Investigating mechanisms to promote engagement in psychomotor training using systematic breaks in presence in virtual reality

Es ampliamente aceptado que se requiere un entrenamiento repetitivo con tareas específicas y orientado a objetivos para mejorar los beneficios de la plasticidad neuronal en busca de aprendizaje psicomotor. Sin embargo, el éxito depende de conservar comportamientos deseados, como motivación y comprom...

Full description

Autores:
Caldas Flautero, Oscar Iván
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Militar Nueva Granada
Repositorio:
Repositorio UMNG
Idioma:
spa
OAI Identifier:
oai:repository.umng.edu.co:10654/46075
Acceso en línea:
https://hdl.handle.net/10654/46075
Palabra clave:
REALIDAD VIRTUAL
TECNOLOGIA EDUCATIVA
EDUCACION - METODOS DE SIMULACION
NEUROCIENCIAS
APRENDIZAJE PERCEPTIVO-MOTOR
Pausas de Presencia
Compromiso
Psicofisiología
Entrenamiento psicomotor
Realidad Virtual
Breaks in Presence
Engagement
Psychophysiology
Psychomotor training
Virtual Reality
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIMILTAR2_6d42427cf6b2b4538a5e70829f0d618d
oai_identifier_str oai:repository.umng.edu.co:10654/46075
network_acronym_str UNIMILTAR2
network_name_str Repositorio UMNG
repository_id_str
dc.title.eng.fl_str_mv Investigating mechanisms to promote engagement in psychomotor training using systematic breaks in presence in virtual reality
title Investigating mechanisms to promote engagement in psychomotor training using systematic breaks in presence in virtual reality
spellingShingle Investigating mechanisms to promote engagement in psychomotor training using systematic breaks in presence in virtual reality
REALIDAD VIRTUAL
TECNOLOGIA EDUCATIVA
EDUCACION - METODOS DE SIMULACION
NEUROCIENCIAS
APRENDIZAJE PERCEPTIVO-MOTOR
Pausas de Presencia
Compromiso
Psicofisiología
Entrenamiento psicomotor
Realidad Virtual
Breaks in Presence
Engagement
Psychophysiology
Psychomotor training
Virtual Reality
title_short Investigating mechanisms to promote engagement in psychomotor training using systematic breaks in presence in virtual reality
title_full Investigating mechanisms to promote engagement in psychomotor training using systematic breaks in presence in virtual reality
title_fullStr Investigating mechanisms to promote engagement in psychomotor training using systematic breaks in presence in virtual reality
title_full_unstemmed Investigating mechanisms to promote engagement in psychomotor training using systematic breaks in presence in virtual reality
title_sort Investigating mechanisms to promote engagement in psychomotor training using systematic breaks in presence in virtual reality
dc.creator.fl_str_mv Caldas Flautero, Oscar Iván
dc.contributor.advisor.none.fl_str_mv Aviles Sanchez, Oscar Fernando
Rodriguez Guerrero, Carlos
Verstraten, Tom
dc.contributor.author.none.fl_str_mv Caldas Flautero, Oscar Iván
dc.contributor.other.none.fl_str_mv Mauledoux Monroy, Mauricio Felipe
dc.subject.lemb.spa.fl_str_mv REALIDAD VIRTUAL
TECNOLOGIA EDUCATIVA
EDUCACION - METODOS DE SIMULACION
NEUROCIENCIAS
APRENDIZAJE PERCEPTIVO-MOTOR
topic REALIDAD VIRTUAL
TECNOLOGIA EDUCATIVA
EDUCACION - METODOS DE SIMULACION
NEUROCIENCIAS
APRENDIZAJE PERCEPTIVO-MOTOR
Pausas de Presencia
Compromiso
Psicofisiología
Entrenamiento psicomotor
Realidad Virtual
Breaks in Presence
Engagement
Psychophysiology
Psychomotor training
Virtual Reality
dc.subject.proposal.spa.fl_str_mv Pausas de Presencia
Compromiso
Psicofisiología
Entrenamiento psicomotor
Realidad Virtual
dc.subject.proposal.eng.fl_str_mv Breaks in Presence
Engagement
Psychophysiology
Psychomotor training
Virtual Reality
description Es ampliamente aceptado que se requiere un entrenamiento repetitivo con tareas específicas y orientado a objetivos para mejorar los beneficios de la plasticidad neuronal en busca de aprendizaje psicomotor. Sin embargo, el éxito depende de conservar comportamientos deseados, como motivación y compromiso, y evitar los no deseados, como aburrimiento y pérdida de concentración. Participar activamente y cooperar en el proceso de aprendizaje se conoce como compromiso y se relaciona con la satisfacción de necesidades psicológicas básicas, la interacción significativa con los objetos del entorno y la retroalimentación del desempeño y los estados emocionales para mejorar la experiencia de aprendizaje. Por lo tanto, se han abordado varios enfoques en los últimos años para promover el compromiso, incluida la gamificación y la realidad virtual (VR) para proporcionar mayores interacciones con el entorno, retroalimentación multisensorial y las condiciones para satisfacer las necesidades de competencia, autonomía y relacionalidad social. Aún así, pocos estudios pueden evaluar los efectos individuales de tales técnicas para promover el compromiso en tareas de aprendizaje con exigencia física. Esto es crucial porque un compromiso continuo asegura la adherencia al proceso de aprendizaje. Esta disertación explora nuevos métodos para promover el compromiso en el entrenamiento psicomotor en Realidad Virtual (RV) mediante el retiro sistemático de elementos y comportamientos asociados con las tres dimensiones de Presencia (Presencia Física, Presencia Social y Auto-Presencia) y cómo estos pueden contribuir de forma separada al compromiso. En la primera parte de este estudio, quisimos encontrar si el compromiso se afecta individualmente por la jugabilidad y el uso de RV. Los resultados mostraron que cada enfoque promovió cambios significativos pero diferenciados en indicadores de compromiso, como medidores de comportamiento, señales psicofisiológicas y autoinformes emocionales. También encontramos que a influencia de los estímulos de la realidad virtual son percibidos cuando la dificultad del juego es fija y se adapta al usuario. De lo contrario, el usuario se enfocará principalmente en intentar desempeñarse bien en el juego. En la segunda parte, propusimos que las pausas sistemáticas en la presencia podrían demostrar que cada una de las tres dimensiones de la presencia contribuye por separado a la formación de compromiso, si se emplean una dificultad fija. Demostramos que pausar la presencia física y la autopresencia fue más efectivo que la presencia social para afectar los indicadores psicofisiológicos y conductuales de compromiso. Descubrimos además que el nivel de intensidad de cada dimensión de Presencia (es decir, mayor o menos apariencia y comportamientos realistas) no influyó en la formación y percepción del compromiso. La evidencia obtenida se utilizó para proponer nuevas pautas para diseñar y adaptar entornos virtuales inmersivos, de acuerdo con el compromiso conductual y emocional en aprendizaje psicomotor.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-11-17
dc.date.accessioned.none.fl_str_mv 2024-11-05T14:43:16Z
dc.date.available.none.fl_str_mv 2024-11-05T14:43:16Z
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10654/46075
dc.identifier.instname.spa.fl_str_mv instname:Universidad Militar Nueva Granada
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.umng.edu.co
url https://hdl.handle.net/10654/46075
identifier_str_mv instname:Universidad Militar Nueva Granada
reponame:Repositorio Institucional Universidad Militar Nueva Granada
repourl:https://repository.umng.edu.co
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Wayne Choi, Ollivier Dyens, Teresa Chan, Mariles Schijven, Susanne Lajoie, Mary E. Mancini, Parvati Dev, Li Fellander-Tsai, Mathieu Ferland, Pamela Kato, James Lau, Michael Montonaro, Joelle Pineau, and Rajesh Aggarwal. Engagement and learning in simulation: Recommendations of the Simnovate Engaged Learning Domain Group. BMJ Simulation and Technology Enhanced Learning, 3(Suppl 1):S23–S32, 2017. doi: 10.1136/bmjstel-2016-000177.
Daniel M. Pendleton, Monica L. Sakalik, Morgan L. Moore, and Phillip D. Tomporowski. Mental engagement during cognitive and psychomotor tasks: Effects of task type, processing demands, and practice. International Journal of Psychophysiology, 109:124–131, 11 2016. doi:10.1016/J.IJPSYCHO.2016.08.012.
Christopher D. Wickens. Multiple resources and mental workload. Human Factors, 50(3):449–455, 2008. doi:10.1518/001872008X288394.
Benjamin S. Bloom, Max D Engelhart, Edward J Furst, and David R Krathwohl. I TAXONOMY OF EDUCATIONAL OBJECTIVES The Classification of Educational Goals HANDBOOK1 COGNITIVE DOMAIN LONGMANS. Longmans Green and Co., London, 1956.
Tianxiao Yang and Tiffany A Koszalka. Level of engagement and its application to learning resources (RIDLR, 2016). Technical report, Syracuse University – RIDLR project, Syracuse, 2016.
Elizabeth Simpson. The Classification of Educational Objectives in the Psychomotor Domain. Washington, DC: G, volume 3. Gryphon House, Washington D.C., 1972.
D T Wade. Measurement in neurological rehabilitation. Current opinion in neurology and neurosurgery, 5(5):682–6, 10 1992. URL: http://www.ncbi.nlm.nih.gov/ pubmed/1392142.
Peter Langhorne, Fiona Coupar, and Alex Pollock. Motor recovery after stroke: a systematic review. The Lancet Neurology, 8:741–754, 2009. doi:10.1016/ S1474-4422(09)70150-4.
Ignacio Demey, Ricardo Francisco Allegri, and Mauricio Barrera-Valencia. Bases Neurobiológicas de la Rehabilitación. CES Psicología, 7(1):130–140, 2014. URL: http://www.scielo.org.co/pdf/cesp/v7n1/v7n1a11.pdf.
Chris Fraser, Maxine Power, Shaheen Hamdy, John Rothwell, David Hobday, Igor Hollander, Pippa Tyrell, Anthony Hobson, Steven Williams, and David Thompson. Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury. Neuron, 34(5):831–40, 2002. doi:10.1016/ S0896-6273(02)00705-5.
Samar M Hatem, Geoffroy Saussez, Margaux Della Faille, Vincent Prist, Xue Zhang, Delphine Dispa, and Yannick Bleyenheuft. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Frontiers in human neuroscience, 10:442, 2016. doi:10.3389/ fnhum.2016.00442.
Michael A. Dimyan and Leonardo G. Cohen. Neuroplasticity in the context of motor rehabilitation after stroke. Nature Reviews Neurology, 7(2):76–85, 2011. doi:10. 1038/nrneurol.2010.200.
Jeffrey Laut, Francesco Cappa, Oded Nov, and Maurizio Porfiri. Increasing patient engagement in rehabilitation exercises using computer-based citizen science. PloS one, 10(3):1–17, 2015. doi:10.1371/journal.pone.0117013.
Megan M. Danzl, Nicole M. Etter, Richard O. Andreatta, and Patrick H. Kitzman. Facilitating neurorehabilitation through principles of engagement. Journal of Allied Health, 41(1):35–41, 2012.
Tracy Higgins, Elaine Larson, and Rebecca Schnall. Unraveling the meaning of patient engagement: A concept analysis. Patient Education and Counseling, 100(1):30– 36, 2017. doi:10.1016/j.pec.2016.09.002.
Leah Farrell, Karen Ingersoll, and Sherry Dyche Ceperich. Enhancing Patient Adherence: Promoting Engagement via Positive Patient-Provider Relationships in HIV/AIDS Care. Med. Encount., 23(2):69–71, 2009. URL: https://www.ncbi.nlm. nih.gov/pmc/articles/PMC4285710/pdf/nihms635349.pdf.
OMS Organización Mundial de la Salud. Adherencia a los tratamientos a largo plazo: pruebas para la acción. Organización Mundial de la Salud (OMS), Washington D.C., 2004. URL: http://www.paho.org/hq/index.php?option=com_docman&task=doc_ view&gid=18722&Itemid=.
E. L. Deci and M Vansteenkiste. Self-determination theory and basic need satisfaction: Understanding human development in positive psychology. - Psyc- NET. Ricerche di Psicologia, 27(1):23–40, 2004. URL: https://psycnet.apa.org/ record/2004-19493-002.
Gwyn N. Lewis and Juliet A. Rosie. Virtual reality games for movement rehabilitation in neurological conditions: how do we meet the needs and expectations of the users? Disability and Rehabilitation, 34(22):1880–1886, 11 2012. URL: http:// www.tandfonline.com/doi/full/10.3109/09638288.2012.670036, doi:10.3109/ 09638288.2012.670036.
Libertad Martín Alfonso, Héctor Bayarre Vea Ábalo, and Jorge Amado Grau. Analytic framework for the study of treatment adherence. In Chronic Diseases and Adherence Behaviors: Psychological Research in Ibero-American Countries, chapter 5, pages 93–117. Nova Science Publishers, 2011.
Mark A Guadagnoli. Challenge Point: A Framework for Conceptualizing the Effects of Various Practice Conditions in Motor Learning. Journal of Motor Behavior, 36(2):212–224, 2004. URL: http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.86.4969&rep=rep1&type=pdf.
Danielle E. Levac and Heidi Sveistrup. Motor Learning and Virtual Reality. In Virtual Reality for Physical and Motor Rehabilitation. Virtual Reality Technologies for Health and Clinical Applications., chapter 3, pages 25–46. Springer, New York, NY, USA, 2014. URL: http://link.springer.com/10.1007/978-1-4939-0968-1_ 3, doi:10.1007/978-1-4939-0968-1{\_}3.
J. A. Fredricks, P. C. Blumenfeld, and A. H. Paris. School Engagement: Potential of the Concept, State of the Evidence. Review of Educational Research, 74(1):59–109, 2004. doi:10.3102/00346543074001059.
Davide Corbetta, Federico Imeri, and Roberto Gatti. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. Journal of Physiotherapy, 61(3):117–124, 2015. doi:10.1016/j.jphys.2015.05.017.
Keith R Lohse, Courtney G E Hilderman, Katharine L Cheung, Sandy Tatla, and H F Machiel Van Der Loos. Virtual reality therapy for adults post-stroke: A systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLOSE One, 9(3):1–13, 2014. doi:10.1371/journal.pone.0093318.
M. F. Levin, P. L. Weiss, and E. A. Keshner. Emergence of Virtual Reality as a Tool for Upper Limb Rehabilitation: Incorporation of Motor Control and Motor Learning Principles. Physical Therapy, 95(3):415–425, 3 2015. doi:10.2522/ptj.20130579.
P Archambault, N Norouzi-Gheidari, G Tao, J M Solomon, D Kairy, and M F Levin. Use of exergames for upper extremity rehabilitation in stroke patients. Annals of Physical & Rehabilitation Medicine, 58(September):e97–e98, 2015. doi:10.1016/j. rehab.2015.07.237.
Misha Sra and Chris Schmandt. MetaSpace II: Object and full-body tracking for interaction and navigation in social VR. In ArXiv preprint, page 10, 2015. URL: https://arxiv.org/pdf/1512.02922.pdf, doi:10.48550/arXiv.1512.02922.
J.W. Burke, M. D. J. McNeil, D.K. Charles, P.J. Morrow, J.H. Crosbie, and S.M. Mcdonough. Optimising engagement for stroke rehabilitation using serious games. Vis Comput, 25(1):1085–1099, 2009. doi:10.1007/s00371-009-0387-4.
Lukas Zimmerli, Mario Jacky, Lars Lünenburger, Robert Riener, and Marc Bolliger. Increasing Patient Engagement During Virtual Reality-Based Motor Rehabilitation. Archives of Physical Medicine and Rehabilitation, 94(9):1737–1746, 2013. doi:10. 1016/j.apmr.2013.01.029.
Eletha Flores, Gabriel Tobon, Ettore Cavallaro, Francesca I. Cavallaro, Joel C. Perry, and Thierry Keller. Improving patient motivation in game development for motor deficit rehabilitation. In Proceedings of the 2008 International Conference in Advances on Computer Entertainment Technology - ACE ’08, page 381, New York, New York, USA, 2008. ACM Press. doi:10.1145/1501750.1501839.
Kwan Min Lee. Presence, Explicated. Communication Theory, 14(1):27–50, 2 2004. doi:10.1111/j.1468-2885.2004.tb00302.x.
Guido Makransky, Lau Lilleholt, and Anders Aaby. Development and validation of the Multimodal Presence Scale for virtual reality environments approach. Computers in Human Behavior, 72(1):276–285, 2017. doi:10.1016/j.chb.2017.02.066.
World Medical Association. World Medical Association Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects. JAMA, 310(20):2191– 2194, 2013. doi:10.1001/jama.2013.281053.
Bryan Kolb and Robbin Gibb. Principles of neuroplasticity and behavior. In Cognitive Neurorehabilitation, pages 6–21. Cambridge University Press, 1 2015. doi:10.1017/CBO9781316529898.003.
A M Barrett, Mooyeon Oh-Park, Peii Chen, and Nneka L Ifejika. Neurorehabilitation Five new things. Neurology Clinical Practice, 3(6):484–492, 2013. URL: www.neurology.org/cp, doi:10.1212/01.CPJ.0000437088.98407.fa.
Katy Madier. Enabling Low-cost Co-located Virtual Reality Experiences [master’s thesis]. ACM, New York, NY, USA, 1 2019.
Beverley French, Lois H. Thomas, Jacqueline Coupe, Naoimh E. Mcmahon, Louise Connell, Joanna Harrison, Christopher J. Sutton, Svetlana Tishkovskaya, and Caroline L. Watkins. Repetitive task training for improving functional ability after stroke. Cochrane Database of Systematic Reviews, 2016(11), 11 2016. doi: 10.1002/14651858.CD006073.pub3.
Lois H. Thomas, Beverley French, Jacqueline Coupe, Naoimh McMahon, Louise Connell, Joanna Harrison, Christopher J. Sutton, Svetlana Tishkovskaya, and Caroline L. Watkins. Repetitive Task Training for Improving Functional Ability after Stroke: A Major Update of a Cochrane Review. Stroke, 48(4):e102–e103, 4 2017. doi:10.1161/STROKEAHA.117.016503.
Isobel J. Hubbard, Mark W. Parsons, Cheryl Neilson, and Leeanne M. Carey. Taskspecific training evidence for and translation to clinical practice.pdf. Occupational Therapy International, 16(3-4):175–189, 2009. doi:10.1002/oti.275.
Carolee J Winstein, Steven L Wolf, Alexander W Dromerick, Christianne J Lane, Monica A Nelsen, Rebecca Lewthwaite, Steven Yong Cen, and Stanley P Azen. Effect of a Task-Oriented Rehabilitation Program on Upper Extremity Recovery Following Motor Stroke: The ICARE Randomized Clinical Trial. JAMA, 315(6):571–581, 2016. doi:10.1001/jama.2016.0276.
Martina Maier, Belén Rubio Ballester, and Paul F.M.J. Verschure. Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms, 12 2019. doi:10.3389/fnsys.2019.00074.
Christopher D Wickens, Shaun Hutchins, Thomas Carolan, and John Cumming. Effectiveness of part-task training and increasing-difficulty training strategies: a meta-analysis approach. Human Factors, 55(2):461–470, 2013. doi:10.1177/ 0018720812451994.
Donna L. Hoffman and Thomas P. Novak. Flow Online: Lessons Learned and Future Prospects. Journal of Interactive Marketing, 23(1):23–34, 2009. doi:10.1016/j. intmar.2008.10.003.
Li Keng Cheng, Ming Hua Chieng, and Wei Hua Chieng. Measuring virtual experience in a three-dimensional virtual reality interactive simulator environment: A structural equation modeling approach. Virtual Reality, 18(3):173–188, 2014. doi:10.1007/s10055-014-0244-2.
Mihaly Csikszentmihalyi. Finding Flow: The Psychology ofEngagement with Everyday Life. Basic Books, New York, USA, 2nd edition, 1998.
Joana F. Pinto, Henrique R. Carvalho, Gonçalo R.R. Chambel, João Ramiro, and Afonso Gonçalves. Adaptive gameplay and difficulty adjustment in a gamified upperlimb rehabilitation. 2018 IEEE 6th International Conference on Serious Games and Applications for Health, SeGAH 2018, pages 1–8, 2018. doi:10.1109/SeGAH.2018. 8401363.
Latasha R Swanson and David M Whittinghill. Intrinsic or Extrinsic? Using Videogames to Motivate Stroke Survivors: A Systematic Review. Games for Health Journal, 4(3):253–258, 2015. doi:10.1089/g4h.2014.0074.
Fatih Ozkul, Yunus Palaska, Engin Masazade, and Duygun Erol-Barkana. Exploring dynamic difficulty adjustment mechanism for rehabilitation tasks using physiological measures and subjective ratings. IET Signal Processing, 13(3):378–386, 2019. doi: 10.1049/iet-spr.2018.5241.
Carlos Rodriguez-Guerrero. Psychophysiological Feedback Control in Physical Human-Robot Interaction [dissertation]. University of Valladolid, Valladolid, 2012. URL: https://dialnet.unirioja.es/servlet/tesis?codigo=296323.
Oscar I. Caldas, Mauricio Mauledoux, Oscar F. Aviles, and Carlos Rodriguez Guerrero. Behavioral and Psychophysiological Measures of Engagement During Dynamic Difficulty Adjustment in Immersive Virtual Reality. Journal of Universal Computer Science, 29(1):16–33, 2023. doi:10.3897/jucs.89412.
Joseph ; Galea, Elizabeth ; Mallia, John C ; Rothwell, and Jorn Diedrichsen. The dissociable effects of punishment and reward on motor learning. Nature Neuroscience, 18:597–, 2015. doi:10.1038/nn.3956.
Wei Peng, Jih Hsuan Lin, Karin A. Pfeiffer, and Brian Winn. Need satisfaction supportive game features as motivational determinants: an experimental study of a self-determination theory guided exergame. Media Psychology, 15(2):175–196, 2012. doi:10.1080/15213269.2012.673850.
Peter Vorderer, Tilo Hartmann, and Christoph Klimmt. Explaining the enjoyment of playing video games | Proceedings of the second international conference on Entertainment computing. In ICEC ’03: Proceedings of the second international conference on Entertainment computing, pages 1–9, Pittsburgh, 2003. Carnegie Mellon University. URL: https://dl.acm.org/doi/10.5555/958720.958735, doi: 10.1145/958720.958735.
Maja Goršič, Imre Cikajlo, and Domen Novak. Competitive and cooperative arm rehabilitation games played by a patient and unimpaired person: effects on motivation and exercise intensity. Journal of NeuroEngineering and Rehabilitation, 14(1):1–18, 2017. doi:10.1186/s12984-017-0231-4.
Domen Novak, Aniket Nagle, Urs Keller, and Robert Riener. Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay. Journal of NeuroEngineering and Rehabilitation, 11(64):1–15, 2014. doi: 10.1186/1743-0003-11-64.
Stéphane Claude Gobron, Nicolas Zannini, Nicolas Wenk, Carl Schmitt, Yannick Charrotton, Aurélien Fauquex, Michel Lauria, Francis Degache, and Rolf Frischknecht. Serious games for rehabilitation using Head-Mounted display and haptic devices. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9254, pages 199–219. Springer, Cham, 2015. URL: http://link.springer.com/10.1007/ 978-3-319-22888-4_15, doi:10.1007/978-3-319-22888-4{\_}15.
Verena Klamroth-Marganska and Kilian Baur. Strength training of the upper extremity in virtual reality with an exoskeleton robot. In Proc. ICVR, pages 1–6, Montreal, Canada, 2017. IEEE. doi:10.1109/ICVR.2017.8007500.
Keith Lohse, Navid Shirzad, Alida Verster, Nicola Hodges, and H. F. Machiel Van der Loos. Video Games and Rehabilitation. Journal of Neurologic Physical Therapy, 37(4):166–175, 2013. doi:10.1097/NPT.0000000000000017.
L Omelina, B Jansen, B Bonnechère, S Van, Sint Jan, and J Cornelis. Serious games for physical rehabilitation: designing highly configurable and adaptable games. In Proc. Int. Conf. Disability, Virtual Reality & Associated Technologies Laval 2012 ICDVRAT, pages 195–201, Laval, France, 2012. URL: http://www.ict4rehab.org.
