Variación del metaboloma y la composición alcaloidal en Magnolia grandiflora (MAGNOLIACEAE) de la Sabana de Bogotá

En las interacciones de las plantas con su entorno se producen respuestas metabólicas a través de la síntesis de metabolitos secundarios y, por tanto, los factores ambientales y ecológicos que influyen en la planta establecen variaciones en sus perfiles metabólicos. En el caso de los alcaloides, que...

Full description

Autores:
Ravagli Castillo, Andrea Carolina
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Militar Nueva Granada
Repositorio:
Repositorio UMNG
Idioma:
spa
OAI Identifier:
oai:repository.unimilitar.edu.co:10654/16163
Acceso en línea:
http://hdl.handle.net/10654/16163
Palabra clave:
MAGNOLIACEAS
ALCALOIDES
Magnoliaceae
Magnolia grandiflora
Metabolic response
Alkaloids
Metaboloma
Magnoliaceae
Magnolia grandiflora
Respuesta metabólica
Alcaloides
Metaboloma
Rights
License
http://purl.org/coar/access_right/c_abf2
id UNIMILTAR2_60a560754d517e824eb5d8b70696aea4
oai_identifier_str oai:repository.unimilitar.edu.co:10654/16163
network_acronym_str UNIMILTAR2
network_name_str Repositorio UMNG
repository_id_str
dc.title.spa.fl_str_mv Variación del metaboloma y la composición alcaloidal en Magnolia grandiflora (MAGNOLIACEAE) de la Sabana de Bogotá
dc.title.translated.spa.fl_str_mv Variation of Metaboloma and Alkaloidal Composition in Magnolia grandiflora (MAGNOLIACEAE) of the Sabana of Bogotá
title Variación del metaboloma y la composición alcaloidal en Magnolia grandiflora (MAGNOLIACEAE) de la Sabana de Bogotá
spellingShingle Variación del metaboloma y la composición alcaloidal en Magnolia grandiflora (MAGNOLIACEAE) de la Sabana de Bogotá
MAGNOLIACEAS
ALCALOIDES
Magnoliaceae
Magnolia grandiflora
Metabolic response
Alkaloids
Metaboloma
Magnoliaceae
Magnolia grandiflora
Respuesta metabólica
Alcaloides
Metaboloma
title_short Variación del metaboloma y la composición alcaloidal en Magnolia grandiflora (MAGNOLIACEAE) de la Sabana de Bogotá
title_full Variación del metaboloma y la composición alcaloidal en Magnolia grandiflora (MAGNOLIACEAE) de la Sabana de Bogotá
title_fullStr Variación del metaboloma y la composición alcaloidal en Magnolia grandiflora (MAGNOLIACEAE) de la Sabana de Bogotá
title_full_unstemmed Variación del metaboloma y la composición alcaloidal en Magnolia grandiflora (MAGNOLIACEAE) de la Sabana de Bogotá
title_sort Variación del metaboloma y la composición alcaloidal en Magnolia grandiflora (MAGNOLIACEAE) de la Sabana de Bogotá
dc.creator.fl_str_mv Ravagli Castillo, Andrea Carolina
dc.contributor.advisor.spa.fl_str_mv Coy Barrera, Ericsson
dc.contributor.author.spa.fl_str_mv Ravagli Castillo, Andrea Carolina
dc.subject.lemb.spa.fl_str_mv MAGNOLIACEAS
ALCALOIDES
topic MAGNOLIACEAS
ALCALOIDES
Magnoliaceae
Magnolia grandiflora
Metabolic response
Alkaloids
Metaboloma
Magnoliaceae
Magnolia grandiflora
Respuesta metabólica
Alcaloides
Metaboloma
dc.subject.keywords.spa.fl_str_mv Magnoliaceae
Magnolia grandiflora
Metabolic response
Alkaloids
Metaboloma
dc.subject.proposal.spa.fl_str_mv Magnoliaceae
Magnolia grandiflora
Respuesta metabólica
Alcaloides
Metaboloma
description En las interacciones de las plantas con su entorno se producen respuestas metabólicas a través de la síntesis de metabolitos secundarios y, por tanto, los factores ambientales y ecológicos que influyen en la planta establecen variaciones en sus perfiles metabólicos. En el caso de los alcaloides, que se encuentran ampliamente distribuidos en plantas y son agentes activos en las interacciones evolutivas debido a que su metabolismo está controlado bajo regulación genética, se convierten en componentes variables relacionados con acondicionamiento debido a presiones externas. En este contexto, como parte del interés del grupo en el estudio de respuestas metabólicas de angiospermas basales, se evaluó la variación del metaboloma y la composición alcaloidal de la especie Magnolia grandiflora (Magnoliaceae) distribuida en diferentes lugares. A partir de los extractos etanólicos de hojas y cortezas analizados por HPLC-DAD-MS se detectaron 23 compuestos secundarios, de los cuales 13 correspondían a alcaloides, acompañados de lignanos y neolignanos, lactonas sesquiterpénicas, antraquinona, y triterpeno. En el análisis por HPLC-DAD-MS de los extractos alcaloidales de hojas y cortezas, se detectaron 28 compuestos secundarios de los cuales 23 eran alcaloides entre los que se destacaron los tipos aporfinoide (dehidroaporfinas y dioxoaporfinas), isoquinolínicos y bis-bencilisoquinolínicos, morfinanos, y alcaloides derivados del tipo hasubanonina. El análisis multivariado supervisado (i.e., OPLS) con la cuantificación de fenoles conectó la naturaleza fenólica de ciertos alcaloides expresados por la planta que, en su mayoría, fueron del tipo aporfinoide, los cuales concuerdan con la incorporación de fenoles en su estructura por proceso biosintético. En general, el análisis multivariado confirmó por consiguiente que existe variación en los perfiles metabólicos y en la composición alcaloidal en relación a las partes de la planta evaluadas, los tiempos de colecta y los ambientes establecidos. Así mismo, varias muestras de hojas y cortezas biosintetizaron compuestos secundarios específicos, incluidos los alcaloides, en tiempos de colecta diferentes. Con los resultados obtenidos se puede establecer que la planta M. grandiflora presenta quimiotipos ricos en alcaloides, especialmente del tipo aporfinoide, en respuesta a condiciones ambientales y ecológicas diferentes.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-06-30T18:08:41Z
2019-12-26T21:08:55Z
dc.date.available.none.fl_str_mv 2017-06-30T18:08:41Z
2019-12-26T21:08:55Z
dc.date.issued.none.fl_str_mv 2017-04-21
dc.type.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10654/16163
url http://hdl.handle.net/10654/16163
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ahmed SM. y Adeglegaleil SAM. 2005. Antifungal activity of extracts and sesquiterpene lactones from Magnolia grandiflora L. (Magnoliaceae). Int. J. Agr. Biol. 7(4): 638-642
Aniszewski T. 2007. Alkaloids-Secrets of life. Alkaloid chemistry, biological significance, applications and ecological role. First edition, Elsevier, UK, pp. 6-12, 141-143, 148-168
APG III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161(2): 105-121
Arango GJ. 2008. Alcaloides y compuestos nitrogenados. Universidad de Antioquia, Medellín, Colombia, pp. 3, 38-50
Arora S, Singh S, Piazza GA, Contreras CM, Panyam J, Singh AP. 2012. Honokiol: a novel natural agent for cancer prevention and therapy. Curr. Mol. Med. 12(10): 1244-1252
Azuma H, Thien LB, Toyota M, Asakawa Y, Kawano S. 1997. Distribution and differential expression of (E)-4,8 -dimetil-1,3,7 –nonatriene in leaf and floral volatiles of Magnolia and Liriodendron taxa. J. Chem. Ecol. 23(11): 2467-2478
Azuma H, García-Franco JG, Rico-Gray V, Thien LB. 2001. Molecular phylogeny of the Magnoliaceae: The biogeography of tropical and temperate disjunctuions. Am. J. Bot. 88:2275-2285
Benson WW, Brown KS, Gilbert LE. 1976. Coevolution of plants and herbivores: Passion flower butterflies. Evolution 29: 659-680
Bermejo A, Protais P, Blazquez MA, Rao KS, Zafra-Polo MC, Cortes D. 1995. Dopaminergic Isoquinoline Alkaloids from roots of Xylopia papuana. Nat. Prod. Res. 6: 57-62
Castaneda-Acosta J, Cain AW, Fischer NH, Knopf FC. 1995. Extraction of bioactive sesquiterpene lactones from Magnolia grandiflora using supercritical carbon dioxide and near-critical propane. J. Agric. Food. Chem. 43(1): 63-68
Cavé A, Rasamizafy S, Hocquemiller R, Deverre JR, Hadi AHA. 1986. Alcaloides de Annonaceas 70. Pl. Med. Phytoth. 20: 251-254
Chang WL, Chung CH, Wu YC, Su MJ. 2004. The vascular and cardioprotective effects of liriodenine in ischemia-reperfusion injury via NO-dependent pathway. Nitric Oxide 11(4): 307-315
Chen BH, Chang HW, Huang HM, Chong IW, Chen JS, Chen CY, Wang HM. 2011. (-)-Anonaine induces DNA damage and inhibits growth and migration of human lung carcinoma h1299 cells. J. Agric. Food. Chem. 59: 2284-2290
Chen BL. y Nooteboom HP. 1993. Notes on Magnoliaceae III: the Magnoliaceae of China. Ann. Missouri Bot. Gard. 80: 999-1104
Chen JH, Du ZZ, Shen YM, Yang YP. 2009. Aporphine alkaloids from Clematis parviloba and their antifungal activity. Arch. Pharm. Res. 32(1): 3-5
Chiu N. y Chang K. 1995. The illustrated medicinal plants in Taiwan. Vol. 3. SMC Publ. Inc. Taiwan, pp 312
Chulia S, Ivorra MD, Cave A, Cortes D, Noguera MA, D’Ocon MP. 1995. Relaxant activity of three aporphine alkaloids from Annona cherimolia on isolated aorta of rat. J. Pharm. Pharmacol. 47: 647-650
Chung HS, Hon PM, Lin G, But PH, Dong H. 2003. Antitussive activity of Stemona alkaloids from Stemona tuberosa. Planta Med. 69: 914-920
Cicuzza D, Newton A, Oldfield S. 2007. The red list of Magnoliaceae. Primera edición. Fauna y Flora Internacional, Cambridge, UK, pp. 52
