Hall, J., & Guyton, A. (2016). Guyton y Hall: Tratado de fisiología médica (12th ed.). Elsevier.
Tortora, G. J. (1993). Principios de anatomía y fisiología (6th ed.). Oxford University Press Mexico S.A. de C.V.
Riera, J., Riu, P. J., Casan, P., & Masclans, J. R. (2011). Tomografía de impedancia eléctrica en la lesión pulmonar aguda. Medicina Intensiva, 35(8), 509–517. doi: 10.1016/j.medin.2011.05.005
Jaspreet, Singh., Gurpreet, Singh., Navneet, Kaur. (2022). Exploratory Data Analysis for Interpreting Model Prediction using Python. doi: 10.1109/SMARTGENCON56628.2022.1008353
Maria, Teresa, Cuomo., Debora, Tortora., Ivan, Colosimo., Lorenzo, Ricciardi, Celsi., Cinzia, Genovino., Giuseppe, Festa., M., La, Rocca. (2023). Segmenting with big data analytics and Python: A quantitative exploratory analysis of household savings. Technological Forecasting and Social Change, doi: 10.1016/j.techfore.2023.122431
David, C., Hoaglin. (2014). Exploratory Data Analysis. doi: 10.1002/9781118445112.STAT00419
David, C., Hoaglin. (2005). Exploratory Data Analysis. doi: 10.1002/0470011815.B2A15040
Sandy, Dall'Erba. (2008). Exploratory Spatial Data Analysis. doi: 10.1016/B978- 008044910-4.00433-8
Sam, Lau. (2023). Teaching Data Science by Visualizing Data Table Transformations: Pandas Tutor for Python, Tidy Data Tutor for R, and SQL Tutor. doi: 10.1145/3596673.3596972
Hannah, Stepanek. (2019). Basic Data Transformation in pandas. doi: 10.1007/978-1- 4842-5839-2_5
hushan, Pal, Singh., Mudra, Sahu., Sundararajarao, Sudarshan. (2021). Optimizing Data Science Applications using Static Analysis. doi: 10.1145/3475726.3475729
Luís, Miguel, Matos., João, Rolando, Azevedo., Arthur, Matta., André, Luiz, Pilastri., Paulo, Cortez., Rui, Mendes. (2022). Categorical Attribute traNsformation Environment (CANE): A python module for categorical to numeric data preprocessing. Software impacts, doi: 10.1016/j.simpa.2022.100359
Fauzi, Fauzi., Agus, Suryana., Albertus, Dwiyoga, Widiantoro. (2023). Data Visualization Of House Of Worship Distribution In The IKN Nusantara Region Using Python. Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), doi: 10.24843/jim.2023.v11.i01.p01
urpreet, Singh., Jaspreet, Singh., Jagdeep, Kaur. (2023). Data Visualization for Developing Effective Performance Dashboard with Power BI. doi: 10.1109/ICIDCA56705.2023.10100169
Feng, Li. (2022). Research on Data Visualization Technology Based on Python. International journal of multidisciplinary research and analysis, doi: 10.47191/ijmra/v5-i5-03
Zarinabegam, K., Mundargi., Krisha, Patel., Aayushi, Patel., Sudhanshu, Pathrabe., Shreyas, D., Patil. (2023). Plotplay: An Automated Data Visualization Website using Python and Plotly. doi: 10.1109/ICONAT57137.2023.10079977
Michael, Waskom., Olga, Botvinnik., Maoz, Gelbart., Joel, Ostblom., Paul, Hobson., Saulius, Lukauskas., David, C, Gemperline., Tom, Augspurger., Yaroslav, O., Halchenko., Jordi, Warmenhoven., John, B., Cole., Julian, de, Ruiter., Jake, Vanderplas., Stephan, Hoyer., Cameron, Pye., Alistair, Miles., Corban, Swain., Kyle, Meyer., Marcel, Martin., Bachant,, Pete, Quintero,, Eric., Gero, Kunter., Santi, Villalba., Brian., Clark, Fitzgerald., Constantine, Evans., Mike, Lee, Williams., Drew, O'Kane., Tal, Yarkoni., Thomas, Brunner. (2020). seaborn: Statistical data visualization.
Luis, Fábregues, de, los, Santos., Luís, António, Garcez, Duarte, da, Costa, Ferreira. (2023). Atlantic—Automated data preprocessing framework for supervised machine learning. Software impacts, doi: 10.1016/j.simpa.2023.100532
Harshita, Barapatre., Jatin, Jangir., Sudhanshu, Bajpai., Bhavesh, Chawla., Gunjan, Keswani. (2023). Analytics of Epidemiological Data using Machine Learning Models. International journal of next-generation computing, doi: 10.47164/ijngc.v14i1.1014
Alberto, Amato., Vincenzo, Di, Lecce. (2022). Data preprocessing impact on machine learning algorithm performance. Open Computer Science, doi: 10.1515/comp-2022-0278
Nishtha, Shrivastava., Debalina, Ghosh., Prasanna, Kumar, Sahu. (2023). Bone Health Classification using Machine Learning. doi: 10.1109/ICMOCE57812.2023.10166486
Prayla, S, Shyry., Ramya, G., Franklin. (2023). Efficient Fetal Health Monitoring and Classification with Machine Learning. doi: 10.1109/ICICCS56967.2023.10142312
Juliessa, M, Pavon., Laura, A., Previll., Myung, Yi, Woo., Ricardo, Henao., Mary, J, Solomon., Ursula, A., Rogers., Andrew, Olson., Christopher, Leo., Gerda, G., Fillenbaum., Helen, Hoenig., David, Casarett. (2023). Machine learning functional impairment classification with electronic health record data.. Journal of the American Geriatrics Society, doi: 10.1111/jgs.18383
Paolo, Giudici., Alexander, Gramegna., Emanuela, Raffinetti. (2023). Machine Learning Classification Model Comparison. Socio-economic Planning Sciences, doi: 10.1016/j.seps.2023.101560
Sandro, Sperandei. (2014). Understanding logistic regression analysis. Biochemia Medica, doi: 10.11613/BM.2014.003
Jill, Stoltzfus. (2011). Logistic Regression: A Brief Primer. Academic Emergency Medicine, doi: 10.1111/J.1553-2712.2011.01185.X
Evangelia, Christodoulou., Jie, Ma., Gary, S., Collins., Ewout, W., Steyerberg., Jan, Y, Verbakel., Ben, Van, Calster., Ben, Van, Calster. (2019). A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. Journal of Clinical Epidemiology, doi: 10.1016/J.JCLINEPI.2019.02.004
Priya, Ranganathan., C, S, Pramesh., Rakesh, Aggarwal. (2017). Common pitfalls in statistical analysis: Logistic regression.. Perspectives in Clinical Research, doi: 10.4103/PICR.PICR_87_17
Maher, Maalouf. (2011). Logistic regression in data analysis: an overview. International Journal of Data Analysis Techniques and Strategies, doi: 10.1504/IJDATS.2011.041335
Sanjay, Dubey., K., Sai, Prasanna., M., C., Chinnaiah. (2022). Logistic Regression Analysis for the Classification of Human Pulse Data. ECS transactions, doi: 10.1149/10701.19739ecst
praveen, kunar, vadrangi. (2021). Logistic Regression analysis for the classification of Human pulse data.
Michael, A., Zeller., Zebulun, Arendsee., Gavin, J., D., Smith., Tavis, K., Anderson. (2022). classLog: Logistic regression for the classification of genetic sequences. bioRxiv, doi: 10.1101/2022.08.15.503907.
Wenjing, Pian., Christopher, S., G., Khoo., Jianxing, Chi. (2017). Automatic Classification of Users’ Health Information Need Context: Logistic Regression Analysis of Mouse-Click and Eye-Tracker Data. Journal of Medical Internet Research, doi: 10.2196/JMIR.8354
Zhongheng, Zhang. (2016). Introduction to machine learning: k-nearest neighbors. Annals of Translational Medicine, doi: 10.21037/ATM.2016.03.37
Nicolas, Papernot., Patrick, McDaniel. (2018). Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning. arXiv: Learning,
Pinlong, Cai., Yunpeng, Wang., Guangquan, Lu., Peng, Chen., Chuan, Ding., Jianping, Sun. (2015). A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting. Transportation Research Part C-emerging Technologies, doi: 10.1016/J.TRC.2015.11.002
Jianping, Gou., Hongxing, Ma., Weihua, Ou., Shaoning, Zeng., Yunbo, Rao., Hebiao, Yang. (2018). A generalized mean distance-based k-nearest neighbor classifier. Expert Systems With Applications, doi: 10.1016/J.ESWA.2018.08.021
Shahnawaz, Qureshi., Seppo, Karrila., Sirirut, Vanichayobon. (2018). Human Sleep Scoring Based on K-Nearest Neighbors. Turkish Journal of Electrical Engineering and Computer Sciences, doi: 10.3906/ELK-1805-12
Shahab, Tayeb., Matin, Pirouz., Johann, Sun., Kaylee, Hall., Andrew, Y., Chang., Jessica, Li., Connor, Song., Apoorva, Chauhan., Michael, Ferra., Theresa, Sager., Justin, Zhan., Shahram, Latifi. (2017). Toward predicting medical conditions using k-nearest neighbors. doi: 10.1109/BIGDATA.2017.8258395
Gideon, Koech., Jean, Vincent, Fonou-Dombeu. (2021). K-Nearest Neighbors Classification of Semantic Web Ontologies. doi: 10.1007/978-3-030-78428-7_19
Reza, Fathi., Anisur, Rahaman, Molla., Gopal, Pandurangan. (2020). Efficient Distributed Algorithms for the $K$-Nearest Neighbors Problem. arXiv: Distributed, Parallel, and Cluster Computing,
Reza, Fathi., Anisur, Rahaman, Molla., Gopal, Pandurangan. (2020). Efficient Distributed Algorithms for the K-Nearest Neighbors Problem. doi: 10.1145/3350755.3400268
Shan, Suthaharan. (2015). Support Vector Machine. doi: 10.1007/978-1-4899-7641-3_9
Shujun, Huang., Nianguang, Cai., Pedro, Penzuti, Pacheco., Shavira, Narrandes., Yang, Wang., Wayne, Xu. (2017). Applications of Support Vector Machine (SVM) Learning in Cancer Genomics.. Cancer Genomics & Proteomics, doi: 10.21873/CGP.20063
Nick, Guenther., Matthias, Schonlau. (2016). Support vector machines. Stata Journal, doi: 10.1177/1536867X1601600407
Mathias, M., Adankon., Mohamed, Cheriet. (2008). Support Vector Machine.