Qianqian Huang, Wei Wu, Xiaolong Chen, Bo Wu, Longqiang Wu, Xiaoli Huang, Songhe Jiang, and Lejian Huang. Evaluating the effect and mechanism of upper limb motor function recovery induced by immersive virtual-reality-based rehabilitation for subacute stroke subjects: Study protocol for a randomized controlled trial. Trials, 20(1):1–9, 2019. doi:10.1186/s13063-019-3177-y.
Merete Endresen Moan, Elise Klæbo Vonstad, Xiaomeng Su, Beatrix Vereijken, Marit Solbjør, and Nina Skjæret-Maroni. Experiences of Stroke Survivors and Clinicians With a Fully Immersive Virtual Reality Treadmill Exergame for Stroke Rehabilitation: A Qualitative Pilot Study. Frontiers in Aging Neuroscience, 13(November):1–12, 2021. doi:10.3389/fnagi.2021.735251.
Emma De Keersmaecker, Nina Lefeber, Ben Serrien, Bart Jansen, Carlos Rodriguez- Guerrero, Nilofar Niazi, Eric Kerckhofs, and Eva Swinnen. The Effect of Optic Flow Speed on Active Participation during Robot-Assisted Treadmill Walking in Healthy Adults. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(1):221–227, 2020. doi:10.1109/TNSRE.2019.2955804.
Alain Kaelin-Lang, Lumy Sawaki, and Leonardo G Cohen. Role of Voluntary Drive in Encoding an Elementary Motor Memory. J Neurophysiol, 93(6):1099– 1103, 2005. URL: http://jn.physiology.org/content/jn/93/2/1099.full.pdf, doi:10.1152/jn.00143.2004.
Roland Sigrist, Georg Rauter, Robert Riener, and Peter Wolf. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychonomic Bulletin & Review, 20(1):21–53, 2013. doi:10.3758/s13423-012-0333-8.
Eric B Nash, Gregory W Edwards, Jennifer a Thompson, and Woodrow Barfield. A Review of Presence and Performance in Virtual Environments. International Journal of Human-Computer Interaction, 12(1):1–41, 2000. doi:10.1207/ S15327590IJHC1201.
Jonathan A Stevens and J Peter Kincaid. The Relationship between Presence and Performance in Virtual Simulation Training. Open Journal of Modelling and Simulation, 3(3):41–48, 2015. URL: http://www.scirp.org/journal/ojmsihttp: //dx.doi.org/10.4236/ojmsi.2015.32005http://creativecommons.org/ licenses/by/4.0/, doi:10.4236/ojmsi.2015.32005.
Gianluca De Leo, Leigh A. Diggs, Elena Radici, and Thomas W. Mastaglio. Measuring sense of presence and user characteristics to predict effective training in an online simulated virtual environment. Simulation in Healthcare, 9(1):1–6, 2014. doi:10.1097/SIH.0b013e3182a99dd9.
Benjamin Eckstein, Eva Krapp, Anne Elsässer, and Birgit Lugrin. Smart substitutional reality: Integrating the smart home into virtual reality. Entertainment Computing, 31(January):100306, 2019. doi:10.1016/j.entcom.2019.100306.
Unal Cakiroglu and Seyfullah Gokoglu. A Design Model for Using Virtual Reality in Behavioral Skills Training. Journal of Educational Computing Research, 57(7):1723– 1744, 2019. doi:10.1177/0735633119854030.
Jonathan Van ’t Riet, Annika C Meeuwes, Laura Van Der Voorden, and Jeroen Jansz. Investigating the Effects of a Persuasive Digital Game on Immersion, Identification, and Willingness to Help. Basic and Applied Social Psychology, 40(4):180–194, 2018. doi:10.1080/01973533.2018.1459301.
Richard Skarbez, Frederick P. Brooks, and Mary C. Whitton. A survey of presence and related concepts. ACM Computing Surveys, 50(6):1–39, 2017. doi:10.1145/ 3134301.
Cagdas Yildirim, Barbaros Bostan, and Mehmet Ilker Berkman. Impact of different immersive techniques on the perceived sense of presence measured via subjective scales. Entertainment Computing, 31:100308, 8 2019. doi:10.1016/j.entcom.2019. 100308.
Alessandra G. Ciancone Chama, Merylin Monaro, Eugenio Piccoli, Luciano Gamberini, and Anna Spagnolli. Engaging the audience with biased news: An exploratory study on prejudice and engagement. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11433 LNCS:350–361, 2019. doi:10.1007/978-3-030-17287-9{\_}28.
Jesse Fox, Jessica McKnight, Yilu Sun, David Maung, and Roger Crawfis. Using a serious game to communicate risk and minimize psychological distance regarding environmental pollution. Telematics and Informatics, 46, 3 2020. doi:10.1016/J. TELE.2019.101320.
Mel Slater. A Note on Presence Terminology. Presence Connect, 3(3):1–5, 2003. URL: www.cs.ucl.ac.uk/staff/m.slater.
Richard Skarbez, Frederick Brooks, and Mary Whitton. Immersion and Coherence: Research Agenda and Early Results. IEEE Transactions on Visualization and Computer Graphics, 2626(c):1–1, 2020. doi:10.1109/tvcg.2020.2983701.
Stephen B. Gilbert. Perceived Realism of Virtual Environments Depends on Authenticity. Presence, 25(4):322–324, 2016. doi:10.1162/PRES{\_}a{\_}00276.
Shaun Gallagher. Philosophical conceptions of the self: Implications for cognitive science. Trends in Cognitive Sciences, 4(1):14–21, 2000. doi:10.1016/S1364-6613(99) 01417-5.
Richard Skarbez, Solene Neyret, Frederick P. Brooks, Mel Slater, and Mary C. Whitton. A psychophysical experiment regarding components of the plausibility illusion. IEEE Transactions on Visualization and Computer Graphics, 23(4):1322–1331, 2017. doi:10.1109/TVCG.2017.2657158.
Mel Slater. Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Phil. Trans. R. Soc. B, 364:3549–3557, 2009. doi:10.1098/ rstb.2009.0138.
Frank Biocca, Chad Harms, and Jenn Gregg. The Networked Minds Measure of Social Presence: Pilot Test of the Factor Structure and Concurrent Validity. In 4th annual international workshop on presence, pages 1–9, Philadelphia, 2001.
Jonny Collins, Holger Regenbrecht, and Tobias Langlotz. Visual coherence in mixed reality: A systematic enquiry. Presence: Teleoperators and Virtual Environments, 26(1):16–41, 2 2017. doi:10.1162/PRES{\_}A{\_}00284.
Mel Slater. How Colorful Was Your Day? Why Questionnaires Cannot Assess Presence in Virtual Environments. Presence, 13(4):484–493, 2004. URL: http://direct. mit.edu/pvar/article-pdf/13/4/484/1624147/1054746041944849.pdf.
Mel Slater and Anthony Steed. A Virtual Presence Counter. Presence: Teleoperators and Virtual Environments, 9(5):413–434, 10 2000. URL: https://dl.acm.org/doi/ 10.1162/105474600566925, doi:10.1162/105474600566925.
Luca Chittaro and Riccardo Sioni. Serious games for emergency preparedness: Evaluation of an interactive vs. a non-interactive simulation of a terror attack. Computers in Human Behavior, 50:508–519, 9 2015. doi:10.1016/J.CHB.2015.03.074.
Jakob Frohner, Gionata Salvietti, Philipp Beckerle, and Domenico Prattichizzo. Can wearable haptic devices foster the embodiment of virtual limbs? IEEE Transactions on Haptics, 12(3):339 – 349, 2019. doi:10.1109/TOH.2018.2889497.
Kostas Karpouzis, Fotis Liarokapis, Thomas A Stoffregen, Simone Grassini, Karin Laumann, and Martin Rasmussen Skogstad. The Use of Virtual Reality Alone Does Not Promote Training Performance (but Sense of Presence Does). Article 1743. Psychol, 11(1743):1–11, 2020. doi:10.3389/fpsyg.2020.01743.
Alessandra Gorini, Claret S. Capideville, Gianluca De Leo, Fabrizia Mantovani, and Giuseppe Riva. The Role of Immersion and Narrative in Mediated Presence: The Virtual Hospital Experience. Cyberpsychology, Behavior, and Social Networking, 14(3):99–105, 3 2011. URL: https://www.liebertpub.com/doi/10.1089/cyber. 2010.0100, doi:10.1089/CYBER.2010.0100.
Kangsoo Kim, Celso M. de Melo, Nahal Norouzi, Gerd Bruder, and Gregory F. Welch. Reducing Task Load with an Embodied Intelligent Virtual Assistant for Improved Performance in Collaborative Decision Making. In IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 529–538, Atlanta, GA, USA, 6 2020. Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ VR46266.2020.00074.
Kwanguk Kim, M. Zachary Rosenthal, David J. Zielinski, and Rachael Brady. Effects of virtual environment platforms on emotional responses. Computer Methods and Programs in Biomedicine, 113(3):882–893, 3 2014. doi:10.1016/J.CMPB.2013.12. 024.
Zexin Ma. Effects of immersive stories on prosocial attitudes and willingness to help: testing psychological mechanisms. Media Psychology, 23(6):865–890, 11 2019. doi:10.1080/15213269.2019.1651655.
Luigi Maffei, Massimiliano Masullo, Aniello Pascale, Gennaro Ruggiero, and Virginia Puyana Romero. Immersive virtual reality in community planning: Acoustic and visual congruence of simulated vs real world. Sustainable Cities and Society, 27:338–345, 11 2016. doi:10.1016/J.SCS.2016.06.022.
Arthur Maneuvrier, Leslie Marion Decker, Hadrien Ceyte, Philippe Fleury, and Patrice Renaud. Presence Promotes Performance on a Virtual Spatial Cognition Task: Impact of Human Factors on Virtual Reality Assessment. Frontiers in Virtual Reality, 0:16, 10 2020. doi:10.3389/FRVIR.2020.571713.
Cristina Ramirez-Fernandez, Alberto L. Moran, and Eloisa Garcia-Canseco. Haptic feedback in motor hand virtual therapy increases precision and generates less mental workload. In 9th International Conference on Pervasive Computing Technologies for Healthcare, pages 280–286. Institute of Electrical and Electronics Engineers Inc., 12 2015. doi:10.4108/ICST.PERVASIVEHEALTH.2015.260242.
Carlos Rodriguez-Guerrero, Kristel Knaepen, Juan C. Fraile-Marinero, Javier Perez- Turiel, Valentin Gonzalez-de Garibay, and Dirk Lefeber. Improving challenge/skill ratio in a multimodal interface by simultaneously adapting game difficulty and haptic assistance through psychophysiological and performance feedback. Frontiers in Neuroscience, 11:242, 2017. doi:10.3389/fnins.2017.00242.
Dai Yun Wu and Jih Hsuan Tammy Lin. Ways of Seeing Matter: The Impact of a Naturally Mapped Perceptual System on the Persuasive Effects of Immersive Virtual Reality Advertising. Communication Research Reports, 35(5):434–444, 10 2018. URL: https://www.tandfonline.com/doi/abs/10.1080/08824096.2018.1525349, doi: 10.1080/08824096.2018.1525349.
Oscar I Caldas, Oscar F Aviles, and Carlos Rodriguez-guerrero. Effects of Presence and Challenge Variations on Emotional Engagement in Immersive Virtual Environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(05):1109–1116, 2020. doi:10.1109/TNSRE.2020.2985308.
Zubin Choudhary, Kangsoo Kim, Ryan Schubert, Gerd Bruder, and Gregory F. Welch. Virtual Big Heads: Analysis of Human Perception and Comfort of Head Scales in Social Virtual Reality. In IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 425–433, Online event, 2020. IEEE. doi:10.1109/VR46266. 2020.00-41.
Matthias Hofer, Tilo Hartmann, Allison Eden, Rabindra Ratan, and Lindsay Hahn. The Role of Plausibility in the Experience of Spatial Presence in Virtual Environments. Frontiers in Virtual Reality, 0:2, 4 2020. doi:10.3389/FRVIR.2020.00002.
M. Martini, D. Perez-Marcos, and Maria V. Sanchez-Vives. What colour is my arm? Changes in skin colour of an embodied virtual arm modulates pain threshold. Frontiers in Human Neuroscience, 0(JUL):438, 7 2013. doi:10.3389/FNHUM.2013. 00438/BIBTEX.
R. Pals, L. Steg, J. Dontje, F. W. Siero, and K. I. van der Zee. Physical features, coherence and positive outcomes of person–environment interactions: A virtual reality study. Journal of Environmental Psychology, 40:108–116, 12 2014. doi:10.1016/J.JENVP.2014.05.004.
Richard Skarbez, Frederick P. Brooks, and Mary C. Whitton. Immersion and coherence in a stressful virtual environment. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST, pages 1–11, Tokio, Japan, 2018. doi:10.1145/3281505.3281530.
Katja Zibrek, Elena Kokkinara, and Rachel McDonnell. The effect of realistic appearance of virtual characters in immersive environments - Does the character’s personality play a role? IEEE Transactions on Visualization and Computer Graphics, 24(4):1681–1690, 2018. doi:10.1109/TVCG.2018.2794638.
Katja Zibrek, Sean Martin, and Rachel McDonnell. Is photorealism important for perception of expressive virtual humans in virtual reality? ACM Transactions on Applied Perception, 16(3), 2019. doi:10.1145/3349609.
Adrien F Baranes, Pierre-Yves Oudeyer, Jacqueline Gottlieb, Kou Murayama, and Tommy C Blanchard. The effects of task difficulty, novelty and the size of the search space on intrinsically motivated exploration. Frontiers in Neuroscience, 8(317):1–9, 2014. URL: www.frontiersin.org, doi:10.3389/fnins.2014.00317.
Rosalie Hooi and Hichang Cho. Virtual world continuance intention. Telematics and Informatics, 34(8):1454–1464, 12 2017. doi:10.1016/J.TELE.2017.06.009.
Chia Ying Li and Yu Hui Fang. I searched, I collected, I experienced: Exploring how mobile augmented reality makes the players go. Journal of Retailing and Consumer Services, 54:102018, 5 2020. doi:10.1016/J.JRETCONSER.2019.102018.
Birgit Nierula, Matteo Martini, Marta Matamala-Gomez, Mel Slater, and Maria V. Sanchez-Vives. Seeing an Embodied Virtual Hand is Analgesic Contingent on Colocation. The journal of pain, 18(6):645–655, 6 2017. URL: https://pubmed.ncbi. nlm.nih.gov/28108385/, doi:10.1016/J.JPAIN.2017.01.003.
Michael Sailer, Jan Ulrich Hense, Sarah Katharina Mayr, and Heinz Mandl. How gamification motivates: An experimental study of the effects of specific game design elements on psychological need satisfaction. Computers in Human Behavior, 69:371– 380, 2017. doi:10.1016/j.chb.2016.12.033.
Michelle Taub, Robert Sawyer, Andy Smith, Jonathan Rowe, Roger Azevedo, and James Lester. The agency effect: The impact of student agency on learning, emotions, and problem-solving behaviors in a game-based learning environment. Computers & Education, 147:103781, 4 2020. doi:10.1016/J.COMPEDU.2019.103781.
Selen Turkay and Sonam Adinolf. The effects of customization on motivation in an extended study with a massively multiplayer online roleplaying game. Cyberpsychology, 9(3), 2015. doi:10.5817/CP2015-3-2.
Daniele Ferdani, Bruno Fanini, Maria Claudia Piccioli, Fabiana Carboni, and Paolo Vigliarolo. 3D reconstruction and validation of historical background for immersive VR applications and games: The case study of the Forum of Augustus in Rome. Journal of Cultural Heritage, 43:129–143, 5 2020. doi:10.1016/J.CULHER.2019.12. 004.
James J Cummings and Jeremy N Bailenson. How immersive is enough? A metaanalysis of the effect of immersive technology on user presence. Media Psychology, 00:1–38, 2015. doi:10.1080/15213269.2015.1015740.
Helen R Gilpin, G Lorimer Moseley, Tasha R Stanton, and Roger Newport. Evidence for distorted mental representation of the hand in osteoarthritis. Rheumatology, 2015:678–682, 2015. URL: https://academic.oup.com/rheumatology/article/ 54/4/678/1799637, doi:10.1093/rheumatology/keu367.
Tasha R Stanton, Helen R Gilpin, Louisa Edwards, G Lorimer Moseley, and Roger Newport. Illusory resizing of the painful knee is analgesic in symptomatic knee osteoarthritis. PeerJ., 6(5206):1–20, 2018. doi:10.7717/peerj.5206.
Adalberto L. Simeone. Substitutional reality: Towards a research agenda. In 2015 IEEE 1st Workshop on Everyday Virtual Reality, WEVR 2015, pages 19–22. Institute of Electrical and Electronics Engineers Inc., 7 2015. doi:10.1109/WEVR.2015. 7151690.
Mel Slater, Bernhard Spanlang, Maria V. Sanchez-Vives, and Olaf Blanke. First Person Experience of Body Transfer in Virtual Reality. PLOS ONE, 5(5):e10564, 2010. URL: https://journals.plos.org/plosone/article?id=10. 1371/journal.pone.0010564, doi:10.1371/JOURNAL.PONE.0010564.
Maria V Sanchez-Vives, Bernhard Spanlang, Antonio Frisoli, Massimo Bergamasco, and Mel Slater. Virtual Hand Illusion Induced by Visuomotor Correlations. PLoS ONE, 5(4):1–6, 2010. URL: http://www.infitec.net/, doi:10.1371/journal. pone.0010381.
Tyler Rose, Chang S. Nam, and Karen B. Chen. Immersion of virtual reality for rehabilitation - Review. Applied Ergonomics, 69(2018):153–161, 2018. doi:10.1016/ j.apergo.2018.01.009.
Kangsoo Kim, Ryan Schubert, J. Hochreiter, Gerd Bruder, and Gregory Welch. Blowing in the wind: Increasing social presence with a virtual human via environmental airflow interaction in mixed reality. Computers & Graphics, 83:23–32, 10 2019. doi:10.1016/J.CAG.2019.06.006.
Run Yu and Doug A Bowman Chair. Designing Coherent Interactions for Virtual Reality [dissertation]. Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 7 2019. URL: https://vtechworks.lib.vt.edu/handle/10919/93268.
Robert Cuthbert, Selen Turkay, and Ross Brown. The effects of customisation on player experiences and motivation in a virtual reality game. ACM International Conference Proceeding Series, pages 221–232, 12 2019. doi:10.1145/3369457.3369475.
Jaziar Radianti, Tim A. Majchrzak, Jennifer Fromm, and Isabell Wohlgenannt. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers and Education, 147, 4 2020. doi:10.1016/J.COMPEDU.2019.103778.
Guido Makransky, Thomas S. Terkildsen, and Richard E. Mayer. Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60:225–236, 4 2019. doi:10.1016/j.learninstruc.2017. 12.007.
Mihaly Csikszentmihalyi. Flow: The psychology of optimal experience. Harper & Row Publishers, New York, USA, 1990. doi:10.2307/258925.
J E R Staddon and D T Cerutti. OPERANT CONDI TIONING. Annu Rev Psychol., 54:115–144, 2003. doi:10.1146/annurev.psych.54.101601.145124.
Kevin. Werbach and Dan Hunter. For the win : how game thinking can revolutionize your business. Wharton Digital Press, 2012.
Huei Ming Chiao, Yu Li Chen, and Wei Hsin Huang. Examining the usability of an online virtual tour-guiding platform for cultural tourism education. Journal of Hospitality, Leisure, Sport & Tourism Education, 23:29–38, 11 2018. doi:10.1016/ J.JHLSTE.2018.05.002.
Kristel Knaepen, Uros Marusic, Simona Crea, Carlos D Rodríguez Guerrero, Nicola Vitiello, Nathalie Pattyn, Olivier Mairesse, Dirk Lefeber, and Romain Meeusen. Psychophysiological response to cognitive workload during symmetrical, asymmetrical and dual-task walking. Human Movement Science, 40(1):248–263, 2015. doi: 10.1016/j.humov.2015.01.001.
J van Baren and W IJsselsteijn. Measuring Presence : A Guide to Current Measurement Approaches. Technical report, European Community Information Society Techonologies Programme, 2004.
K S Kassam and W B Mendes. The Effects of Measuring Emotion: Physiological Reactions to Emotional Situations Depend on whether Someone Is Asking. PLoS ONE, 8(6):64959, 2013. URL: www.plosone.org, doi:10.1371/journal.pone.0064959.
Carlos Rodriguez Guerrero, Juan Carlos Fraile Marinero, Javier Perez Turiel, and Victor M Noz. Using "human state aware" robots to enhance physical human– robot interaction in a cooperative scenario. Computer Methods and Programs in Biomedicine, 112:250–259, 2013. doi:10.1016/j.cmpb.2013.02.003.
Sylvia D. Kreibig. Autonomic nervous system activity in emotion: A review. Biological Psychology, 84(3):394–421, 2010. doi:10.1016/j.biopsycho.2010.03.010.
Géraldine Coppin and David Sander. Theoretical Approaches to Emotion and Its Measurement. In Emotion Measurement, chapter 1, pages 3–30. Woodhead Publishing, 1 2016. doi:10.1016/B978-0-08-100508-8.00001-1.
Klaus R. Scherer. What are emotions? and how can they be measured? Social Science Information, 44(4):695–729, 2005. doi:10.1177/0539018405058216.
Tobias Brosch and David Sander. The Appraising Brain: Towards a Neuro- Cognitive Model of Appraisal Processes in Emotion. Emotion review, 5(2):163–168, 2013. URL: http://journals.sagepub.com/doi/pdf/10.1177/1754073912468298, doi:10.1177/1754073912468298.
Antonio R. Damasio. Emotion in the perspective of an integrated nervous system. Brain Research Reviews, 26(2-3):83–86, 1998. doi:10.1016/S0165-0173(97) 00064-7.
Philip A Gable and Eddie Harmon-Jones. Approach-Motivated Positive Affect Reduces Breadth of Attention. Psychological science, 19(5):476–482, 2008. URL: http://journals.sagepub.com/doi/pdf/10.1111/j.1467-9280. 2008.02112.x, doi:10.1111/j.1467-9280.2008.02112.x.
Andrew J. Elliot, Andreas B. Eder, and Eddie Harmon-Jones. Approach- Avoidance Motivation and Emotion: Convergence and Divergence. Emotion Review, 5(3):308–311, 2013. URL: http://journals.sagepub.com/doi/pdf/10.1177/ 1754073913477517, doi:10.1177/1754073913477517.
Jesse J. Prinz. Which emotions are basic? In D Evans and P Cruse, editors, Emotion, Evolution, and Rationality, chapter 4, pages 69–87. Oxford University, 2004. doi:10.1093/acprof:oso/9780198528975.003.0004.
Paul Ekman, Wallace V. Friesen, Maureen O’Sullivan, Anthony Chan, Irene Diacoyanni-Tarlatzis, Karl Heider, Rainer Krause, William Ayhan LeCompte, Tom Pitcairn, Pio E. Ricci-Bitti, Klaus Scherer, Masatoshi Tomita, and Athanase Tzavaras. Universals and Cultural Differences in the Judgments of Facial Expressions of Emotion. Journal of Personality and Social Psychology, 53(4):712–717, 1987. URL: /record/1988-04343-001, doi:10.1037/0022-3514.53.4.712.
Klaus R. Scherer. Feelings Integrate the Central Representation of Appraisal-driven Response Organization in Emotion. In Feelings and Emotions, chapter 9, pages 136–157. Cambridge University Press, 2004. doi:10.1017/CBO9780511806582.009.
James A. Russell. A circumplex model of affect. Journal of Personality and Social Psychology, 39(6):1161–1178, 1980. doi:10.1037/h0077714.
Herbert L. Meiselman. Emotions Measurement. Elsevier, 2nd editio edition, 2021. doi:https://doi.org/10.1016/C2019-0-00017-9.
Michael D Robinson and Gerald L Clore. Episodic and Semantic Knowledge in Emotional Self-Report: Evidence for Two Judgment Processes. Journal of Personality and Social Psychology, 83(1):1520–1532, 2002. doi:10.1037//0022-3514.83.1.198.