Clark AM, El-Feraly AS, Li WS. 1981. Antimicrobial activity of phenolic constituents of Magnolia grandiflora L. J. Pharm. Sci. 70: 951-952
Crane PR, Friis EM, Pedersen KR. 1995. The origin and early diversification of angiosperms. Nature 374: 27-33
Davé PC, Vogler B, Setzer WN. 2011. Composition of the floral essential oil of Magnolia grandiflora L. (Magnoliaceae): intraspecific and floral maturity variations. J. Essent. Oil Bear. Plant. 15(5): 694-702
Deguchi T, Urakawa N, Hayama T, Ohkubo Y. 1963. Ganglion stimulating action of Candicine. Jpn. J. Pharmacol 13: 143-159
Del Valle-Mondragón L, Tenorio-López FA, Zarco-Olvera G, Pastelín-Hernández G. 2007. Vulgarenol, a sesquiterpene isolated from Magnolia grandiflora, induces nitric oxide synthases II and III overexpression in guinea pig hearts. Z. Naturforsch. C Bio. 62(9-10): 725-730
Dewick PM. 2009. Medicinal Natural Products. A Biosynthetic Approach. Third Edition, John Wiley and Sons, Ltda, United Kingdom, pp. 7-8, 311, 336-355
Dey PM. y Harborne JB. 1997. Plant Biochemistry. Academic Press, United Kingdom, pp. 503-504
Dilcher DL. y Crane PR. 1984. Archaeanthus: an early angiosperm from the Cenomanian of the western interior of North America. Ann. Missouri Bot. Gard. 71: 351-383
Duke JA. y Ayensu ES. 1985. Medicinal plants of China. Vol. 1 and 2. Reference Publ. Inc., Michigan, pp. 705
El-Feraly FS. y Chan YM. 1978. Isolation and characterization of the sesquiterpene lactones costunolide, parthenolide, costunolide diepoxide, santamarine, and reynosin from Magnolia grandiflora L. J. Pharm. Sci. 67(3): 347-350
Fadaeinasab M, Taha H, Mohd-Fauzi PN, Widyawaruyant A. 2015. Anti-malarial activity of isoquinoline alkaloids from the stem bark of Actinodaphne macrophylla. Nat. Prod. Commun. 10(9): 1541-1542
Feild TS, Arens NC, Dawson TE. 2003. The ancestral ecology of Angiosperms: emerging perspectives from extant basal lineages. Int. J. Plant Sci. 164: S129-S142
Figlar RB. y Nooteboom HP. 2004. Notes on Magnoliaceae IV. Blumea 49: 87-100
Ganzera M, Mair M, Stuppner H, Fischer NH, Khan IA. 2001. Analysis of sesquiterpene lactones in Magnolia grandiflora L. by micellar electrokinetic capillary chromatography. Chromatographia 54(9-10): 665-668
García N. 2007. Libro rojo de plantas de Colombia. Volumen 5: Las Magnoliáceas, Las Miristicáceas y Las Podocarpáceas. Serie libros rojos de especies amenazadas de Colombia. Instituto Alexander von Humboldt Bogotá, Colombia – CORANTIOQUIA- Jardín Botánico Joaquín Antonio Uribe de Medellín – Instituto de Ciencias Naturales de la Universidad Nacional de Colombia- Ministerio de Ambiente, Vivienda y Desarrollo Territorial, pp. 236
Garg SN. y Kumar S. 1999. Volatile constituents from the flowers of Magnolia grandiflora L. from Lucknow, India. J. Essent. Oil Res. 11(5): 633-634
Gilman EF. y Watson DG. 1994. Magnolia grandiflora Southern Magnolia. Forest service. Department of agriculture. Fact sheet ST-371 pp. 3-4
Glass DJ. y Hall N. 2008. A brief history of the hypothesis. Cell 134: 378-381
Graziose R, Rathinasabapathy T, Lategan C, Poulev A, Smith PJ, Grace M, Lila MA, Raskin I. 2011. Antiplasmodial activity of aporphine alkaloids and sesquiterpene lactones from Liriodendron tulipifera L. J. Ethnopharmacol. 133(1): 26-30
Guinaudeau H, Leboef M, Cavé A. 1975. Aporphine alcaloids. Lloydia 38: 275-338
Gülz PG, Müller E, Schmitz K, Marner FJ, Güth S. 1992. Chemical composition and surface structures of epicuticular leaf waxes of Ginkgo biloba, Magnolia grandiflora and Liriodendron tulipifera. Z. Naturforsch. 47: 516-526
Hartman JR, Pirone TP, Sall MA. 2000. Pirone’s tree maintenance. Seventh edition, Oxford University Press, pp. 419
Hegnauer R. 1969. Chemotaxonomy Plant, Volume 5. Birkhäuser, Basel, Stuttgart, pp. 394-396
Hegnauer R. 1990. Chemotaxonomy Plant, Volume 9. Birkhäuser, Basel, Berlin, pp. 288-293
Herbert RB. 1985. The chemistry and Biology of isoquinolina alkaloids. Editorial Springer-Verlag, Berlin, pp. 214
Hoffmann D. 2003. Medical Herbalism. The Science and Practice of Herbal Medicine. Healing Arts Press, Rochester Vermont, pp. 38
Hong L, Li G, Zhou W, Wang X, Zhang K. 2007. Screening and isolation of a nematicidal sesquiterpene from Magnolia grandiflora L. Pest Manag. Sci. 63(3): 301-305
Huang KC. 1999. The pharmacology of Chinese herbs. Second edition. CRC Press, New York, pp. 512
Judd WS, Campbell CS, Kellog EA, Teven PF. 1999. Plant Systematics: a Phylogenetic approach. Sinauer Associates, Inc. Massachusetts, USA, pp. 464
Kell DB. y Oliver SG. 2004. Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays 26: 99-105
Khan MR, Kihara M, Omoloso AD. 2002. Antimicrobial activity of Michelia champaca. Fitoterapia 73(7-8): 744-748
Kim S, Chong-Wook P, Young-Dong K, Youngbae S. 2001. Phylogenetic relationships in family Magnoliaceae inferred from NDHF sequences. Am. J. Bot. 88: 717-728
Koo TH, Lee JH, Park YJ, Hong YS, Kim HS, Kim KW, Lee JJ. 2001. A sesquiterpene lactone, costunolide from Magnolia grandiflora inhibits NF-kB by targeting IkB phosphorylation. Planta Med. 67: 103-107
Kosar M, Goeger F, Can BKH. 2008. In vitro antioxidant properties and phenolic composition of Salvia virgate Jacq. from Turkey. J. Agric. Food Chem. 56: 2369-2374
Kubitzki K, Rohwer JG, Bittrich V. 1993. The families and genera of vascular plants. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid families. Volume II. Springer-Verlag Berlin Heidelberg, pp. 397, 399
Leonardo TE. y Mondor EB. 2006. Symbiont modifies host life history traits that affect gene flow. Proc. R. Soc. B 273 (1590): 1079-1084
Lim TK. 2014. Edible medicinal and non-medicinal plants. Volume 8, Flowers. Springer Science+Business Media Dordrecht, pp. 243-244
Lozano G. 1994. Dugandiodendron y Talauma (Magnoliaceae) en el neotropico. Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Colección Jorge Álvarez Lleras. Instituto de Ciencias Naturales Universidad Nacional No. 3. Editora Guadalupe Ltda, pp. 147
Luckner M. 1990. Secondary Metabolism in Microorganisms, Plants and Animals. Third edition, Springer-Verlag, Berlin Heidelberg, pp. 8
Luo XD, Wu SH, Ma YB, Wu DG, Zhou J. 2001. Sesquiterpenoids from Magnolia grandiflora. Planta Med. 67: 354-357
Luo M, Sun JF, Zhang B, Jiang L. 2012. Chemical composition and antioxidant activity of essential oil from Magnolia grandiflora L. seed. J. Wuhan Univ. Natur. Sci. 17(3): 249-254
Martínez AL, Domínguez F, Orozco S, Chávez M, Salgado H, Gonzalez M, Gonzalez-Trujano ME. 2006. Neuripharmacological effects of an etanol extract of the Magnolia dealbata Zucc. leaves in mice. J. Ethnopharmacol. 106: 250-255
Martínez LA, Ríos JL, Paya M, Alcaraz MJ. 1992. Inhibition of nonenzymic lipid peroxidation by benzylisoquinoline alkaloids. Free Radic. Biol. Med. 12: 287-292
Martínez-Vázquez M, Estrada-Reyes R, Araujo-Escalona AG, Ledesma-Velázquez I, Martínez-Mota L, Moreno J, Heinze G. 2012. Antidepressant-like effects of an alkaloid extract of the aerial parts of Annona cherimolia in mice. J. Ethnopharmacol. 139: 164-170
Mohamed SM, Hassan EM, Ibrahim NA. 2010. Cytotoxic and antiviral activities of aporphine alkaloids of Magnolia grandiflora L. Nat. Prod. Res. 24(15): 1395-1402
Morrison N, Bearden D, Bundy JG, Collette T, Currie F, Davey MP, Haigh NS, Hancock D, Jones O, Rochfort S, Sansone SA, Stys D, Teng Q, Field D, Viant MR. 2007. Standard reporting requirements for biological samples in metabolomics experiments: environmental context. Metabolomics 3: 203-210
Nakano T. 1954a. Studies on the alkaloids of magnoliaceous plants. XII. Alkaloids of Magnolia grandiflora L. (1). Pharm. Bull. 2(4): 321-325
Nakano T. 1954b. Studies on the alkaloids of magnoliaceous plants. XIII. Alkaloids of Magnolia grandiflora L. (2). Pharm. Bull. 2(4): 326-328
Nakano T. 1954c. Studies on the alkaloids of magnoliaceous plants. XIV. Alkaloids of Magnolia grandiflora L. (3). Structure of magnoflorine. Pharm. Bull. 2(4): 329-334
Nitao JK, Nair MG, Thorogood DL, Johnson KS, Scriber JM. 1991. Bioactive neolignanos from the leaves of Magnolia virginiana (Magnoliaceae). Phytochemistry 30: 2193-2195
Nordin N, Majid NA, Hashim NM, Rahman MA, Hassan Z, Ali HM. 2015. Liriodenine, an aporphine alkaloid from Enicosanthellum pulchrum, inhibits proliferation of human ovarian cancer cells through induction of apoptosis via the mitochondrial signaling pathway and blocking cell cycle progression. Drug Des. Dev. Ther. 9: 1437-1448
Pubchem. 2016. Open chemistry database. https://pubchem.ncbi.nlm.nih.gov/ [consultado Junio 20, 2016]
Pyo MK, Yun-Choi HS, Hong YJ. 2003. Antiplatelet activities of aporphine alkaloids isolated from leaves of Magnolia obovate. Planta Med. 69(3): 267-269
Rahman MM, Lopa SS, Sadik G, Harun-Or-Rashid, Islam R, Khondkar P, Alam AH, Rashid MA. 2005. Antibacterial and cytotoxic compounds from the bark of Cananga odorata. Fitoterapia 76(7-8): 758-761
