Uso de drones y sensores remotos para el monitoreo de laderas: una revisión

Los deslizamientos de tierra son uno de los peligros y riesgos más costoso y fatales para cualquier infraestructura vial, que frecuentemente amenazan e influyen en la situación socioeconómica, principalmente, de los países en vía de desarrollo. Frecuentemente, los estudios de deslizamiento se hacen...

Full description

Autores:
Alonso Gómez, Luis Fernando
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Militar Nueva Granada
Repositorio:
Repositorio UMNG
Idioma:
spa
OAI Identifier:
oai:repository.unimilitar.edu.co:10654/39586
Acceso en línea:
http://hdl.handle.net/10654/39586
Palabra clave:
SENSORES REMOTOS
AVIONES SIN PILOTO
FALLAS ESTRUCTURALES
Remote sensing
drones
landslides
detection
natural hazards
Sensores remotos
drones
derrumbes
detección
Peligros Naturales
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIMILTAR2_527e56ae6dd13cc495410527647b9227
oai_identifier_str oai:repository.unimilitar.edu.co:10654/39586
network_acronym_str UNIMILTAR2
network_name_str Repositorio UMNG
repository_id_str
dc.title.spa.fl_str_mv Uso de drones y sensores remotos para el monitoreo de laderas: una revisión
dc.title.translated.spa.fl_str_mv Using drones and remote sensing for slope monitoring: a review
title Uso de drones y sensores remotos para el monitoreo de laderas: una revisión
spellingShingle Uso de drones y sensores remotos para el monitoreo de laderas: una revisión
SENSORES REMOTOS
AVIONES SIN PILOTO
FALLAS ESTRUCTURALES
Remote sensing
drones
landslides
detection
natural hazards
Sensores remotos
drones
derrumbes
detección
Peligros Naturales
title_short Uso de drones y sensores remotos para el monitoreo de laderas: una revisión
title_full Uso de drones y sensores remotos para el monitoreo de laderas: una revisión
title_fullStr Uso de drones y sensores remotos para el monitoreo de laderas: una revisión
title_full_unstemmed Uso de drones y sensores remotos para el monitoreo de laderas: una revisión
title_sort Uso de drones y sensores remotos para el monitoreo de laderas: una revisión
dc.creator.fl_str_mv Alonso Gómez, Luis Fernando
dc.contributor.advisor.none.fl_str_mv Chavez, Saieth
dc.contributor.author.none.fl_str_mv Alonso Gómez, Luis Fernando
dc.subject.lemb.spa.fl_str_mv SENSORES REMOTOS
AVIONES SIN PILOTO
FALLAS ESTRUCTURALES
topic SENSORES REMOTOS
AVIONES SIN PILOTO
FALLAS ESTRUCTURALES
Remote sensing
drones
landslides
detection
natural hazards
Sensores remotos
drones
derrumbes
detección
Peligros Naturales
dc.subject.keywords.spa.fl_str_mv Remote sensing
drones
landslides
detection
natural hazards
dc.subject.proposal.spa.fl_str_mv Sensores remotos
drones
derrumbes
detección
Peligros Naturales
description Los deslizamientos de tierra son uno de los peligros y riesgos más costoso y fatales para cualquier infraestructura vial, que frecuentemente amenazan e influyen en la situación socioeconómica, principalmente, de los países en vía de desarrollo. Frecuentemente, los estudios de deslizamiento se hacen de manera directa, in situ, siendo muchos de ellos costosos y un reto dada la dificultad que se pueden presentar al acceder a las zonas de estudio. Los datos de los sensores remotos se pueden usar en el monitoreo de deslizamientos de tierra, mapeo, simulación, predicción y evaluación de peligros y otras investigaciones. El presente artículo presenta una revisión bibliográfica en estudios relacionados con el uso de drones y sensores remotos para el seguimiento y monitoreo de laderas, de una manera descriptiva y que permita por medio de la documentación incorporar información relevante para poder abordar futuros estudios más específicos que permitan tener en cuenta el monitoreo de deslizamientos de tierra, las técnicas de sensores remotos, drones y la aplicación global de este conjunto de nuevas tecnologías.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-12-21T21:45:49Z
dc.date.available.none.fl_str_mv 2021-12-21T21:45:49Z
dc.date.issued.none.fl_str_mv 2021-04-05
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.*.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10654/39586
dc.identifier.instname.spa.fl_str_mv instname:Universidad Militar Nueva Granada
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unimilitar.edu.co
url http://hdl.handle.net/10654/39586
identifier_str_mv instname:Universidad Militar Nueva Granada
reponame:Repositorio Institucional Universidad Militar Nueva Granada
repourl:https://repository.unimilitar.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abellan, A., Jaboyedoff, M., Oppikofer, T., & Vilaplana, J. M. (2009). Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rock fall event. Nat Hazards Earth Syst Sc, 9, 365-372.