Delroy L. Paulhus and Oliver P. John. Egoistic and Moralistic Biases in Self- Perception: The Interplay of Self-Deceptive Styles With Basic Traits and Motives. Journal of Personality, 66(6):1025–1060, 12 1998. URL: http://doi.wiley.com/ 10.1111/1467-6494.00041, doi:10.1111/1467-6494.00041.
Richard D Lane, Geoffrey L Ahern, Gary E Schwartz, and Alfred W Kaszniak. Is Alexithymia the Emotional Equivalent of Blindsight? Biological Psychiatry, 42(9):834–844, 11 1997. doi:10.1016/S0006-3223(97)00050-4.
Herbert L Meiselman. Emotion measurement: Theoretically pure or practical? Food Quality and Preference, 62:374–375, 2017. URL: http://dx.doi.org/10.1016/j. foodqual.2017.05.011, doi:10.1016/j.foodqual.2017.05.011.
Margaret M. Bradley and Peter J. Lang. Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1):49–59, 1994. doi:10.1016/0005-7916(94)90063-9.
C. Porcherot, S. Delplanque, C. Ferdenzi, N. Gaudreau, and I. Cayeux. Emotions of Odors and Personal and Home Care Products. Emotion Measurement, pages 427–454, 1 2016. URL: https://www.sciencedirect.com/science/article/pii/ B9780081005088000175, doi:10.1016/B978-0-08-100508-8.00017-5.
J Matias Kivikangas, Inger Ekman, Guillaume Chanel, Simo Järvelä, Ben Cowley, Mikko Salminen, Pentti Henttonen, and Niklas Ravaja. Review on psychophysiological methods in game research. In Nordic DiGRA, page 1’5, Stockholm, Sweden, 2010. URL: http://project.hkkk.fi/fuga/.
Gerhard Stemmler. Physiological processes during emotion. In Pierre Philippo and Robert S. Feldman, editors, The Regulation of Emotion, chapter 2, pages 33–70. Lawrence Erlbaum Associates, Mahwah, NJ, 2004. URL: https://www. researchgate.net/publication/262106219, doi:10.4324/9781410610898.
Greg J. Norman, Elizabeth Necka, and Gary G. Berntson. The Psychophysiology of emotions. In Herbert L. Meiselman, editor, Emotion Measurement, chapter 4, pages 83–98. Elsevier, 2016. URL: http://www.pef.uni-lj.si/ceps/knjiznica/ doc/zuljan-vogrinc.pdf, doi:10.1016/S0031-0182(11)00557-8.
Iris B Mauss and Michael D Robinson. Measures of emotion: A review. Cogn Emot, 23(2):209–237, 2009. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC2756702/pdf/nihms134765.pdf, doi:10.1080/02699930802204677.
Ahmet Cengizhan Dirican and Mehmet Göktürk. Psychophysiological measures of human cognitive states applied in Human Computer Interaction. Procedia Computer Science, 3:1361–1367, 2011. doi:10.1016/j.procs.2011.01.016.
Camila L.B. Maia and Elizabeth S. Furtado. Using psychophysiological measures to estimate dimensions of emotion in hedonic experiences. Computers and Electrical Engineering, 71(March):431–439, 2018. doi:10.1016/j.compeleceng.2018.07.048.
Mikel Val-Calvo, José Ramón Álvarez-Sánchez, Jose Manuel Ferrández-Vicente, Alejandro Díaz-Morcillo, and Eduardo Fernández-Jover. Real-Time Multi-Modal Estimation of Dynamically Evoked Emotions Using EEG, Heart Rate and Galvanic Skin Response. https://doi.org/10.1142/S0129065720500136, 30(4), 3 2020. doi:10.1142/S0129065720500136.
Angel Jimenez-Molina, Cristian Retamal, and Hernan Lira. Using Psychophysiological Sensors to Assess Mental Workload During Web Browsing. Sensors, 18(458), 2018. URL: www.mdpi.com/journal/sensors, doi:10.3390/s18020458.
Adrian Colomer Granero, Felix Fuentes-Hurtado, Valery Naranjo Ornedo, Jaime Guixeres Provincale, Jose M. Ausin, and Mariano Alcañiz Raya. A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents. Frontiers in Computational Neuroscience, 10(74):1–14, 2016. URL: www.frontiersin.org, doi:10.3389/fncom.2016.00074.
Likun Xia, Aamir Saeed Malik, and Ahmad Rauf Subhani. A physiological signalbased method for early mental-stress detection. Biomedical Signal Processing and Control, 46:18–32, 2018. doi:10.1016/j.bspc.2018.06.004.
V. C. Goessl, J. E. Curtiss, and S. G. Hofmann. The effect of heart rate variability biofeedback training on stress and anxiety: a meta-analysis. Psychological Medicine, 47(15):2578–2586, 11 2017. doi:10.1017/S0033291717001003.
Andrea Haarmann, Wolfram Boucsein, and Florian Schaefer. Combining electrodermal responses and cardiovascular measures for probing adaptive automation during simulated flight. Applied Ergonomics, 40(6):1026–1040, 11 2009. doi: 10.1016/j.apergo.2009.04.011.
Wolfram Boucsein. Methods of Electrodermal Recording. In Electrodermal activity, pages 104–189. Springer US, New York, 2 edition, 2012. doi:10.1007/ 978-1-4614-1126-0.
Kalliopi Kyriakou, Bernd Resch, Günther Sagl, Andreas Petutschnig, Christian Werner, David Niederseer, Michael Liedlgruber, Frank Wilhelm, Tess Osborne, and Jessica Pykett. Detecting moments of stress from measurements of wearable physiological sensors. Sensors (Switzerland), 19(17):1–26, 2019. doi:10.3390/s19173805.
Mieko Ohsuga, Futomi Shimono, and Hirokazu Genno. Assessment of phasic work stress using autonomic indices. International Journal of Psychophysiology, 40(3):211– 220, 4 2001. URL: https://www.sciencedirect.com/science/article/abs/pii/ S0167876000001896, doi:10.1016/S0167-8760(00)00189-6.
A. Kaklauskas, E. K. Zavadskas, M. Seniut, G. Dzemyda, V. Stankevic, C. Simkevičius, T. Stankevic, R. Paliskiene, A. Matuliauskaite, S. Kildiene, L. Bartkiene, S. Ivanikovas, and V. Gribniak. Web-based Biometric Computer Mouse Advisory System to Analyze a Users Emotions and Work Productivity. Engineering Applications of Artificial Intelligence, 24(6):928–945, 2011. doi:10.1016/j.engappai. 2011.04.006.
Dongrae Cho, Jinsil Ham, Jooyoung Oh, Jeanho Park, Sayup Kim, Nak Kyu Lee, and Boreom Lee. Detection of stress levels from biosignals measured in virtual reality environments using a kernel-based extreme learning machine. Sensors (Switzerland), 17(10), 2017. doi:10.3390/s17102435.
Elizabeth M. Argyle, Adrian Marinescu, Max L. Wilson, Glyn Lawson, and Sarah Sharples. Physiological indicators of task demand, fatigue, and cognition in future digital manufacturing environments. International Journal of Human-Computer Studies, 145:102522, 1 2021. doi:10.1016/J.IJHCS.2020.102522.
Chama Belkhiria and Vsevolod Peysakhovich. EOG metrics for cognitive workload detection. Procedia Computer Science, 192:1875–1884, 1 2021. doi:10.1016/J. PROCS.2021.08.193.
Chama Belkhiria and Vsevolod Peysakhovich. Electro-Encephalography and Electro- Oculography in Aeronautics: A Review Over the Last Decade (2010–2020). Frontiers in Neuroergonomics, 1(December), 2020. doi:10.3389/fnrgo.2020.606719.
Yair Barniv, Mario Aguilar, and Erion Hasanbelliu. Using EMG to anticipate head motion for virtual-environment applications. IEEE Transactions on Biomedical Engineering, 52(6):1078–1093, 6 2005. doi:10.1109/TBME.2005.848378.
Yogendra Narain Singh, Sanjay Kumar Singh, and Amit Kumar Ray. Bioelectrical Signals as Emerging Biometrics: Issues and Challenges. ISRN Signal Processing, 2012:1–13, 2012. URL: http://www.hindawi.com/journals/isrn/2012/712032/, doi:10.5402/2012/712032.
Zoe Brown and Ben Gupta. Biological Signals and their Measurement. Anesthesia, pages 164–169, 2017. URL: www.anaesthesiologists.org.
John Chapman. Amplifiers and biological signals. Anaesthesia and Intensive Care Medicine, 6(9):299–301, 2005. doi:10.1383/anes.2005.6.9.299.
Andreas Keil, Stefan Debener, Gabriele Gratton, Markus Junghöfer, Emily S. Kappenman, Steven J. Luck, Phan Luu, Gregory A. Miller, and Cindy M. Yee. Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology, 51(1):1–21, 2014. doi:10.1111/PSYP.12147.
T W Picton, S Bentin, P Berg, E Donchin, S A Hillyard, R Johnson, G A Miller, W Ritter, D S Ruchkin, M D Rugg, and M J Taylor. Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37(2):127–152, 2000. URL: https://onlinelibrary. wiley.com/doi/pdf/10.1111/1469-8986.3720127.
Terry D. Blumenthal, Bruce N. Cuthbert, Diane L. Filion, Steven Hackley, Ottmar V. Lipp, and Anton Van Boxtel. Committee report: Guidelines for human startle eyeblink electromyographic studies. Psychophysiology, 42(1):1–15, 2005. doi: 10.1111/J.1469-8986.2005.00271.X.
Matjaž Mihelj, Domen Novak, Jaka Ziherl, Andrej Olenšek, and Marko Munih. Challenges in biocooperative rehabilitation robotics. In IEEE International Conference on Rehabilitation Robotics, number 978, pages 11–16, Zurich, Switzerland, 2011. IEEE. doi:10.1109/ICORR.2011.5975435.
Sara Gonçalves Farias, Mariana Rodrigues, Stephanie Dias da Costa, Adriana Ribeiro de Macedo, Anaelli A. Nogueira-Campos, Marco Antonio Cavalcanti Garcia, and Luis Aureliano Imbiriba. Cardiorespiratory and Emotional Responses During Balance Exercises. Research quarterly for exercise and sport, 18:1– 8, 2022. URL: https://pubmed.ncbi.nlm.nih.gov/35040750/, doi:10.1080/ 02701367.2021.1953691.
Zhiqin Qian, Dongyuan Lv, Ying Lv, and Zhuming Bi. Modeling and Quantification of Impact of Psychological Factors on Rehabilitation of Stroke Patients. IEEE journal of biomedical and health informatics, 23(2):683–692, 3 2019. URL: https://pubmed. ncbi.nlm.nih.gov/29993937/, doi:10.1109/JBHI.2018.2827100.
P.F Viñas, M. Hernández, J Pérez-Turiel, J.C. Fraile, A. Cuadrado, R Alonso, and M. Franco-Martin. Psychophysiological measurements in a robotic platform for upper limbs rehabilitation: first trials. In Converging Clinical and Engineering Research on Neurorehabilitation II, pages 1205–1209. Springer International Publishing, 2016.
Noa Raphaely Beer, Nachum Soroker, Nathan M. Bornstein, and Michal Katz Leurer. Association between cardiac autonomic control and cognitive performance among patients post stroke and age-matched healthy controls—an exploratory pilot study. Neurological Sciences, 38(11):2037–2043, 2017. doi:10.1007/s10072-017-3097-0.
Eun Hye Kim, Jui-hong Chien, Chang-chia Liu, Kumiko Oishi, Kenichi Oishi, Rajani Sebastian, Cornelia Demsky, Frederick Lenz, Argye E Hillis, Eun Hye, Jui-hong Chien, Chang-chia Liu, Kumiko Oishi, Kenichi Oishi, Eun Hye, Jui-hong Chien, Chang-chia Liu, Kumiko Oishi, Kenichi Oishi, Rajani Sebastian, and Cornelia Demsky. Stroke of bad luck ? Neurocase, 23(1):70–78, 2017. doi:10.1080/13554794. 2017.1296578.
Hassan Mohammadi-Abdar, Angela L. Ridgel, Fred M. Discenzo, Robert S. Phillips, Benjamin L.Walter, and Kenneth A. Loparo. Test and Validation of a Smart Exercise Bike for Motor Rehabilitation in Individuals with Parkinson’s Disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(11):1254, 11 2016. doi:10.1109/TNSRE.2016.2549030.
Marquardt D, Jongbloed-Pereboom M, Staal B, Appell H-J, Overvelde A, and Nijhuis-Van der Sanden MWG. Influence of a psychological stressor on motor performance and motor learning of a fine motor task: A randomised controlled experiment. Physiotherapy (United Kingdom), 101:eS954, 2015. doi:10.1016/j.physio.2015. 03.1806.
David J. Cornforth, Alexander Koenig, Robert Riener, Katherine August, Ahsan H. Khandoker, Chandan Karmakar, Marimuthu Palaniswami, and Herbert F. Jelinek. The Role of Serious Games in Robot Exoskeleton-Assisted Rehabilitation of Stroke Patients. In Serious Games Analytics, pages 233–254. Springer International Publishing, Cham, 2015. doi:10.1007/978-3-319-05834-4{\_}10.
Alexander Koenig, Ximena Omlin, Lukas Zimmerli, Mark Sapa, Carmen Krewer, Marc Bolliger, Friedemann Müller, and Robert Riener. Psychological state estimation from physiological recordings during robot-assisted gait rehabilitation. Journal of Rehabilitation Research & Development, 48(4):367–386, 2011. doi:10.1682/JRRD. 2010.03.0044.
Nika Goljar, Metka Javh, Janja Poje, Julija Ocepek, Domen Novak, Jaka Ziherl, Andrej Olenšek, Matjaž Mihelj, and Marko Munih. Psychophysiological responses to robot training in different recovery phases after stroke. In Proc. IEEE ICORR, pages 1–6, Zurich, Switzerland, 2011. doi:10.1109/ICORR.2011.5975498.
Alexander Koenig, Domen Novak, Ximena Omlin, Michael Pulfer, Eric Perreault, Lukas Zimmerli, Matjaz Mihelj, and Robert Riener. Real-Time Closed-Loop Control of Cognitive Load in Neurological Patients During Robot-Assisted Gait Training. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(4), 2011. doi:10.1109/TNSRE.2011.2160460.
Domen Novak, Matjaž Mihelj, Jaka Ziherl, Andrej Olenšek, and Marko Munih. Psychophysiological measurements in a biocooperative feedback loop for upper extremity rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(4):400–410, 2011. doi:10.1109/TNSRE.2011.2160357.
Domen Novak, Jaka Ziherl, Andrej Olenšek, Maja Milavec, Janez Podobnik, Matjaž Mihelj, and Marko Munih. Psychophysiological responses to robotic rehabilitation tasks in stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(4):351–361, 2010. doi:10.1109/TNSRE.2010.2047656.
Melissa Mae White, Wenjuan Zhang, Anna T. Winslow, Maryam Zahabi, Fan Zhang, He Huang, and David B. Kaber. Usability Comparison of Conventional Direct Control Versus Pattern Recognition Control of Transradial Prostheses. IEEE Transactions on Human-Machine Systems, 47(6):1146–1157, 2017. doi:10.1109/THMS. 2017.2759762.
B R Cavalcante, R M Ritti-Dias, A H G Soares, A H Lima, M A Correia, L D De Matos, F Gobbi, A S Leicht, N Wolosker, and G G Cucato. A Single Bout of Arm-crank Exercise Promotes Positive Emotions and Post-Exercise Hypotension in Patients with Symptomatic Peripheral Artery Disease. European Journal of Vascular & Endovascular Surgery, 53:223–228, 2017. URL: http://dx.doi.org/10.1016/j. ejvs.2016.11.021, doi:10.1016/j.ejvs.2016.11.021.
Hyun K Kim, Jaehyun Park, Yeongcheol Choi, and Mungyeong Choe. Virtual reality sickness questionnaire ( VRSQ ): Motion sickness measurement index in a virtual reality environment. Applied Ergonomics, 69:66–73, 2018. doi:10.1016/j.apergo. 2017.12.016.
Prin X. Amorapanth, Viswanath Aluru, Jennifer Stone, Arash Yousefi, Alvin Tang, Sarah Cox, Seda Bilaloglu, Ying Lu, Joseph Rath, Coralynn Long, Brian Im, and Preeti Raghavan. Traumatic brain injury results in altered physiologic, but not subjective responses to emotional stimuli. Brain Injury, 32(13-14):1712–1719, 12 2018. URL: https://www.tandfonline.com/doi/abs/10.1080/02699052.2018. 1519598, doi:10.1080/02699052.2018.1519598.
Tatiana Aboulafia-Brakha, Philippe Allain, and Radek Ptak. Emotion regulation after traumatic brain injury: Distinct patterns of sympathetic activity during anger expression and recognition. Journal of Head Trauma Rehabilitation, 31(3):E21–E31, 2016. doi:10.1097/HTR.0000000000000171.
Heather M. Francis, Alana Fisher, Jacqueline A. Rushby, and Skye McDonald. Reduced heart rate variability in chronic severe traumatic brain injury: Association with impaired emotional and social functioning, and potential for treatment using biofeedback. Neuropsychological Rehabilitation, 26(1):103–125, 2016. doi:10.1080/09602011.2014.1003246.
Yvonne Treusch, Julie Page, Cornelis Van Der Luijt, Mina Beciri, Rebeca Benitez, Maria Stammler, and Valentine L Marcar. Emotional reaction in nursing home residents with dementia-associated apathy: A pilot study. Geriatric Mental Health Care, 3:1–6, 2015. URL: http://dx.doi.org/10.1016/j.gmhc.2015.04.001, doi: 10.1016/j.gmhc.2015.04.001.
Wendy Moyle, Marie Louise Cooke, Elizabeth Beattie, David HK Shum, Siobhan T O, Sue Barrett, and Billy Sung. Foot Massage and Physiological Stress in People with Dementia: A Randomized Controlled Trial. The Journal of Alternative and Complementary Medicine, 20(4):305–311, 2014. doi:10.1089/acm.2013.0177.
Frank A Russo, Naresh N Vempala, Gillian M Sandstrom, and Catherine J Stevens. Predicting musically induced emotions from physiological inputs: linear and neural network models. Frontiers in Psychology, 4(468):1–21, 2013. URL: www.frontiersin.org, doi:10.3389/fpsyg.2013.00468.
Lorenza Tiberio, Amedeo Cesta, Gabriella Cortellessa, Luca Padua, and Anna Rita Pellegrino. Assessing affective response of older users to a telepresence robot using a combination of psychophysiological measures. Proceedings - IEEE International Workshop on Robot and Human Interactive Communication, pages 833–838, 2012. doi:10.1109/ROMAN.2012.6343855.
Sonya Kim, Vance Zemon, Marie M. Cavallo, Joseph F. Rath, Rollin McCraty, and Frederick W. Foley. The Control of Heart Rate Variability Using Biofeedback in Individuals with Chronic Brain Injury and Its Effects on Executive Functioning. Archives of Physical Medicine and Rehabilitation, 93(10):2012, 2012. doi:10.1016/ j.apmr.2012.08.067.
Shih Ching Yeh, Yuan Yuan Li, Chu Zhou, Pin Hua Chiu, and Jun Wei Chen. Effects of virtual reality and augmented reality on induced anxiety. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(7):1345–1352, 2018. doi: 10.1109/TNSRE.2018.2844083.
J P Caneiro, Peter O’sullivan, Anne Smith, G Lorimer Moseley, and Ottmar V Lipp. Implicit evaluations and physiological threat responses in people with persistent low back pain and fear of bending. Scandinavian Journal of Pain, 17:355–366, 2017. doi:10.1016/j.sjpain.2017.09.012.
A N Clausen, R L Aupperle, J-Fv V Sisante, D R Wilson, and S A Billinger. Pilot Investigation of PTSD, Autonomic Reactivity, and Cardiovascular Health in Physically Healthy Combat Veterans. PLoS ONE, 11(9):162547, 2016. doi: 10.1371/journal.pone.0162547.
Timo Skodzik, Tatjana Zettler, Maurice Topper, Jens Blechert, and Thomas Ehring. The effect of verbal and imagery-based worry versus distraction on the emotional response to a stressful in-vivo situation. Journal of Behavior Therapy and Experimental Psychiatry, 52:51–58, 2016. URL: http://dx.doi.org/10.1016/j.jbtep. 2016.03.003, doi:10.1016/j.jbtep.2016.03.003.
Justin Munafo, Meg Diedrick, and Thomas A Stoffregen. The virtual reality head - mounted display Oculus Rift induces motion sickness and is sexist in its effects. Experimental Brain Research, 235(3):889–901, 2016. doi:10.1007/s00221-016-4846-7.
Thanarat Sripongngam, Wichai Eungpinichpong, Dhavee Sirivongs, Jaturat Kanpittaya, Kamonwan Tangvoraphonkchai, and Sutin Chanaboon. Psychological stress can be decreased by traditional Thai massage. Journal of the Medical Association of Thailand, 98:S29–S35, 2015.
Ben Ainsworth, Jemma E. Marshall, Daniel Meron, David S. Baldwin, Paul Chadwick, Marcus R. Munafò, and Matthew Garner. Evaluating psychological interventions in a novel experimental human model of anxiety. Journal of Psychiatric Research, 63:117–122, 2015. doi:10.1016/j.jpsychires.2015.02.001.
Tushar J. Palekar, Madhav G. Mokashi, Shahnawaz Anwer, Arjun L. Kakrani, Shilpa D. Khandare, and Ahmad H. Alghadir. Effect of galvanic skin resistanceaided biofeedback training in reducing the pulse rate, respiratory rate, and blood pressure due to perceived stress in physiotherapy students. Turkish Journal of Physical Medicine and Rehabilitation, 61(2):116–120, 6 2015.
José Morales, Juan M. Álamo, Xavier García-Masso, Bernat Buscà, Jose L. López, Pilar Serra-Año, and Luís Millán González. Use of heart rate variability in monitoring stress and recovery in judo athletes. Journal of Strength and Conditioning Research, 28(7):1896–1905, 2014. doi:10.1519/JSC.0000000000000328.
Maman Paul and Kanupriya Garg. The effect of heart rate variability biofeedback on performance psychology of basketball players. Applied Psychophysiology Biofeedback, 37(2):131–144, 2012. doi:10.1007/s10484-012-9185-2.
John L. Andreassi. Psychophysiology : human behavior and physiological response. Lawrence Erlbaum, 2007.
Lin Shu, Jinyan Xie, Mingyue Yang, Ziyi Li, Zhenqi Li, Dan Liao, Xiangmin Xu, and Xinyi Yang. A Review of Emotion Recognition Using Physiological Signals. Sensors, 18(2074), 2018. URL: www.mdpi.com/journal/sensors, doi:10.3390/s18072074.
Benjamin Cowley, Marco Filetti, Kristian Lukander, Jari Torniainen, Andreas Henelius, Lauri Ahonen, Oswald Barral, Ilkka Kosunen, Teppo Valtonen, Minna Huotilainen, Niklas Ravaja, and Giulio Jacucci. A short review and primer on electroencephalography in human computer interaction applications. Foundations and Trends in Human-Computer Interaction, 9(3-4):151–308, 2015. URL: http: //arxiv.org/abs/1609.00183, doi:10.1561/1100000065.
G. G. Berntson, K. S. Quigley, G. J. Norman, and D. L. Lozano. Cardiovascular psychophysiology. In Handbook of psychophysiology, chapter 9th, pages 183–216. Cambridge University Press, 2017. doi:https://doi.org/10.1017/9781107415782. 009.
John Cacioppo, Louis G Tassinary, and Gary G Berntson. The Handbook of Psychophysiology, volume 44. Cambridge University Press, 2007. doi:10.1017/ CBO9780511546396.
Robert T Tung. Electrocardiographic Limb Leads Placement and Its Clinical Implication. Kansas Journal of Medicine, 14:229–230, 2021. doi:10.17161/kjm.vol14. 15259.
R.A. Harrigan, T.C. Chan, and W.J. Brady. Basic electrocardiographic techniques. In Roberts JR, Custalow CB, and Thomsen TW, editors, Roberts and Hedges’ clinical procedures in emergency medicine and acute care, chapter 14, pages 275–287. Elsevier, 7th edition, 2019.