Keiji, Tatsumi., Tetsuzo, Tanino. (2014). Support vector machines maximizing geometric margins for multi-class classification. Top, doi: 10.1007/S11750-014-0338-8
Noppadol, Maneerat., Kuniaki, Yajima., Ruttikorn, Varakulsiripunth., Kazuko, Hamamoto. (2023). Brain Tumor Classification using Supervised Support Vector Machine. doi: 10.1109/ICEAST58324.2023.10156975
Su, Caiyu., Dong, Jie., Mo, Yi., Wu, Shanyun. (2022). A Classification Application Based on Support Vector Machine for Health IoT. doi: 10.1109/PHM2022-London52454.2022.00064
Nurul, Huda, Ovirianti., Muhammad, Zarlis., Herman, Mawengkang. (2022). Support Vector Machine Using A Classification Algorithm. Sinkron : jurnal dan penelitian teknik informatika, doi: 10.33395/sinkron.v7i3.11597
Suciana, Ghadati, Rabiha., Antoni, Wibowo., Lukas., Yaya, Heryadi. (2021). Diabetes Classification Using Support Vector Machine : Binary Classification Model. doi: 10.1109/ICOIACT53268.2021.9563994
Leo, Breiman. (2001). Random Forests. doi: 10.1023/A:1010933404324
Tin, Kam, Ho. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, doi: 10.1109/34.709601
Mariana, Belgiu., Lucian, Drăguţ. (2016). Random forest in remote sensing: A review of applications and future directions. Isprs Journal of Photogrammetry and Remote Sensing, doi: 10.1016/J.ISPRSJPRS.2016.01.011
Tin, Kam, Ho. (1995). Random decision forests. doi: 10.1109/ICDAR.1995.598994
Boris, Galitsky. (2021). Obtaining supported decision trees from text for health system applications. doi: 10.1016/b978-0-12-824521-7.00013-2
Tshepo, Chris, Nokeri. (2020). Classification Using Decision Trees. doi: 10.1007/978-1- 4842-6870-4_8
Hrituraj, Singh., N.V., Navaneeth., G., N., Pillai. (2019). Multisurface Proximal SVM Based Decision Trees For Heart Disease Classification. doi: 10.1109/TENCON.2019.8929618
Syed, Ahsin, Ali, Shah., Wajid, Aziz., Muhammad, Arif., Malik, Sajjad, Ahmed, Nadeem. (2015). Decision Trees Based Classification of Cardiotocograms Using Bagging Approach. doi: 10.1109/FIT.2015.14
Ryan, G., McClarren. (2020). Decision Trees and Random Forests for Regression and Classification. doi: 10.1007/978-3-030-70388-2_3
Gérard, Biau., Gérard, Biau., Erwan, Scornet. (2016). A random forest guided tour. Test, doi: 10.1007/S11749-016-0481-7
Alexander, Statnikov., Lily, Wang., Constantin, F., Aliferis. (2008). A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics, doi: 10.1186/1471-2105-9-319
Mohammed, Khalilia., Sounak, Chakraborty., Mihail, Popescu. (2011). Predicting disease risks from highly imbalanced data using random forest. BMC Medical Informatics and Decision Making, doi: 10.1186/1472-6947-11-51
Gérard, Biau., Gérard, Biau., Erwan, Scornet. (2015). A Random Forest Guided Tour. arXiv: Statistics Theory,
LatifahLatifah, Alamer. (2023). Intelligent Health Risk and Disease Prediction Using Optimized Naive Bayes Classifier. Journal of Internet Services and Information Security, doi: 10.58346/jisis.2023.i1.001
NishaNisha, Soms., Soundarya, Hariharan., K., Jeeva., C., Karthick. (2022). Naive bayes machine learning framework for auto detection of spam mails. International Journal of Health Sciences (IJHS), doi: 10.53730/ijhs.v6ns3.7742
ChandrasekharChandrasekhar, Rao, Jetti., Rehamatulla, Shaik., Sadhik, Shaik. (2021). Disease Prediction using Naïve Bayes - Machine Learning Algorithm. doi: 10.52403/IJSHR.20211004
Sangwoo, Seo., Seungjun, Jung., Changick, Kim. (2022). Explanation-based Graph Neural Networks for Graph Classification. doi: 10.1109/ICPR56361.2022.9956478
Atefeh, Shahroudnejad. (2021). A Survey on Understanding, Visualizations, and Explanation of Deep Neural Networks. arXiv: Learning
Andre, Esteva., Brett, Kuprel., Roberto, A., Novoa., Justin, M., Ko., Susan, M., Swetter., Susan, M., Swetter., Helen, M., Blau., Sebastian, Thrun. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, doi: 10.1038/NATURE21056
Javed, Khan., Jun, S., Wei., Markus, Ringnér., Markus, Ringnér., Lao, H., Saal., Marc, Ladanyi., Frank, Westermann., Frank, Berthold., Manfred, Schwab., Cristina, R., Antonescu., Carsten, Peterson., Paul, S., Meltzer. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, doi: 10.1038/89044
Stephan, Dreiseitl., Lucila, Ohno-Machado. (2002). Logistic regression and artificial neural network classification models: a methodology review. Journal of Biomedical Informatics, doi: 10.1016/S1532-0464(03)00034-0
Awni, Hannun., Pranav, Rajpurkar., Masoumeh, Haghpanahi., Geoffrey, H., Tison., Codie, Bourn., Mintu, P., Turakhia., Mintu, P., Turakhia., Andrew, Y., Ng. (2019). Cardiologist-Level Arrhythmia Detection and Classification in Ambulatory Electrocardiograms Using a Deep Neural Network. Nature Medicine, doi: 10.1038/S41591-018-0268-3
Paulo, J., G., Lisboa. (2001). A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Networks, doi: 10.1016/S0893-6080(01)00111-3
Vincent, Lefort., Jean-Emmanuel, Longueville., Olivier, Gascuel., Olivier, Gascuel. (2017). SMS: Smart Model Selection in PhyML.. Molecular Biology and Evolution, doi: 10.1093/MOLBEV/MSX149
Nicolo, Fusi., Rishit, Sheth., Melih, Elibol. (2018). Probabilistic Matrix Factorization for Automated Machine Learning.
Benjamin, Bengfort., Rebecca, Bilbro. (2019). Yellowbrick: Visualizing the Scikit-Learn Model Selection Process. The Journal of Open Source Software, doi: 10.21105/JOSS.01075
Matthias, Varewyck., Jean-Pierre, Martens. (2011). A Practical Approach to Model Selection for Support Vector Machines With a Gaussian Kernel. doi: 10.1109/TSMCB.2010.2053026
Eija, Ferreira. (2014). Model selection in time series machine learning applications
Thomas, G., Dietterich. (1996). Machine learning. ACM Computing Surveys, doi: 10.1145/242224.242229
Ethem, Alpaydin. (2004). Introduction to Machine Learning.