Rao KV. 1975. Glycosides of Magnolia grandiflora. Part I: Isolation of three crystalline glycosides. Planta Med. 27(1): 31-36
Rao KV. y Davis TL. 1982. Constituents of Magnolia grandiflora I: mono-O-methylhonokiol. Planta Med. 45(5): 57-59
Rao KV. y Juneau RJ. 1975. Glycosides of Magnolia. II. Structural elucidation of magnolidin. Lloydia 38(4): 339-342
Rehman JU, Ali A, Tabanca N, Raman V, Demirci B, Başer KHC, Khan IA. 2013. Biting deterrent and larvicidal activity of essential oils of Magnolia grandiflora against Aedes aegypti. Planta Med. 79: P20
Rojas Y, Soto R, Anaya E, Retuerto F, Fuertes C. 2004. Efecto antitumoral de los alcaloides hidrosolubles de Abuta grandifolia (Mart) Sandwith, en línea celular HEP-2. Faculta de farmacia y bioquímica UNMSM. Ciencia e investigación VII (1): 22-26
Sadava D, Heller HC, Orians GH, Purves WK, Hillis DM. 2008. Life. The Science of Biology. Eighth edition, Sinauer Associates, Inc, Sunderland, MA, pp. 641
Schühly W, Khan SI, Fischer NH. 2009. Neolignans from North American Magnolia species with cyclooxygenase 2 inhibitory activity. Inflammopharmacology 17(2): 106-110
Seigler DS. 1998. Plant Secondary Metabolism. 1st edition, Springer Science+Business Media, New York, pp. 12
Shamma M. y Guinaudeau H. 1984. Biogenetic pathways for the aporphinoid alkaloids. Tetrahedron 40: 4795-4822. En: Arango GJ. 2008. Alcaloides y compuestos nitrogenados. Universidad de Antioquia, Medellín, Colombia, pp. 49
Sharmeen R, Hossain N, Rahman M, Foysal J, Miah F. 2012. In vitro antibacterial activity of herbal aqueous extract against multi-drug resistant Klebsiella sp. isolated from human clinical samples. Int. curr. pharm. J. 1: 133-137
Sinha RK. 2004. Modern plant physiology. Alpha Science International Ltd., Pangbourne England, pp. 577
Taiz L. y Zeiger E. 2010. Plant Physiology. Quinta edición, Sinauer Associates, Inc. USA, pp. 370
The Plant List. 2013. The Angiosperms (flowering plants). Versión 1.1. http://www.theplantlist.org/browse/A/#M [consultado Abril 7, 2016]
Tomita M, Watanabe Y, Furukawa H. 1961. Studies on the alkaloids of Magnoliaceous plants. XXV. Alkaloids of Magnolia grandiflora var. lanceolata Ait. Yakugaku Zasshi 81(1): 144-146
Tomita M. y Kozuka M. 1967. Studies on the alkaloids of magnoliaceous plants. 38. Alkaloids of Magnolia grandiflora Linn. Yakugaku Zasshi 87(9): 1134-1137
Tsai IL, Liou YF, Lu ST. 1989. Screening of isoquinoline alkaloids and their derivatives for antibacterial and antifungal activities. Gaoxiong Yi Xue Ke Xue Za Zhi 5: 132-145
Valiente M, D’Ocon P, Noguera MA, Cassels BK, Lugnier C, Ivorra MD. 2004. Vascular activity of (-)-anonaine, (-)-roemerine and (-)-pukateine, three natural 6a(R)-1,2-methylenedioxyaporphines with different affinities for alpha1-adrenoceptor subtypes. Planta Med. 70: 603-609
Vázquez-García JA, Neill DA, Asanza M, Recalde L. 2015. Magnolia vargasiana (Magnoliaceae), a new Andean species and a key to Ecuadorian species of subsection Talauma, with notes on its pollination biology. Phytotaxa 217: 26-34
Velásquez C. y Serna M. 2005. Magnoliáceas de Antioquia. Primera edición. Impregon S.A., Colombia, pp. 32
Wang Y, Mu RM, Wang XR, Liu SX, Fan ZQ. 2009. Chemical composition of volatile constituents of Magnolia grandiflora. Chem. Nat. Compd. 45(2): 257-258
Weerakkody NS, Caffin N, Turner MS, Dykes GA. 2010. In vitro antimicrobial activity of less-utilized spice and herb extracts against selected food-borne bacteria. Food Control 21: 1408-1414
Wysocki W, Gulewicz P, Aniszewski T, Ciesiolka D, Gulewicz K. 2001. Bioactive preparations from alkaloid-rich lupin. Relation between chemical composition and biological activity. Bull. Pol. Acad. Sci. Biol. 49: 9-17
Yang MH, Blunden G, Patel AV, O’Neill MJ, Lewis JA. 1994. Coumarins and sesquiterpene lactones from Magnolia grandiflora leaves. Planta Med. 60(4): 390
Yasukawa S, Kato H, Yamaoka R, Tanaka H, Arai H, Kawano S. 1992. Reproductive and pollination biology of Magnolia and its allied genera (Magnoliaceae). I. Floral volatiles of several Magnolia and Michelia species and their roles in attracting insects. Plant Species Biol. 7: 121-140
Zelenski SG. 1977. Alkaloids of Nelumbo latea (Willd.)pers. (Nymphaeaceae). J. Pharm Sci 66(11): 1627-1628
Zhou J, Xie G, Yan X. 2011. Encyclopedia of traditional Chinese medicines. Molecular structures, pharmacological activities, natural sources and applications. Vol. 3. Isolated compounds H-M. Springer, Berlin, pp. 367
Ziyaev R, Shtonda NI, Sturua MD, Abdusamatov A, Tsakadze DM. 1999. Alkaloids of some Magnolia species. Chem. Nat. Compd. 35(3): 366-367
Abadía J. y Álvarez AM. 2009. La espectrometría de masas, una herramienta esencial en Metabolómica y Análisis comparativo de muestras. Fundación AulaDei. Parque Científico Tecnológico. pp. 7-20
Agilent. 2010. Nuevas perspectivas: Metabolómica en Agilent. http://www.chem.agilent.com [Consultado Febrero 17, 2014]
Ap Rees T. y Hill SA. 1994. Metabolic control analysis of plant metabolism. Plant Cell Environ. 17: 587-599
Azcón-Bieto J. y Talón M. 2001. Fundamentos de fisiología vegetal. Primera edición. McGraw-Hill Interamericana de España S.A., Barcelona, pp.522
Bell EA. 1980. Secondary plant products. Encyclopedia of plant physiology, New series, Volume 8. Springer-Verlag, Berlin, pp. 11
Benthin B, Danz H, Hamburger M. 1999. Pressurized liquid extraction of medicinal plants. J. Chromatogr. A 837: 211-219
Bermúdez AM. y Millán JL. 2013. Metodología para el mejoramiento en los procesos de dirección de proyectos del Fondo de pebención y atención de emergencias – FOPAE. Universidad EAN, pp- 13
Bravo L. 1998. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(11): 317-333
Cava MP. y Venkateswarlu A. 1971. Dehydroocopodine, dicentrinone, and other alkaloids from Ocotea macropoda and Hernandia jamaicensis. Tetrahedron, 27(13): 2639-2643
Chelombut’ko VA. y Israilov IA. 1988. Alkaloids of Papaver fugax. Chemistry of natural compounds, 24(4): 474-477
Collinge DB, Gregersen P, Thordal-Christensen H. 1994. The induction of gene expression in response to pathogenic microbes. En: Mechanisms of plant growth and improved productivity: Modern approaches. Basra AS. Ed. Marcel Dekker, New York, pp. 391-433
Deng SM, Cheng YX, Zhou J, Tan NH, Ding ZT. 2001. Magnoquinone and neolignanos from Magnolia rostrata. Acta Botánica Yunnanica, 2001-01. ISSN: 2095-0845
El-Feraly FS. 1983. Soulangianolide B. Phytochemistry, 22, 2239. En: KNApSAcK data base. 2017. http://kanaya.naist.jp/knapsack_jsp/information.jsp?word=C00012335 [consultado Febrero 20, 2017]
Espinosa-García FJ. 1996. Revisión sobre la alelopatía de Eucalyptus L’Herit. Bol. Soc. Bot. 58: 55-74
Fiehn O, Kopka J, Trethewey RN, Willmitzer L. 2000. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 72: 3573-3580
Gerhardt R. y Heldt HW. 1984. Measurement of subcellular metabolite levels in leaves by fractionation of freeze-stopped material in nonaqueous media. Plant Physiol. 75: 542-547
Gilchrist CH. y Kosuge T. 1980. Aromatic amino acid biosynthesis and its regulation. En: Miflin BS Ed. The Biochemistry of Plants. A comprehensive treatise, Vol 5. Academic Press, New York, pp. 507-537
Giraldo L. y Behrentz E. 2006. Inventarios de emisiones desarrollados en 2003 y 2006 por la Universidad de Los Andes. Disponibles en: www.cleanairnet.org/lac_pt/1473/articles-56439_recurso_1.ppt http://dspace.uniandes.edu.co:5050/dspace/bitstream/1992/939/1/Balkema+Tesis+Liliana+Giraldo.pdf En: Rojas NY. 2007. Aire y problemas ambientales de Bogotá. Universidad Nacional de Colombia, pp. 4-6
Goodacre R, Vaidyanathan S, Dunn W, Harrigan G, Kell D. 2004. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 22 (5): 245-252
Grundon MF. y McGarvey JEB. 1966. Alkaloids from greenheart. Part III. The structure of rodiasine. Mass spectra of bisbenzylisoquinoline alkaloids. J. Chem. Soc. C, 1082-1084
Gutiérrez DM, Ortiz CA, Mendoza A. 2008. Medición de fenoles y actividad antioxidante en malezas usadas para alimentación animal. Simposio de Metrología, Santiago de Querétaro, México, M220-1108: 1-5
Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM. 2004. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J. Exp. Bot. 56(410): 219-243
Kamal-Eldin A, Moazzami A, Washi S. 2001. Sesame seed lignans: potent physiological modulators and possible ingredients in functional foods & nutraceuticals. Recent Pat. Food Nutr. Agric. 3(1): 17-29
Kashiwaba N, Morroka S, Kimura M, Ono M, Toda J, Suzuki H, Sano T. 1996. New morphinane and Hasubanane alkaloids from Stephania cepharantha. J. Nat. Prod. 59 (5): 476-480
Lattanzio V, Lattanzio VMT, Cardinali A. 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry: Advances in Research, 23-67 ISBN:81-308-0034-9
Li J, Christophel DC, Conran JG, Li HW. 2004. Phylogenetic relationships within the “core” Laureae (Litsea complex, Lauraceae) inferred from sequences of the chloroplast gene matK and nuclear ribosomal DNA ITS regions. Pl. Syst. Evol. 246: 19-34