Md Rafiul Amin and Rose T. Faghih. Tonic and Phasic Decomposition of Skin Conductance Data: A Generalized-Cross-Validation-Based Block Coordinate Descent Approach. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pages 745–749. IEEE, 2019. doi:10.1109/EMBC.2019.8857074.
Alberto Greco, Gaetano Valenza, Antonio Lanata, Enzo Pasquale Scilingo, and Luca Citi. CvxEDA: A convex optimization approach to electrodermal activity processing. IEEE Transactions on Biomedical Engineering, 63(4):797–804, 2016. doi:10.1109/ TBME.2015.2474131.
Mathias Benedek and Christian Kaernbach. Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology, 47:647–658, 2010. doi:10.1111/j.1469-8986.2009.00972.x.
Dominik R. Bach. A head-to-head comparison of SCRalyze and Ledalab, two modelbased methods for skin conductance analysis. Biological Psychology, 103(1):63–68, 2014. doi:10.1016/j.biopsycho.2014.08.006.
Steven R Green, Philip A Kragel, Matthew E Fecteau, and Kevin S Labar. Development and validation of an unsupervised scoring system (Autonomate) for skin conductance response analysis. Int J Psychophysiol, 91(3):186–193, 2014. doi:10.1016/j.ijpsycho.2013.10.015.
Marieke van Dooren, J. J.G.Gert Jan de Vries, and Joris H. Janssen. Emotional sweating across the body: Comparing 16 different skin conductance measurement locations. Physiology & Behavior, 106(2):298–304, 5 2012. doi:10.1016/J.PHYSBEH. 2012.01.020.
F.Q. AL-Khalidi, R. Saatchi, D. Burke, H. Elphick, and S. Tan. Respiration rate monitoring methods: A review. Pediatric Pulmonology, 46(6):523–529, 2011. URL: http://doi.wiley.com/10.1002/ppul.21416, doi:10.1002/ppul.21416.
Karan Sharma, Claudio Castellini, Egon L. van den Broek, Alin Albu-Schaeffer, and Friedhelm Schwenker. A dataset of continuous affect annotations and physiological signals for emotion analysis. Scientific Data, pages 1–13, 2018. URL: http://arxiv. org/abs/1812.02782, doi:10.1038/s41597-019-0209-0.
Ali Darzi and Domen Novak. Optimizing human workload in a computer game using real-time control of heart rate and respiration. In Proceedings of the 2017 Rocky Mountain Bioengineering Symposium, number August, 2017.
J Pan and W J Tompkins. Pan Tomkins 1985 - QRS detection.pdf. IEEE Transactions on Biomedical Engineering, 32(3):230–236, 1985. doi:10.1109/TBME.1985. 325532.
Wolfram Boucsein, Don C. Fowles, Sverre Grimnes, Gershon Ben-Shakhar,Walton T. Roth, Michael E. Dawson, and Diane L. Filion. Publication recommendations for electrodermal measurements. Psychophysiology, 49(8):1017–1034, 2012. doi:10. 1111/j.1469-8986.2012.01384.x.
Brendan B Murphy, Brittany H Scheid, Quincy Hendricks, Nicholas V Apollo, Brian Litt, and Flavia Vitale. Time Evolution of the Skin-Electrode Interface Impedance under Different Skin Treatments Skin-Electrode Interface Impedance under Different Skin Treatments. Sensors, 21:5210, 2021. doi:10.3390/s21155210.
David M Johnson. Introduction to and Review of Simulator Sickness Research. Technical Report Personnel Performance and Training Technology, U.S. Army Research Institute for the Behavioral and Social Sciences, Arlington, 2005. URL: https://apps.dtic.mil/sti/pdfs/ADA434495.pdf.
Stephen Palmisano, Rebecca Mursic, and Juno Kim. Vection and cybersickness generated by head-and-display motion in the Oculus Rift. Displays, 46:1–8, 1 2017. doi:10.1016/J.DISPLA.2016.11.001.
Panagiotis Kourtesis, Simona Collina, Leonidas A.A. Doumas, and Sarah E. MacPherson. Technological Competence Is a Pre-condition for Effective Implementation of Virtual Reality Head Mounted Displays in Human Neuroscience: A Technological Review and Meta-Analysis. Frontiers in Human Neuroscience, 13(October):1–17, 2019. doi:10.3389/fnhum.2019.00342.
Kay M Stanney, Kelly S Hale, Isabelina Nahmens, Central Florida, Robert S Kennedy, and R S K Assessments. What to Expect from Immersive Virtual Environment Exposure : Influences of Gender , Body Mass Index , and Past Experience. Human Factors, 45(3):504–520, 2003. doi:10.1518/hfes.45.3.504.27254.
Panagiotis Kourtesis, Simona Collina, Leonidas A.A. Doumas, and Sarah E. MacPherson. Validation of the Virtual Reality Neuroscience Questionnaire: Maximum Duration of Immersive Virtual Reality Sessions Without the Presence of Pertinent Adverse Symptomatology. Frontiers in Human Neuroscience, 13:417, 11 2019. doi:10.3389/FNHUM.2019.00417/BIBTEX.
Heather L. O’Brien, Paul Cairns, and Mark Hall. A practical approach to measuring user engagement with the refined user engagement scale (UES) and new UES short form. International Journal of Human Computer Studies, 112(December 2017):28– 39, 2018. doi:10.1016/j.ijhcs.2018.01.004.
Maureen K. Holden. Virtual Environments for Motor Rehabilitation: Review. CyberPsychology & Behavior, 8(3):187–211, 6 2005. URL: http://www.liebertonline. com/doi/abs/10.1089/cpb.2005.8.187, doi:10.1089/cpb.2005.8.187.
Madeleine E. Hackney, Joe Nocera, Tricia Creel, Mary Doherty Riebesell, and Trisha Kesar. Exercise and Balance in Older Adults with Movement Disorders. In Fabio Augusto Barbieri and Rodrigo Vitorio, editors, Locomotion and posture in older adults: The role of aging and movement disorders, chapter 21, pages 323–346. Springer International Publishing, Cham, Switzerland, 1st edition, 2017. doi:10.1007/978-3-319-48980-3{\_}21.
Mario Widmer, Jeremia P. Held, Frieder Wittmann, Olivier Lambercy, Kai Lutz, and Andreas R. Luft. Does motivation matter in upper-limb rehabilitation after stroke? ArmeoSenso-Reward: Study protocol for a randomized controlled trial. Trials, 18(580):1–9, 2017. doi:10.1186/s13063-017-2328-2.
Matjaž Mihelj, Domen Novak, Maja Milavec, Jaka Ziherl, Andrej Olenšek, and Marko Munih. Virtual rehabilitation environment using principles of intrinsic motivation and game design. Presence: Teleoperators & Virtual Environments, 21(1):1–15, 2012. doi:10.1162/PRES{\_}a{\_}00078.
Sarah Sarabadani, Larissa Christina Schudlo, Ali-Akbar Samadani, and Azadeh Kushki. Physiological Detection of Affective States in Children with Autism Spectrum Disorder. IEEE Transactions on Affective Computing, pages 1–14, 2018. doi:10.1109/TAFFC.2018.2820049.
Sandra Poeschl, Konstantin Wall, and Nicola Doering. Integration of spatial sound in immersive virtual environments an experimental study on effects of spatial sound on presence. Proceedings - IEEE Virtual Reality, pages 129–130, 2013. doi:10.1109/ VR.2013.6549396.
Insu Yu, Jesper Mortensen, Pankaj Khanna, Bernhard Spanlang, and Mel Slater. Visual realism enhances realistic response in an immersive virtual environment—Part 2. IEEE Computer Graphics and Applications, 32(6):36–45, 2012. doi:10.1109/mcg. 2012.121.
Bimal Balakrishnan and S. Shyam Sundar. Where am I? How can I get there? Impact of navigability and narrative transportation on spatial presence. Human-Computer Interaction, 26(3):161–204, 2011. doi:10.1080/07370024.2011.601689.
Werner Wirth, Tilo Hartmann, Saskia Böcking, Peter Vorderer, Christoph Klimmt, Holger Schramm, Timo Saari, Jari Laarni, Niklas Ravaja, Feliz Ribeiro Gouveia, Frank Biocca, Ana Sacau, Lutz Jäncke, Thomas Baumgartner, and Petra Jäncke. A process model of the formation of spatial presence experiences. Media Psychology, 9(3):493–525, 2007. doi:10.1080/15213260701283079.
Iris Bakker, Theo Van Der Voordt, Peter Vink, and Jan De Boon. Pleasure, arousal, dominance: Mehrabian and Russell revisited. Curr Psychol, 33:405–421, 2014. doi: 10.1007/s12144-014-9219-4.
Lis Nielsen and Alfred W Kaszniak. Conceptual, theoretical, and methodological issues in inferring subjective emotion experience recommendations for researchers. In Handbook of Emotion Elicitation and Assessment, chapter 22, pages 361–375. Oxford Press, New York, 2007.
Phil Page. Sensorimotor training : A “ global ” approach for balance training. Journal of Bodywork and Movement Therapies, 10(2006):77–84, 2006. doi:10.1016/j.jbmt. 2005.04.006.
Oscar I. Caldas, Juan D. Abril, Oswaldo Rivera, Carlos Rodriguez-Guerrero, and Oscar F Avilés. Contribution of virtual environments to the perception of balance rehabilitation tasks: a psychophysiological study. In Proc. CLAIB-CNIB, Cancún, México, pages 1–7. Springer, 2019. doi:10.1007/978-3-030-30648-9.
Franz Faul, Edgar Erdfelder, Albert Georg Lang, and Axel Buchner. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2):175–191, 2007. doi:10.3758/ BF03193146.
Domen Novak. Promoting motivation during robot-assisted rehabilitation. In Rehabilitation Robotics, chapter 11, pages 149–158. Elsevier Ltd., 2018. doi:10.1016/ b978-0-12-811995-2.00010-2.
Daniël Lakens. Calculating and reporting effect sizes to facilitate cumulative science : a practical primer for t -tests and ANOVAs. Frontiers in Psychology, 4(November):1– 12, 2013. doi:10.3389/fpsyg.2013.00863.
Gail M. Sullivan and Richard Feinn. Using effect size — or why the p value is not enough. Journal of Graduate Medical Education, 4(3):279–282, 9 2012. doi: 10.4300/jgme-d-12-00156.1.
Gabriele Wulf and Rebecca Lewthwaite. Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning. Psychon Bull Rev, 23:1382–1414, 2016. doi:10.3758/s13423-015-0999-9.
Hyung Young Lee, Lim Kim, and Suk Min Lee. Effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. J. Phys Ther. Sci, 27(6):1883–1888, 2015. doi:10.1589/jpts.27.1883.
Bob G Witmer and Michael J Singer. Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence, 7(3):225–240, 1998. doi:10.1162/ 105474698565686.
Anthony H. Lequerica and Kathleen Kortte. Therapeutic Engagement. American Journal of Physical Medicine & Rehabilitation, 89(5):415–422, 2010. doi:10.1097/ PHM.0b013e3181d8ceb2.
Heather O’Brien and Paul Cairns. Why engagement matters: Cross-disciplinary perspectives of user engagement in digital media. Springer International Publishing, 2016. doi:10.1007/978-3-319-27446-1.
Jeanne H. Brockmyer, Christine M. Fox, Kathleen A. Curtiss, Evan McBroom, Kimberly M. Burkhart, and Jacquelyn N. Pidruzny. The development of the Game Engagement Questionnaire: A measure of engagement in video game-playing. Journal of Experimental Social Psychology, 45(4):624–634, 2009. doi:10.1016/j.jesp. 2009.02.016.
Juho Hamari and Jonna Koivisto. Measuring flow in gamification: Dispositional Flow Scale-2. Computers in Human Behavior, 40:133–143, 2014. doi:10.1016/j. chb.2014.07.048.
Bojan Kerous, Richard Barteček, Robert Roman, Petr Sojka, Ondřej Bečev, and Fotis Liarokapis. Examination of electrodermal and cardio-vascular reactivity in virtual reality through a combined stress induction protocol. Journal of Ambient Intelligence and Humanized Computing, 11(12):6033–6042, 2020. doi:10.1007/ s12652-020-01858-7.
Miguel Barreda-Ángeles, Sara Aleix-Guillaume, and Alexandre Pereda-Baños. Users’ psychophysiological, vocal, and self-reported responses to the apparent attitude of a virtual audience in stereoscopic 360◦-video. Virtual Reality, 24(2):289–302, 2020. doi:10.1007/s10055-019-00400-1.
Ali Darzi, Trent Wondra, Sean McCrea, and Domen Novak. Classification of multiple psychological dimensions in computer game players using physiology, performance, and personality characteristics. Frontiers in Neuroscience, 13(November):1–13, 2019. doi:10.3389/fnins.2019.01278.
Chong Li, Zoltán Rusák, Imre Horváth, and Linhong Ji. Development of engagement evaluation method and learning mechanism in an engagement enhancing rehabilitation system. Engineering Applications of Artificial Intelligence, 51:182–190, 2016. doi:10.1016/j.engappai.2016.01.021.
Maja Goršič, Imre Cikajlo, Nika Goljar, and Domen Novak. A multisession evaluation of an adaptive competitive arm rehabilitation game. Journal of NeuroEngineering and Rehabilitation, 14(1):1–15, 2017. doi:10.1186/s12984-017-0336-9.
Sanne C. Van Der Pas, Jeanine A. Verbunt, Dorien E. Breukelaar, Rachma Van Woerden, and Henk A. Seelen. Assessment of arm activity using triaxial accelerometry in patients with a stroke. Archives of Physical Medicine and Rehabilitation, 92(9):1437– 1442, 2011. doi:10.1016/j.apmr.2011.02.021.
Kunio Tsurumi, Toru Itani, Norihide Tachi, Toshimasa Takanishi, Hatsuko Suzumura, and Hidemaro Takeyama. Estimation of energy expenditure during sedentary work with upper limb movement. Journal of Occupational Health, 44(6):408–413, 2002. doi:10.1539/joh.44.408.
Oscar I. Caldas, Oscar F. Aviles, and Carlos Rodriguez-Guerrero. A simplified method for online extraction of skin conductance features: A pilot study on an immersive virtual-reality-based motor task. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020- July:3747–3750, 2020. doi:10.1109/EMBC44109.2020.9176424.
Aniket Nagle, Robert Riener, and Peter Wolf. Personality-based reward contingency selection: A player-centered approach to gameplay customization in a serious game for cognitive training. Entertainment Computing, 28:70–77, 2018. URL: http://dx. doi.org/10.1016/j.entcom.2017.10.005, doi:10.1016/j.entcom.2017.10.005.
Catherine S. Oh, Jeremy N. Bailenson, and Gregory F. Welch. A systematic review of social presence: Definition, antecedents, and implications. Frontiers Robotics AI, 5(OCT):1–35, 2018. doi:10.3389/frobt.2018.00114.
Nicolas Nostadt, David A. Abbink, Oliver Christ, and Philipp Beckerle. Embodiment, Presence, and Their Intersections. ACM Transactions on Human-Robot Interaction, 9(4):1–19, 2020. doi:10.1145/3389210.
Oscar I. Caldas, Natalia Sanchez, Mauricio Mauledoux, Oscar F. Avilés, and Carlos Rodriguez-Guerrero. Leading presence-based strategies to manipulate user experience in virtual reality environments. Virtual Reality, 26(4):1507–1518, 2022. doi:10.1007/s10055-022-00645-3.
Dong Kyu Lee. Data transformation: a focus on the interpretation. Korean Journal of Anesthesiology, 73(6):503–508, 11 2020. URL: http://ekja.org/journal/view. php?doi=10.4097/kja.20137, doi:10.4097/KJA.20137.
Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. Research Methods in Human-Computer Interaction. Elsevier, 2nd edition, 2017. doi:10.1016/ b978-044481862-1/50075-3.
Mel Slater, Pankaj Khanna, Jesper Mortensen, and Insu Yu. Visual realism enhances realistic response in an immersive virtual environment. IEEE Computer Graphics and Applications, 29(3):76–84, 2009. doi:10.1109/MCG.2009.55.
Ayush Bhargava. The Effect of Anthropometric Properties of Self-Avatars on Action Capabilities in Virtual Reality Capabilities in Virtual Reality [dissertation]. Clemson University, Clemson, SC, USA, 2019. URL: https://tigerprints.clemson.edu/ all_dissertations/2502.
C Wienrich, K Schindler, and S Kock. Social Presence and Cooperation in Large-Scale Multi-User Virtual Reality-The Relevance of Social Interdependence for Location-Based Environments. In IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 207–214. IEEE, 2018. doi:10.1109/VR.2018.8446575.
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 International
Acceso abierto
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv applicaction/pdf
dc.coverage.sede.spa.fl_str_mv Campus UMNG
dc.publisher.program.spa.fl_str_mv Doctorado en Ciencias Aplicadas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas y Aplicadas
dc.publisher.grantor.spa.fl_str_mv Universidad Militar Nueva Granada
institution Universidad Militar Nueva Granada
bitstream.url.fl_str_mv https://repository.umng.edu.co/bitstreams/8f9fa636-1109-415b-b14e-02294b39887e/download
https://repository.umng.edu.co/bitstreams/5f709ec3-a8a4-4b6d-8804-0bff960d9262/download
https://repository.umng.edu.co/bitstreams/6a6456bb-e7df-4d81-82df-b8eecfa054da/download
bitstream.checksum.fl_str_mv bf6c19161f38d4b746c1951115bd64fe
a609d7e369577f685ce98c66b903b91b
574639051a09350f2a614efb3a200f1a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UMNG
repository.mail.fl_str_mv bibliodigital@unimilitar.edu.co
_version_ 1851052765609984000
spelling Aviles Sanchez, Oscar FernandoRodriguez Guerrero, CarlosVerstraten, TomCaldas Flautero, Oscar IvánDoctor en Ciencias AplicadasMauledoux Monroy, Mauricio Felipe2024-11-05T14:43:16Z2024-11-05T14:43:16Z2023-11-17https://hdl.handle.net/10654/46075instname:Universidad Militar Nueva Granadareponame:Repositorio Institucional Universidad Militar Nueva Granadarepourl:https://repository.umng.edu.coEs ampliamente aceptado que se requiere un entrenamiento repetitivo con tareas específicas y orientado a objetivos para mejorar los beneficios de la plasticidad neuronal en busca de aprendizaje psicomotor. Sin embargo, el éxito depende de conservar comportamientos deseados, como motivación y compromiso, y evitar los no deseados, como aburrimiento y pérdida de concentración. Participar activamente y cooperar en el proceso de aprendizaje se conoce como compromiso y se relaciona con la satisfacción de necesidades psicológicas básicas, la interacción significativa con los objetos del entorno y la retroalimentación del desempeño y los estados emocionales para mejorar la experiencia de aprendizaje. Por lo tanto, se han abordado varios enfoques en los últimos años para promover el compromiso, incluida la gamificación y la realidad virtual (VR) para proporcionar mayores interacciones con el entorno, retroalimentación multisensorial y las condiciones para satisfacer las necesidades de competencia, autonomía y relacionalidad social. Aún así, pocos estudios pueden evaluar los efectos individuales de tales técnicas para promover el compromiso en tareas de aprendizaje con exigencia física. Esto es crucial porque un compromiso continuo asegura la adherencia al proceso de aprendizaje. Esta disertación explora nuevos métodos para promover el compromiso en el entrenamiento psicomotor en Realidad Virtual (RV) mediante el retiro sistemático de elementos y comportamientos asociados con las tres dimensiones de Presencia (Presencia Física, Presencia Social y Auto-Presencia) y cómo estos pueden contribuir de forma separada al compromiso. En la primera parte de este estudio, quisimos encontrar si el compromiso se afecta individualmente por la jugabilidad y el uso de RV. Los resultados mostraron que cada enfoque promovió cambios significativos pero diferenciados en indicadores de compromiso, como medidores de comportamiento, señales psicofisiológicas y autoinformes emocionales. También encontramos que a influencia de los estímulos de la realidad virtual son percibidos cuando la dificultad del juego es fija y se adapta al usuario. De lo contrario, el usuario se enfocará principalmente en intentar desempeñarse bien en el juego. En la segunda parte, propusimos que las pausas sistemáticas en la presencia podrían demostrar que cada una de las tres dimensiones de la presencia contribuye por separado a la formación de compromiso, si se emplean una dificultad fija. Demostramos que pausar la presencia física y la autopresencia fue más efectivo que la presencia social para afectar los indicadores psicofisiológicos y conductuales de compromiso. Descubrimos además que el nivel de intensidad de cada dimensión de Presencia (es decir, mayor o menos apariencia y comportamientos realistas) no influyó en la formación y percepción del compromiso. La evidencia obtenida se utilizó para proponer nuevas pautas para diseñar y adaptar entornos virtuales inmersivos, de acuerdo con el compromiso conductual y emocional en aprendizaje psicomotor.It is widely accepted that task-specific and goal-oriented repetitive training is required to improve the benefits of neural plasticity when seeking psychomotor learning. However, success also depends on preserving desired behaviors, such as motivation and commitment, and avoiding undesired ones, like boredom and loss of concentration. The willingness to actively participate and cooperate in the learning process is called engagement, and it is related to satisfying basic psychological needs, interacting with the objects around significantly, and receiving feedback about performance and emotional states to enhance the psychomotor learning experience. Several approaches have been addressed in recent years to promote engagement, mostly with gamification to promote such basic psychological needs (i.e., competence, autonomy, and social-relatedness) and virtual reality (VR) to enhance environmental interactions and multi-sensory feedback. Still, few studies can assess the single effects of such techniques to promote engagement in physically demanding learning tasks. This is crucial because an engagement continuum assures adherence to the learning process. This dissertation explores new methods to promote engagement in psychomotor training in VR by systematically removing specific elements and behaviors associated with the three dimensions of Presence (i.e., Physical Presence, Social, and Self-Presence) and how they can contribute differently to engagement. In the first part of this study, we wanted to find whether engagement is affected individually by the gameplay and the use of VR. Results showed that each approach promoted significant but separate changes in engagement indicators, such as behavioral meters, psychophysiological signals, and emotional self-reports. We also found that the influence of VR stimuli can only be perceived when the game difficulty is fixed and user-tailored. Otherwise, participants will focus mainly on trying and performing well in the game. In the second part, we proposed that systematic Breaks in Presence could demonstrate that each