Liang, Sun., Ningyun, Lu., Xianfeng, Meng. (2022). Equipment Health State Assessment Based on MIC-XGBoost. doi: 10.23919/ascc56756.2022.9828276
J., Bai., Yan, Xian. (2022). Health state prediction of lithium-ion batteries based on XGBoost algorithm. Journal of physics, doi: 10.1088/1742-6596/2384/1/012056
Yuting, Li., Yang, Yang., Yu, Peng., Ying, Yao., Yong, Yan. (2021). A Remote Health Diagnosis Method Based on Full Voting XGBoost Algorithm. doi: 10.1007/978-981-16- 6554-7_69
Wei, Dong., Yimiao, Huang., Barry, Lehane., Guowei, Ma., Guowei, Ma. (2020). XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring. Automation in Construction, doi: 10.1016/J.AUTCON.2020.103155
Jiang, Liu., Baigen, Cai., Zhong-bin, Guo., Xiao-lin, Zhao. (2020). Constructing Knowledge Graph for Prognostics and Health Management of On-board Train Control System Based on Big Data and XGBoost. doi: 10.1007/978-3-030-72802-1_1
Soreen, Ameen, Fattah., Hussein, Attya, Lafta., Sura, Z., AL-Rashid. (2020). B-pred: an intelligent and adaptable medical diagnosis system based on bagging machine learning. International Journal of Scientific & Technology Research,
Jerzy, Stefanowski. (2002). Bagging and Induction of Decision Rules. doi: 10.1007/978-3- 7908-1777-5_12
Liuhuan, Dong., Yuan, Yuan., Yu-Dong, Cai. (2006). Using Bagging classifier to predict protein domain structural class.. Journal of Biomolecular Structure & Dynamics,
Rachel, Eardley., Emma, L., Tonkin., Ewan, Soubutts., Amid, Ayobi., Gregory, J., L., Tourte., Rachael, Gooberman-Hill., Ian, J, Craddock., Aisling, Ann, O'Kane. (2023). Explanation before Adoption: Supporting Informed Consent for Complex Machine Learning and IoT Health Platforms. Proceedings of the ACM on human-computer interaction, doi: 10.1145/3579482
D, Carvalho., R, Cruz. (2020). Big data and machine learning in health. European Journal of Public Health, doi: 10.1093/EURPUB/CKAA040.030
Manuel, Filipe, Santos., Wesley, Mathew., T., Kovacs., Henrique, Santos. (2009). A grid data mining architecture for learning classifier systems. WSEAS Transactions on Computers archive,
Jing-bo, Zhou., Dongyang, Tang., Josh, Haipeng, Lei., Heng, Sun., Xiaoling, Xu., Chu-Xia, Deng. (2023). Machine learning model for anti-cancer drug combinations: Analysis, prediction, and validation.. Pharmacological research, doi: 10.1016/j.phrs.2023.106830
Gleb, Danilov., Konstantin, Kotik., Michael, A., Shifrin., Yu, V, Strunina., Tatiana, Pronkina., Tatiana, V., Tsukanova., Vladimir, Nepomnyashiy., Nikolay, Konovalov., Alexander, Potapov. (2023). Data Quality Estimation Via Model Performance: Machine Learning as a Validation Tool. doi: 10.3233/SHTI230508
Agus, Sudjianto., Aijun, Zhang., Zebin, Yang., Yu, Su., Ningzhou, Zeng. (2023). PiML Toolbox for Interpretable Machine Learning Model Development and Validation. arXiv.org, doi: 10.48550/arXiv.2305.04214
Fangfang, Xia., Jonathan, E., Allen., Prasanna, Balaprakash., Thomas, Brettin., Cristina, Garcia-Cardona., Austin, Clyde., Austin, Clyde., Judith, D., Cohn., James, H., Doroshow., Xiaotian, Duan., Veronika, Dubinkina., Yvonne, A., Evrard., Ya, Ju, Fan., Jason, D., Gans., Stewart, He., Pinyi, Lu., Sergei, Maslov., Alexander, Partin., Maulik, Shukla., Eric, Stahlberg., Justin, M., Wozniak., Hyunseung, Yoo., George, Zaki., Yitan, Zhu., Rick, Stevens., Rick, Stevens. (2021). A cross-study analysis of drug response prediction in cancer cell lines.. Briefings in Bioinformatics, doi: 10.1093/BIB/BBAB356
Ilias, Tougui., Abdelilah, Jilbab., Jamal, El, Mhamdi. (2021). Impact of the Choice of Cross Validation Techniques on the Results of Machine Learning-Based Diagnostic Applications.. Healthcare Informatics Research, doi: 10.4258/HIR.2021.27.3.189
Viktor, Granholm., William, Stafford, Noble., Lukas, Käll. (2012). A cross-validation scheme for machine learning algorithms in shotgun proteomics. BMC Bioinformatics, doi: 10.1186/1471-2105-13-S16-S3
Frederick, V., Weber. (2012). Discriminative language model training using a confusion matrix.
Emmanuelle, Beauxis-Aussalet., Lynda, Hardman. (2014). Visualization of Confusion Matrix for Non-Expert Users (Poster).
Emmanuelle, Beauxis-Aussalet., Lynda, Hardman. (2014). Simplifying the Visualization of Confusion Matrix.
Sepand, Haghighi., Masoomeh, Jasemi., Shaahin, Hessabi., Alireza, Zolanvari. (2018). PyCM: Multiclass confusion matrix library in Python. The Journal of Open Source Software, doi: 10.21105/JOSS.00729
Paulo, R., Cavalin., Luiz, S., Oliveira. (2018). Confusion Matrix-Based Building of Hierarchical Classification. doi: 10.1007/978-3-030-13469-3_32
Yunsheng, Liu., Xingfeng, He., Yifei, Mo. (2023). Discrepancies and the Error Evaluation Metrics for Machine Learning Interatomic Potentials.
Cemil, Colak., Esra, Gültürk. (2023). Evaluation of Performance Metrics in Heart Disease by Machine Learning Techniques. The journal of cognitive systems, doi: 10.52876/jcs.1276688
Kacper, Sokol., Peter, A., Flach. (2020). One Explanation Does Not Fit All: The Promise of Interactive Explanations for Machine Learning Transparency. arXiv: Learning, doi: 10.1007/S13218-020-00637-Y
Kacper, Sokol., Peter, A., Flach. (2020). One Explanation Does Not Fit All: The Promise of Interactive Explanations for Machine Learning Transparency. Künstliche Intelligenz, doi: 10.1007/S13218-020-00637-Y
Dustin, Arendt., Zhuanyi, Huang. (2020). Machine Learning Model Explanation Apparatus and Methods.
Oana, Cocarascu., Antonio, Rago., Francesca, Toni. (2020). Explanation via Machine Arguing. doi: 10.1007/978-3-030-60067-9_3
Adams, L. C., Makowski, M. R., Engel, G., Rattunde, M., Busch, F., Asbach, P., Niehues, S. M., Vinayahalingam, S., van Ginneken, B., Litjens, G., & Bressem, K. K. (2022). Prostate158 - An expert-annotated 3T MRI dataset and algorithm for prostate cancer detection. Computers in biology and medicine, 148, 105817. https://doi.org/10.1016/j.compbiomed.2022.105817
García Novas, R., Sanz Mayayo, E., Arias Fúnez, F., Rodríguez-Patrón, R., & Mayayo Dehesa, T. (2006). Diagnóstico y seguimiento de la hipertrofia prostática benigna mediante ecografía. Archivos Espanoles de Urologia, 59(4), 353–360. https://doi.org/10.4321/s0004- 06142006000400005
Halter, R. J., Schned, A., Heaney, J., Hartov, A., Schutz, S., & Paulsen, K. D. (2008). Electrical Impedance Spectroscopy of Benign and Malignant Prostatic Tissues. Journal of Urology, 179(4), 1580–1586. https://doi.org/10.1016/j.juro.2007.11.043
Halter, R. J., Schned, A., Heaney, J., Hartov, A., & Paulsen, K. D. (2009). Single dispersion cole parameters of malignant and benign prostate. IFMBE Proceedings, 25(7), 399–402. https://doi.org/10.1007/978-3-642-03885-3_111
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 International
Acceso abierto
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv applicaction/pdf
dc.coverage.sede.spa.fl_str_mv Campus UMNG
dc.publisher.program.spa.fl_str_mv Ingeniería Biomédica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.grantor.spa.fl_str_mv Universidad Militar Nueva Granada
institution Universidad Militar Nueva Granada
bitstream.url.fl_str_mv https://repository.umng.edu.co/bitstreams/8e675c8d-e030-4ce7-ab21-401aedff5d45/download
https://repository.umng.edu.co/bitstreams/46129a26-122e-4fa8-8d63-d380643f12da/download
https://repository.umng.edu.co/bitstreams/52c9829d-0a5a-43dc-8247-c16d1c00b9bf/download
bitstream.checksum.fl_str_mv 5e58da9669bd0904330c01a4b86e3b4b
a609d7e369577f685ce98c66b903b91b
df6b578f94614c46a14036a171b0cc54
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UMNG
repository.mail.fl_str_mv bibliodigital@unimilitar.edu.co
_version_ 1851052746527997952