Likhitwitayawuid K, Angerhofer CK, Cordell GA, Pezzuto JM, Ruangrungsi N. 1993. Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from Stephania erecta. J. Nat. Prod. 56(1): 30-38
Long SP, Ainsworth EA, Rogers A, Ort DR. 2004. Rising atmospheric carbon dioxide: Plants face the future. Annual Review of Plant Biology, 55: 591-628
Macheix JJ, Fleuriet A, Billot J. 2000. Fruit phenolics. Boca Ratón, Florida: CRC Press, Inc, pp. 378
Macías FA, Galindo JC, Massanet GM. 1992. Potential allelopathic activity of several sesquiterpene lactone models. Phytochemistry, 31(6): 1969-1977
Manske RHF. 1967. The Alkaloids. Chemistry and physiology. Volume IX. Academic Press, New York, pp. 32
Manske RHF. 1968. The Alkaloids. Chemistry and physiology. Volume X. Academic Press, New York, pp. 409
Milder IEJ, Arts ICW, van de Putte B, Venema DP, Hollman PCH. 2005. Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. British Journal of Nutrition, 93: 393-402
Miyazawa M, Kasahara H, Kameoka H. 1993. Biotransformation of lignans: a specific microbial oxidation of (+)-eudesmin and (+)-magnolin by Aspergillus niger. Phytochemistry, 34(6): 1501-1507
Mudd JB. y Kozlowski TT. 1975. Responses of plants to air pollution. Academic Press Inc, New York, pp. 6, 24
Nielsen NPV, Carstensen JM, Smedsgaard J. 1998. Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimized warping. J. Chromatogr. A 805 (1): 17-35
Penuelas J. y Estiarte M. 1998. Can elevated CO2 affect secondary metabolism and ecosystem function? Trends in Ecology & Evolution, 13: 20-24
Pérez L, Rojas L, Carmona J, Ferrer H, Usubillaga A. 2010. Componentes volátiles de la Ocotea macropoda (Kunth) Mez. (Lauraceae). Abstract book of XIX SILAE (Società Italo-Latinoamericana Di Etnomedicina) Congress “Fernando Cabieses Molina” 2010 Villasimius, Cagliari, Italy, 6-10 september pp. 293
Poore MD. Y Fries C. 1985. The ecologicl effects of Eucalyptus. FAO Forestry Paper, pp. 59
Poore MD. y Fries C. 1987. Efectos ecológicos de los eucaliptos. Organización de las Naciones Unidas para la Agricultura y la Alimentación. FAO. Roma, ISBN 92-5-302286-8, pp. 53
Ringuelet J. y Viña S. 2013. Productos naturales vegetales. Editorial de la Universidad de La Plata. Buenos Aires, Argentina, pp. 196, 209
Rozo WV. y Mendoza LE. 2013. Implementación de técnicas de reconocimiento de patrones (Least Square Support Vector Machines) en procesos de selección de parámetros característicos aplicados a sistemas metabolómicos. Revista Colombiana de Tecnologías de Avanzada (RCTA), 1 (21): 104-112. ISSN: 1692-7257 – Volumen 1 – Número 21 – 2013
Sánchez-Moreno C. 2002. Compuestos polifenólicos: estructura y clasificación: presencia en alimentos y consumo: biodisponibilidad y metabolismo. Alimentaria 329: 19-28
Sarker SD. y Maruyama Y. 2002. Magnolia. The genus Magnolia. Taylor & Francis, London, pp. 53, 59
Scalbert A. y Williamson G. 2000. Dietary intake and bioavailability of polyphenols. J. Nutr 130: 2073S-2085S
Shamma M. 1972. The Isoquinoline Alkaloids. Chemistry and pharmacology. Organic chemistry. Volume 25. Academic press, New York and London, pp. 222
Streeter JG. y Strimbu CE. 1998. Simultaneous extraction and derivatization of carbohydrates from green plant tissues for analysis by gas-liquid chromatography. Anal. Biochem. 259: 253-257
Taiz L. y Zeiger E. 2006. Plant physiology. Cuarta edición. Sinauer Associates INC Publishers. Sunderland, Massachusetts, pp. 764
Talavera-Bustamante I, Bustio-Martínez L, Coma-Peña Y, Hernández-González N. 2013. Quimiometrix II, una plataforma automatizada para el procesamiento multivariante de datos químicos y bioquímicos. Experiencias de aplicación. Revista Cubana de Química, Vol. XXV, N° 3, 257-265
Tanahashi T, Su Y, Nagakura N, Nayeshiro H. 2000. Quaternary isoquinoline alkaloids from Stephania cepharantha. Chem. Pharm. Bull. 48(3): 370-373
Vecchietti V, Casagrande C, Ferrari G, Danieli B, Palmisano G. 1981. Alkaloids of Ocotea acutangula. Journal of the Chemical Society, Perkin Transactions 1, DOI: 10.1039/P19810000578, pp. 578
Wold S. y Sjostrom M. 1977. SIMCA: A method for analyzing chemical data in terms of similarity and analogy. En: Kowalski B (Ed.), Chemometrics: Theory and application, pp. 243-282
Zhang L, Geng Y, Duan W, Wang D, Fu M, Wang X. 2009. Ionic liquid-based ultrasound-assisted extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. J. Sep. Sci. 32(20): 3550-3554
Aguiar R. y Wink M. 2005. Do naїve ruminants degrade alkaloids in the rumen? J. Chem. Ecol. 31(4): 761-787
Aniszewski T. 1994. The biological basis of quinolizidine alkaloids. Science of Legumes 1: 1-24
Berenbaum MR. 1983. Coumarins and caterpilars: A case for coevolution. Evolution 37: 163-178
Colegate SM. y Molyneux RJ. 2008. Bioactive natural products. Detection, isolation, and structural determination. Second edition. CRC Press, New York, pp. 521
Gora J, Kalemba D, Kurowska A. 1980. Chemical substances of Magnoliaceas and Calendulaceas. Herb. Hung. 19: 151-171
Jacyno JM, Montemurro N, Bates AD, Cutler HG. 1991. Phytotoxic and antimicrobial properties of cyclocolorenone from Magnolia grandiflora. J. Agric. Food Chem. 39: 1166-1168
Knaggs AR. 2003. The biosynthesis of shikimate metabolites. Nat. Prod. Rep. 20: 119-136
Knölker HJ. 2014. The alkaloids Chemistry and Biology. Volume 73. Elsevier, Oxford UK, pp. 178
Liscombe DK, MacLeod BP, Loukanina N, Nandi OI, Facchini PJ. 2005. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry, 66(11): 1374-1393
Marcano D. y Hasegawa M. 2002. Fitoquímica orgánica. Segunda edición. Consejo de Desarrollo Científico y Humanístico. Universidad Central de Venezuela, pp. 384
Muzquiz M, Burbano C, Cuadrado C, De la Cuadra C. 1993. Determinación de factores antinutritivos termorresistentes en leguminosas I: Alcaloides. Inv. Agraria. Producción y Protección Veg., 8: 351-361
Phillipson JD, Roberts MF, Zenk MH. 1985. The chemistry and biology of Isoquinoline alkaloids. Springer-Verlag Berlin, Heidelberg, pp. 217-220
Thorne AD, Pexton JJ, Dytham C, Mayhew PJ. 2006. Small body size in an insect shifts development, prior to adult eclosion, towards early reproduction. Proc. R. Soc. B 273(1590): 1099-1103
Tzin V. y Galili G. 2010. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Molecular Plant, 3(6): 956-972
Warumby SM. y Lacava AL. 2007. Alcalóides Aporfinóides Do Gênero Ocotea (Lauraceae). Quim. Nova, 30(1); 92-98
Wink M. 2003. Evolution of secondary metabolities from an ecological and molecular phylogenetic perspective. Phytochemistry 64: 1: 3-19
Wink M. 2010. Introduction: biochemistry, physiology and ecological functions of secondary metabolites. En: Biochemistry of plant secondary metabolism. Wink M (Ed), Annual plant reviews, 40: 1-19
Wink M. y Mohamed GIA. 2003. Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolities on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene. Biochem. Syst. Ecol. 31:8: 897-917
Wold S, Geladi P, Esbensen K, Ohman J. 1987. Multi-way principal components and PLS-analysis. J. Chemometrics 1 (1): 41-56
Zamora-Natera F, García-López P, Ruiz-López M, Salcedo-Pérez E. 2008. Composición de alcaloides en semillas de Lupinus mexicanus (fabaceae) y evaluación antifúngica y alelopática del extracto alcaloideo. Agrociencia, vol.42 no. 2 http://www.scielo.org.mx/scielo.php?pid=S1405-31952008000200006&script=sci_arttext
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Campus UMNG
dc.publisher.department.spa.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.program.spa.fl_str_mv Biología Aplicada
dc.publisher.grantor.spa.fl_str_mv Universidad Militar Nueva Granada
institution Universidad Militar Nueva Granada
bitstream.url.fl_str_mv http://repository.unimilitar.edu.co/bitstream/10654/16163/1/RavagliCastilloAndreaCarolina2017.pdf
http://repository.unimilitar.edu.co/bitstream/10654/16163/2/license.txt
http://repository.unimilitar.edu.co/bitstream/10654/16163/3/RavagliCastilloAndreaCarolina2017.pdf.txt
http://repository.unimilitar.edu.co/bitstream/10654/16163/4/RavagliCastilloAndreaCarolina2017.pdf.jpg
bitstream.checksum.fl_str_mv fd4063262ef3fe1803cdc4417fffa07c
57c1b5429c07cf705f9d5e4ce515a2f6
a2815b71e9f1eb0f57c9aebfb495af0b
b91addc91367e4ec1e4514795bc7b84a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UMNG
repository.mail.fl_str_mv bibliodigital@unimilitar.edu.co
_version_ 1837098402488254464