of its three dimensions separately contributes to engagement using a fixed game difficulty. We demonstrated that breaking the physical and self-presence were more effective than social presence in affecting psychophysiological and behavioral engagement indicators. We further discovered that the level of intensity of each dimension of Presence (i.e., greater or lesser realistic appearance and behavior) did not influence engagement formation and perception. The obtained evidence was used to propose new guidelines for designing and adapting immersive virtual environments according to behavioral and emotional engagement in psychomotor learning tasks.Universidad Militar Nueva GranadaVrije Universiteit Brussel1 Introduction 1.1 Motivation 1.2 Engagement in simulations as instructional method 1.3 The Sense of Presence in VR - Beyond Realism to Reaching Engagement 1.4 Research questions 1.5 Research objectives 1.5.1 Main objective 1.5.2 Specific Objectives 1.6 Research hypotheses 1.7 Scope 1.8 Ethical issues and disclosure statements 1.9 Thesis outline 2 State of the art 2.1 Neuroeducation, neurorehabilitation and neuroplasticity 2.1.1 Repetitive, task-specific, and goal-oriented practice 2.1.2 Difficulty adjustment 2.1.3 Multisensory integration and performance feedback 2.1.4 Social interaction 2.1.5 Section conclusion 2.2 Serious games and virtual reality 2.2.1 Serious Games and Virtual Reality in physically demanding tasks 2.2.2 Immersion and presence 2.2.3 Relevance of Presence in Virtual Reality 2.2.4 Presence-based strategies to manipulate user engagement 2.2.5 Measuring methods and technological approaches 2.2.6 Section conclusions 2.3 Psychophysiology for assessment of behavioral and emotional engagement 2.3.1 Emotion and assessment of emotional states 2.3.2 Subjective measures of emotional states 2.3.3 Objectives measures of emotional states 2.3.4 Measuring psychophysiological signals during physical and cognitive effort 2.3.5 Section conclusion 2.4 Chapter overview 3 Psychophysiological signals processing 3.1 Physiological considerations and measuring techniques 3.1.1 ECG signal 3.1.2 EDA signal 3.1.3 RSP signal 3.2 Materials and methods 3.3 Signal preprocessing and features extraction 3.3.1 ECG signal 3.3.2 EDA signal 3.3.3 RSP signal 3.4 Considerations for study protocols 3.5 Chapter overview 4 Immersive VR simulations 4.1 Materials and methods 4.2 Game design and deployment 4.3 Considerations for study protocols 5 Challenge vs. Presence: Separated effects on emotional engagement during open-loop experiments 5.1 Chapter introduction and background 5.2 Experimental setup 5.3 Data collection and processing 5.4 Study protocol - Parachute Experiment 5.5 Results and data analysis 5.6 Discussion 5.7 Chapter overview 6 Understanding behavioral and emotional engagement during dynamic difficulty adjustment in IVR 6.1 Chapter introduction 6.2 Experimental setup 6.3 Study protocol - The "wack-a-mole" experiment 6.4 Measurements and feature extraction 6.5 Results and data analysis 6.6 Discussion 6.7 Chapter overview 7 Breaking Presence by VR factors to shifting engagement 7.1 Chapter introduction 7.2 Experimental setup 7.2.1 Hardware and software 7.2.2 Study subjects 7.2.3 Measurements of engagement 7.2.4 Statistical analysis 7.3 Study protocol 7.4 Results and data analysis 7.4.1 Behavioral measures 7.4.2 Psychophysiological measures 7.5 Discussion 7.5.1 Changing the level of illusion does not affect performance nor emotional engagement 7.5.2 Exercise intensity increase with Presence, but not necessarily at higher levels 7.5.3 Controlling specific VR Factors influence the skin conductance level (SCL) 7.6 Chapter overview 8 General conclusions and future work 8.1 Thesis contributions 8.2 Guidelines for designing and adapting learning-intended IVR games 8.3 Limitations and future work Publications Bibliography Appendices A Participants’ material A.1 Experimental protocols and informed consent A.2 Questionnaires and self-reports A.2.1 Demographics questionnaire A.2.2 Virtual Reality Sickness Questionnaire A.2.3 Virtual Reality Neuroscience Questionnaire A.2.4 Self-Assessment Manikin (SAM) Test A.3 Ethics Committee approval B Joint Ph.D. Agreement between UMNG and VUB C Matlab/Python scripts C.1 Physiological signals preprocessing C.1.1 Electrocardiogram C.1.2 Skin Conductance C.1.3 Respiration C.2 Data acquisition from BiosignalsPlux device C.2.1 Main script in Matlab C.2.2 Python script to link Matlab and Biosignals device C.3 TCP/IP Server - To communicate with Unity3D D Unity Scripts D.1 "Parachute" experiment D.1.1 Game Manager script D.1.2 Player falling script D.1.3 Sam Test manager D.2 "Whack-a-mole" experiment D.2.1 Game Manager script D.2.2 Trial Manager script D.2.3 Scene master D.3 TCP/IP Client - To communicate with MatlabDoctoradoHet is algemeen aanvaard dat taakspecifieke en doelgerichte repetitieve training vereist is om de voordelen van neurale plasticiteit te verbeteren bij het streven naar psychomotorisch leren. Succes hangt echter ook af van het behouden van gewenst gedrag, zoals motivatie en toewijding, en het vermijden van ongewenst gedrag, zoals verveling en verlies van concentratie. De bereidheid om actief deel te nemen en samen te werken in het leerproces wordt betrokkenheid genoemd, en het hangt samen met het bevredigen van basispsychologische behoeften, het aanzienlijk interageren met objecten in de omgeving, en het ontvangen van feedback over prestaties en emotionele toestanden om de ervaring van psychomotorisch leren te verbeteren. Er zijn de afgelopen jaren verschillende benaderingen besproken om betrokkenheid te bevorderen, voornamelijk met gamificatie om dergelijke basispsychologische behoeften (bijv. competentie, autonomie en sociale verbondenheid) te bevorderen, en virtual reality (VR) om omgevingsinteracties en multisensorische feedback te verbeteren. Toch kunnen weinig studies de afzonderlijke effecten van dergelijke technieken beoordelen om betrokkenheid bij fysiek veeleisende leertaken te bevorderen. Dit is cruciaal omdat een continuüm van betrokkenheid de naleving van het leerproces waarborgt. Dit proefschrift onderzoekt nieuwe methoden om betrokkenheid bij psychomotorische training in VR te bevorderen door systematisch specifieke elementen en gedragingen geassocieerd met de drie dimensies van Aanwezigheid (d.w.z. Fysieke Aanwezigheid, Sociale Aanwezigheid en Zelf-Aanwezigheid) te verwijderen en hoe deze op verschillende manieren kunnen bijdragen aan betrokkenheid. In het eerste deel van deze studie wilden we onderzoeken of betrokkenheid afzonderlijk wordt beïnvloed door gameplay en het gebruik van VR. De resultaten toonden aan dat elke benadering afzonderlijke en significante veranderingen in betrokkenheidsindicatoren veroorzaakte, zoals gedragsmetingen, psychofysiologische signalen en emotionele zelfrapportages. We ontdekten ook dat de invloed van VR-stimuli alleen merkbaar is wanneer de moeilijkheidsgraad van het spel vaststaat en aangepast is aan de gebruiker. Anders zullen deelnemers zich voornamelijk richten op het proberen en goed presteren in het spel. In het tweede deel stelden we voor dat systematische onderbrekingen in aanwezigheid zouden kunnen aantonen dat elk van de drie dimensies afzonderlijk bijdraagt aan betrokkenheid met behulp van een vastgestelde moeilijkheidsgraad van het spel. We hebben aangetoond dat het doorbreken van fysieke en zelf-aanwezigheid effectiever was dan sociale aanwezigheid bij het beïnvloeden van psychofysiologische en gedragsmatige betrokkenheidsindicatoren. Verder hebben we ontdekt dat het niveau van intensiteit van elke dimensie van Aanwezigheid (bijvoorbeeld een meer of minder realistische verschijning en gedrag) geen invloed had op de vorming en perceptie van betrokkenheid. De verkregen bewijslast werd gebruikt om nieuwe richtlijnen voor het ontwerpen en aanpassen van meeslepende virtuele omgevingen voor te stellen, met het oog op gedragsen emotionele betrokkenheid bij psychomotorische leeractiviteiten.applicaction/pdfspahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 InternationalAcceso abiertohttp://purl.org/coar/access_right/c_abf2Investigating mechanisms to promote engagement in psychomotor training using systematic breaks in presence in virtual realityREALIDAD VIRTUALTECNOLOGIA EDUCATIVAEDUCACION - METODOS DE SIMULACIONNEUROCIENCIASAPRENDIZAJE PERCEPTIVO-MOTORPausas de PresenciaCompromisoPsicofisiologíaEntrenamiento psicomotorRealidad VirtualBreaks in PresenceEngagementPsychophysiologyPsychomotor trainingVirtual RealityTesis/Trabajo de grado - Monografía - Doctoradoinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06Doctorado en Ciencias AplicadasFacultad de Ciencias Básicas y AplicadasUniversidad Militar Nueva GranadaWayne Choi, Ollivier Dyens, Teresa Chan, Mariles Schijven, Susanne Lajoie, Mary E. Mancini, Parvati Dev, Li Fellander-Tsai, Mathieu Ferland, Pamela Kato, James Lau, Michael Montonaro, Joelle Pineau, and Rajesh Aggarwal. Engagement and learning in simulation: Recommendations of the Simnovate Engaged Learning Domain Group. BMJ Simulation and Technology Enhanced Learning, 3(Suppl 1):S23–S32, 2017. doi: 10.1136/bmjstel-2016-000177.Daniel M. Pendleton, Monica L. Sakalik, Morgan L. Moore, and Phillip D. Tomporowski. Mental engagement during cognitive and psychomotor tasks: Effects of task type, processing demands, and practice. International Journal of Psychophysiology, 109:124–131, 11 2016. doi:10.1016/J.IJPSYCHO.2016.08.012.Christopher D. Wickens. Multiple resources and mental workload. Human Factors, 50(3):449–455, 2008. doi:10.1518/001872008X288394.Benjamin S. Bloom, Max D Engelhart, Edward J Furst, and David R Krathwohl. I TAXONOMY OF EDUCATIONAL OBJECTIVES The Classification of Educational Goals HANDBOOK1 COGNITIVE DOMAIN LONGMANS. Longmans Green and Co., London, 1956.Tianxiao Yang and Tiffany A Koszalka. Level of engagement and its application to learning resources (RIDLR, 2016). Technical report, Syracuse University – RIDLR project, Syracuse, 2016.Elizabeth Simpson. The Classification of Educational Objectives in the Psychomotor Domain. Washington, DC: G, volume 3. Gryphon House, Washington D.C., 1972.D T Wade. Measurement in neurological rehabilitation. Current opinion in neurology and neurosurgery, 5(5):682–6, 10 1992. URL: http://www.ncbi.nlm.nih.gov/ pubmed/1392142.Peter Langhorne, Fiona Coupar, and Alex Pollock. Motor recovery after stroke: a systematic review. The Lancet Neurology, 8:741–754, 2009. doi:10.1016/ S1474-4422(09)70150-4.Ignacio Demey, Ricardo Francisco Allegri, and Mauricio Barrera-Valencia. Bases Neurobiológicas de la Rehabilitación. CES Psicología, 7(1):130–140, 2014. URL: http://www.scielo.org.co/pdf/cesp/v7n1/v7n1a11.pdf.Chris Fraser, Maxine Power, Shaheen Hamdy, John Rothwell, David Hobday, Igor Hollander, Pippa Tyrell, Anthony Hobson, Steven Williams, and David Thompson. Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury. Neuron, 34(5):831–40, 2002. doi:10.1016/ S0896-6273(02)00705-5.Samar M Hatem, Geoffroy Saussez, Margaux Della Faille, Vincent Prist, Xue Zhang, Delphine Dispa, and Yannick Bleyenheuft. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Frontiers in human neuroscience, 10:442, 2016. doi:10.3389/ fnhum.2016.00442.Michael A. Dimyan and Leonardo G. Cohen. Neuroplasticity in the context of motor rehabilitation after stroke. Nature Reviews Neurology, 7(2):76–85, 2011. doi:10. 1038/nrneurol.2010.200.Jeffrey Laut, Francesco Cappa, Oded Nov, and Maurizio Porfiri. Increasing patient engagement in rehabilitation exercises using computer-based citizen science. PloS one, 10(3):1–17, 2015. doi:10.1371/journal.pone.0117013.Megan M. Danzl, Nicole M. Etter, Richard O. Andreatta, and Patrick H. Kitzman. Facilitating neurorehabilitation through principles of engagement. Journal of Allied Health, 41(1):35–41, 2012.Tracy Higgins, Elaine Larson, and Rebecca Schnall. Unraveling the meaning of patient engagement: A concept analysis. Patient Education and Counseling, 100(1):30– 36, 2017. doi:10.1016/j.pec.2016.09.002.Leah Farrell, Karen Ingersoll, and Sherry Dyche Ceperich. Enhancing Patient Adherence: Promoting Engagement via Positive Patient-Provider Relationships in HIV/AIDS Care. Med. Encount., 23(2):69–71, 2009. URL: https://www.ncbi.nlm. nih.gov/pmc/articles/PMC4285710/pdf/nihms635349.pdf.OMS Organización Mundial de la Salud. Adherencia a los tratamientos a largo plazo: pruebas para la acción. Organización Mundial de la Salud (OMS), Washington D.C., 2004. URL: http://www.paho.org/hq/index.php?option=com_docman&task=doc_ view&gid=18722&Itemid=.E. L. Deci and M Vansteenkiste. Self-determination theory and basic need satisfaction: Understanding human development in positive psychology. - Psyc- NET. Ricerche di Psicologia, 27(1):23–40, 2004. URL: https://psycnet.apa.org/ record/2004-19493-002.Gwyn N. Lewis and Juliet A. Rosie. Virtual reality games for movement rehabilitation in neurological conditions: how do we meet the needs and expectations of the users? Disability and Rehabilitation, 34(22):1880–1886, 11 2012. URL: http:// www.tandfonline.com/doi/full/10.3109/09638288.2012.670036, doi:10.3109/ 09638288.2012.670036.Libertad Martín Alfonso, Héctor Bayarre Vea Ábalo, and Jorge Amado Grau. Analytic framework for the study of treatment adherence. In Chronic Diseases and Adherence Behaviors: Psychological Research in Ibero-American Countries, chapter 5, pages 93–117. Nova Science Publishers, 2011.Mark A Guadagnoli. Challenge Point: A Framework for Conceptualizing the Effects of Various Practice Conditions in Motor Learning. Journal of Motor Behavior, 36(2):212–224, 2004. URL: http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.86.4969&rep=rep1&type=pdf.Danielle E. Levac and Heidi Sveistrup. Motor Learning and Virtual Reality. In Virtual Reality for Physical and Motor Rehabilitation. Virtual Reality Technologies for Health and Clinical Applications., chapter 3, pages 25–46. Springer, New York, NY, USA, 2014. URL: http://link.springer.com/10.1007/978-1-4939-0968-1_ 3, doi:10.1007/978-1-4939-0968-1{\_}3.J. A. Fredricks, P. C. Blumenfeld, and A. H. Paris. School Engagement: Potential of the Concept, State of the Evidence. Review of Educational Research, 74(1):59–109, 2004. doi:10.3102/00346543074001059.Davide Corbetta, Federico Imeri, and Roberto Gatti. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. Journal of Physiotherapy, 61(3):117–124, 2015. doi:10.1016/j.jphys.2015.05.017.Keith R Lohse, Courtney G E Hilderman, Katharine L Cheung, Sandy Tatla, and H F Machiel Van Der Loos. Virtual reality therapy for adults post-stroke: A systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLOSE One, 9(3):1–13, 2014. doi:10.1371/journal.pone.0093318.M. F. Levin, P. L. Weiss, and E. A. Keshner. Emergence of Virtual Reality as a Tool for Upper Limb Rehabilitation: Incorporation of Motor Control and Motor Learning Principles. Physical Therapy, 95(3):415–425, 3 2015. doi:10.2522/ptj.20130579.P Archambault, N Norouzi-Gheidari, G Tao, J M Solomon, D Kairy, and M F Levin. Use of exergames for upper extremity rehabilitation in stroke patients. Annals of Physical & Rehabilitation Medicine, 58(September):e97–e98, 2015. doi:10.1016/j. rehab.2015.07.237.Misha Sra and Chris Schmandt. MetaSpace II: Object and full-body tracking for interaction and navigation in social VR. In ArXiv preprint, page 10, 2015. URL: https://arxiv.org/pdf/1512.02922.pdf, doi:10.48550/arXiv.1512.02922.J.W. Burke, M. D. J. McNeil, D.K. Charles, P.J. Morrow, J.H. Crosbie, and S.M. Mcdonough. Optimising engagement for stroke rehabilitation using serious games. Vis Comput, 25(1):1085–1099, 2009. doi:10.1007/s00371-009-0387-4.Lukas Zimmerli, Mario Jacky, Lars Lünenburger, Robert Riener, and Marc Bolliger. Increasing Patient Engagement During Virtual Reality-Based Motor Rehabilitation. Archives of Physical Medicine and Rehabilitation, 94(9):1737–1746, 2013. doi:10. 1016/j.apmr.2013.01.029.Eletha Flores, Gabriel Tobon, Ettore Cavallaro, Francesca I. Cavallaro, Joel C. Perry, and Thierry Keller. Improving patient motivation in game development for motor deficit rehabilitation. In Proceedings of the 2008 International Conference in Advances on Computer Entertainment Technology - ACE ’08, page 381, New York, New York, USA, 2008. ACM Press. doi:10.1145/1501750.1501839.Kwan Min Lee. Presence, Explicated. Communication Theory, 14(1):27–50, 2 2004. doi:10.1111/j.1468-2885.2004.tb00302.x.Guido Makransky, Lau Lilleholt, and Anders Aaby. Development and validation of the Multimodal Presence Scale for virtual reality environments approach. Computers in Human Behavior, 72(1):276–285, 2017. doi:10.1016/j.chb.2017.02.066.World Medical Association. World Medical Association Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects. JAMA, 310(20):2191– 2194, 2013. doi:10.1001/jama.2013.281053.Bryan Kolb and Robbin Gibb. Principles of neuroplasticity and behavior. In Cognitive Neurorehabilitation, pages 6–21. Cambridge University Press, 1 2015. doi:10.1017/CBO9781316529898.003.A M Barrett, Mooyeon Oh-Park, Peii Chen, and Nneka L Ifejika. Neurorehabilitation Five new things. Neurology Clinical Practice, 3(6):484–492, 2013. URL: www.neurology.org/cp, doi:10.1212/01.CPJ.0000437088.98407.fa.Katy Madier. Enabling Low-cost Co-located Virtual Reality Experiences [master’s thesis]. ACM, New York, NY, USA, 1 2019.Beverley French, Lois H. Thomas, Jacqueline Coupe, Naoimh E. Mcmahon, Louise Connell, Joanna Harrison, Christopher J. Sutton, Svetlana Tishkovskaya, and Caroline L. Watkins. Repetitive task training for improving functional ability after stroke. Cochrane Database of Systematic Reviews, 2016(11), 11 2016. doi: 10.1002/14651858.CD006073.pub3.Lois H. Thomas, Beverley French, Jacqueline Coupe, Naoimh McMahon, Louise Connell, Joanna Harrison, Christopher J. Sutton, Svetlana Tishkovskaya, and Caroline L. Watkins. Repetitive Task Training for Improving Functional Ability after Stroke: A Major Update of a Cochrane Review. Stroke, 48(4):e102–e103, 4 2017. doi:10.1161/STROKEAHA.117.016503.Isobel J. Hubbard, Mark W. Parsons, Cheryl Neilson, and Leeanne M. Carey. Taskspecific training evidence for and translation to clinical practice.pdf. Occupational Therapy International, 16(3-4):175–189, 2009. doi:10.1002/oti.275.Carolee J Winstein, Steven L Wolf, Alexander W Dromerick, Christianne J Lane, Monica A Nelsen, Rebecca Lewthwaite, Steven Yong Cen, and Stanley P Azen. Effect of a Task-Oriented Rehabilitation Program on Upper Extremity Recovery Following Motor Stroke: The ICARE Randomized Clinical Trial. JAMA, 315(6):571–581, 2016. doi:10.1001/jama.2016.0276.Martina Maier, Belén Rubio Ballester, and Paul F.M.J. Verschure. Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms, 12 2019. doi:10.3389/fnsys.2019.00074.Christopher D Wickens, Shaun Hutchins, Thomas Carolan, and John Cumming. Effectiveness of part-task training and increasing-difficulty training strategies: a meta-analysis approach. Human Factors, 55(2):461–470, 2013. doi:10.1177/ 0018720812451994.Donna L. Hoffman and Thomas P. Novak. Flow Online: Lessons Learned and Future Prospects. Journal of Interactive Marketing, 23(1):23–34, 2009. doi:10.1016/j. intmar.2008.10.003.Li Keng Cheng, Ming Hua Chieng, and Wei Hua Chieng. Measuring virtual experience in a three-dimensional virtual reality interactive simulator environment: A structural equation modeling approach. Virtual Reality, 18(3):173–188, 2014. doi:10.1007/s10055-014-0244-2.Mihaly Csikszentmihalyi. Finding Flow: The Psychology ofEngagement with Everyday Life. Basic Books, New York, USA, 2nd edition, 1998.Joana F. Pinto, Henrique R. Carvalho, Gonçalo R.R. Chambel, João Ramiro, and Afonso Gonçalves. Adaptive gameplay and difficulty adjustment in a gamified upperlimb rehabilitation. 2018 IEEE 6th International Conference on Serious Games and Applications for Health, SeGAH 2018, pages 1–8, 2018. doi:10.1109/SeGAH.2018. 8401363.Latasha R Swanson and David M Whittinghill. Intrinsic or Extrinsic? Using Videogames to Motivate Stroke Survivors: A Systematic Review. Games for Health Journal, 4(3):253–258, 2015. doi:10.1089/g4h.2014.0074.Fatih Ozkul, Yunus Palaska, Engin Masazade, and Duygun Erol-Barkana. Exploring dynamic difficulty adjustment mechanism for rehabilitation tasks using physiological measures and subjective ratings. IET Signal Processing, 13(3):378–386, 2019. doi: 10.1049/iet-spr.2018.5241.Carlos Rodriguez-Guerrero. Psychophysiological Feedback Control in Physical Human-Robot Interaction [dissertation]. University of Valladolid, Valladolid, 2012. URL: https://dialnet.unirioja.es/servlet/tesis?codigo=296323.Oscar I. Caldas, Mauricio Mauledoux, Oscar F. Aviles, and Carlos Rodriguez Guerrero. Behavioral and Psychophysiological Measures of Engagement During Dynamic Difficulty Adjustment in Immersive Virtual Reality. Journal of Universal Computer Science, 29(1):16–33, 2023. doi:10.3897/jucs.89412.Joseph ; Galea, Elizabeth ; Mallia, John C ; Rothwell, and Jorn Diedrichsen. The dissociable effects of punishment and reward on motor learning. Nature Neuroscience, 18:597–, 2015. doi:10.1038/nn.3956.Wei Peng, Jih Hsuan Lin, Karin A. Pfeiffer, and Brian Winn. Need satisfaction supportive game features as motivational determinants: an experimental study of a self-determination theory guided exergame. Media Psychology, 15(2):175–196, 2012. doi:10.1080/15213269.2012.673850.Peter Vorderer, Tilo Hartmann, and Christoph Klimmt. Explaining the enjoyment of playing video games | Proceedings of the second international conference on Entertainment computing. In ICEC ’03: Proceedings of the second international conference on Entertainment computing, pages 1–9, Pittsburgh, 2003. Carnegie Mellon University. URL: https://dl.acm.org/doi/10.5555/958720.958735, doi: 10.1145/958720.958735.Maja Goršič, Imre Cikajlo, and Domen Novak. Competitive and cooperative arm rehabilitation games played by a patient and unimpaired person: effects on motivation and exercise intensity. Journal of NeuroEngineering and Rehabilitation, 14(1):1–18, 2017. doi:10.1186/s12984-017-0231-4.Domen Novak, Aniket Nagle, Urs Keller, and Robert Riener. Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay. Journal of NeuroEngineering and Rehabilitation, 11(64):1–15, 2014. doi: 10.1186/1743-0003-11-64.Stéphane Claude Gobron, Nicolas Zannini, Nicolas Wenk, Carl Schmitt, Yannick Charrotton, Aurélien Fauquex, Michel Lauria, Francis Degache, and Rolf Frischknecht. Serious games for rehabilitation using Head-Mounted display and haptic devices. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9254, pages 199–219. Springer, Cham, 2015. URL: http://link.springer.com/10.1007/ 978-3-319-22888-4_15, doi:10.1007/978-3-319-22888-4{\_}15.Verena Klamroth-Marganska and Kilian Baur. Strength training of the upper extremity in virtual reality with an exoskeleton robot. In Proc. ICVR, pages 1–6, Montreal, Canada, 2017. IEEE. doi:10.1109/ICVR.2017.8007500.Keith Lohse, Navid Shirzad, Alida Verster, Nicola Hodges, and H. F. Machiel Van der Loos. Video Games and Rehabilitation. Journal of Neurologic Physical Therapy, 37(4):166–175, 2013. doi:10.1097/NPT.0000000000000017.L Omelina, B Jansen, B Bonnechère, S Van, Sint Jan, and J Cornelis. Serious games for physical rehabilitation: designing highly configurable and adaptable games. In Proc. Int. Conf. Disability, Virtual Reality & Associated Technologies Laval 2012 ICDVRAT, pages 195–201, Laval, France, 2012. URL: http://www.ict4rehab.org.Qianqian Huang, Wei Wu, Xiaolong Chen, Bo Wu, Longqiang Wu, Xiaoli Huang, Songhe Jiang, and Lejian Huang. Evaluating the effect and mechanism of upper limb motor function recovery induced by immersive virtual-reality-based rehabilitation for subacute stroke subjects: Study protocol for a randomized controlled trial. Trials, 20(1):1–9, 2019. doi:10.1186/s13063-019-3177-y.Merete Endresen Moan, Elise Klæbo Vonstad, Xiaomeng Su, Beatrix Vereijken, Marit Solbjør, and Nina Skjæret-Maroni. Experiences of Stroke Survivors and Clinicians With a Fully Immersive Virtual Reality Treadmill Exergame for Stroke Rehabilitation: A Qualitative Pilot Study. Frontiers in Aging Neuroscience, 13(November):1–12, 2021. doi:10.3389/fnagi.2021.735251.Emma De Keersmaecker, Nina Lefeber, Ben Serrien, Bart Jansen, Carlos Rodriguez- Guerrero, Nilofar Niazi, Eric Kerckhofs, and Eva Swinnen. The Effect of Optic Flow Speed on Active Participation during Robot-Assisted Treadmill Walking in Healthy Adults. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(1):221–227, 2020. doi:10.1109/TNSRE.2019.2955804.Alain Kaelin-Lang, Lumy Sawaki, and Leonardo G Cohen. Role of Voluntary Drive in Encoding an Elementary Motor Memory. J Neurophysiol, 93(6):1099– 1103, 2005. URL: http://jn.physiology.org/content/jn/93/2/1099.full.pdf, doi:10.1152/jn.00143.2004.Roland Sigrist, Georg Rauter, Robert Riener, and Peter Wolf. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychonomic Bulletin & Review, 20(1):21–53, 2013. doi:10.3758/s13423-012-0333-8.Eric B Nash, Gregory W Edwards, Jennifer a Thompson, and Woodrow Barfield. A Review of Presence and Performance in Virtual Environments. International Journal of Human-Computer Interaction, 12(1):1–41, 2000. doi:10.1207/ S15327590IJHC1201.Jonathan A Stevens and J Peter Kincaid. The Relationship between Presence and Performance in Virtual Simulation Training. Open Journal of Modelling and Simulation, 3(3):41–48, 2015. URL: http://www.scirp.org/journal/ojmsihttp: //dx.doi.org/10.4236/ojmsi.2015.32005http://creativecommons.org/ licenses/by/4.0/, doi:10.4236/ojmsi.2015.32005.Gianluca De Leo, Leigh A. Diggs, Elena Radici, and Thomas W. Mastaglio. Measuring sense of presence and user characteristics to predict effective training in an online simulated virtual environment. Simulation in Healthcare, 9(1):1–6, 2014. doi:10.1097/SIH.0b013e3182a99dd9.Benjamin Eckstein, Eva Krapp, Anne Elsässer, and Birgit Lugrin. Smart substitutional reality: Integrating the smart home into virtual reality. Entertainment Computing, 31(January):100306, 2019. doi:10.1016/j.entcom.2019.100306.Unal Cakiroglu and Seyfullah Gokoglu. A Design Model for Using Virtual Reality in Behavioral Skills Training. Journal of Educational Computing Research, 57(7):1723– 1744, 2019. doi:10.1177/0735633119854030.Jonathan Van ’t Riet, Annika C Meeuwes, Laura Van Der Voorden, and Jeroen Jansz. Investigating the Effects of a Persuasive Digital Game on Immersion, Identification, and Willingness to Help. Basic and Applied Social Psychology, 40(4):180–194, 2018. doi:10.1080/01973533.2018.1459301.Richard Skarbez, Frederick P. Brooks, and Mary C. Whitton. A survey of presence and related concepts. ACM Computing Surveys, 50(6):1–39, 2017. doi:10.1145/ 3134301.Cagdas Yildirim, Barbaros Bostan, and Mehmet Ilker Berkman. Impact of different immersive techniques on the perceived sense of presence measured via subjective scales. Entertainment Computing, 31:100308, 8 2019. doi:10.1016/j.entcom.2019. 100308.Alessandra G. Ciancone Chama, Merylin Monaro, Eugenio Piccoli, Luciano Gamberini, and Anna Spagnolli. Engaging the audience with biased news: An exploratory study on prejudice and engagement. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11433 LNCS:350–361, 2019. doi:10.1007/978-3-030-17287-9{\_}28.Jesse Fox, Jessica McKnight, Yilu Sun, David Maung, and Roger Crawfis. Using a serious game to communicate risk and minimize psychological distance regarding environmental pollution. Telematics and Informatics, 46, 3 2020. doi:10.1016/J. TELE.2019.101320.Mel Slater. A Note on Presence Terminology. Presence Connect, 3(3):1–5, 2003. URL: www.cs.ucl.ac.uk/staff/m.slater.Richard Skarbez, Frederick Brooks, and Mary Whitton. Immersion and Coherence: Research Agenda and Early Results. IEEE Transactions on Visualization and Computer Graphics, 2626(c):1–1, 2020. doi:10.1109/tvcg.2020.2983701.Stephen B. Gilbert. Perceived Realism of Virtual Environments Depends on Authenticity. Presence, 25(4):322–324, 2016. doi:10.1162/PRES{\_}a{\_}00276.Shaun Gallagher. Philosophical conceptions of the self: Implications for cognitive science. Trends in Cognitive Sciences, 4(1):14–21, 2000. doi:10.1016/S1364-6613(99) 01417-5.Richard Skarbez, Solene Neyret, Frederick P. Brooks, Mel Slater, and Mary C. Whitton. A psychophysical experiment regarding components of the plausibility illusion. IEEE Transactions on Visualization and Computer Graphics, 23(4):1322–1331, 2017. doi:10.1109/TVCG.2017.2657158.Mel Slater. Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Phil. Trans. R. Soc. B, 364:3549–3557, 2009. doi:10.1098/ rstb.2009.0138.Frank Biocca, Chad Harms, and Jenn Gregg. The Networked Minds Measure of Social Presence: Pilot Test of the Factor Structure and Concurrent Validity. In 4th annual international workshop on presence, pages 1–9, Philadelphia, 2001.Jonny Collins, Holger Regenbrecht, and Tobias Langlotz. Visual coherence in mixed reality: A systematic enquiry. Presence: Teleoperators and Virtual Environments, 26(1):16–41, 2 2017. doi:10.1162/PRES{\_}A{\_}00284.Mel Slater. How Colorful Was Your Day? Why Questionnaires Cannot Assess Presence in Virtual Environments. Presence, 13(4):484–493, 2004. URL: http://direct. mit.edu/pvar/article-pdf/13/4/484/1624147/1054746041944849.pdf.Mel Slater and Anthony Steed. A Virtual Presence Counter. Presence: Teleoperators and Virtual Environments, 9(5):413–434, 10 2000. URL: https://dl.acm.org/doi/ 10.1162/105474600566925, doi:10.1162/105474600566925.Luca Chittaro and Riccardo Sioni. Serious games for emergency preparedness: Evaluation of an interactive vs. a non-interactive simulation of a terror attack. Computers in Human Behavior, 50:508–519, 9 2015. doi:10.1016/J.CHB.2015.03.074.Jakob Frohner, Gionata Salvietti, Philipp Beckerle, and Domenico Prattichizzo. Can wearable haptic devices foster the embodiment of virtual limbs? IEEE Transactions on Haptics, 12(3):339 – 349, 2019. doi:10.1109/TOH.2018.2889497.Kostas Karpouzis, Fotis Liarokapis, Thomas A Stoffregen, Simone Grassini, Karin Laumann, and Martin Rasmussen Skogstad. The Use of Virtual Reality Alone Does Not Promote Training Performance (but Sense of Presence Does). Article 1743. Psychol, 11(1743):1–11, 2020. doi:10.3389/fpsyg.2020.01743.Alessandra Gorini, Claret S. Capideville, Gianluca De Leo, Fabrizia Mantovani, and Giuseppe Riva. The Role of Immersion and Narrative in Mediated Presence: The Virtual Hospital Experience. Cyberpsychology, Behavior, and Social Networking, 14(3):99–105, 3 2011. URL: https://www.liebertpub.com/doi/10.1089/cyber. 2010.0100, doi:10.1089/CYBER.2010.0100.Kangsoo Kim, Celso M. de Melo, Nahal Norouzi, Gerd Bruder, and Gregory F. Welch. Reducing Task Load with an Embodied Intelligent Virtual Assistant for Improved Performance in Collaborative Decision Making. In IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 529–538, Atlanta, GA, USA, 6 2020. Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ VR46266.2020.00074.Kwanguk Kim, M. Zachary Rosenthal, David J. Zielinski, and Rachael Brady. Effects of virtual environment platforms on emotional responses. Computer Methods and Programs in Biomedicine, 113(3):882–893, 3 2014. doi:10.1016/J.CMPB.2013.12. 024.Zexin Ma. Effects of immersive stories on prosocial attitudes and willingness to help: testing psychological mechanisms. Media Psychology, 23(6):865–890, 11 2019. doi:10.1080/15213269.2019.1651655.Luigi Maffei, Massimiliano Masullo, Aniello Pascale, Gennaro Ruggiero, and Virginia Puyana Romero. Immersive virtual reality in community planning: Acoustic and visual congruence of simulated vs real world. Sustainable Cities and Society, 27:338–345, 11 2016. doi:10.1016/J.SCS.2016.06.022.Arthur Maneuvrier, Leslie Marion Decker, Hadrien Ceyte, Philippe Fleury, and Patrice Renaud. Presence Promotes Performance on a Virtual Spatial Cognition Task: Impact of Human Factors on Virtual Reality Assessment. Frontiers in Virtual Reality, 0:16, 10 2020. doi:10.3389/FRVIR.2020.571713.Cristina Ramirez-Fernandez, Alberto L. Moran, and Eloisa Garcia-Canseco. Haptic feedback in motor hand virtual therapy increases precision and generates less mental workload. In 9th International Conference on Pervasive Computing Technologies for Healthcare, pages 280–286. Institute of Electrical and Electronics Engineers Inc., 12 2015. doi:10.4108/ICST.PERVASIVEHEALTH.2015.260242.Carlos Rodriguez-Guerrero, Kristel Knaepen, Juan C. Fraile-Marinero, Javier Perez- Turiel, Valentin Gonzalez-de Garibay, and Dirk Lefeber. Improving challenge/skill ratio in a multimodal interface by simultaneously adapting game difficulty and haptic assistance through psychophysiological and performance feedback. Frontiers in Neuroscience, 11:242, 2017. doi:10.3389/fnins.2017.00242.Dai Yun Wu and Jih Hsuan Tammy Lin. Ways of Seeing Matter: The Impact of a Naturally Mapped Perceptual System on the Persuasive Effects of Immersive Virtual Reality Advertising. Communication Research Reports, 35(5):434–444, 10 2018. URL: https://www.tandfonline.com/doi/abs/10.1080/08824096.2018.1525349, doi: 10.1080/08824096.2018.1525349.Oscar I Caldas, Oscar F Aviles, and Carlos Rodriguez-guerrero. Effects of Presence and Challenge Variations on Emotional Engagement in Immersive Virtual Environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(05):1109–1116, 2020. doi:10.1109/TNSRE.2020.2985308.Zubin Choudhary, Kangsoo Kim, Ryan Schubert, Gerd Bruder, and Gregory F. Welch. Virtual Big Heads: Analysis of Human Perception and Comfort of Head Scales in Social Virtual Reality. In IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 425–433, Online event, 2020. IEEE. doi:10.1109/VR46266. 2020.00-41.Matthias Hofer, Tilo Hartmann, Allison Eden, Rabindra Ratan, and Lindsay Hahn. The Role of Plausibility in the Experience of Spatial Presence in Virtual Environments. Frontiers in Virtual Reality, 0:2, 4 2020. doi:10.3389/FRVIR.2020.00002.M. Martini, D. Perez-Marcos, and Maria V. Sanchez-Vives. What colour is my arm? Changes in skin colour of an embodied virtual arm modulates pain threshold. Frontiers in Human Neuroscience, 0(JUL):438, 7 2013. doi:10.3389/FNHUM.2013. 00438/BIBTEX.R. Pals, L. Steg, J. Dontje, F. W. Siero, and K. I. van der Zee. Physical features, coherence and positive outcomes of person–environment interactions: A virtual reality study. Journal of Environmental Psychology, 40:108–116, 12 2014. doi:10.1016/J.JENVP.2014.05.004.Richard Skarbez, Frederick P. Brooks, and Mary C. Whitton. Immersion and coherence in a stressful virtual environment. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST, pages 1–11, Tokio, Japan, 2018. doi:10.1145/3281505.3281530.Katja Zibrek, Elena Kokkinara, and Rachel McDonnell. The effect of realistic appearance of virtual characters in immersive environments - Does the character’s personality play a role? IEEE Transactions on Visualization and Computer Graphics, 24(4):1681–1690, 2018. doi:10.1109/TVCG.2018.2794638.Katja Zibrek, Sean Martin, and Rachel McDonnell. Is photorealism important for perception of expressive virtual humans in virtual reality? ACM Transactions on Applied Perception, 16(3), 2019. doi:10.1145/3349609.Adrien F Baranes, Pierre-Yves Oudeyer, Jacqueline Gottlieb, Kou Murayama, and Tommy C Blanchard. The effects of task difficulty, novelty and the size of the search space on intrinsically motivated exploration. Frontiers in Neuroscience, 8(317):1–9, 2014. URL: www.frontiersin.org, doi:10.3389/fnins.2014.00317.Rosalie Hooi and Hichang Cho. Virtual world continuance intention. Telematics and Informatics, 34(8):1454–1464, 12 2017. doi:10.1016/J.TELE.2017.06.009.Chia Ying Li and Yu Hui Fang. I searched, I collected, I experienced: Exploring how mobile augmented reality makes the players go. Journal of Retailing and Consumer Services, 54:102018, 5 2020. doi:10.1016/J.JRETCONSER.2019.102018.Birgit Nierula, Matteo Martini, Marta Matamala-Gomez, Mel Slater, and Maria V. Sanchez-Vives. Seeing an Embodied Virtual Hand is Analgesic Contingent on Colocation. The journal of pain, 18(6):645–655, 6 2017. URL: https://pubmed.ncbi. nlm.nih.gov/28108385/, doi:10.1016/J.JPAIN.2017.01.003.Michael Sailer, Jan Ulrich Hense, Sarah Katharina Mayr, and Heinz Mandl. How gamification motivates: An experimental study of the effects of specific game design elements on psychological need satisfaction. Computers in Human Behavior, 69:371– 380, 2017. doi:10.1016/j.chb.2016.12.033.Michelle Taub, Robert Sawyer, Andy Smith, Jonathan Rowe, Roger Azevedo, and James Lester. The agency effect: The impact of student agency on learning, emotions, and problem-solving behaviors in a game-based learning environment. Computers & Education, 147:103781, 4 2020. doi:10.1016/J.COMPEDU.2019.103781.Selen Turkay and Sonam Adinolf. The effects of customization on motivation in an extended study with a massively multiplayer online roleplaying game. Cyberpsychology, 9(3), 2015. doi:10.5817/CP2015-3-2.Daniele Ferdani, Bruno Fanini, Maria Claudia Piccioli, Fabiana Carboni, and Paolo Vigliarolo. 3D reconstruction and validation of historical background for immersive VR applications and games: The case study of the Forum of Augustus in Rome. Journal of Cultural Heritage, 43:129–143, 5 2020. doi:10.1016/J.CULHER.2019.12. 004.James J Cummings and Jeremy N Bailenson. How immersive is enough? A metaanalysis of the effect of immersive technology on user presence. Media Psychology, 00:1–38, 2015. doi:10.1080/15213269.2015.1015740.Helen R Gilpin, G Lorimer Moseley, Tasha R Stanton, and Roger Newport. Evidence for distorted mental representation of the hand in osteoarthritis. Rheumatology, 2015:678–682, 2015. URL: https://academic.oup.com/rheumatology/article/ 54/4/678/1799637, doi:10.1093/rheumatology/keu367.Tasha R Stanton, Helen R Gilpin, Louisa Edwards, G Lorimer Moseley, and Roger Newport. Illusory resizing of the painful knee is analgesic in symptomatic knee osteoarthritis. PeerJ., 6(5206):1–20, 2018. doi:10.7717/peerj.5206.Adalberto L. Simeone. Substitutional reality: Towards a research agenda. In 2015 IEEE 1st Workshop on Everyday Virtual Reality, WEVR 2015, pages 19–22. Institute of Electrical and Electronics Engineers Inc., 7 2015. doi:10.1109/WEVR.2015. 7151690.Mel Slater, Bernhard Spanlang, Maria V. Sanchez-Vives, and Olaf Blanke. First Person Experience of Body Transfer in Virtual Reality. PLOS ONE, 5(5):e10564, 2010. URL: https://journals.plos.org/plosone/article?id=10. 1371/journal.pone.0010564, doi:10.1371/JOURNAL.PONE.0010564.Maria V Sanchez-Vives, Bernhard Spanlang, Antonio Frisoli, Massimo Bergamasco, and Mel Slater. Virtual Hand Illusion Induced by Visuomotor Correlations. PLoS ONE, 5(4):1–6, 2010. URL: http://www.infitec.net/, doi:10.1371/journal. pone.0010381.Tyler Rose, Chang S. Nam, and Karen B. Chen. Immersion of virtual reality for rehabilitation - Review. Applied Ergonomics, 69(2018):153–161, 2018. doi:10.1016/ j.apergo.2018.01.009.Kangsoo Kim, Ryan Schubert, J. Hochreiter, Gerd Bruder, and Gregory Welch. Blowing in the wind: Increasing social presence with a virtual human via environmental airflow interaction in mixed reality. Computers & Graphics, 83:23–32, 10 2019. doi:10.1016/J.CAG.2019.06.006.Run Yu and Doug A Bowman Chair. Designing Coherent Interactions for Virtual Reality [dissertation]. Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 7 2019. URL: https://vtechworks.lib.vt.edu/handle/10919/93268.Robert Cuthbert, Selen Turkay, and Ross Brown. The effects of customisation on player experiences and motivation in a virtual reality game. ACM International Conference Proceeding Series, pages 221–232, 12 2019. doi:10.1145/3369457.3369475.Jaziar Radianti, Tim A. Majchrzak, Jennifer Fromm, and Isabell Wohlgenannt. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers and Education, 147, 4 2020. doi:10.1016/J.COMPEDU.2019.103778.Guido Makransky, Thomas S. Terkildsen, and Richard E. Mayer. Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60:225–236, 4 2019. doi:10.1016/j.learninstruc.2017. 12.007.Mihaly Csikszentmihalyi. Flow: The psychology of optimal experience. Harper & Row Publishers, New York, USA, 1990. doi:10.2307/258925.J E R Staddon and D T Cerutti. OPERANT CONDI TIONING. Annu Rev Psychol., 54:115–144, 2003. doi:10.1146/annurev.psych.54.101601.145124.Kevin. Werbach and Dan Hunter. For the win : how game thinking can revolutionize your business. Wharton Digital Press, 2012.Huei Ming Chiao, Yu Li Chen, and Wei Hsin Huang. Examining the usability of an online virtual tour-guiding platform for cultural tourism education. Journal of Hospitality, Leisure, Sport & Tourism Education, 23:29–38, 11 2018. doi:10.1016/ J.JHLSTE.2018.05.002.Kristel Knaepen, Uros Marusic, Simona Crea, Carlos D Rodríguez Guerrero, Nicola Vitiello, Nathalie Pattyn, Olivier Mairesse, Dirk Lefeber, and Romain Meeusen. Psychophysiological response to cognitive workload during symmetrical, asymmetrical and dual-task walking. Human Movement Science, 40(1):248–263, 2015. doi: 10.1016/j.humov.2015.01.001.J van Baren and W IJsselsteijn. Measuring Presence : A Guide to Current Measurement Approaches. Technical report, European Community Information Society Techonologies Programme, 2004.K S Kassam and W B Mendes. The Effects of Measuring Emotion: Physiological Reactions to Emotional Situations Depend on whether Someone Is Asking. PLoS ONE, 8(6):64959, 2013. URL: www.plosone.org, doi:10.1371/journal.pone.0064959.Carlos Rodriguez Guerrero, Juan Carlos Fraile Marinero, Javier Perez Turiel, and Victor M Noz. Using "human state aware" robots to enhance physical human– robot interaction in a cooperative scenario. Computer Methods and Programs in Biomedicine, 112:250–259, 2013. doi:10.1016/j.cmpb.2013.02.003.Sylvia D. Kreibig. Autonomic nervous system activity in emotion: A review. Biological Psychology, 84(3):394–421, 2010. doi:10.1016/j.biopsycho.2010.03.010.Géraldine Coppin and David Sander. Theoretical Approaches to Emotion and Its Measurement. In Emotion Measurement, chapter 1, pages 3–30. Woodhead Publishing, 1 2016. doi:10.1016/B978-0-08-100508-8.00001-1.Klaus R. Scherer. What are emotions? and how can they be measured? Social Science Information, 44(4):695–729, 2005. doi:10.1177/0539018405058216.Tobias Brosch and David Sander. The Appraising Brain: Towards a Neuro- Cognitive Model of Appraisal Processes in Emotion. Emotion review, 5(2):163–168, 2013. URL: http://journals.sagepub.com/doi/pdf/10.1177/1754073912468298, doi:10.1177/1754073912468298.Antonio R. Damasio. Emotion in the perspective of an integrated nervous system. Brain Research Reviews, 26(2-3):83–86, 1998. doi:10.1016/S0165-0173(97) 00064-7.Philip A Gable and Eddie Harmon-Jones. Approach-Motivated Positive Affect Reduces Breadth of Attention. Psychological science, 19(5):476–482, 2008. URL: http://journals.sagepub.com/doi/pdf/10.1111/j.1467-9280. 