Agüera, F., Carvajal, F., & Pérez, M. (2011). Measuring sunflower nitrogen status from an unmanned aerial vehicle-based system and an on the ground device. ISPRS Annals of the Photogrametry Remote Sensing and Spatial Information Sciences , XXVIII-1 / C2, 33 - 37, (págs. 33-37).
Aguilar, F. J., Agüera, F., Aguilar, M. A., & Carvajal, F. (s.f.). Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy. Photogrammetric Eng Remote Sensing, 71, 805-816.
Alizadeh, M., Ngah, I., Hashim, M., Pradhan, B., & Pour, A. (2018, doi: 10.3390/rs10060975). A Hybrid Analytic Network Process and Artificial Neural Network (ANP-ANN) Model for Urban Earthquake Vulnerability Assessment. Remote sensing, 10, 975.
Baldo, M., Bicocchi, C., Chiocchini, U., Giordan, D., & Lollino, G. (2009). LIDAR monitoring of mass wasting processes: The Radicofani landslide, Province of Siena, Central Italy. Geomorphology, 105(3), 193-201.
Barbarella, M., & Fiani, M. (Febrero de 2013, https://doi.org/10.5721/EuJRS20134608). Monitoring of large landslides by Terrestrial Laser Scanning techniques: field data collection and processing. European Journal of Remote Sensing, 46(1), 126-151.
Boccardo, P., Chiabrando, F., Dutto, F., Tonolo, F. G., & Lingua, A. (2015). UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications. Sensors, 15(7), 15717-15737.
Briese, C. (s.f.). Extraction of digital terrain models. Vosselman G, Maas HG, editors. Airborne and terrestrial laser scanning. Dunbeath: Whittles, (págs. 135-167).
Campos, J. (2017). Diseño innovador se sensor para laderas sistema previsor de taludes. Tesis doctoral, Universidad Nacional Autonoma de Mexico.
Carvajal, F., Agüera, F., & Pérez, M. (2012). Surveying a Landslide in a Road Embankment Using Unmanned Aerial Vehicle Photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XXXVIII-1, 201-206.
Castagnetti, C., Bertacchini, E., & Rivola, R. (2014, doi:10.1117/12.2067407). A reliable methodology for monitoring unstable slopes: The multi-platform and multi-sensor approach. roceedings of SPIE, 9245, Earth Resources and Environmental Remote Sensing/GIS Applications V, 92450J. .
Chávez, E. J., García, A. C., Pérez, A. G., & Carreño, O. E. (2015). Uso de vehículos aéreos no tripulados para la caracterización del paisaje sumergido; Bahía Estacahuite. Ciencia y Mar, 51, 35-40.
Cheng, Z., Yue, L., Peng, G., Wenlong, C., Hui, L., Yong, H., y otros. (1555-1581 de 2020, DOI: 10.1080/01431161.2019.1672904). Landslide mapping with remote sensing: challenges and opportunities. International Journal of Remote Sensing, 41(4).
Choi, K., & Lee, I. (2011, DOI: 10.5194/isprsarchives-XXXVIII-1-C22-247-2011). A UAV based close-range rapid aerial monitoring system for emergency responses. ISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, XXXVIII-1/C22(1), 247-252.
Chou, T., Yeh, M. L., Chen, Y., & Chen, Y. H. (2010). Disaster monitoring and management by the unmanned aerial vehicle technology. En: Wagner W , Székely B , editores. Simposio ISPRS TC VII - 100 años ISPRS. Viena : Archivos internacionales de fotogrametría, teledetección e información espacial, (págs. 137-142).