spelling Gómez Portilla, Jhon AndrésCuervo Lara, Sebastian SneyderGarcia Hidalgo, Manuel AlejandroIngeniero BiomédicoMoreno Ortiz, Juan Pablo2025-04-01T14:13:13Z2025-04-01T14:13:13Z2023-12-13https://hdl.handle.net/10654/47157instname:Universidad Militar Nueva Granadareponame:Repositorio Institucional Universidad Militar Nueva Granadarepourl:https://repository.umng.edu.coEste proyecto propone la simulación de un sistema de tomografía por impedancia eléctrica (TIE) sin contacto que utiliza mediciones de propiedades eléctricas de tejidos para clasificar pacientes sanos, con hiperplasia y con cáncer de próstata, el sistema consta de varias etapas clave, incluida la selección de características anatómicas y bioeléctricas, diseño del sistema EIT, análisis exploratorio de datos e implementación de modelos de machine learning. El enfoque de machine learning da como resultados porcentajes de precisión del 85% para arboles de decisión, random forest y k-vecinos cercanos, considerando el sesgo para evitar el overfitting, asimismo se obtienen porcentajes altos para las demás métricas de calidad y un adecuado uso de la muestra demostrado por la validación cruzada.This project proposes the simulation of a non-contact electrical impedance tomography (EIT) system that uses electrical property measurements of tissues to classify healthy, hyperplasia and prostate cancer patients. The machine learning approach guarantees diagnostic feasibility, while ensuring greater safety and convenience for patients. The system consists of several key stages, including anatomical and bioelectrical feature selection, EIT system design, exploratory data analysis, machine learning model implementation, and meticulous validation of the models for selection.Contenido…………………………………………………………………………….4 Resumen ………………………………………………………………………………………….5 Lista de figuras ……………………………………………………………………………………8 Lista de tablas …………………………………………………………………………………...10 1. Introducción........................................................................................................... 11 2. Definición del problema ........................................................................................ 16 2.1 Pregunta de investigación.................................................................................16 2.2 Formulación del problema.................................................................................16 2.3 Planteamiento del problema .............................................................................18 2.4 Justificación del proyecto..................................................................................19 2.5 Objetivos del proyecto ......................................................................................21 2.5.1 Objetivo General ........................................................................................... 21 2.5.2 Objetivos Específicos .................................................................................... 21 2.6 Delimitación ......................................................................................................21 2.7 Variables...........................................................................................................22 2.7.1 Variable Dependiente.................................................................................... 22 2.7.2 Variables independientes .............................................................................. 22 2.7.3 Variables intervinientes ................................................................................. 22 2.8 Hipótesis...........................................................................................................23 3. Marco Referencial.................................................................................................. 24 3.1 Antecedentes del proyecto................................................................................24 3.1.1 Bioimpedancia en cáncer de próstata............................................................ 24 3.1.2 TIE en detección de cáncer de próstata ........................................................ 26 3.2 Marco Contextual..............................................................................................27 3.3 Marco teórico....................................................................................................27 3.3.1 Próstata......................................................................................................... 27 3.3.2 Tomografía por impedancia eléctrica (TIE).................................................... 28 3.3.3 Análisis exploratorio de datos........................................................................ 33 3.3.4 Clasificación por Machine Learning............................................................... 36 3.3.5 Selección de modelos ................................................................................... 43 3.4 Marco conceptual..............................................................................................48 4. Metodología............................................................................................................ 50 4.1 Tipo de estudio .................................................................................................50 4.2 Participantes o sujetos......................................................................................51 4.3 Herramientas, aparatos, materiales o instrumentos ..........................................51 4.4 Etapas del proyecto ..........................................................................................52 4.5 Consideraciones éticas .................................................................................... 52 4.6 Método de análisis e interpretación de los datos .............................................. 53 4.7 Recursos del proyecto...................................................................................... 53 4.8 Cronograma ..................................................................................................... 54 4.9 Resultados esperados...................................................................................... 54 4.10 Impacto del proyecto........................................................................................ 54 5. Implementación......................................................................................................56 5.1 Diseño de sistema de tomografía por impedancia eléctrica sin contacto .......... 56 5.2 Metodología de adquisición de datos ............................................................... 59 5.3 Análisis exploratorio de datos........................................................................... 66 5.4 Desarrollo de modelo de clasificación .............................................................. 70 5.5 Evaluación de los resultados............................................................................ 72 6. Resultados..............................................................................................................74 6.1 Visualización de modelos de machine learning ................................................ 74 6.2 Desarrollo y selección de modelos ................................................................... 86 6.3 Validación de modelos ..................................................................................... 90 6.4 Comparación del desempeño de los modelos.................................................101 7. Conclusiones........................................................................................................105 8. Agradecimientos ..................................................................................................107 9. Bibliografía ...........................................................................................................108Pregradoapplicaction/pdfspahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 InternationalAcceso abiertohttp://purl.org/coar/access_right/c_abf2Simulación de sistema de tomografía por impedancia eléctrica sin contacto orientado a la detección de cáncer de próstataSimulation of a non-contact electrical impedance tomography system for prostate cancer detectionTOMOGRAFIA POR IMPEDANCIA ELECTRICA - SIMULACIONCANCER DE PROSTATA - DIAGNOSTICO - METODOS NO INVASIVOSIMAGEN MEDICA - PROCESAMIENTO DE SEÑALESBIOMEDICINA - APLICACIONES DE LA IMPEDANCIA ELECTRICASistema de tomografía por impedancia eléctricaClasificación de cáncer de próstataMachine learningSeguridad del diagnósticoValidación y selección de modelosElectrical impedance tomography systemProstate cancer classificationMachine learningDiagnosis safetyModel validation and selectionTesis/Trabajo de grado - Monografía - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fIngeniería BiomédicaFacultad de IngenieríaUniversidad Militar Nueva GranadaAmerican Cancer Society. (n.d.). ¿Qué es el cáncer de próstata? [What is prostate cancer?]