2008.02112.x, doi:10.1111/j.1467-9280.2008.02112.x.Andrew J. Elliot, Andreas B. Eder, and Eddie Harmon-Jones. Approach- Avoidance Motivation and Emotion: Convergence and Divergence. Emotion Review, 5(3):308–311, 2013. URL: http://journals.sagepub.com/doi/pdf/10.1177/ 1754073913477517, doi:10.1177/1754073913477517.Jesse J. Prinz. Which emotions are basic? In D Evans and P Cruse, editors, Emotion, Evolution, and Rationality, chapter 4, pages 69–87. Oxford University, 2004. doi:10.1093/acprof:oso/9780198528975.003.0004.Paul Ekman, Wallace V. Friesen, Maureen O’Sullivan, Anthony Chan, Irene Diacoyanni-Tarlatzis, Karl Heider, Rainer Krause, William Ayhan LeCompte, Tom Pitcairn, Pio E. Ricci-Bitti, Klaus Scherer, Masatoshi Tomita, and Athanase Tzavaras. Universals and Cultural Differences in the Judgments of Facial Expressions of Emotion. Journal of Personality and Social Psychology, 53(4):712–717, 1987. URL: /record/1988-04343-001, doi:10.1037/0022-3514.53.4.712.Klaus R. Scherer. Feelings Integrate the Central Representation of Appraisal-driven Response Organization in Emotion. In Feelings and Emotions, chapter 9, pages 136–157. Cambridge University Press, 2004. doi:10.1017/CBO9780511806582.009.James A. Russell. A circumplex model of affect. Journal of Personality and Social Psychology, 39(6):1161–1178, 1980. doi:10.1037/h0077714.Herbert L. Meiselman. Emotions Measurement. Elsevier, 2nd editio edition, 2021. doi:https://doi.org/10.1016/C2019-0-00017-9.Michael D Robinson and Gerald L Clore. Episodic and Semantic Knowledge in Emotional Self-Report: Evidence for Two Judgment Processes. Journal of Personality and Social Psychology, 83(1):1520–1532, 2002. doi:10.1037//0022-3514.83.1.198.Delroy L. Paulhus and Oliver P. John. Egoistic and Moralistic Biases in Self- Perception: The Interplay of Self-Deceptive Styles With Basic Traits and Motives. Journal of Personality, 66(6):1025–1060, 12 1998. URL: http://doi.wiley.com/ 10.1111/1467-6494.00041, doi:10.1111/1467-6494.00041.Richard D Lane, Geoffrey L Ahern, Gary E Schwartz, and Alfred W Kaszniak. Is Alexithymia the Emotional Equivalent of Blindsight? Biological Psychiatry, 42(9):834–844, 11 1997. doi:10.1016/S0006-3223(97)00050-4.Herbert L Meiselman. Emotion measurement: Theoretically pure or practical? Food Quality and Preference, 62:374–375, 2017. URL: http://dx.doi.org/10.1016/j. foodqual.2017.05.011, doi:10.1016/j.foodqual.2017.05.011.Margaret M. Bradley and Peter J. Lang. Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1):49–59, 1994. doi:10.1016/0005-7916(94)90063-9.C. Porcherot, S. Delplanque, C. Ferdenzi, N. Gaudreau, and I. Cayeux. Emotions of Odors and Personal and Home Care Products. Emotion Measurement, pages 427–454, 1 2016. URL: https://www.sciencedirect.com/science/article/pii/ B9780081005088000175, doi:10.1016/B978-0-08-100508-8.00017-5.J Matias Kivikangas, Inger Ekman, Guillaume Chanel, Simo Järvelä, Ben Cowley, Mikko Salminen, Pentti Henttonen, and Niklas Ravaja. Review on psychophysiological methods in game research. In Nordic DiGRA, page 1’5, Stockholm, Sweden, 2010. URL: http://project.hkkk.fi/fuga/.Gerhard Stemmler. Physiological processes during emotion. In Pierre Philippo and Robert S. Feldman, editors, The Regulation of Emotion, chapter 2, pages 33–70. Lawrence Erlbaum Associates, Mahwah, NJ, 2004. URL: https://www. researchgate.net/publication/262106219, doi:10.4324/9781410610898.Greg J. Norman, Elizabeth Necka, and Gary G. Berntson. The Psychophysiology of emotions. In Herbert L. Meiselman, editor, Emotion Measurement, chapter 4, pages 83–98. Elsevier, 2016. URL: http://www.pef.uni-lj.si/ceps/knjiznica/ doc/zuljan-vogrinc.pdf, doi:10.1016/S0031-0182(11)00557-8.Iris B Mauss and Michael D Robinson. Measures of emotion: A review. Cogn Emot, 23(2):209–237, 2009. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC2756702/pdf/nihms134765.pdf, doi:10.1080/02699930802204677.Ahmet Cengizhan Dirican and Mehmet Göktürk. Psychophysiological measures of human cognitive states applied in Human Computer Interaction. Procedia Computer Science, 3:1361–1367, 2011. doi:10.1016/j.procs.2011.01.016.Camila L.B. Maia and Elizabeth S. Furtado. Using psychophysiological measures to estimate dimensions of emotion in hedonic experiences. Computers and Electrical Engineering, 71(March):431–439, 2018. doi:10.1016/j.compeleceng.2018.07.048.Mikel Val-Calvo, José Ramón Álvarez-Sánchez, Jose Manuel Ferrández-Vicente, Alejandro Díaz-Morcillo, and Eduardo Fernández-Jover. Real-Time Multi-Modal Estimation of Dynamically Evoked Emotions Using EEG, Heart Rate and Galvanic Skin Response. https://doi.org/10.1142/S0129065720500136, 30(4), 3 2020. doi:10.1142/S0129065720500136.Angel Jimenez-Molina, Cristian Retamal, and Hernan Lira. Using Psychophysiological Sensors to Assess Mental Workload During Web Browsing. Sensors, 18(458), 2018. URL: www.mdpi.com/journal/sensors, doi:10.3390/s18020458.Adrian Colomer Granero, Felix Fuentes-Hurtado, Valery Naranjo Ornedo, Jaime Guixeres Provincale, Jose M. Ausin, and Mariano Alcañiz Raya. A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents. Frontiers in Computational Neuroscience, 10(74):1–14, 2016. URL: www.frontiersin.org, doi:10.3389/fncom.2016.00074.Likun Xia, Aamir Saeed Malik, and Ahmad Rauf Subhani. A physiological signalbased method for early mental-stress detection. Biomedical Signal Processing and Control, 46:18–32, 2018. doi:10.1016/j.bspc.2018.06.004.V. C. Goessl, J. E. Curtiss, and S. G. Hofmann. The effect of heart rate variability biofeedback training on stress and anxiety: a meta-analysis. Psychological Medicine, 47(15):2578–2586, 11 2017. doi:10.1017/S0033291717001003.Andrea Haarmann, Wolfram Boucsein, and Florian Schaefer. Combining electrodermal responses and cardiovascular measures for probing adaptive automation during simulated flight. Applied Ergonomics, 40(6):1026–1040, 11 2009. doi: 10.1016/j.apergo.2009.04.011.Wolfram Boucsein. Methods of Electrodermal Recording. In Electrodermal activity, pages 104–189. Springer US, New York, 2 edition, 2012. doi:10.1007/ 978-1-4614-1126-0.Kalliopi Kyriakou, Bernd Resch, Günther Sagl, Andreas Petutschnig, Christian Werner, David Niederseer, Michael Liedlgruber, Frank Wilhelm, Tess Osborne, and Jessica Pykett. Detecting moments of stress from measurements of wearable physiological sensors. Sensors (Switzerland), 19(17):1–26, 2019. doi:10.3390/s19173805.Mieko Ohsuga, Futomi Shimono, and Hirokazu Genno. Assessment of phasic work stress using autonomic indices. International Journal of Psychophysiology, 40(3):211– 220, 4 2001. URL: https://www.sciencedirect.com/science/article/abs/pii/ S0167876000001896, doi:10.1016/S0167-8760(00)00189-6.A. Kaklauskas, E. K. Zavadskas, M. Seniut, G. Dzemyda, V. Stankevic, C. Simkevičius, T. Stankevic, R. Paliskiene, A. Matuliauskaite, S. Kildiene, L. Bartkiene, S. Ivanikovas, and V. Gribniak. Web-based Biometric Computer Mouse Advisory System to Analyze a Users Emotions and Work Productivity. Engineering Applications of Artificial Intelligence, 24(6):928–945, 2011. doi:10.1016/j.engappai. 2011.04.006.Dongrae Cho, Jinsil Ham, Jooyoung Oh, Jeanho Park, Sayup Kim, Nak Kyu Lee, and Boreom Lee. Detection of stress levels from biosignals measured in virtual reality environments using a kernel-based extreme learning machine. Sensors (Switzerland), 17(10), 2017. doi:10.3390/s17102435.Elizabeth M. Argyle, Adrian Marinescu, Max L. Wilson, Glyn Lawson, and Sarah Sharples. Physiological indicators of task demand, fatigue, and cognition in future digital manufacturing environments. International Journal of Human-Computer Studies, 145:102522, 1 2021. doi:10.1016/J.IJHCS.2020.102522.Chama Belkhiria and Vsevolod Peysakhovich. EOG metrics for cognitive workload detection. Procedia Computer Science, 192:1875–1884, 1 2021. doi:10.1016/J. PROCS.2021.08.193.Chama Belkhiria and Vsevolod Peysakhovich. Electro-Encephalography and Electro- Oculography in Aeronautics: A Review Over the Last Decade (2010–2020). Frontiers in Neuroergonomics, 1(December), 2020. doi:10.3389/fnrgo.2020.606719.Yair Barniv, Mario Aguilar, and Erion Hasanbelliu. Using EMG to anticipate head motion for virtual-environment applications. IEEE Transactions on Biomedical Engineering, 52(6):1078–1093, 6 2005. doi:10.1109/TBME.2005.848378.Yogendra Narain Singh, Sanjay Kumar Singh, and Amit Kumar Ray. Bioelectrical Signals as Emerging Biometrics: Issues and Challenges. ISRN Signal Processing, 2012:1–13, 2012. URL: http://www.hindawi.com/journals/isrn/2012/712032/, doi:10.5402/2012/712032.Zoe Brown and Ben Gupta. Biological Signals and their Measurement. Anesthesia, pages 164–169, 2017. URL: www.anaesthesiologists.org.John Chapman. Amplifiers and biological signals. Anaesthesia and Intensive Care Medicine, 6(9):299–301, 2005. doi:10.1383/anes.2005.6.9.299.Andreas Keil, Stefan Debener, Gabriele Gratton, Markus Junghöfer, Emily S. Kappenman, Steven J. Luck, Phan Luu, Gregory A. Miller, and Cindy M. Yee. Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology, 51(1):1–21, 2014. doi:10.1111/PSYP.12147.T W Picton, S Bentin, P Berg, E Donchin, S A Hillyard, R Johnson, G A Miller, W Ritter, D S Ruchkin, M D Rugg, and M J Taylor. Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37(2):127–152, 2000. URL: https://onlinelibrary. wiley.com/doi/pdf/10.1111/1469-8986.3720127.Terry D. Blumenthal, Bruce N. Cuthbert, Diane L. Filion, Steven Hackley, Ottmar V. Lipp, and Anton Van Boxtel. Committee report: Guidelines for human startle eyeblink electromyographic studies. Psychophysiology, 42(1):1–15, 2005. doi: 10.1111/J.1469-8986.2005.00271.X.Matjaž Mihelj, Domen Novak, Jaka Ziherl, Andrej Olenšek, and Marko Munih. Challenges in biocooperative rehabilitation robotics. In IEEE International Conference on Rehabilitation Robotics, number 978, pages 11–16, Zurich, Switzerland, 2011. IEEE. doi:10.1109/ICORR.2011.5975435.Sara Gonçalves Farias, Mariana Rodrigues, Stephanie Dias da Costa, Adriana Ribeiro de Macedo, Anaelli A. Nogueira-Campos, Marco Antonio Cavalcanti Garcia, and Luis Aureliano Imbiriba. Cardiorespiratory and Emotional Responses During Balance Exercises. Research quarterly for exercise and sport, 18:1– 8, 2022. URL: https://pubmed.ncbi.nlm.nih.gov/35040750/, doi:10.1080/ 02701367.2021.1953691.Zhiqin Qian, Dongyuan Lv, Ying Lv, and Zhuming Bi. Modeling and Quantification of Impact of Psychological Factors on Rehabilitation of Stroke Patients. IEEE journal of biomedical and health informatics, 23(2):683–692, 3 2019. URL: https://pubmed. ncbi.nlm.nih.gov/29993937/, doi:10.1109/JBHI.2018.2827100.P.F Viñas, M. Hernández, J Pérez-Turiel, J.C. Fraile, A. Cuadrado, R Alonso, and M. Franco-Martin. Psychophysiological measurements in a robotic platform for upper limbs rehabilitation: first trials. In Converging Clinical and Engineering Research on Neurorehabilitation II, pages 1205–1209. Springer International Publishing, 2016.Noa Raphaely Beer, Nachum Soroker, Nathan M. Bornstein, and Michal Katz Leurer. Association between cardiac autonomic control and cognitive performance among patients post stroke and age-matched healthy controls—an exploratory pilot study. Neurological Sciences, 38(11):2037–2043, 2017. doi:10.1007/s10072-017-3097-0.Eun Hye Kim, Jui-hong Chien, Chang-chia Liu, Kumiko Oishi, Kenichi Oishi, Rajani Sebastian, Cornelia Demsky, Frederick Lenz, Argye E Hillis, Eun Hye, Jui-hong Chien, Chang-chia Liu, Kumiko Oishi, Kenichi Oishi, Eun Hye, Jui-hong Chien, Chang-chia Liu, Kumiko Oishi, Kenichi Oishi, Rajani Sebastian, and Cornelia Demsky. Stroke of bad luck ? Neurocase, 23(1):70–78, 2017. doi:10.1080/13554794. 2017.1296578.Hassan Mohammadi-Abdar, Angela L. Ridgel, Fred M. Discenzo, Robert S. Phillips, Benjamin L.Walter, and Kenneth A. Loparo. Test and Validation of a Smart Exercise Bike for Motor Rehabilitation in Individuals with Parkinson’s Disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(11):1254, 11 2016. doi:10.1109/TNSRE.2016.2549030.Marquardt D, Jongbloed-Pereboom M, Staal B, Appell H-J, Overvelde A, and Nijhuis-Van der Sanden MWG. Influence of a psychological stressor on motor performance and motor learning of a fine motor task: A randomised controlled experiment. Physiotherapy (United Kingdom), 101:eS954, 2015. doi:10.1016/j.physio.2015. 03.1806.David J. Cornforth, Alexander Koenig, Robert Riener, Katherine August, Ahsan H. Khandoker, Chandan Karmakar, Marimuthu Palaniswami, and Herbert F. Jelinek. The Role of Serious Games in Robot Exoskeleton-Assisted Rehabilitation of Stroke Patients. In Serious Games Analytics, pages 233–254. Springer International Publishing, Cham, 2015. doi:10.1007/978-3-319-05834-4{\_}10.Alexander Koenig, Ximena Omlin, Lukas Zimmerli, Mark Sapa, Carmen Krewer, Marc Bolliger, Friedemann Müller, and Robert Riener. Psychological state estimation from physiological recordings during robot-assisted gait rehabilitation. Journal of Rehabilitation Research & Development, 48(4):367–386, 2011. doi:10.1682/JRRD. 2010.03.0044.Nika Goljar, Metka Javh, Janja Poje, Julija Ocepek, Domen Novak, Jaka Ziherl, Andrej Olenšek, Matjaž Mihelj, and Marko Munih. Psychophysiological responses to robot training in different recovery phases after stroke. In Proc. IEEE ICORR, pages 1–6, Zurich, Switzerland, 2011. doi:10.1109/ICORR.2011.5975498.Alexander Koenig, Domen Novak, Ximena Omlin, Michael Pulfer, Eric Perreault, Lukas Zimmerli, Matjaz Mihelj, and Robert Riener. Real-Time Closed-Loop Control of Cognitive Load in Neurological Patients During Robot-Assisted Gait Training. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(4), 2011. doi:10.1109/TNSRE.2011.2160460.Domen Novak, Matjaž Mihelj, Jaka Ziherl, Andrej Olenšek, and Marko Munih. Psychophysiological measurements in a biocooperative feedback loop for upper extremity rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(4):400–410, 2011. doi:10.1109/TNSRE.2011.2160357.Domen Novak, Jaka Ziherl, Andrej Olenšek, Maja Milavec, Janez Podobnik, Matjaž Mihelj, and Marko Munih. Psychophysiological responses to robotic rehabilitation tasks in stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(4):351–361, 2010. doi:10.1109/TNSRE.2010.2047656.Melissa Mae White, Wenjuan Zhang, Anna T. Winslow, Maryam Zahabi, Fan Zhang, He Huang, and David B. Kaber. Usability Comparison of Conventional Direct Control Versus Pattern Recognition Control of Transradial Prostheses. IEEE Transactions on Human-Machine Systems, 47(6):1146–1157, 2017. doi:10.1109/THMS. 2017.2759762.B R Cavalcante, R M Ritti-Dias, A H G Soares, A H Lima, M A Correia, L D De Matos, F Gobbi, A S Leicht, N Wolosker, and G G Cucato. A Single Bout of Arm-crank Exercise Promotes Positive Emotions and Post-Exercise Hypotension in Patients with Symptomatic Peripheral Artery Disease. European Journal of Vascular & Endovascular Surgery, 53:223–228, 2017. URL: http://dx.doi.org/10.1016/j. ejvs.2016.11.021, doi:10.1016/j.ejvs.2016.11.021.Hyun K Kim, Jaehyun Park, Yeongcheol Choi, and Mungyeong Choe. Virtual reality sickness questionnaire ( VRSQ ): Motion sickness measurement index in a virtual reality environment. Applied Ergonomics, 69:66–73, 2018. doi:10.1016/j.apergo. 2017.12.016.Prin X. Amorapanth, Viswanath Aluru, Jennifer Stone, Arash Yousefi, Alvin Tang, Sarah Cox, Seda Bilaloglu, Ying Lu, Joseph Rath, Coralynn Long, Brian Im, and Preeti Raghavan. Traumatic brain injury results in altered physiologic, but not subjective responses to emotional stimuli. Brain Injury, 32(13-14):1712–1719, 12 2018. URL: https://www.tandfonline.com/doi/abs/10.1080/02699052.2018. 1519598, doi:10.1080/02699052.2018.1519598.Tatiana Aboulafia-Brakha, Philippe Allain, and Radek Ptak. Emotion regulation after traumatic brain injury: Distinct patterns of sympathetic activity during anger expression and recognition. Journal of Head Trauma Rehabilitation, 31(3):E21–E31, 2016. doi:10.1097/HTR.0000000000000171.Heather M. Francis, Alana Fisher, Jacqueline A. Rushby, and Skye McDonald. Reduced heart rate variability in chronic severe traumatic brain injury: Association with impaired emotional and social functioning, and potential for treatment using biofeedback. Neuropsychological Rehabilitation, 26(1):103–125, 2016. doi:10.1080/09602011.2014.1003246.Yvonne Treusch, Julie Page, Cornelis Van Der Luijt, Mina Beciri, Rebeca Benitez, Maria Stammler, and Valentine L Marcar. Emotional reaction in nursing home residents with dementia-associated apathy: A pilot study. Geriatric Mental Health Care, 3:1–6, 2015. URL: http://dx.doi.org/10.1016/j.gmhc.2015.04.001, doi: 10.1016/j.gmhc.2015.04.001.Wendy Moyle, Marie Louise Cooke, Elizabeth Beattie, David HK Shum, Siobhan T O, Sue Barrett, and Billy Sung. Foot Massage and Physiological Stress in People with Dementia: A Randomized Controlled Trial. The Journal of Alternative and Complementary Medicine, 20(4):305–311, 2014. doi:10.1089/acm.2013.0177.Frank A Russo, Naresh N Vempala, Gillian M Sandstrom, and Catherine J Stevens. Predicting musically induced emotions from physiological inputs: linear and neural network models. Frontiers in Psychology, 4(468):1–21, 2013. URL: www.frontiersin.org, doi:10.3389/fpsyg.2013.00468.Lorenza Tiberio, Amedeo Cesta, Gabriella Cortellessa, Luca Padua, and Anna Rita Pellegrino. Assessing affective response of older users to a telepresence robot using a combination of psychophysiological measures. Proceedings - IEEE International Workshop on Robot and Human Interactive Communication, pages 833–838, 2012. doi:10.1109/ROMAN.2012.6343855.Sonya Kim, Vance Zemon, Marie M. Cavallo, Joseph F. Rath, Rollin McCraty, and Frederick W. Foley. The Control of Heart Rate Variability Using Biofeedback in Individuals with Chronic Brain Injury and Its Effects on Executive Functioning. Archives of Physical Medicine and Rehabilitation, 93(10):2012, 2012. doi:10.1016/ j.apmr.2012.08.067.Shih Ching Yeh, Yuan Yuan Li, Chu Zhou, Pin Hua Chiu, and Jun Wei Chen. Effects of virtual reality and augmented reality on induced anxiety. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(7):1345–1352, 2018. doi: 10.1109/TNSRE.2018.2844083.J P Caneiro, Peter O’sullivan, Anne Smith, G Lorimer Moseley, and Ottmar V Lipp. Implicit evaluations and physiological threat responses in people with persistent low back pain and fear of bending. Scandinavian Journal of Pain, 17:355–366, 2017. doi:10.1016/j.sjpain.2017.09.012.A N Clausen, R L Aupperle, J-Fv V Sisante, D R Wilson, and S A Billinger. Pilot Investigation of PTSD, Autonomic Reactivity, and Cardiovascular Health in Physically Healthy Combat Veterans. PLoS ONE, 11(9):162547, 2016. doi: 10.1371/journal.pone.0162547.Timo Skodzik, Tatjana Zettler, Maurice Topper, Jens Blechert, and Thomas Ehring. The effect of verbal and imagery-based worry versus distraction on the emotional response to a stressful in-vivo situation. Journal of Behavior Therapy and Experimental Psychiatry, 52:51–58, 2016. URL: http://dx.doi.org/10.1016/j.jbtep. 2016.03.003, doi:10.1016/j.jbtep.2016.03.003.Justin Munafo, Meg Diedrick, and Thomas A Stoffregen. The virtual reality head - mounted display Oculus Rift induces motion sickness and is sexist in its effects. Experimental Brain Research, 235(3):889–901, 2016. doi:10.1007/s00221-016-4846-7.Thanarat Sripongngam, Wichai Eungpinichpong, Dhavee Sirivongs, Jaturat Kanpittaya, Kamonwan Tangvoraphonkchai, and Sutin Chanaboon. Psychological stress can be decreased by traditional Thai massage. Journal of the Medical Association of Thailand, 98:S29–S35, 2015.Ben Ainsworth, Jemma E. Marshall, Daniel Meron, David S. Baldwin, Paul Chadwick, Marcus R. Munafò, and Matthew Garner. Evaluating psychological interventions in a novel experimental human model of anxiety. Journal of Psychiatric Research, 63:117–122, 2015. doi:10.1016/j.jpsychires.2015.02.001.Tushar J. Palekar, Madhav G. Mokashi, Shahnawaz Anwer, Arjun L. Kakrani, Shilpa D. Khandare, and Ahmad H. Alghadir. Effect of galvanic skin resistanceaided biofeedback training in reducing the pulse rate, respiratory rate, and blood pressure due to perceived stress in physiotherapy students. Turkish Journal of Physical Medicine and Rehabilitation, 61(2):116–120, 6 2015.José Morales, Juan M. Álamo, Xavier García-Masso, Bernat Buscà, Jose L. López, Pilar Serra-Año, and Luís Millán González. Use of heart rate variability in monitoring stress and recovery in judo athletes. Journal of Strength and Conditioning Research, 28(7):1896–1905, 2014. doi:10.1519/JSC.0000000000000328.Maman Paul and Kanupriya Garg. The effect of heart rate variability biofeedback on performance psychology of basketball players. Applied Psychophysiology Biofeedback, 37(2):131–144, 2012. doi:10.1007/s10484-012-9185-2.John L. Andreassi. Psychophysiology : human behavior and physiological response. Lawrence Erlbaum, 2007.Lin Shu, Jinyan Xie, Mingyue Yang, Ziyi Li, Zhenqi Li, Dan Liao, Xiangmin Xu, and Xinyi Yang. A Review of Emotion Recognition Using Physiological Signals. Sensors, 18(2074), 2018. URL: www.mdpi.com/journal/sensors, doi:10.3390/s18072074.Benjamin Cowley, Marco Filetti, Kristian Lukander, Jari Torniainen, Andreas Henelius, Lauri Ahonen, Oswald Barral, Ilkka Kosunen, Teppo Valtonen, Minna Huotilainen, Niklas Ravaja, and Giulio Jacucci. A short review and primer on electroencephalography in human computer interaction applications. Foundations and Trends in Human-Computer Interaction, 9(3-4):151–308, 2015. URL: http: //arxiv.org/abs/1609.00183, doi:10.1561/1100000065.G. G. Berntson, K. S. Quigley, G. J. Norman, and D. L. Lozano. Cardiovascular psychophysiology. In Handbook of psychophysiology, chapter 9th, pages 183–216. Cambridge University Press, 2017. doi:https://doi.org/10.1017/9781107415782. 