spelling Coy Barrera, EricssonRavagli Castillo, Andrea CarolinaBiólogoCampus UMNG2017-06-30T18:08:41Z2019-12-26T21:08:55Z2017-06-30T18:08:41Z2019-12-26T21:08:55Z2017-04-21http://hdl.handle.net/10654/16163En las interacciones de las plantas con su entorno se producen respuestas metabólicas a través de la síntesis de metabolitos secundarios y, por tanto, los factores ambientales y ecológicos que influyen en la planta establecen variaciones en sus perfiles metabólicos. En el caso de los alcaloides, que se encuentran ampliamente distribuidos en plantas y son agentes activos en las interacciones evolutivas debido a que su metabolismo está controlado bajo regulación genética, se convierten en componentes variables relacionados con acondicionamiento debido a presiones externas. En este contexto, como parte del interés del grupo en el estudio de respuestas metabólicas de angiospermas basales, se evaluó la variación del metaboloma y la composición alcaloidal de la especie Magnolia grandiflora (Magnoliaceae) distribuida en diferentes lugares. A partir de los extractos etanólicos de hojas y cortezas analizados por HPLC-DAD-MS se detectaron 23 compuestos secundarios, de los cuales 13 correspondían a alcaloides, acompañados de lignanos y neolignanos, lactonas sesquiterpénicas, antraquinona, y triterpeno. En el análisis por HPLC-DAD-MS de los extractos alcaloidales de hojas y cortezas, se detectaron 28 compuestos secundarios de los cuales 23 eran alcaloides entre los que se destacaron los tipos aporfinoide (dehidroaporfinas y dioxoaporfinas), isoquinolínicos y bis-bencilisoquinolínicos, morfinanos, y alcaloides derivados del tipo hasubanonina. El análisis multivariado supervisado (i.e., OPLS) con la cuantificación de fenoles conectó la naturaleza fenólica de ciertos alcaloides expresados por la planta que, en su mayoría, fueron del tipo aporfinoide, los cuales concuerdan con la incorporación de fenoles en su estructura por proceso biosintético. En general, el análisis multivariado confirmó por consiguiente que existe variación en los perfiles metabólicos y en la composición alcaloidal en relación a las partes de la planta evaluadas, los tiempos de colecta y los ambientes establecidos. Así mismo, varias muestras de hojas y cortezas biosintetizaron compuestos secundarios específicos, incluidos los alcaloides, en tiempos de colecta diferentes. Con los resultados obtenidos se puede establecer que la planta M. grandiflora presenta quimiotipos ricos en alcaloides, especialmente del tipo aporfinoide, en respuesta a condiciones ambientales y ecológicas diferentes.Vicerrectoría de Investigaciones de la Universidad Militar Nueva Granada. Proyecto IMP-CIAS-1567In the interactions of plants with their environment metabolic responses are produced through the synthesis of secondary metabolites and, therefore, the environmental and ecological factors that influence the plant establish variations in their metabolic profiles. In the case of alkaloids that are widely distributed in plants and are active agents in the evolutionary interactions because their metabolism is controlled under genetic regulation , they become variable components related to conditioning due to external pressures. In this context, as part of the group's interest in the study of metabolic responses of basal angiosperms, the variation of the metabolome and the alkaloidal composition of the species Magnolia grandiflora (Magnoliaceae) distributed in different places was evaluated. Twenty-three secondary compounds, of which 13 corresponded to alkaloids, were detected additionally lignans and neolignans, sesquiterpene lactones, anthraquinone, and triterpene from ethanolic leaf and bark extracts analyzed by HPLC-DAD-MS. In the HPLC-DAD-MS analysis of alkaloidal extracts of leaves and barks, 28 secondary compounds were detected, of which 23 were alkaloids, among which the aporphinoid (dehydrophosphine and dioxoaporfins), isoquinolinic and bis-benzylisoquinolinic, morphinan , and hasubanonine-derived alkaloids. Supervised multivariate analysis (ie, OPLS) with the quantification of phenols connected the phenolic nature of certain alkaloids expressed by the plant, which were mostly of the aporphinoid type, which are in agreement with the incorporation of phenols into its structure by biosynthetic process . In general, the multivariate analysis confirmed that there is indeed variation in the metabolic profiles and in the alkaloidal composition based on the parts of the plant evaluated, the collection times and the established environments. Also, several leaf and bark samples biosynthesized specific secondary compounds, including alkaloids, at different collection times. With the results obtained it is possible to establish that the plant M. grandiflora presents chemotypes rich in alkaloids especially of the aporphinoid type, in response to different environmental and ecological conditions.Pregradoapplication/pdfspaVariación del metaboloma y la composición alcaloidal en Magnolia grandiflora (MAGNOLIACEAE) de la Sabana de BogotáVariation of Metaboloma and Alkaloidal Composition in Magnolia grandiflora (MAGNOLIACEAE) of the Sabana of Bogotáinfo:eu-repo/semantics/bachelorThesisTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fMAGNOLIACEASALCALOIDESMagnoliaceaeMagnolia grandifloraMetabolic responseAlkaloidsMetabolomaMagnoliaceaeMagnolia grandifloraRespuesta metabólicaAlcaloidesMetabolomaFacultad de Ciencias BásicasBiología AplicadaUniversidad Militar Nueva GranadaAhmed SM. y Adeglegaleil SAM. 2005. Antifungal activity of extracts and sesquiterpene lactones from Magnolia grandiflora L. (Magnoliaceae). Int. J. Agr. Biol. 7(4): 638-642Aniszewski T. 2007. Alkaloids-Secrets of life. Alkaloid chemistry, biological significance, applications and ecological role. First edition, Elsevier, UK, pp. 6-12, 141-143, 148-168APG III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161(2): 105-121Arango GJ. 2008. Alcaloides y compuestos nitrogenados. Universidad de Antioquia, Medellín, Colombia, pp. 3, 38-50Arora S, Singh S, Piazza GA, Contreras CM, Panyam J, Singh AP. 2012. Honokiol: a novel natural agent for cancer prevention and therapy. Curr. Mol. Med. 12(10): 1244-1252Azuma H, Thien LB, Toyota M, Asakawa Y, Kawano S. 1997. Distribution and differential expression of (E)-4,8 -dimetil-1,3,7 –nonatriene in leaf and floral volatiles of Magnolia and Liriodendron taxa. J. Chem. Ecol. 23(11): 2467-2478Azuma H, García-Franco JG, Rico-Gray V, Thien LB. 2001. Molecular phylogeny of the Magnoliaceae: The biogeography of tropical and temperate disjunctuions. Am. J. Bot. 88:2275-2285Benson WW, Brown KS, Gilbert LE. 1976. Coevolution of plants and herbivores: Passion flower butterflies. Evolution 29: 659-680Bermejo A, Protais P, Blazquez MA, Rao KS, Zafra-Polo MC, Cortes D. 1995. Dopaminergic Isoquinoline Alkaloids from roots of Xylopia papuana. Nat. Prod. Res. 6: 57-62Castaneda-Acosta J, Cain AW, Fischer NH, Knopf FC. 1995. Extraction of bioactive sesquiterpene lactones from Magnolia grandiflora using supercritical carbon dioxide and near-critical propane. J. Agric. Food. Chem. 43(1): 63-68Cavé A, Rasamizafy S, Hocquemiller R, Deverre JR, Hadi AHA. 1986. Alcaloides de Annonaceas 70. Pl. Med. Phytoth. 20: 251-254Chang WL, Chung CH, Wu YC, Su MJ. 2004. The vascular and cardioprotective effects of liriodenine in ischemia-reperfusion injury via NO-dependent pathway. Nitric Oxide 11(4): 307-315Chen BH, Chang HW, Huang HM, Chong IW, Chen JS, Chen CY, Wang HM. 2011. (-)-Anonaine induces DNA damage and inhibits growth and migration of human lung carcinoma h1299 cells. J. Agric. Food. Chem. 59: 2284-2290Chen BL. y Nooteboom HP. 1993. Notes on Magnoliaceae III: the Magnoliaceae of China. Ann. Missouri Bot. Gard. 80: 999-1104Chen JH, Du ZZ, Shen YM, Yang YP. 2009. Aporphine alkaloids from Clematis parviloba and their antifungal activity. Arch. Pharm. Res. 32(1): 3-5Chiu N. y Chang K. 1995. The illustrated medicinal plants in Taiwan. Vol. 3. SMC Publ. Inc. Taiwan, pp 312Chulia S, Ivorra MD, Cave A, Cortes D, Noguera MA, D’Ocon MP. 1995. Relaxant activity of three aporphine alkaloids from Annona cherimolia on isolated aorta of rat. J. Pharm. Pharmacol. 47: 647-650Chung HS, Hon PM, Lin G, But PH, Dong H. 2003. Antitussive activity of Stemona alkaloids from Stemona tuberosa. Planta Med. 69: 914-920Cicuzza D, Newton A, Oldfield S. 2007. The red list of Magnoliaceae. Primera edición. Fauna y Flora Internacional, Cambridge, UK, pp. 52Clark AM, El-Feraly AS, Li WS. 1981. Antimicrobial activity of phenolic constituents of Magnolia grandiflora L. J. Pharm. Sci. 70: 951-952Crane PR, Friis EM, Pedersen KR. 1995. The origin and early diversification of angiosperms. Nature 374: 27-33Davé PC, Vogler B, Setzer WN. 2011. Composition of the floral essential oil of Magnolia grandiflora L. (Magnoliaceae): intraspecific and floral maturity variations. J. Essent. Oil Bear. Plant. 