. American Cancer Society | Information and Resources about for Cancer: Breast, Colon, Lung, Prostate, Skin. URL: https://www.cancer.org/es/cancer/cancer-de prostata/acerca/que-es-cancer-de prostata.html#:~:text=Casi%20todos%20los%20c%C3%A1nceres%20de,Carcino mas%20de%20c%C3%A9lulas%20peque%C3%B1asAmerican Society of Clinical Oncology. (2021). Guía de Cáncer de Próstata [Prostate Cancer Guide]. Revista Oncológica Estadounidense, 4(5), 1–32. URL: www.cancer.netFerrís-i-Tortajada, J., Berbel-Tornero, O., Garcia-i-Castell, J., López-Andreu, J., Sobrino Najul, E., Ortega-Garcia, J. (2011). Factores de riesgo ambientales no dietéticos en el cáncer de próstata [Non-dietary environmental risk factors in prostate cancer]. Actas Urologicas de España, 35(5), 289-295.Devita, V., Lawrence, T., Rosenberg, S. (2015). Devita, Hellman and Rosenberg´s Cancer Principles & Practice of Oncology (10th ed.). Wolters Kluwer Health.A. A. and Casciato, D. (2013). Manual de Oncología Clínica - 7º Ed. [Clinical Oncology Manual - 7th Ed.]. WOLTERS KLUWER.Cui, T., Kovell, R. C., Terlecki, R. P. (2016). Is it time to abandon the digital rectal examination? Lessons from the PLCO Cancer Screening Trial and peer-reviewed literature. Urology, 32(10), 1663–1669. doi: 10.1080/03007995.2016.1198312Lomas, D. J., & Ahmed, H. U. (2020). All change in the prostate cancer diagnostic pathway. Nature Reviews Clinical Oncology, 17(6), 372–381. doi: 10.1038/s41571-020-0332-zLee, B. R., et al. (1999). Bioimpedance: Novel use of a minimally invasive technique for cancer localization in the intact prostate. Prostate, 39(3), 213–218. doi: 10.1002/(SICI)1097- 0045(19990515)39:3<213::AID-PROS10>3.0.CO;2-8Moncada, M. E. (2010). Dialnet-MedicionDeImpedanciaElectricaEnTejidoBiologicoRevi 5062987. Rev. Tecno Lógicas, 25(25), 51–76Pathiraja, A. A., Weerakkody, R. A., Von Roon, A. C., Ziprin, P., Bayford, R. (2020). The clinical application of electrical impedance technology in the detection of malignant neoplasms: a systematic review. Journal of Translational Medicine, 18(1). doi: 10.1186/s12967-020-02395-9Wan, Y., et al. (2012). Combined ultrasound and transrectal electrical impedance imaging of the prostate. In 2012 38th Annual Northeast Bioengineering Conference (NEBEC) (pp. 181–182). doi: 10.1109/NEBC.2012.6207023Yang, Y. (2017). An Advanced Digital Electrical Impedance Tomography System for Biomedical Imaging. The University of EdinburghDuongthipthewa, O., Uliss, P., Pattarasritanawong, P., Sukaimod, P., Ouypornkochagorn, T. (2020). Analysis of Current Patterns to Determine the Bladder Volume by Electrical Impedance Tomography (EIT). ACM International Conference Proceedings, 122–127. doi: 10.1145/3397391.3397433Luo, Y., et al. (2018). Non-invasive electrical impedance tomography for multi-scale detection of liver fat content. Theranostics, 8(6), 1636–1647. doi: 10.7150/thno.22233Zifan, A., Liatsis, P., Almarzouqi, H. (2019). Realistic forward and inverse model mesh generation for rapid three-dimensional thoracic electrical impedance imaging. Computational Biology and Medicine, 107, 97–108. doi: 10.1016/j.compbiomed.2019.02.007Chitturi, V., Farrukh, N. (2017). Spatial resolution in electrical impedance tomography: A topical review. Journal of Electrical Bioimpedance, 8(1), 66–78. doi: 10.5617/jeb.3350Adler, A., & Boyle, A. (2017). Electrical impedance tomography: Tissue properties to image measures. IEEE Transactions on Biomedical Engineering, 64(11), 2494–2504. doi: 10.1109/TBME.2017.2728323Mosquera, V., Gonzalez, C. M., & Ortega, E. I. (2019). EIDORS-Matlab interface for forward problem solving of electrical impedance tomography. URL: https://www.researchgate.net/publication/336725029_EIDORS Matlab_interface_for_forward_problem_solving_of_electrical_impedance_tomogra phySyed, H., Borsic, A., Hartov, A., & Halter, R. J. (2012). Anatomically accurate hard priors for transrectal electrical impedance tomography (TREIT) of the prostate. Physiological Measurement, 33(5), 719–738. doi: 10.1088/0967-3334/33/5/719Borsic, A., Halter, R., Wan, Y., Hartov, A., & Paulsen, K. D. (2010). Electrical impedance tomography reconstruction for three-dimensional imaging of the prostate. Physiological Measurement, 31(8), S1–S16. doi: 10.1088/0967-3334/31/8/S01Rosa, B. M. G. G., & Yang, G. Z. (2020). Bladder Volume Monitoring Using Electrical Impedance Tomography with Simultaneous Multi-Tone Tissue Stimulation and DFT-Based Impedance Calculation Inside an FPGA. IEEE Transactions on Biomedical Circuits and Systems, 14(4), 775–786. doi: 10.1109/TBCAS.2020.3008831Sharma, S. K., Konki, S. K., Khambampati, A. K., & Kim, K. Y. (2020). Bladder Boundary Estimation by Gravitational Search Algorithm Using Electrical Impedance Tomography. IEEE Transactions on Instrumentation and Measurement, 69(12), 9657–9667. doi: 10.1109/TIM.2020.3006326Satapathy, S., Singh, H., Kumar, R., & Mittal, B. R. (2021). Diagnostic Accuracy of 68Ga PSMA PET/CT for Initial Detection in Patients With Suspected Prostate Cancer: A Systematic Review and Meta-Analysis. American Journal of Roentgenology, 216(3), 599– 607. doi: 10.2214/AJR.20.23912International Agency for Research on Cancer. (2021). Cancer Today. GLOBOCAN 2020. URL: https://gco.iarc.fr/today/online-analysis-multi bars?v=2020&mode=cancer&mode_population=countries&population=900&popul ations=170&key=cum_risk&sex=1&cancer=39&type=0&statistic=5&prevalence=0&population_group=2&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_ite mMinisterio de Salud y Proyección Social. (n.d.). Perfil de incidencia del cáncer en Colombia. URL: https://www.sispro.gov.co/observatorios/oncancer/indicadores/Paginas/Cáncer-de próstata.aspx#:~:text=Incidencia,afectados%20por%20100.000%20habitaCancer.Net. (n.d.). Cáncer de próstata: Estadísticas. URL: https://www.cancer.net/es/tipos-de-cancer/cancer-prostate/estadísticasPrcic, A., Begic, E., & Hiros, M. (2016). Usefulness of Total PSA Value in Prostate Diseases Diagnosis. Acta Informatica Medica, 24(3), 156. doi: 10.5455/AIM.2016.24.156-161World Health Organization. (n.d.). Enfermedades no transmisibles. URL: https://www.who.int/es/news-room/fact-sheets/detail/noncommunicable-diseasesMinisterio de Salud y Protección Social. (n.d.). Prevención de enfermedades no transmisibles. URL: https://www.minsalud.gov.co/salud/publica/PENT/Paginas/Enfermedades-no transmisibles.aspxCuenta de Alto Costo. (2021). Una mirada al cáncer de próstata en Colombia. URL: https://cuentadealtocosto.org/cancer/una-mirada-al-cancer-de-prostata-en colombiaHalter, R. J., & Kim, Y. J. (2014). Toward microendoscopic electrical impedance tomography for intraoperative surgical margin assessment. IEEE Transactions on Biomedical Engineering, 61(11), 2779–2786. doi: 10.1109/TBME.2014.2329461Mishra, V., Schned, A. R., Hartov, A., Heaney, J. A., Seigne, J., & Halter, R. J. (2013). Electrical property sensing biopsy needle for prostate cancer detection. Prostate, 73(15), 1603–1613. doi: 10.1002/pros.22695Halter, R. J., Schned, A., Heaney, J., Hartov, A., Schutz, S., & Paulsen, K. D. (2008). Electrical Impedance Spectroscopy of Benign and Malignant Prostatic Tissues. The Journal of Urology, 179(4), 1580–1586. doi: 10.1016/j.juro.2007.11.043Hall, J., & Guyton, A. (2016). Guyton y Hall: Tratado de fisiología médica (12th ed.). Elsevier.Tortora, G. J. (1993). Principios de anatomía y fisiología (6th ed.). Oxford University Press Mexico S.A. de C.V.Riera, J., Riu, P. J., Casan, P., & Masclans, J. R. (2011). Tomografía de impedancia eléctrica en la lesión pulmonar aguda. Medicina Intensiva, 35(8), 509–517. doi: 10.1016/j.medin.2011.05.005Jaspreet, Singh., Gurpreet, Singh., Navneet, Kaur. (2022). Exploratory Data Analysis for Interpreting Model Prediction using Python. doi: 10.1109/SMARTGENCON56628.2022.1008353Maria, Teresa, Cuomo., Debora, Tortora., Ivan, Colosimo., Lorenzo, Ricciardi, Celsi., Cinzia, Genovino., Giuseppe, Festa., M., La, Rocca. (2023). Segmenting with big data analytics and Python: A quantitative exploratory analysis of household savings. Technological Forecasting and Social Change, doi: 10.1016/j.techfore.2023.122431David, C., Hoaglin. (2014). Exploratory Data Analysis. doi: 10.1002/9781118445112.STAT00419David, C., Hoaglin. (2005). Exploratory Data Analysis. doi: 10.1002/0470011815.B2A15040Sandy, Dall'Erba. (2008). Exploratory Spatial Data Analysis. doi: 10.1016/B978- 008044910-4.00433-8Sam, Lau. (2023). Teaching Data Science by Visualizing Data Table Transformations: Pandas Tutor for Python, Tidy Data Tutor for R, and SQL Tutor. doi: 10.1145/3596673.3596972Hannah, Stepanek. (2019). Basic Data Transformation in pandas. doi: 10.1007/978-1- 4842-5839-2_5hushan, Pal, Singh., Mudra, Sahu., Sundararajarao, Sudarshan. (2021). Optimizing Data Science Applications using Static Analysis. doi: 10.1145/3475726.3475729Luís, Miguel, Matos., João, Rolando, Azevedo., Arthur, Matta., André, Luiz, Pilastri., Paulo, Cortez., Rui, Mendes. (2022). Categorical Attribute traNsformation Environment (CANE): A python module for categorical to numeric data preprocessing. Software impacts, doi: 10.1016/j.simpa.2022.100359Fauzi, Fauzi., Agus, Suryana., Albertus, Dwiyoga, Widiantoro. (2023). Data Visualization Of House Of Worship Distribution In The IKN Nusantara Region Using Python. Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), doi: 10.24843/jim.2023.v11.i01.p01urpreet, Singh., Jaspreet, Singh., Jagdeep, Kaur. (2023). Data Visualization for Developing Effective Performance Dashboard with Power BI. doi: 10.1109/ICIDCA56705.2023.10100169Feng, Li. (2022). Research on Data Visualization Technology Based on Python. International journal of multidisciplinary research and analysis, doi: 10.47191/ijmra/v5-i5-03Zarinabegam, K., Mundargi., Krisha, Patel., Aayushi, Patel., Sudhanshu, Pathrabe., Shreyas, D., Patil. (2023). Plotplay: An Automated Data Visualization Website using Python and Plotly. doi: 10.1109/ICONAT57137.2023.10079977Michael, Waskom., Olga, Botvinnik., Maoz, Gelbart., Joel, Ostblom., Paul, Hobson., Saulius, Lukauskas., David, C, Gemperline., Tom, Augspurger., Yaroslav, O., Halchenko., Jordi, Warmenhoven., John, B., Cole., Julian, de, Ruiter., Jake, Vanderplas., Stephan, Hoyer., Cameron, Pye., Alistair, Miles., Corban, Swain., Kyle, Meyer., Marcel, Martin., Bachant,, Pete, Quintero,, Eric., Gero, Kunter., Santi, Villalba., Brian., Clark, Fitzgerald., Constantine, Evans., Mike, Lee, Williams., Drew, O'Kane., Tal, Yarkoni., Thomas, Brunner. (2020). seaborn: Statistical data visualization.Luis, Fábregues, de, los, Santos., Luís, António, Garcez, Duarte, da, Costa, Ferreira. (2023). Atlantic—Automated data preprocessing framework for supervised machine learning. Software impacts, doi: 10.1016/j.simpa.2023.100532Harshita, Barapatre., Jatin, Jangir., Sudhanshu, Bajpai., Bhavesh, Chawla., Gunjan, Keswani. (2023). Analytics of Epidemiological Data using Machine Learning Models. International journal of next-generation computing, doi: 10.47164/ijngc.v14i1.1014Alberto, Amato., Vincenzo, Di, Lecce. (2022). Data preprocessing impact on machine learning algorithm performance. Open Computer Science, doi: 10.1515/comp-2022-0278Nishtha, Shrivastava., Debalina, Ghosh., Prasanna, Kumar, Sahu. (2023). Bone Health Classification using Machine Learning. doi: 10.1109/ICMOCE57812.2023.10166486Prayla, S, Shyry., Ramya, G., Franklin. (2023). Efficient Fetal Health Monitoring and Classification with Machine Learning. doi: 10.1109/ICICCS56967.2023.10142312Juliessa, M, Pavon., Laura, A., Previll., Myung, Yi, Woo., Ricardo, Henao., Mary, J, Solomon., Ursula, A., Rogers., Andrew, Olson., Christopher, Leo., Gerda, G., Fillenbaum., Helen, Hoenig., David, Casarett. (2023). Machine learning functional impairment classification with electronic health record data.. Journal of the American Geriatrics Society, doi: 10.1111/jgs.18383Paolo, Giudici., Alexander, Gramegna., Emanuela, Raffinetti. (2023). Machine Learning Classification Model Comparison. Socio-economic Planning Sciences, doi: 10.1016/j.seps.2023.101560Sandro, Sperandei. (2014). Understanding logistic regression analysis. Biochemia Medica, doi: 10.11613/BM.2014.003Jill, Stoltzfus. (2011). Logistic Regression: A Brief Primer. Academic Emergency Medicine, doi: 10.1111/J.1553-2712.2011.01185.XEvangelia, Christodoulou., Jie, Ma., Gary, S., Collins., Ewout, W., Steyerberg., Jan, Y, Verbakel., Ben, Van, Calster., Ben, Van, Calster. (2019). A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. Journal of Clinical Epidemiology, doi: 10.1016/J.JCLINEPI.2019.02.004Priya, Ranganathan., C, S, Pramesh., Rakesh, Aggarwal. (2017). Common pitfalls in statistical analysis: Logistic regression.. Perspectives in Clinical Research, doi: 10.4103/PICR.PICR_87_17Maher, Maalouf. (2011). Logistic regression in data analysis: an overview. International Journal of Data Analysis Techniques and Strategies, doi: 10.1504/IJDATS.2011.041335Sanjay, Dubey., K., Sai, Prasanna., M., C., Chinnaiah. (2022). Logistic Regression Analysis for the Classification of Human Pulse Data. ECS transactions, doi: 10.1149/10701.19739ecstpraveen, kunar, vadrangi. (2021). Logistic Regression analysis for the classification of Human pulse data.Michael, A., Zeller., Zebulun, Arendsee., Gavin, J., D., Smith., Tavis, K., Anderson. (2022). classLog: Logistic regression for the classification of genetic sequences. bioRxiv, doi: 10.1101/2022.08.15.503907.Wenjing, Pian., Christopher, S., G., Khoo., Jianxing, Chi. (2017). Automatic Classification of Users’ Health Information Need Context: Logistic Regression Analysis of Mouse-Click and Eye-Tracker Data. Journal of Medical Internet Research, doi: 10.2196/JMIR.8354Zhongheng, Zhang. (2016). Introduction to machine learning: k-nearest neighbors. Annals of Translational Medicine, doi: 10.21037/ATM.2016.03.37Nicolas, Papernot., Patrick, McDaniel. (2018). Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning. arXiv: Learning,Pinlong, Cai., Yunpeng, Wang., Guangquan, Lu., Peng, Chen., Chuan, Ding., Jianping, Sun. (2015). A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting. Transportation Research Part C-emerging Technologies, doi: 10.1016/J.TRC.2015.11.002Jianping, Gou., Hongxing, Ma., Weihua, Ou., Shaoning, Zeng., Yunbo, Rao., Hebiao, Yang. (2018). A generalized mean distance-based k-nearest neighbor classifier. Expert Systems With Applications, doi: 10.1016/J.ESWA.2018.08.021Shahnawaz, Qureshi., Seppo, Karrila., Sirirut, Vanichayobon. (2018). Human Sleep Scoring Based on K-Nearest Neighbors. Turkish Journal of Electrical Engineering and Computer Sciences, doi: 10.3906/ELK-1805-12Shahab, Tayeb., Matin, Pirouz., Johann, Sun., Kaylee, Hall., Andrew, Y., Chang., Jessica, Li., Connor, Song., Apoorva, Chauhan., Michael, Ferra., Theresa, Sager., Justin, Zhan., Shahram, Latifi. (2017). Toward predicting medical conditions using k-nearest neighbors. doi: 10.1109/BIGDATA.2017.8258395Gideon, Koech., Jean, Vincent, Fonou-Dombeu. (2021). K-Nearest Neighbors Classification of Semantic Web Ontologies. doi: 10.1007/978-3-030-78428-7_19Reza, Fathi., Anisur, Rahaman, Molla., Gopal, Pandurangan. (2020). Efficient Distributed Algorithms for the $K$-Nearest Neighbors Problem. arXiv: Distributed, Parallel, and Cluster Computing,Reza, Fathi., Anisur, Rahaman, Molla., Gopal, Pandurangan. (2020). Efficient Distributed Algorithms for the K-Nearest Neighbors Problem. doi: 10.1145/3350755.3400268Shan, Suthaharan. (2015). Support Vector Machine. doi: 10.1007/978-1-4899-7641-3_9Shujun, Huang., Nianguang, Cai., Pedro, Penzuti, Pacheco., Shavira, Narrandes., Yang, Wang., Wayne, Xu. (2017). Applications of Support Vector Machine (SVM) Learning in Cancer Genomics.. Cancer Genomics & Proteomics, doi: 10.21873/CGP.20063Nick, Guenther., Matthias, Schonlau. (2016). Support vector machines. Stata Journal, doi: 10.1177/1536867X1601600407Mathias, M., Adankon., Mohamed, Cheriet. (2008). Support Vector Machine.Keiji, Tatsumi., Tetsuzo, Tanino. (2014). Support vector machines maximizing geometric margins for multi-class classification. Top, doi: 10.1007/S11750-014-0338-8Noppadol, Maneerat., Kuniaki, Yajima., Ruttikorn, Varakulsiripunth., Kazuko, Hamamoto. (2023). Brain Tumor Classification using Supervised Support Vector Machine. doi: 10.1109/ICEAST58324.2023.10156975Su, Caiyu., Dong, Jie., Mo, Yi., Wu, Shanyun. (2022). A Classification Application Based on Support Vector Machine for Health IoT. doi: 10.1109/PHM2022-London52454.2022.00064Nurul, Huda, Ovirianti., Muhammad, Zarlis., Herman, Mawengkang. (2022). Support Vector Machine Using A Classification Algorithm. Sinkron : jurnal dan penelitian teknik informatika, doi: 10.33395/sinkron.v7i3.11597Suciana, Ghadati, Rabiha., Antoni, Wibowo., Lukas., Yaya, Heryadi. (2021). Diabetes Classification Using Support Vector Machine : Binary Classification Model. doi: 10.1109/ICOIACT53268.2021.9563994Leo, Breiman. (2001). Random Forests. doi: 10.1023/A:1010933404324Tin, Kam, Ho. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, doi: 10.1109/34.709601Mariana, Belgiu., Lucian, Drăguţ. (2016). Random forest in remote sensing: A review of applications and future directions. Isprs Journal of Photogrammetry and Remote Sensing, doi: 10.1016/J.ISPRSJPRS.2016.01.011Tin, Kam, Ho. (1995). Random decision forests. doi: 10.1109/ICDAR.1995.598994Boris, Galitsky. (2021). Obtaining supported decision trees from text for health system applications. doi: 10.1016/b978-0-12-824521-7.00013-2Tshepo, Chris, Nokeri. (2020). Classification Using Decision Trees. doi: 10.1007/978-1- 4842-6870-4_8Hrituraj, Singh., N.V., Navaneeth., G., N., Pillai. (2019). Multisurface Proximal SVM Based Decision Trees For Heart Disease Classification. doi: 10.1109/TENCON.2019.8929618Syed, Ahsin, Ali, Shah., Wajid, Aziz., Muhammad, Arif., Malik, Sajjad, Ahmed, Nadeem. (2015). Decision Trees Based Classification of Cardiotocograms Using Bagging Approach. doi: 10.1109/FIT.2015.14Ryan, G., McClarren. (2020). Decision Trees and Random Forests for Regression and Classification. doi: 10.1007/978-3-030-70388-2_3Gérard, Biau., Gérard, Biau., Erwan, Scornet. (2016). A random forest guided tour. Test, doi: 10.1007/S11749-016-0481-7Alexander, Statnikov., Lily, Wang., Constantin, F., Aliferis. (2008). A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics, doi: 10.1186/1471-2105-9-319Mohammed, Khalilia., Sounak, Chakraborty., Mihail, Popescu. (2011). Predicting disease risks from highly imbalanced data using random forest. BMC Medical Informatics and Decision Making, doi: 10.1186/1472-6947-11-51Gérard, Biau., Gérard, Biau., Erwan, Scornet. (2015). A Random Forest Guided Tour. arXiv: Statistics Theory,LatifahLatifah, Alamer. (2023). Intelligent Health Risk and Disease Prediction Using Optimized Naive Bayes Classifier. Journal of Internet Services and Information Security, doi: 10.58346/jisis.2023.i1.001NishaNisha, Soms., Soundarya, Hariharan., K., Jeeva., C., Karthick. (2022). Naive bayes machine learning framework for auto detection of spam mails. International Journal of Health Sciences (IJHS), doi: 10.53730/ijhs.v6ns3.7742ChandrasekharChandrasekhar, Rao, Jetti., Rehamatulla, Shaik., Sadhik, Shaik. (2021). Disease Prediction using Naïve Bayes - Machine Learning Algorithm. doi: 10.52403/IJSHR.20211004Sangwoo, Seo., Seungjun, Jung., Changick, Kim. (2022). Explanation-based Graph Neural Networks for Graph Classification. doi: 10.1109/ICPR56361.2022.9956478Atefeh, Shahroudnejad. (2021). A Survey on Understanding, Visualizations, and Explanation of Deep Neural Networks. arXiv: LearningAndre, Esteva., Brett, Kuprel., Roberto, A., Novoa., Justin, M., Ko., Susan, M., Swetter., Susan, M., Swetter., Helen, M., Blau., Sebastian, Thrun. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, doi: 10.1038/NATURE21056Javed, Khan., Jun, S., Wei., Markus, Ringnér., Markus, Ringnér., Lao, H., Saal., Marc, Ladanyi., Frank, Westermann., Frank, Berthold., Manfred, Schwab., Cristina, R., Antonescu., Carsten, Peterson., Paul, S., Meltzer. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, doi: 10.1038/89044Stephan, Dreiseitl., Lucila, Ohno-Machado. (2002). Logistic regression and artificial neural network classification models: a methodology review. Journal of Biomedical Informatics, doi: 10.1016/S1532-0464(03)00034-0Awni, Hannun., Pranav, Rajpurkar., Masoumeh, Haghpanahi., Geoffrey, H., Tison., Codie, Bourn., Mintu, P., Turakhia., Mintu, P., Turakhia., Andrew, Y., Ng. (2019). Cardiologist-Level Arrhythmia Detection and Classification in Ambulatory Electrocardiograms Using a Deep Neural Network. Nature Medicine, doi: 10.1038/S41591-018-0268-3Paulo, J., G., Lisboa. (2001). A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Networks, doi: 10.1016/S0893-6080(01)00111-3Vincent, Lefort., Jean-Emmanuel, Longueville., Olivier, Gascuel., Olivier, Gascuel. (2017). SMS: Smart Model Selection in PhyML.. Molecular Biology and Evolution, doi: 10.1093/MOLBEV/MSX149Nicolo, Fusi., Rishit, Sheth., Melih, Elibol. (2018). Probabilistic Matrix Factorization for Automated Machine Learning.Benjamin, Bengfort., Rebecca, Bilbro. (2019). Yellowbrick: Visualizing the Scikit-Learn Model Selection Process. The Journal of Open Source Software, doi: 10.21105/JOSS.01075Matthias, Varewyck., Jean-Pierre, Martens. (2011). A Practical Approach to Model Selection for Support Vector Machines With a Gaussian Kernel. doi: 10.1109/TSMCB.2010.2053026Eija, Ferreira. (2014). Model selection in time series machine learning applicationsThomas, G., Dietterich. (1996). Machine learning. ACM Computing Surveys, doi: 10.1145/242224.242229Ethem, Alpaydin. (2004). Introduction to Machine Learning.Liang, Sun., Ningyun, Lu., Xianfeng, Meng. (2022). Equipment Health State Assessment Based on MIC-XGBoost. doi: 10.23919/ascc56756.2022.9828276J., Bai., Yan, Xian. (2022). Health state prediction of lithium-ion batteries based on XGBoost algorithm. Journal of physics, doi: 10.1088/1742-6596/2384/1/012056Yuting, Li., Yang, Yang., Yu, Peng., Ying, Yao., Yong, Yan. (2021). A Remote Health Diagnosis Method Based on Full Voting XGBoost Algorithm. doi: 10.1007/978-981-16- 6554-7_69Wei, Dong., Yimiao, Huang., Barry, Lehane., Guowei, Ma., Guowei, Ma. (2020). XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring. Automation in Construction, doi: 10.1016/J.AUTCON.2020.103155Jiang, Liu., Baigen, Cai., Zhong-bin, Guo., Xiao-lin, Zhao. (2020). Constructing Knowledge Graph for Prognostics and Health Management of On-board Train Control System Based on Big Data and XGBoost. doi: 10.1007/978-3-030-72802-1_1Soreen, Ameen, Fattah., Hussein, Attya, Lafta., Sura, Z., AL-Rashid. (2020). B-pred: an intelligent and adaptable medical diagnosis system based on bagging machine learning. International Journal of Scientific & Technology Research,Jerzy, Stefanowski. (2002). Bagging and Induction of Decision Rules. doi: 10.1007/978-3- 7908-1777-5_12Liuhuan, Dong., Yuan, Yuan., Yu-Dong, Cai. (2006). Using Bagging classifier to predict protein domain structural class.. Journal of Biomolecular Structure & Dynamics,Rachel, Eardley., Emma, L., Tonkin., Ewan, Soubutts., Amid, Ayobi., Gregory, J., L., Tourte., Rachael, Gooberman-Hill., Ian, J, Craddock., Aisling, Ann, O'Kane. (2023). Explanation before Adoption: Supporting Informed Consent for Complex Machine Learning and IoT Health Platforms. Proceedings of the ACM on human-computer interaction, doi: 10.1145/3579482D, Carvalho., R, Cruz. (2020). Big data and machine learning in health. European Journal of Public Health, doi: 10.1093/EURPUB/CKAA040.030Manuel, Filipe, Santos., Wesley, Mathew., T., Kovacs., Henrique, Santos. (2009). A grid data mining architecture for learning classifier systems. WSEAS Transactions on Computers archive,Jing-bo, Zhou., Dongyang, Tang., Josh, Haipeng, Lei., Heng, Sun., Xiaoling, Xu., Chu-Xia, Deng. (2023). Machine learning model for anti-cancer drug combinations: Analysis, prediction, and validation.. Pharmacological research, doi: 10.1016/j.phrs.2023.106830Gleb, Danilov., Konstantin, Kotik., Michael, A., Shifrin., Yu, V, Strunina., Tatiana, Pronkina., Tatiana, V., Tsukanova., Vladimir, Nepomnyashiy., Nikolay, Konovalov., Alexander, Potapov. (2023). Data Quality Estimation Via Model Performance: Machine Learning as a Validation Tool. doi: 10.3233/SHTI230508Agus, Sudjianto., Aijun, Zhang., Zebin, Yang., Yu, Su., Ningzhou, Zeng. (2023). PiML Toolbox for Interpretable Machine Learning Model Development and Validation. arXiv.org, doi: 10.48550/arXiv.2305.04214Fangfang, Xia., Jonathan, E., Allen., Prasanna, Balaprakash., Thomas, Brettin., Cristina, Garcia-Cardona., Austin, Clyde., Austin, Clyde., Judith, D., Cohn., James, H., Doroshow., Xiaotian, Duan., Veronika, Dubinkina., Yvonne, A., Evrard., Ya, Ju, Fan., Jason, D., Gans., Stewart, He., Pinyi, Lu., Sergei, Maslov., Alexander, Partin., Maulik, Shukla., Eric, Stahlberg., Justin, M., Wozniak., Hyunseung, Yoo., George, Zaki., Yitan, Zhu., Rick, Stevens., Rick, Stevens. (2021). A cross-study analysis of drug response prediction in cancer cell lines.. Briefings in