009.John Cacioppo, Louis G Tassinary, and Gary G Berntson. The Handbook of Psychophysiology, volume 44. Cambridge University Press, 2007. doi:10.1017/ CBO9780511546396.Robert T Tung. Electrocardiographic Limb Leads Placement and Its Clinical Implication. Kansas Journal of Medicine, 14:229–230, 2021. doi:10.17161/kjm.vol14. 15259.R.A. Harrigan, T.C. Chan, and W.J. Brady. Basic electrocardiographic techniques. In Roberts JR, Custalow CB, and Thomsen TW, editors, Roberts and Hedges’ clinical procedures in emergency medicine and acute care, chapter 14, pages 275–287. Elsevier, 7th edition, 2019.Md Rafiul Amin and Rose T. Faghih. Tonic and Phasic Decomposition of Skin Conductance Data: A Generalized-Cross-Validation-Based Block Coordinate Descent Approach. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pages 745–749. IEEE, 2019. doi:10.1109/EMBC.2019.8857074.Alberto Greco, Gaetano Valenza, Antonio Lanata, Enzo Pasquale Scilingo, and Luca Citi. CvxEDA: A convex optimization approach to electrodermal activity processing. IEEE Transactions on Biomedical Engineering, 63(4):797–804, 2016. doi:10.1109/ TBME.2015.2474131.Mathias Benedek and Christian Kaernbach. Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology, 47:647–658, 2010. doi:10.1111/j.1469-8986.2009.00972.x.Dominik R. Bach. A head-to-head comparison of SCRalyze and Ledalab, two modelbased methods for skin conductance analysis. Biological Psychology, 103(1):63–68, 2014. doi:10.1016/j.biopsycho.2014.08.006.Steven R Green, Philip A Kragel, Matthew E Fecteau, and Kevin S Labar. Development and validation of an unsupervised scoring system (Autonomate) for skin conductance response analysis. Int J Psychophysiol, 91(3):186–193, 2014. doi:10.1016/j.ijpsycho.2013.10.015.Marieke van Dooren, J. J.G.Gert Jan de Vries, and Joris H. Janssen. Emotional sweating across the body: Comparing 16 different skin conductance measurement locations. Physiology & Behavior, 106(2):298–304, 5 2012. doi:10.1016/J.PHYSBEH. 2012.01.020.F.Q. AL-Khalidi, R. Saatchi, D. Burke, H. Elphick, and S. Tan. Respiration rate monitoring methods: A review. Pediatric Pulmonology, 46(6):523–529, 2011. URL: http://doi.wiley.com/10.1002/ppul.21416, doi:10.1002/ppul.21416.Karan Sharma, Claudio Castellini, Egon L. van den Broek, Alin Albu-Schaeffer, and Friedhelm Schwenker. A dataset of continuous affect annotations and physiological signals for emotion analysis. Scientific Data, pages 1–13, 2018. URL: http://arxiv. org/abs/1812.02782, doi:10.1038/s41597-019-0209-0.Ali Darzi and Domen Novak. Optimizing human workload in a computer game using real-time control of heart rate and respiration. In Proceedings of the 2017 Rocky Mountain Bioengineering Symposium, number August, 2017.J Pan and W J Tompkins. Pan Tomkins 1985 - QRS detection.pdf. IEEE Transactions on Biomedical Engineering, 32(3):230–236, 1985. doi:10.1109/TBME.1985. 325532.Wolfram Boucsein, Don C. Fowles, Sverre Grimnes, Gershon Ben-Shakhar,Walton T. Roth, Michael E. Dawson, and Diane L. Filion. Publication recommendations for electrodermal measurements. Psychophysiology, 49(8):1017–1034, 2012. doi:10. 1111/j.1469-8986.2012.01384.x.Brendan B Murphy, Brittany H Scheid, Quincy Hendricks, Nicholas V Apollo, Brian Litt, and Flavia Vitale. Time Evolution of the Skin-Electrode Interface Impedance under Different Skin Treatments Skin-Electrode Interface Impedance under Different Skin Treatments. Sensors, 21:5210, 2021. doi:10.3390/s21155210.David M Johnson. Introduction to and Review of Simulator Sickness Research. Technical Report Personnel Performance and Training Technology, U.S. Army Research Institute for the Behavioral and Social Sciences, Arlington, 2005. URL: https://apps.dtic.mil/sti/pdfs/ADA434495.pdf.Stephen Palmisano, Rebecca Mursic, and Juno Kim. Vection and cybersickness generated by head-and-display motion in the Oculus Rift. Displays, 46:1–8, 1 2017. doi:10.1016/J.DISPLA.2016.11.001.Panagiotis Kourtesis, Simona Collina, Leonidas A.A. Doumas, and Sarah E. MacPherson. Technological Competence Is a Pre-condition for Effective Implementation of Virtual Reality Head Mounted Displays in Human Neuroscience: A Technological Review and Meta-Analysis. Frontiers in Human Neuroscience, 13(October):1–17, 2019. doi:10.3389/fnhum.2019.00342.Kay M Stanney, Kelly S Hale, Isabelina Nahmens, Central Florida, Robert S Kennedy, and R S K Assessments. What to Expect from Immersive Virtual Environment Exposure : Influences of Gender , Body Mass Index , and Past Experience. Human Factors, 45(3):504–520, 2003. doi:10.1518/hfes.45.3.504.27254.Panagiotis Kourtesis, Simona Collina, Leonidas A.A. Doumas, and Sarah E. MacPherson. Validation of the Virtual Reality Neuroscience Questionnaire: Maximum Duration of Immersive Virtual Reality Sessions Without the Presence of Pertinent Adverse Symptomatology. Frontiers in Human Neuroscience, 13:417, 11 2019. doi:10.3389/FNHUM.2019.00417/BIBTEX.Heather L. O’Brien, Paul Cairns, and Mark Hall. A practical approach to measuring user engagement with the refined user engagement scale (UES) and new UES short form. International Journal of Human Computer Studies, 112(December 2017):28– 39, 2018. doi:10.1016/j.ijhcs.2018.01.004.Maureen K. Holden. Virtual Environments for Motor Rehabilitation: Review. CyberPsychology & Behavior, 8(3):187–211, 6 2005. URL: http://www.liebertonline. com/doi/abs/10.1089/cpb.2005.8.187, doi:10.1089/cpb.2005.8.187.Madeleine E. Hackney, Joe Nocera, Tricia Creel, Mary Doherty Riebesell, and Trisha Kesar. Exercise and Balance in Older Adults with Movement Disorders. In Fabio Augusto Barbieri and Rodrigo Vitorio, editors, Locomotion and posture in older adults: The role of aging and movement disorders, chapter 21, pages 323–346. Springer International Publishing, Cham, Switzerland, 1st edition, 2017. doi:10.1007/978-3-319-48980-3{\_}21.Mario Widmer, Jeremia P. Held, Frieder Wittmann, Olivier Lambercy, Kai Lutz, and Andreas R. Luft. Does motivation matter in upper-limb rehabilitation after stroke? ArmeoSenso-Reward: Study protocol for a randomized controlled trial. Trials, 18(580):1–9, 2017. doi:10.1186/s13063-017-2328-2.Matjaž Mihelj, Domen Novak, Maja Milavec, Jaka Ziherl, Andrej Olenšek, and Marko Munih. Virtual rehabilitation environment using principles of intrinsic motivation and game design. Presence: Teleoperators & Virtual Environments, 21(1):1–15, 2012. doi:10.1162/PRES{\_}a{\_}00078.Sarah Sarabadani, Larissa Christina Schudlo, Ali-Akbar Samadani, and Azadeh Kushki. Physiological Detection of Affective States in Children with Autism Spectrum Disorder. IEEE Transactions on Affective Computing, pages 1–14, 2018. doi:10.1109/TAFFC.2018.2820049.Sandra Poeschl, Konstantin Wall, and Nicola Doering. Integration of spatial sound in immersive virtual environments an experimental study on effects of spatial sound on presence. Proceedings - IEEE Virtual Reality, pages 129–130, 2013. doi:10.1109/ VR.2013.6549396.Insu Yu, Jesper Mortensen, Pankaj Khanna, Bernhard Spanlang, and Mel Slater. Visual realism enhances realistic response in an immersive virtual environment—Part 2. IEEE Computer Graphics and Applications, 32(6):36–45, 2012. doi:10.1109/mcg. 2012.121.Bimal Balakrishnan and S. Shyam Sundar. Where am I? How can I get there? Impact of navigability and narrative transportation on spatial presence. Human-Computer Interaction, 26(3):161–204, 2011. doi:10.1080/07370024.2011.601689.Werner Wirth, Tilo Hartmann, Saskia Böcking, Peter Vorderer, Christoph Klimmt, Holger Schramm, Timo Saari, Jari Laarni, Niklas Ravaja, Feliz Ribeiro Gouveia, Frank Biocca, Ana Sacau, Lutz Jäncke, Thomas Baumgartner, and Petra Jäncke. A process model of the formation of spatial presence experiences. Media Psychology, 9(3):493–525, 2007. doi:10.1080/15213260701283079.Iris Bakker, Theo Van Der Voordt, Peter Vink, and Jan De Boon. Pleasure, arousal, dominance: Mehrabian and Russell revisited. Curr Psychol, 33:405–421, 2014. doi: 10.1007/s12144-014-9219-4.Lis Nielsen and Alfred W Kaszniak. Conceptual, theoretical, and methodological issues in inferring subjective emotion experience recommendations for researchers. In Handbook of Emotion Elicitation and Assessment, chapter 22, pages 361–375. Oxford Press, New York, 2007.Phil Page. Sensorimotor training : A “ global ” approach for balance training. Journal of Bodywork and Movement Therapies, 10(2006):77–84, 2006. doi:10.1016/j.jbmt. 2005.04.006.Oscar I. Caldas, Juan D. Abril, Oswaldo Rivera, Carlos Rodriguez-Guerrero, and Oscar F Avilés. Contribution of virtual environments to the perception of balance rehabilitation tasks: a psychophysiological study. In Proc. CLAIB-CNIB, Cancún, México, pages 1–7. Springer, 2019. doi:10.1007/978-3-030-30648-9.Franz Faul, Edgar Erdfelder, Albert Georg Lang, and Axel Buchner. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2):175–191, 2007. doi:10.3758/ BF03193146.Domen Novak. Promoting motivation during robot-assisted rehabilitation. In Rehabilitation Robotics, chapter 11, pages 149–158. Elsevier Ltd., 2018. doi:10.1016/ b978-0-12-811995-2.00010-2.Daniël Lakens. Calculating and reporting effect sizes to facilitate cumulative science : a practical primer for t -tests and ANOVAs. Frontiers in Psychology, 4(November):1– 12, 2013. doi:10.3389/fpsyg.2013.00863.Gail M. Sullivan and Richard Feinn. Using effect size — or why the p value is not enough. Journal of Graduate Medical Education, 4(3):279–282, 9 2012. doi: 10.4300/jgme-d-12-00156.1.Gabriele Wulf and Rebecca Lewthwaite. Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning. Psychon Bull Rev, 23:1382–1414, 2016. doi:10.3758/s13423-015-0999-9.Hyung Young Lee, Lim Kim, and Suk Min Lee. Effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. J. Phys Ther. Sci, 27(6):1883–1888, 2015. doi:10.1589/jpts.27.1883.Bob G Witmer and Michael J Singer. Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence, 7(3):225–240, 1998. doi:10.1162/ 105474698565686.Anthony H. Lequerica and Kathleen Kortte. Therapeutic Engagement. American Journal of Physical Medicine & Rehabilitation, 89(5):415–422, 2010. doi:10.1097/ PHM.0b013e3181d8ceb2.Heather O’Brien and Paul Cairns. Why engagement matters: Cross-disciplinary perspectives of user engagement in digital media. Springer International Publishing, 2016. doi:10.1007/978-3-319-27446-1.Jeanne H. Brockmyer, Christine M. Fox, Kathleen A. Curtiss, Evan McBroom, Kimberly M. Burkhart, and Jacquelyn N. Pidruzny. The development of the Game Engagement Questionnaire: A measure of engagement in video game-playing. Journal of Experimental Social Psychology, 45(4):624–634, 2009. doi:10.1016/j.jesp. 2009.02.016.Juho Hamari and Jonna Koivisto. Measuring flow in gamification: Dispositional Flow Scale-2. Computers in Human Behavior, 40:133–143, 2014. doi:10.1016/j. chb.2014.07.048.Bojan Kerous, Richard Barteček, Robert Roman, Petr Sojka, Ondřej Bečev, and Fotis Liarokapis. Examination of electrodermal and cardio-vascular reactivity in virtual reality through a combined stress induction protocol. Journal of Ambient Intelligence and Humanized Computing, 11(12):6033–6042, 2020. doi:10.1007/ s12652-020-01858-7.Miguel Barreda-Ángeles, Sara Aleix-Guillaume, and Alexandre Pereda-Baños. Users’ psychophysiological, vocal, and self-reported responses to the apparent attitude of a virtual audience in stereoscopic 360◦-video. Virtual Reality, 24(2):289–302, 2020. doi:10.1007/s10055-019-00400-1.Ali Darzi, Trent Wondra, Sean McCrea, and Domen Novak. Classification of multiple psychological dimensions in computer game players using physiology, performance, and personality characteristics. Frontiers in Neuroscience, 13(November):1–13, 2019. doi:10.3389/fnins.2019.01278.Chong Li, Zoltán Rusák, Imre Horváth, and Linhong Ji. Development of engagement evaluation method and learning mechanism in an engagement enhancing rehabilitation system. Engineering Applications of Artificial Intelligence, 51:182–190, 2016. doi:10.1016/j.engappai.2016.01.021.Maja Goršič, Imre Cikajlo, Nika Goljar, and Domen Novak. A multisession evaluation of an adaptive competitive arm rehabilitation game. Journal of NeuroEngineering and Rehabilitation, 14(1):1–15, 2017. doi:10.1186/s12984-017-0336-9.Sanne C. Van Der Pas, Jeanine A. Verbunt, Dorien E. Breukelaar, Rachma Van Woerden, and Henk A. Seelen. Assessment of arm activity using triaxial accelerometry in patients with a stroke. Archives of Physical Medicine and Rehabilitation, 92(9):1437– 1442, 2011. doi:10.1016/j.apmr.2011.02.021.Kunio Tsurumi, Toru Itani, Norihide Tachi, Toshimasa Takanishi, Hatsuko Suzumura, and Hidemaro Takeyama. Estimation of energy expenditure during sedentary work with upper limb movement. Journal of Occupational Health, 44(6):408–413, 2002. doi:10.1539/joh.44.408.Oscar I. Caldas, Oscar F. Aviles, and Carlos Rodriguez-Guerrero. A simplified method for online extraction of skin conductance features: A pilot study on an immersive virtual-reality-based motor task. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020- July:3747–3750, 2020. doi:10.1109/EMBC44109.2020.9176424.Aniket Nagle, Robert Riener, and Peter Wolf. Personality-based reward contingency selection: A player-centered approach to gameplay customization in a serious game for cognitive training. Entertainment Computing, 28:70–77, 2018. URL: http://dx. doi.org/10.1016/j.entcom.2017.10.005, doi:10.1016/j.entcom.2017.10.005.Catherine S. Oh, Jeremy N. Bailenson, and Gregory F. Welch. A systematic review of social presence: Definition, antecedents, and implications. Frontiers Robotics AI, 5(OCT):1–35, 2018. doi:10.3389/frobt.2018.00114.Nicolas Nostadt, David A. Abbink, Oliver Christ, and Philipp Beckerle. Embodiment, Presence, and Their Intersections. ACM Transactions on Human-Robot Interaction, 9(4):1–19, 2020. doi:10.1145/3389210.Oscar I. Caldas, Natalia Sanchez, Mauricio Mauledoux, Oscar F. Avilés, and Carlos Rodriguez-Guerrero. Leading presence-based strategies to manipulate user experience in virtual reality environments. Virtual Reality, 26(4):1507–1518, 2022. doi:10.1007/s10055-022-00645-3.Dong Kyu Lee. Data transformation: a focus on the interpretation. Korean Journal of Anesthesiology, 73(6):503–508, 11 2020. URL: http://ekja.org/journal/view. php?doi=10.4097/kja.20137, doi:10.4097/KJA.20137.Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. Research Methods in Human-Computer Interaction. Elsevier, 2nd edition, 2017. doi:10.1016/ b978-044481862-1/50075-3.Mel Slater, Pankaj Khanna, Jesper Mortensen, and Insu Yu. Visual realism enhances realistic response in an immersive virtual environment. IEEE Computer Graphics and Applications, 29(3):76–84, 2009. doi:10.1109/MCG.2009.55.Ayush Bhargava. The Effect of Anthropometric Properties of Self-Avatars on Action Capabilities in Virtual Reality Capabilities in Virtual Reality [dissertation]. Clemson University, Clemson, SC, USA, 2019. URL: https://tigerprints.clemson.edu/ all_dissertations/2502.C Wienrich, K Schindler, and S Kock. Social Presence and Cooperation in Large-Scale Multi-User Virtual Reality-The Relevance of Social Interdependence for Location-Based Environments. In IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 207–214. IEEE, 2018. doi:10.1109/VR.2018.8446575.Campus UMNGORIGINALCaldasFlauteroOscarIvan2023.pdfCaldasFlauteroOscarIvan2023.pdfTesis doctoral y anexosapplication/pdf27237782https://repository.umng.edu.co/bitstreams/8f9fa636-1109-415b-b14e-02294b39887e/downloadbf6c19161f38d4b746c1951115bd64feMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83420https://repository.umng.edu.co/bitstreams/5f709ec3-a8a4-4b6d-8804-0bff960d9262/downloada609d7e369577f685ce98c66b903b91bMD55THUMBNAILCaldasFlauteroOscarIvan2023.pdf.jpgCaldasFlauteroOscarIvan2023.pdf.jpgIM Thumbnailimage/jpeg5563https://repository.umng.edu.co/bitstreams/6a6456bb-e7df-4d81-82df-b8eecfa054da/download574639051a09350f2a614efb3a200f1aMD5610654/46075oai:repository.umng.edu.co:10654/460752024-11-06 03:01:15.873http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repository.umng.edu.coRepositorio Institucional UMNGbibliodigital@unimilitar.edu.coRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hLCB0cmFiYWpvIGRlIGdyYWRvIG8gY3VhbHF1aWVyIG90cm8gZG9jdW1lbnRvCmNvbiBjYXLDoWN0ZXIgYWNhZMOpbWljbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sIGhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2bwp5IGRlIHN1cyBhbmV4b3MgZW4gZm9ybWF0byBkaWdpdGFsIG8gZWxlY3Ryw7NuaWNvLgoKRUwgRVNUVURJQU5URSAtIEFVVE9SLCBtYW5pZmllc3RhIHF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuCmVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvcgpsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KCkVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4KY3VhbnRvIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgZW4gY3Vlc3Rpw7NuLCBFTCBFU1RVRElBTlRFIC0gQVVUT1IsCmFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7CnBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCkFkZW3DoXMsICJMQSBVTklWRVJTSURBRCBNSUxJVEFSIE5VRVZBIEdSQU5BREEgY29tbyBpbnN0aXR1Y2nDs24gcXVlIGFsbWFjZW5hLCB5CnJlY29sZWN0YSBkYXRvcyBwZXJzb25hbGVzLCBhdGVuZGllbmRvIGxvIHByZWNlcHR1YWRvIGVuIGxhIGxleSAxNTgxIGRlIDIwMTIgeSBlbApEZWNyZXRvIDEzNzcgZGUgMjAxMywgcXVlIGRlc2Fycm9sbGFuIGVsIHByaW5jaXBpbyBjb25zdGl0dWNpb25hbCBxdWUgdGllbmVuIHRvZGFzCmxhcyBwZXJzb25hcyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIgeSByZWN0aWZpY2FyIHRvZG8gdGlwbyBkZSBpbmZvcm1hY2nDs24gcmVjb2dpZGEKbywgcXVlIGhheWEgc2lkbyBvYmpldG8gZGUgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBlbiBiYW5jb3MgbyBiYXNlcyBkZQpkYXRvcyB5IGVuIGdlbmVyYWwgZW4gYXJjaGl2b3MgZGUgZW50aWRhZGVzIHDDumJsaWNhcyBvIHByaXZhZGFzLCByZXF1aWVyZSBvYnRlbmVyCnN1IGF1dG9yaXphY2nDs24sIHBhcmEgcXVlLCBkZSBtYW5lcmEgbGlicmUsIHByZXZpYSwgZXhwcmVzYSwgdm9sdW50YXJpYSwgeQpkZWJpZGFtZW50ZSBpbmZvcm1hZGEsIHBlcm1pdGEgYSB0b2RhcyBudWVzdHJhcyBkZXBlbmRlbmNpYXMgYWNhZMOpbWljYXMgeQphZG1pbmlzdHJhdGl2YXMsIHJlY29sZWN0YXIsIHJlY2F1ZGFyLCBhbG1hY2VuYXIsIHVzYXIsIGNpcmN1bGFyLCBzdXByaW1pciwgcHJvY2VzYXIsCmNvbXBpbGFyLCBpbnRlcmNhbWJpYXIsIGRhciB0cmF0YW1pZW50bywgYWN0dWFsaXphciB5IGRpc3BvbmVyIGRlIGxvcyBkYXRvcyBxdWUKaGFuIHNpZG8gc3VtaW5pc3RyYWRvcyB5IHF1ZSBzZSBoYW4gaW5jb3Jwb3JhZG8gZW4gbnVlc3RyYXMgYmFzZXMgbyBiYW5jb3MgZGUKZGF0b3MsIG8gZW4gcmVwb3NpdG9yaW9zIGVsZWN0csOzbmljb3MgZGUgdG9kbyB0aXBvIGNvbiBxdWUgY3VlbnRhIGxhIFVuaXZlcnNpZGFkLgoKRXN0YSBpbmZvcm1hY2nDs24gZXMgeSBzZXLDoSB1dGlsaXphZGEgZW4gZWwgZGVzYXJyb2xsbyBkZSBsYXMgZnVuY2lvbmVzIHByb3BpYXMgZGUKbGEgVW5pdmVyc2lkYWQgZW4gc3UgY29uZGljacOzbiBkZSBpbnN0aXR1Y2nDs24gZGUgZWR1Y2FjacOzbiBzdXBlcmlvciwgZGUgZm9ybWEKZGlyZWN0YSBvIGEgdHJhdsOpcyBkZSB0ZXJjZXJvcyIuCgpTaSBzdSBkb2N1bWVudG8gZXMgZGUgYWNjZXNvIHJlc3RyaW5naWRvICwgc3UgdHJhYmFqbyBzZSBkZXBvc2l0YXLDoSBlbiBlbApSZXBvc2l0b3JpbyBVTU5HIMO6bmljYW1lbnRlIGNvbiBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRvY3VtZW50YWwgeSBtZW1vcmlhCmluc3RpdHVjaW9uYWwsIGVudGVuZGllbmRvIHF1ZSwgc2Vyw6EgY29uc3VsdGFkbyBkZSBmb3JtYSBjb250cm9sYWRhIHNvbGFtZW50ZSBwb3IKbGEgY29tdW5pZGFkIE5lb2dyYW5hZGluYS4KClNpIHN1IGRvY3VtZW50byBlcyBkZSBhY2Nlc28gYWJpZXJ0bywgcGFyYSBwZXJtaXRpciBhbCBSZXBvc2l0b3JpbyBVTU5HIHJlcHJvZHVjaXIsCnRyYWR1Y2lyIHkgZGlzdHJpYnVpciBzdSBlbnbDrW8gYSB0cmF2w6lzIGRlbCBtdW5kbywgbmVjZXNpdGFtb3Mgc3UgY29uZm9ybWlkYWQgZW4KbG9zIHNpZ3VpZW50ZXMgdMOpcm1pbm9zOgoKWSBhdXRvcml6YSBhIGxhIFVOSVZFUlNJREFEIE1JTElUQVIgTlVFVkEgR1JBTkFEQSwgcGFyYSBxdWUgZW4gbG9zIHTDqXJtaW5vcwplc3RhYmxlY2lkb3MgZW46CgpMZXkgMjMgZGUgMTk4Mi0gTGV5IDQ0IGRlIDE5OTMgLUxleSAxOTE1IGRlIDIwMTggLSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLQpEZWNyZXRvIDQ2MCBkZSAxOTk1IHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgdXRpbGljZSB5IHVzZSBwb3IKY3VhbHF1aWVyIG1lZGlvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sCmNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlCmRvY3VtZW50by4KCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc8OzbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlCnVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byB2aXJ0dWFsLAplbGVjdHLDs25pY28sIGRpZ2l0YWwsIHkgY3V5byB1c28gc2UgZGUgZW4gcmVkLCBpbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBldGMuLAp5IGVuIGdlbmVyYWwgZW4gY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxvcyBUw6lybWlub3MgeSBjb25kaWNpb25lcywgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwKYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYSBiaWJsaW9kaWdpdGFsQHVuaW1pbGl0YXIuZWR1LmNvCgpBY2VwdGUgVMOpcm1pbm9zIHkgY29uZGljaW9uZXMgc2VsZWNjaW9uYW5kbyAiQWNlcHRvIiB5IHB1bHNhbmRvICJDb21wbGV0YXIgZW52w61vIi4K