15(5): 694-702Deguchi T, Urakawa N, Hayama T, Ohkubo Y. 1963. Ganglion stimulating action of Candicine. Jpn. J. Pharmacol 13: 143-159Del Valle-Mondragón L, Tenorio-López FA, Zarco-Olvera G, Pastelín-Hernández G. 2007. Vulgarenol, a sesquiterpene isolated from Magnolia grandiflora, induces nitric oxide synthases II and III overexpression in guinea pig hearts. Z. Naturforsch. C Bio. 62(9-10): 725-730Dewick PM. 2009. Medicinal Natural Products. A Biosynthetic Approach. Third Edition, John Wiley and Sons, Ltda, United Kingdom, pp. 7-8, 311, 336-355Dey PM. y Harborne JB. 1997. Plant Biochemistry. Academic Press, United Kingdom, pp. 503-504Dilcher DL. y Crane PR. 1984. Archaeanthus: an early angiosperm from the Cenomanian of the western interior of North America. Ann. Missouri Bot. Gard. 71: 351-383Duke JA. y Ayensu ES. 1985. Medicinal plants of China. Vol. 1 and 2. Reference Publ. Inc., Michigan, pp. 705El-Feraly FS. y Chan YM. 1978. Isolation and characterization of the sesquiterpene lactones costunolide, parthenolide, costunolide diepoxide, santamarine, and reynosin from Magnolia grandiflora L. J. Pharm. Sci. 67(3): 347-350Fadaeinasab M, Taha H, Mohd-Fauzi PN, Widyawaruyant A. 2015. Anti-malarial activity of isoquinoline alkaloids from the stem bark of Actinodaphne macrophylla. Nat. Prod. Commun. 10(9): 1541-1542Feild TS, Arens NC, Dawson TE. 2003. The ancestral ecology of Angiosperms: emerging perspectives from extant basal lineages. Int. J. Plant Sci. 164: S129-S142Figlar RB. y Nooteboom HP. 2004. Notes on Magnoliaceae IV. Blumea 49: 87-100Ganzera M, Mair M, Stuppner H, Fischer NH, Khan IA. 2001. Analysis of sesquiterpene lactones in Magnolia grandiflora L. by micellar electrokinetic capillary chromatography. Chromatographia 54(9-10): 665-668García N. 2007. Libro rojo de plantas de Colombia. Volumen 5: Las Magnoliáceas, Las Miristicáceas y Las Podocarpáceas. Serie libros rojos de especies amenazadas de Colombia. Instituto Alexander von Humboldt Bogotá, Colombia – CORANTIOQUIA- Jardín Botánico Joaquín Antonio Uribe de Medellín – Instituto de Ciencias Naturales de la Universidad Nacional de Colombia- Ministerio de Ambiente, Vivienda y Desarrollo Territorial, pp. 236Garg SN. y Kumar S. 1999. Volatile constituents from the flowers of Magnolia grandiflora L. from Lucknow, India. J. Essent. Oil Res. 11(5): 633-634Gilman EF. y Watson DG. 1994. Magnolia grandiflora Southern Magnolia. Forest service. Department of agriculture. Fact sheet ST-371 pp. 3-4Glass DJ. y Hall N. 2008. A brief history of the hypothesis. Cell 134: 378-381Graziose R, Rathinasabapathy T, Lategan C, Poulev A, Smith PJ, Grace M, Lila MA, Raskin I. 2011. Antiplasmodial activity of aporphine alkaloids and sesquiterpene lactones from Liriodendron tulipifera L. J. Ethnopharmacol. 133(1): 26-30Guinaudeau H, Leboef M, Cavé A. 1975. Aporphine alcaloids. Lloydia 38: 275-338Gülz PG, Müller E, Schmitz K, Marner FJ, Güth S. 1992. Chemical composition and surface structures of epicuticular leaf waxes of Ginkgo biloba, Magnolia grandiflora and Liriodendron tulipifera. Z. Naturforsch. 47: 516-526Hartman JR, Pirone TP, Sall MA. 2000. Pirone’s tree maintenance. Seventh edition, Oxford University Press, pp. 419Hegnauer R. 1969. Chemotaxonomy Plant, Volume 5. Birkhäuser, Basel, Stuttgart, pp. 394-396Hegnauer R. 1990. Chemotaxonomy Plant, Volume 9. Birkhäuser, Basel, Berlin, pp. 288-293Herbert RB. 1985. The chemistry and Biology of isoquinolina alkaloids. Editorial Springer-Verlag, Berlin, pp. 214Hoffmann D. 2003. Medical Herbalism. The Science and Practice of Herbal Medicine. Healing Arts Press, Rochester Vermont, pp. 38Hong L, Li G, Zhou W, Wang X, Zhang K. 2007. Screening and isolation of a nematicidal sesquiterpene from Magnolia grandiflora L. Pest Manag. Sci. 63(3): 301-305Huang KC. 1999. The pharmacology of Chinese herbs. Second edition. CRC Press, New York, pp. 512Judd WS, Campbell CS, Kellog EA, Teven PF. 1999. Plant Systematics: a Phylogenetic approach. Sinauer Associates, Inc. Massachusetts, USA, pp. 464Kell DB. y Oliver SG. 2004. Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays 26: 99-105Khan MR, Kihara M, Omoloso AD. 2002. Antimicrobial activity of Michelia champaca. Fitoterapia 73(7-8): 744-748Kim S, Chong-Wook P, Young-Dong K, Youngbae S. 2001. Phylogenetic relationships in family Magnoliaceae inferred from NDHF sequences. Am. J. Bot. 88: 717-728Koo TH, Lee JH, Park YJ, Hong YS, Kim HS, Kim KW, Lee JJ. 2001. A sesquiterpene lactone, costunolide from Magnolia grandiflora inhibits NF-kB by targeting IkB phosphorylation. Planta Med. 67: 103-107Kosar M, Goeger F, Can BKH. 2008. In vitro antioxidant properties and phenolic composition of Salvia virgate Jacq. from Turkey. J. Agric. Food Chem. 56: 2369-2374Kubitzki K, Rohwer JG, Bittrich V. 1993. The families and genera of vascular plants. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid families. Volume II. Springer-Verlag Berlin Heidelberg, pp. 397, 399Leonardo TE. y Mondor EB. 2006. Symbiont modifies host life history traits that affect gene flow. Proc. R. Soc. B 273 (1590): 1079-1084Lim TK. 2014. Edible medicinal and non-medicinal plants. Volume 8, Flowers. Springer Science+Business Media Dordrecht, pp. 243-244Lozano G. 1994. Dugandiodendron y Talauma (Magnoliaceae) en el neotropico. Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Colección Jorge Álvarez Lleras. Instituto de Ciencias Naturales Universidad Nacional No. 3. Editora Guadalupe Ltda, pp. 147Luckner M. 1990. Secondary Metabolism in Microorganisms, Plants and Animals. Third edition, Springer-Verlag, Berlin Heidelberg, pp. 8Luo XD, Wu SH, Ma YB, Wu DG, Zhou J. 2001. Sesquiterpenoids from Magnolia grandiflora. Planta Med. 67: 354-357Luo M, Sun JF, Zhang B, Jiang L. 2012. Chemical composition and antioxidant activity of essential oil from Magnolia grandiflora L. seed. J. Wuhan Univ. Natur. Sci. 17(3): 249-254Martínez AL, Domínguez F, Orozco S, Chávez M, Salgado H, Gonzalez M, Gonzalez-Trujano ME. 2006. Neuripharmacological effects of an etanol extract of the Magnolia dealbata Zucc. leaves in mice. J. Ethnopharmacol. 106: 250-255Martínez LA, Ríos JL, Paya M, Alcaraz MJ. 1992. Inhibition of nonenzymic lipid peroxidation by benzylisoquinoline alkaloids. Free Radic. Biol. Med. 12: 287-292Martínez-Vázquez M, Estrada-Reyes R, Araujo-Escalona AG, Ledesma-Velázquez I, Martínez-Mota L, Moreno J, Heinze G. 2012. Antidepressant-like effects of an alkaloid extract of the aerial parts of Annona cherimolia in mice. J. Ethnopharmacol. 139: 164-170Mohamed SM, Hassan EM, Ibrahim NA. 2010. Cytotoxic and antiviral activities of aporphine alkaloids of Magnolia grandiflora L. Nat. Prod. Res. 24(15): 1395-1402Morrison N, Bearden D, Bundy JG, Collette T, Currie F, Davey MP, Haigh NS, Hancock D, Jones O, Rochfort S, Sansone SA, Stys D, Teng Q, Field D, Viant MR. 2007. Standard reporting requirements for biological samples in metabolomics experiments: environmental context. Metabolomics 3: 203-210Nakano T. 1954a. Studies on the alkaloids of magnoliaceous plants. XII. Alkaloids of Magnolia grandiflora L. (1). Pharm. Bull. 2(4): 321-325Nakano T. 1954b. Studies on the alkaloids of magnoliaceous plants. XIII. Alkaloids of Magnolia grandiflora L. (2). Pharm. Bull. 2(4): 326-328Nakano T. 1954c. Studies on the alkaloids of magnoliaceous plants. XIV. Alkaloids of Magnolia grandiflora L. (3). Structure of magnoflorine. Pharm. Bull. 2(4): 329-334Nitao JK, Nair MG, Thorogood DL, Johnson KS, Scriber JM. 1991. Bioactive neolignanos from the leaves of Magnolia virginiana (Magnoliaceae). Phytochemistry 30: 2193-2195Nordin N, Majid NA, Hashim NM, Rahman MA, Hassan Z, Ali HM. 2015. Liriodenine, an aporphine alkaloid from Enicosanthellum pulchrum, inhibits proliferation of human ovarian cancer cells through induction of apoptosis via the mitochondrial signaling pathway and blocking cell cycle progression. Drug Des. Dev. Ther. 9: 1437-1448Pubchem. 2016. Open chemistry database. https://pubchem.ncbi.nlm.nih.gov/ [consultado Junio 20, 2016]Pyo MK, Yun-Choi HS, Hong YJ. 2003. Antiplatelet activities of aporphine alkaloids isolated from leaves of Magnolia obovate. Planta Med. 69(3): 267-269Rahman MM, Lopa SS, Sadik G, Harun-Or-Rashid, Islam R, Khondkar P, Alam AH, Rashid MA. 2005. Antibacterial and cytotoxic compounds from the bark of Cananga odorata. Fitoterapia 76(7-8): 758-761Rao KV. 1975. Glycosides of Magnolia grandiflora. Part I: Isolation of three crystalline glycosides. Planta Med. 27(1): 31-36Rao KV. y Davis TL. 1982. Constituents of Magnolia grandiflora I: mono-O-methylhonokiol. Planta Med. 45(5): 57-59Rao KV. y Juneau RJ. 1975. Glycosides of Magnolia. II. Structural elucidation of magnolidin. Lloydia 38(4): 339-342Rehman JU, Ali A, Tabanca N, Raman V, Demirci B, Başer KHC, Khan IA. 2013. Biting deterrent and larvicidal activity of essential oils of Magnolia grandiflora against Aedes aegypti. Planta Med. 79: P20Rojas Y, Soto R, Anaya E, Retuerto F, Fuertes C. 2004. Efecto antitumoral de los alcaloides hidrosolubles de Abuta grandifolia (Mart) Sandwith, en línea celular HEP-2. Faculta de farmacia y bioquímica UNMSM. Ciencia e investigación VII (1): 22-26Sadava D, Heller HC, Orians GH, Purves WK, Hillis DM. 2008. Life. The Science of Biology. Eighth edition, Sinauer Associates, Inc, Sunderland, MA, pp. 641Schühly W, Khan SI, Fischer NH. 2009. Neolignans from North American Magnolia species with cyclooxygenase 2 inhibitory activity. Inflammopharmacology 17(2): 106-110Seigler DS. 1998. Plant Secondary Metabolism. 