Bioinformatics, doi: 10.1093/BIB/BBAB356Ilias, Tougui., Abdelilah, Jilbab., Jamal, El, Mhamdi. (2021). Impact of the Choice of Cross Validation Techniques on the Results of Machine Learning-Based Diagnostic Applications.. Healthcare Informatics Research, doi: 10.4258/HIR.2021.27.3.189Viktor, Granholm., William, Stafford, Noble., Lukas, Käll. (2012). A cross-validation scheme for machine learning algorithms in shotgun proteomics. BMC Bioinformatics, doi: 10.1186/1471-2105-13-S16-S3Frederick, V., Weber. (2012). Discriminative language model training using a confusion matrix.Emmanuelle, Beauxis-Aussalet., Lynda, Hardman. (2014). Visualization of Confusion Matrix for Non-Expert Users (Poster).Emmanuelle, Beauxis-Aussalet., Lynda, Hardman. (2014). Simplifying the Visualization of Confusion Matrix.Sepand, Haghighi., Masoomeh, Jasemi., Shaahin, Hessabi., Alireza, Zolanvari. (2018). PyCM: Multiclass confusion matrix library in Python. The Journal of Open Source Software, doi: 10.21105/JOSS.00729Paulo, R., Cavalin., Luiz, S., Oliveira. (2018). Confusion Matrix-Based Building of Hierarchical Classification. doi: 10.1007/978-3-030-13469-3_32Yunsheng, Liu., Xingfeng, He., Yifei, Mo. (2023). Discrepancies and the Error Evaluation Metrics for Machine Learning Interatomic Potentials.Cemil, Colak., Esra, Gültürk. (2023). Evaluation of Performance Metrics in Heart Disease by Machine Learning Techniques. The journal of cognitive systems, doi: 10.52876/jcs.1276688Kacper, Sokol., Peter, A., Flach. (2020). One Explanation Does Not Fit All: The Promise of Interactive Explanations for Machine Learning Transparency. arXiv: Learning, doi: 10.1007/S13218-020-00637-YKacper, Sokol., Peter, A., Flach. (2020). One Explanation Does Not Fit All: The Promise of Interactive Explanations for Machine Learning Transparency. Künstliche Intelligenz, doi: 10.1007/S13218-020-00637-YDustin, Arendt., Zhuanyi, Huang. (2020). Machine Learning Model Explanation Apparatus and Methods.Oana, Cocarascu., Antonio, Rago., Francesca, Toni. (2020). Explanation via Machine Arguing. doi: 10.1007/978-3-030-60067-9_3Adams, L. C., Makowski, M. R., Engel, G., Rattunde, M., Busch, F., Asbach, P., Niehues, S. M., Vinayahalingam, S., van Ginneken, B., Litjens, G., & Bressem, K. K. (2022). Prostate158 - An expert-annotated 3T MRI dataset and algorithm for prostate cancer detection. Computers in biology and medicine, 148, 105817. https://doi.org/10.1016/j.compbiomed.2022.105817García Novas, R., Sanz Mayayo, E., Arias Fúnez, F., Rodríguez-Patrón, R., & Mayayo Dehesa, T. (2006). Diagnóstico y seguimiento de la hipertrofia prostática benigna mediante ecografía. Archivos Espanoles de Urologia, 59(4), 353–360. https://doi.org/10.4321/s0004- 06142006000400005Halter, R. J., Schned, A., Heaney, J., Hartov, A., Schutz, S., & Paulsen, K. D. (2008). Electrical Impedance Spectroscopy of Benign and Malignant Prostatic Tissues. Journal of Urology, 179(4), 1580–1586. https://doi.org/10.1016/j.juro.2007.11.043Halter, R. J., Schned, A., Heaney, J., Hartov, A., & Paulsen, K. D. (2009). Single dispersion cole parameters of malignant and benign prostate. IFMBE Proceedings, 25(7), 399–402. https://doi.org/10.1007/978-3-642-03885-3_111Campus UMNGORIGINALCuervoLaraSebastianSneyder2023.pdfCuervoLaraSebastianSneyder2023.pdfTrabajo de grado - Tesisapplication/pdf3670178https://repository.umng.edu.co/bitstreams/8e675c8d-e030-4ce7-ab21-401aedff5d45/download5e58da9669bd0904330c01a4b86e3b4bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83420https://repository.umng.edu.co/bitstreams/46129a26-122e-4fa8-8d63-d380643f12da/downloada609d7e369577f685ce98c66b903b91bMD52THUMBNAILCuervoLaraSebastianSneyder2023.pdf.jpgCuervoLaraSebastianSneyder2023.pdf.jpgIM Thumbnailimage/jpeg5971https://repository.umng.edu.co/bitstreams/52c9829d-0a5a-43dc-8247-c16d1c00b9bf/downloaddf6b578f94614c46a14036a171b0cc54MD5310654/47157oai:repository.umng.edu.co:10654/471572025-04-02 03:00:56.919http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repository.umng.edu.coRepositorio Institucional UMNGbibliodigital@unimilitar.edu.coRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hLCB0cmFiYWpvIGRlIGdyYWRvIG8gY3VhbHF1aWVyIG90cm8gZG9jdW1lbnRvCmNvbiBjYXLDoWN0ZXIgYWNhZMOpbWljbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sIGhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2bwp5IGRlIHN1cyBhbmV4b3MgZW4gZm9ybWF0byBkaWdpdGFsIG8gZWxlY3Ryw7NuaWNvLgoKRUwgRVNUVURJQU5URSAtIEFVVE9SLCBtYW5pZmllc3RhIHF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuCmVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvcgpsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KCkVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4KY3VhbnRvIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgZW4gY3Vlc3Rpw7NuLCBFTCBFU1RVRElBTlRFIC0gQVVUT1IsCmFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7CnBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCkFkZW3DoXMsICJMQSBVTklWRVJTSURBRCBNSUxJVEFSIE5VRVZBIEdSQU5BREEgY29tbyBpbnN0aXR1Y2nDs24gcXVlIGFsbWFjZW5hLCB5CnJlY29sZWN0YSBkYXRvcyBwZXJzb25hbGVzLCBhdGVuZGllbmRvIGxvIHByZWNlcHR1YWRvIGVuIGxhIGxleSAxNTgxIGRlIDIwMTIgeSBlbApEZWNyZXRvIDEzNzcgZGUgMjAxMywgcXVlIGRlc2Fycm9sbGFuIGVsIHByaW5jaXBpbyBjb25zdGl0dWNpb25hbCBxdWUgdGllbmVuIHRvZGFzCmxhcyBwZXJzb25hcyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIgeSByZWN0aWZpY2FyIHRvZG8gdGlwbyBkZSBpbmZvcm1hY2nDs24gcmVjb2dpZGEKbywgcXVlIGhheWEgc2lkbyBvYmpldG8gZGUgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBlbiBiYW5jb3MgbyBiYXNlcyBkZQpkYXRvcyB5IGVuIGdlbmVyYWwgZW4gYXJjaGl2b3MgZGUgZW50aWRhZGVzIHDDumJsaWNhcyBvIHByaXZhZGFzLCByZXF1aWVyZSBvYnRlbmVyCnN1IGF1dG9yaXphY2nDs24sIHBhcmEgcXVlLCBkZSBtYW5lcmEgbGlicmUsIHByZXZpYSwgZXhwcmVzYSwgdm9sdW50YXJpYSwgeQpkZWJpZGFtZW50ZSBpbmZvcm1hZGEsIHBlcm1pdGEgYSB0b2RhcyBudWVzdHJhcyBkZXBlbmRlbmNpYXMgYWNhZMOpbWljYXMgeQphZG1pbmlzdHJhdGl2YXMsIHJlY29sZWN0YXIsIHJlY2F1ZGFyLCBhbG1hY2VuYXIsIHVzYXIsIGNpcmN1bGFyLCBzdXByaW1pciwgcHJvY2VzYXIsCmNvbXBpbGFyLCBpbnRlcmNhbWJpYXIsIGRhciB0cmF0YW1pZW50bywgYWN0dWFsaXphciB5IGRpc3BvbmVyIGRlIGxvcyBkYXRvcyBxdWUKaGFuIHNpZG8gc3VtaW5pc3RyYWRvcyB5IHF1ZSBzZSBoYW4gaW5jb3Jwb3JhZG8gZW4gbnVlc3RyYXMgYmFzZXMgbyBiYW5jb3MgZGUKZGF0b3MsIG8gZW4gcmVwb3NpdG9yaW9zIGVsZWN0csOzbmljb3MgZGUgdG9kbyB0aXBvIGNvbiBxdWUgY3VlbnRhIGxhIFVuaXZlcnNpZGFkLgoKRXN0YSBpbmZvcm1hY2nDs24gZXMgeSBzZXLDoSB1dGlsaXphZGEgZW4gZWwgZGVzYXJyb2xsbyBkZSBsYXMgZnVuY2lvbmVzIHByb3BpYXMgZGUKbGEgVW5pdmVyc2lkYWQgZW4gc3UgY29uZGljacOzbiBkZSBpbnN0aXR1Y2nDs24gZGUgZWR1Y2FjacOzbiBzdXBlcmlvciwgZGUgZm9ybWEKZGlyZWN0YSBvIGEgdHJhdsOpcyBkZSB0ZXJjZXJvcyIuCgpTaSBzdSBkb2N1bWVudG8gZXMgZGUgYWNjZXNvIHJlc3RyaW5naWRvICwgc3UgdHJhYmFqbyBzZSBkZXBvc2l0YXLDoSBlbiBlbApSZXBvc2l0b3JpbyBVTU5HIMO6bmljYW1lbnRlIGNvbiBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRvY3VtZW50YWwgeSBtZW1vcmlhCmluc3RpdHVjaW9uYWwsIGVudGVuZGllbmRvIHF1ZSwgc2Vyw6EgY29uc3VsdGFkbyBkZSBmb3JtYSBjb250cm9sYWRhIHNvbGFtZW50ZSBwb3IKbGEgY29tdW5pZGFkIE5lb2dyYW5hZGluYS4KClNpIHN1IGRvY3VtZW50byBlcyBkZSBhY2Nlc28gYWJpZXJ0bywgcGFyYSBwZXJtaXRpciBhbCBSZXBvc2l0b3JpbyBVTU5HIHJlcHJvZHVjaXIsCnRyYWR1Y2lyIHkgZGlzdHJpYnVpciBzdSBlbnbDrW8gYSB0cmF2w6lzIGRlbCBtdW5kbywgbmVjZXNpdGFtb3Mgc3UgY29uZm9ybWlkYWQgZW4KbG9zIHNpZ3VpZW50ZXMgdMOpcm1pbm9zOgoKWSBhdXRvcml6YSBhIGxhIFVOSVZFUlNJREFEIE1JTElUQVIgTlVFVkEgR1JBTkFEQSwgcGFyYSBxdWUgZW4gbG9zIHTDqXJtaW5vcwplc3RhYmxlY2lkb3MgZW46CgpMZXkgMjMgZGUgMTk4Mi0gTGV5IDQ0IGRlIDE5OTMgLUxleSAxOTE1IGRlIDIwMTggLSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLQpEZWNyZXRvIDQ2MCBkZSAxOTk1IHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgdXRpbGljZSB5IHVzZSBwb3IKY3VhbHF1aWVyIG1lZGlvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sCmNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlCmRvY3VtZW50by4KCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc8OzbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlCnVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byB2aXJ0dWFsLAplbGVjdHLDs25pY28sIGRpZ2l0YWwsIHkgY3V5byB1c28gc2UgZGUgZW4gcmVkLCBpbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBldGMuLAp5IGVuIGdlbmVyYWwgZW4gY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxvcyBUw6lybWlub3MgeSBjb25kaWNpb25lcywgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwKYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYSBiaWJsaW9kaWdpdGFsQHVuaW1pbGl0YXIuZWR1LmNvCgpBY2VwdGUgVMOpcm1pbm9zIHkgY29uZGljaW9uZXMgc2VsZWNjaW9uYW5kbyAiQWNlcHRvIiB5IHB1bHNhbmRvICJDb21wbGV0YXIgZW52w61vIi4K