1st edition, Springer Science+Business Media, New York, pp. 12Shamma M. y Guinaudeau H. 1984. Biogenetic pathways for the aporphinoid alkaloids. Tetrahedron 40: 4795-4822. En: Arango GJ. 2008. Alcaloides y compuestos nitrogenados. Universidad de Antioquia, Medellín, Colombia, pp. 49Sharmeen R, Hossain N, Rahman M, Foysal J, Miah F. 2012. In vitro antibacterial activity of herbal aqueous extract against multi-drug resistant Klebsiella sp. isolated from human clinical samples. Int. curr. pharm. J. 1: 133-137Sinha RK. 2004. Modern plant physiology. Alpha Science International Ltd., Pangbourne England, pp. 577Taiz L. y Zeiger E. 2010. Plant Physiology. Quinta edición, Sinauer Associates, Inc. USA, pp. 370The Plant List. 2013. The Angiosperms (flowering plants). Versión 1.1. http://www.theplantlist.org/browse/A/#M [consultado Abril 7, 2016]Tomita M, Watanabe Y, Furukawa H. 1961. Studies on the alkaloids of Magnoliaceous plants. XXV. Alkaloids of Magnolia grandiflora var. lanceolata Ait. Yakugaku Zasshi 81(1): 144-146Tomita M. y Kozuka M. 1967. Studies on the alkaloids of magnoliaceous plants. 38. Alkaloids of Magnolia grandiflora Linn. Yakugaku Zasshi 87(9): 1134-1137Tsai IL, Liou YF, Lu ST. 1989. Screening of isoquinoline alkaloids and their derivatives for antibacterial and antifungal activities. Gaoxiong Yi Xue Ke Xue Za Zhi 5: 132-145Valiente M, D’Ocon P, Noguera MA, Cassels BK, Lugnier C, Ivorra MD. 2004. Vascular activity of (-)-anonaine, (-)-roemerine and (-)-pukateine, three natural 6a(R)-1,2-methylenedioxyaporphines with different affinities for alpha1-adrenoceptor subtypes. Planta Med. 70: 603-609Vázquez-García JA, Neill DA, Asanza M, Recalde L. 2015. Magnolia vargasiana (Magnoliaceae), a new Andean species and a key to Ecuadorian species of subsection Talauma, with notes on its pollination biology. Phytotaxa 217: 26-34Velásquez C. y Serna M. 2005. Magnoliáceas de Antioquia. Primera edición. Impregon S.A., Colombia, pp. 32Wang Y, Mu RM, Wang XR, Liu SX, Fan ZQ. 2009. Chemical composition of volatile constituents of Magnolia grandiflora. Chem. Nat. Compd. 45(2): 257-258Weerakkody NS, Caffin N, Turner MS, Dykes GA. 2010. In vitro antimicrobial activity of less-utilized spice and herb extracts against selected food-borne bacteria. Food Control 21: 1408-1414Wysocki W, Gulewicz P, Aniszewski T, Ciesiolka D, Gulewicz K. 2001. Bioactive preparations from alkaloid-rich lupin. Relation between chemical composition and biological activity. Bull. Pol. Acad. Sci. Biol. 49: 9-17Yang MH, Blunden G, Patel AV, O’Neill MJ, Lewis JA. 1994. Coumarins and sesquiterpene lactones from Magnolia grandiflora leaves. Planta Med. 60(4): 390Yasukawa S, Kato H, Yamaoka R, Tanaka H, Arai H, Kawano S. 1992. Reproductive and pollination biology of Magnolia and its allied genera (Magnoliaceae). I. Floral volatiles of several Magnolia and Michelia species and their roles in attracting insects. Plant Species Biol. 7: 121-140Zelenski SG. 1977. Alkaloids of Nelumbo latea (Willd.)pers. (Nymphaeaceae). J. Pharm Sci 66(11): 1627-1628Zhou J, Xie G, Yan X. 2011. Encyclopedia of traditional Chinese medicines. Molecular structures, pharmacological activities, natural sources and applications. Vol. 3. Isolated compounds H-M. Springer, Berlin, pp. 367Ziyaev R, Shtonda NI, Sturua MD, Abdusamatov A, Tsakadze DM. 1999. Alkaloids of some Magnolia species. Chem. Nat. Compd. 35(3): 366-367Abadía J. y Álvarez AM. 2009. La espectrometría de masas, una herramienta esencial en Metabolómica y Análisis comparativo de muestras. Fundación AulaDei. Parque Científico Tecnológico. pp. 7-20Agilent. 2010. Nuevas perspectivas: Metabolómica en Agilent. http://www.chem.agilent.com [Consultado Febrero 17, 2014]Ap Rees T. y Hill SA. 1994. Metabolic control analysis of plant metabolism. Plant Cell Environ. 17: 587-599Azcón-Bieto J. y Talón M. 2001. Fundamentos de fisiología vegetal. Primera edición. McGraw-Hill Interamericana de España S.A., Barcelona, pp.522Bell EA. 1980. Secondary plant products. Encyclopedia of plant physiology, New series, Volume 8. Springer-Verlag, Berlin, pp. 11Benthin B, Danz H, Hamburger M. 1999. Pressurized liquid extraction of medicinal plants. J. Chromatogr. A 837: 211-219Bermúdez AM. y Millán JL. 2013. Metodología para el mejoramiento en los procesos de dirección de proyectos del Fondo de pebención y atención de emergencias – FOPAE. Universidad EAN, pp- 13Bravo L. 1998. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(11): 317-333Cava MP. y Venkateswarlu A. 1971. Dehydroocopodine, dicentrinone, and other alkaloids from Ocotea macropoda and Hernandia jamaicensis. Tetrahedron, 27(13): 2639-2643Chelombut’ko VA. y Israilov IA. 1988. Alkaloids of Papaver fugax. Chemistry of natural compounds, 24(4): 474-477Collinge DB, Gregersen P, Thordal-Christensen H. 1994. The induction of gene expression in response to pathogenic microbes. En: Mechanisms of plant growth and improved productivity: Modern approaches. Basra AS. Ed. Marcel Dekker, New York, pp. 391-433Deng SM, Cheng YX, Zhou J, Tan NH, Ding ZT. 2001. Magnoquinone and neolignanos from Magnolia rostrata. Acta Botánica Yunnanica, 2001-01. ISSN: 2095-0845El-Feraly FS. 1983. Soulangianolide B. Phytochemistry, 22, 2239. En: KNApSAcK data base. 2017. http://kanaya.naist.jp/knapsack_jsp/information.jsp?word=C00012335 [consultado Febrero 20, 2017]Espinosa-García FJ. 1996. Revisión sobre la alelopatía de Eucalyptus L’Herit. Bol. Soc. Bot. 58: 55-74Fiehn O, Kopka J, Trethewey RN, Willmitzer L. 2000. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 72: 3573-3580Gerhardt R. y Heldt HW. 1984. Measurement of subcellular metabolite levels in leaves by fractionation of freeze-stopped material in nonaqueous media. Plant Physiol. 75: 542-547Gilchrist CH. y Kosuge T. 1980. Aromatic amino acid biosynthesis and its regulation. En: Miflin BS Ed. The Biochemistry of Plants. A comprehensive treatise, Vol 5. Academic Press, New York, pp. 507-537Giraldo L. y Behrentz E. 2006. Inventarios de emisiones desarrollados en 2003 y 2006 por la Universidad de Los Andes. Disponibles en: www.cleanairnet.org/lac_pt/1473/articles-56439_recurso_1.ppt http://dspace.uniandes.edu.co:5050/dspace/bitstream/1992/939/1/Balkema+Tesis+Liliana+Giraldo.pdf En: Rojas NY. 2007. Aire y problemas ambientales de Bogotá. Universidad Nacional de Colombia, pp. 4-6Goodacre R, Vaidyanathan S, Dunn W, Harrigan G, Kell D. 2004. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 22 (5): 245-252Grundon MF. y McGarvey JEB. 1966. Alkaloids from greenheart. Part III. The structure of rodiasine. Mass spectra of bisbenzylisoquinoline alkaloids. J. Chem. Soc. C, 1082-1084Gutiérrez DM, Ortiz CA, Mendoza A. 2008. Medición de fenoles y actividad antioxidante en malezas usadas para alimentación animal. Simposio de Metrología, Santiago de Querétaro, México, M220-1108: 1-5Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM. 2004. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J. Exp. Bot. 56(410): 219-243Kamal-Eldin A, Moazzami A, Washi S. 2001. Sesame seed lignans: potent physiological modulators and possible ingredients in functional foods & nutraceuticals. Recent Pat. Food Nutr. Agric. 3(1): 17-29Kashiwaba N, Morroka S, Kimura M, Ono M, Toda J, Suzuki H, Sano T. 1996. New morphinane and Hasubanane alkaloids from Stephania cepharantha. J. Nat. Prod. 59 (5): 476-480Lattanzio V, Lattanzio VMT, Cardinali A. 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry: Advances in Research, 23-67 ISBN:81-308-0034-9Li J, Christophel DC, Conran JG, Li HW. 2004. Phylogenetic relationships within the “core” Laureae (Litsea complex, Lauraceae) inferred from sequences of the chloroplast gene matK and nuclear ribosomal DNA ITS regions. Pl. Syst. Evol. 246: 19-34Likhitwitayawuid K, Angerhofer CK, Cordell GA, Pezzuto JM, Ruangrungsi N. 1993. Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from Stephania erecta. J. Nat. Prod. 56(1): 30-38Long SP, Ainsworth EA, Rogers A, Ort DR. 2004. Rising atmospheric carbon dioxide: Plants face the future. Annual Review of Plant Biology, 55: 591-628Macheix JJ, Fleuriet A, Billot J. 2000. Fruit phenolics. Boca Ratón, Florida: CRC Press, Inc, pp. 378Macías FA, Galindo JC, Massanet GM. 1992. Potential allelopathic activity of several sesquiterpene lactone models. Phytochemistry, 31(6): 1969-1977Manske RHF. 1967. The Alkaloids. Chemistry and physiology. Volume IX. Academic Press, New York, pp. 32Manske RHF. 1968. The Alkaloids. Chemistry and physiology. Volume X. Academic Press, New York, pp. 409Milder IEJ, Arts ICW, van de Putte B, Venema DP, Hollman PCH. 2005. Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. British Journal of Nutrition, 93: 393-402Miyazawa M, Kasahara H, Kameoka H. 1993. Biotransformation of lignans: a specific microbial oxidation of (+)-eudesmin and (+)-magnolin by Aspergillus niger. Phytochemistry, 34(6): 1501-1507Mudd JB. y Kozlowski TT. 1975. Responses of plants to air pollution. Academic Press Inc, New York, pp. 6, 24Nielsen NPV, Carstensen JM, Smedsgaard J. 1998. Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimized warping. J. Chromatogr. A 805 (1): 17-35Penuelas J. y Estiarte M. 1998. Can elevated CO2 affect secondary metabolism and ecosystem function? Trends in Ecology & Evolution, 13: 20-24Pérez L, Rojas L, Carmona J, Ferrer H, Usubillaga A. 2010. Componentes volátiles de la Ocotea macropoda (Kunth) Mez. (Lauraceae). Abstract book of XIX SILAE (Società Italo-Latinoamericana Di Etnomedicina) Congress “Fernando Cabieses Molina” 2010 Villasimius, Cagliari, Italy, 6-10 september pp. 293Poore MD. Y Fries C. 1985. The ecologicl effects of Eucalyptus. FAO Forestry Paper, pp. 59Poore MD. y Fries C. 1987. Efectos ecológicos de los eucaliptos. Organización de las Naciones Unidas para la Agricultura y la Alimentación. FAO. Roma, ISBN 92-5-302286-8, pp. 53Ringuelet J. y Viña S. 2013. Productos naturales vegetales. Editorial de la Universidad de La Plata. Buenos Aires, Argentina, pp. 196, 209Rozo WV. y Mendoza LE. 2013. Implementación de técnicas de reconocimiento de patrones (Least Square Support Vector Machines) en procesos de selección de parámetros característicos aplicados a sistemas metabolómicos. Revista Colombiana de Tecnologías de Avanzada (RCTA), 1 (21): 104-112. ISSN: 1692-7257 – Volumen 1 – Número 21 – 2013Sánchez-Moreno C. 2002. Compuestos polifenólicos: estructura y clasificación: presencia en alimentos y consumo: biodisponibilidad y metabolismo. Alimentaria 329: 19-28Sarker SD. y Maruyama Y. 2002. Magnolia. The genus Magnolia. Taylor & Francis, London, pp. 53, 59Scalbert A. y Williamson G. 2000. Dietary intake and bioavailability of polyphenols. J. Nutr 130: 2073S-2085SShamma M. 1972. The Isoquinoline Alkaloids. Chemistry and pharmacology. Organic chemistry. Volume 25. Academic press, New York and London, pp. 222Streeter JG. y Strimbu CE. 1998. Simultaneous extraction and derivatization of carbohydrates from green plant tissues for analysis by gas-liquid chromatography. Anal. Biochem. 259: 253-257Taiz L. y Zeiger E. 2006. Plant physiology. Cuarta edición. Sinauer Associates INC Publishers. Sunderland, Massachusetts, pp. 764Talavera-Bustamante I, Bustio-Martínez L, Coma-Peña Y, Hernández-González N. 2013. Quimiometrix II, una plataforma automatizada para el procesamiento multivariante de datos químicos y bioquímicos. Experiencias de aplicación. Revista Cubana de Química, Vol. XXV, N° 3, 257-265Tanahashi T, Su Y, Nagakura N, Nayeshiro H. 2000. Quaternary isoquinoline alkaloids from Stephania cepharantha. Chem. Pharm. Bull. 48(3): 370-373Vecchietti V, Casagrande C, Ferrari G, Danieli B, Palmisano G. 1981. Alkaloids of Ocotea acutangula. Journal of the Chemical Society, Perkin Transactions 1, DOI: 10.1039/P19810000578, pp. 578Wold S. y Sjostrom M. 1977. SIMCA: A method for analyzing chemical data in terms of similarity and analogy. En: Kowalski B (Ed.), Chemometrics: Theory and application, pp. 243-282Zhang L, Geng Y, Duan W, Wang D, Fu M, Wang X. 2009. Ionic liquid-based ultrasound-assisted extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. J. Sep. Sci. 32(20): 3550-3554Aguiar R. y Wink M. 2005. Do naїve ruminants degrade alkaloids in the rumen? J. Chem. Ecol. 31(4): 761-787Aniszewski T. 1994. The biological basis of quinolizidine alkaloids. Science of Legumes 1: 1-24Berenbaum MR. 1983. Coumarins and caterpilars: A case for coevolution. Evolution 37: 163-178Colegate SM. y Molyneux RJ. 2008. Bioactive natural products. Detection, isolation, and structural determination. Second edition. CRC Press, New York, pp. 521Gora J, Kalemba D, Kurowska A. 1980. Chemical substances of Magnoliaceas and Calendulaceas. Herb. Hung. 19: 151-171Jacyno JM, Montemurro N, Bates AD, Cutler HG. 1991. Phytotoxic and antimicrobial properties of cyclocolorenone from Magnolia grandiflora. J. Agric. Food Chem. 39: 1166-1168Knaggs AR. 2003. The biosynthesis of shikimate metabolites. Nat. Prod. Rep. 20: 119-136Knölker HJ. 2014. The alkaloids Chemistry and Biology. Volume 73. Elsevier, Oxford UK, pp. 178Liscombe DK, MacLeod BP, Loukanina N, Nandi OI, Facchini PJ. 2005. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry, 66(11): 1374-1393Marcano D. y Hasegawa M. 2002. Fitoquímica orgánica. Segunda edición. Consejo de Desarrollo Científico y Humanístico. Universidad Central de Venezuela, pp. 384Muzquiz M, Burbano C, Cuadrado C, De la Cuadra C. 1993. Determinación de factores antinutritivos termorresistentes en leguminosas I: Alcaloides. Inv. Agraria. Producción y Protección Veg., 8: 351-361Phillipson JD, Roberts MF, Zenk MH. 1985. The chemistry and biology of Isoquinoline alkaloids. Springer-Verlag Berlin, Heidelberg, pp. 217-220Thorne AD, Pexton JJ, Dytham C, Mayhew PJ. 2006. Small body size in an insect shifts development, prior to adult eclosion, towards early reproduction. Proc. R. Soc. B 273(1590): 1099-1103Tzin V. y Galili G. 2010. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Molecular Plant, 3(6): 956-972Warumby SM. y Lacava AL. 2007. Alcalóides Aporfinóides Do Gênero Ocotea (Lauraceae). Quim. Nova, 30(1); 92-98Wink M. 2003. Evolution of secondary metabolities from an ecological and molecular phylogenetic perspective. Phytochemistry 64: 1: 3-19Wink M. 2010. Introduction: biochemistry, physiology and ecological functions of secondary metabolites. En: Biochemistry of plant secondary metabolism. Wink M (Ed), Annual plant reviews, 40: 1-19Wink M. y Mohamed GIA. 2003. Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolities on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene. Biochem. Syst. Ecol. 31:8: 897-917Wold S, Geladi P, Esbensen K, Ohman J. 1987. Multi-way principal components and PLS-analysis. J. Chemometrics 1 (1): 41-56Zamora-Natera F, García-López P, Ruiz-López M, Salcedo-Pérez E. 2008. Composición de alcaloides en semillas de Lupinus mexicanus (fabaceae) y evaluación antifúngica y alelopática del extracto alcaloideo. Agrociencia, vol.42 no. 2 http://www.scielo.org.mx/scielo.php?pid=S1405-31952008000200006&script=sci_arttexthttp://purl.org/coar/access_right/c_abf2ORIGINALRavagliCastilloAndreaCarolina2017.pdfTesisapplication/pdf3806006http://repository.unimilitar.edu.co/bitstream/10654/16163/1/RavagliCastilloAndreaCarolina2017.pdffd4063262ef3fe1803cdc4417fffa07cMD51LICENSElicense.txttext/plain1521http://repository.unimilitar.edu.co/bitstream/10654/16163/2/license.txt57c1b5429c07cf705f9d5e4ce515a2f6MD52TEXTRavagliCastilloAndreaCarolina2017.pdf.txtExtracted texttext/plain198658http://repository.unimilitar.edu.co/bitstream/10654/16163/3/RavagliCastilloAndreaCarolina2017.pdf.txta2815b71e9f1eb0f57c9aebfb495af0bMD53THUMBNAILRavagliCastilloAndreaCarolina2017.pdf.jpgIM Thumbnailimage/jpeg8763http://repository.unimilitar.edu.co/bitstream/10654/16163/4/RavagliCastilloAndreaCarolina2017.pdf.jpgb91addc91367e4ec1e4514795bc7b84aMD5410654/16163oai:repository.unimilitar.edu.co:10654/161632020-06-30 08:37:25.694Repositorio Institucional UMNGbibliodigital@unimilitar.edu.coRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sCkhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZW4gZm9ybWF0byBkaWdpdGFsIG8gZWxlY3Ryw7NuaWNvLgoKWSBhdXRvcml6YSBhIGxhIFVOSVZFUlNJREFEIE1JTElUQVIgTlVFVkEgR1JBTkFEQSwgcGFyYSBxdWUgZW4gbG9zIHTDqXJtaW5vcyBlc3RhYmxlY2lkb3MgZW46CgotIExleSAyMyBkZSAxOTgyCi0gTGV5IDQ0IGRlIDE5OTMKLSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzCi0gRGVjcmV0byA0NjAgZGUgMTk5NQoKeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIHkgdXNlIHBvciBjdWFscXVpZXIgbWVkaW8gY29ub2NpZG8gbyBwb3IgY29ub2NlciwKbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBvYnJhIApvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4KClBBUsOBR1JBRk86IExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc8OzbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZQpsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byB2aXJ0dWFsLCBlbGVjdHLDs25pY28sIGRpZ2l0YWwsIHkgY3V5byB1c28gc2UgZGUgZW4gcmVkLAppbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBldGMuLCB5IGVuIGdlbmVyYWwgZW4gY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4KCkVMIEVTVFVESUFOVEUgLSBBVVRPUiwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIKbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KClBBUsOBR1JBRk86IEVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4gY3VhbnRvIGEgCmxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgRVNUVURJQU5URSAtIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgCnkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSB1bml2ZXJzaWRhZCBhY3TDumEgY29tbyAKdW4gdGVyY2VybyBkZSBidWVuYSBmZS4K