Colomina, I., & Molina, P. (2014, doi: 10.1016 / j.isprsjprs.2014.02.013). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97.
Concepción-Toledo, D., González-Suárez, E., García-Prado, R., & Miño-Valdés, J. (2019, http://dx.doi.org/10.18004/ucsa/2409-8752/2019.006(01)076-087 ). Investigation methodology: Origin and construction of a doctoral thesis. Revista Científica de la UCSA, 6(1), 076-087.
Costa, F. G., Ueyama, J., Braun, T., Pessin, G., Osório, F. S., & Vargas, P. A. (22-27 de julio de 2012). The use of unmanned aerial vehicles and wireless sensor network in agricultural applications. Simposio internacional de geociencias y teledetección del IEEE (IGARSS). Munich, Alemania.
Dahal, R., Hasegawa, S., Masuda, T., & Yamanaka, M. (2006). Roadside slope failures in Nepal during torrential rainfall and their mitigation. Disaster mitigation of debris flow, slope failures and landslides, (Interpraevent 2007), Universal Academy Press, Tokyo, 2, 503-514.
Fiani, M., & Siani, N. (Sep 26 - Oct 01, Available from: http://cipa.icomos.org/fileadmin/template/doc/TURIN/277.pdf). Comparison of terrestrial laser scanners in production of DEMs for Cetara tower. CIPA 2005 XX International Symposium, (pág. 2005). Torino (Italy).
Flores, D. A., Saito, C., Paredes, J. A., & Trujillano, F. (2017). Aerial photography for 3D reconstruction in the Peruvian Highlands through a fixed-wing UAV system. Proc. - 2017 IEEE Int. Conf. Mechatronics, ICM 2017, 388-392.
Garianoab, S. L., & Guzzetti, F. ( Novembe de 2016). Landslides in a changing climate. Earth-Science Reviews, 162, 227-252.
Giordan, D., Manconi, A., Remondino, F., & Nex, F. (2017 de DOI: 10.1080/19475705.2017.1315619). Use of unmanned aerial vehicles in monitoring application and management of natural hazards. Geomatics, Natural Hazards and Risk , 8(1), 1-4.
Grenzdörffer, G. J., & Niemeyer, F. (2011). UAV-based BRDF-measurements of agricutltural surfaces with PFIFFikus. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(1/C22), 229-234.
Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M. H., Loye, A., Metzger, R., y otros. (2012). Use of LIDAR in landslide investigations: a review. Nat Hazads, 61, 5-28.
Koeva, M., Muneza, M., Gevaert, C., Gerke, M., & Nex, F. (2018, DOI: 10.1080/00396265.2016.1268756). Using UAVs for map creation and updating. A case study in Rwanda. Survey Review, 50(361), 312-325.
Kraus, K., & Pfeifer, N. (Available from: http://www.isprs.org/proceedings/xxxiv/3-w4/pdf/kraus.pdf). Advanced DTM generation from LIDAR data. ISPRS Archives, XXXIV-3/W4, 23-30.
Lin, J., Tao, H., Wang, Y., & Huang, Z. (2010, doi:10.1109/GEOINFORMATICS.2010.5567777). Practical application of unmanned aerial vehicles for mountain hazards survey. 18th International Conference on Geoinformatics, (págs. 1-5). Beijing.
Lucieer, A. D. (s.f.). Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography, 38(1), 97-116.
Lucieer, A., Turner, D., King, D. H., & Robinson, S. A. (2014). Using an unmanned aerial vehicle (UAV) to capture micro-topography of antarctic moss beds. International Journal Applied Eath Observation Geoinformation, 27, 53-62.
Manfreda, S., & al., e. (2018). On the use of unmanned aerial systems for environmental monitoring. Remote Sens., 10(4).
Martha, T., Kerle, N., Jetten, V., Van Westen, C., & Kumar, K. (s.f.). Landslide volumetric analysis using cartosat-1-derived dems. IEEE Geoscience And Remote Sensing Letters, 7, 582-586.
Meinen, B. U., & Robinson, D. T. (2020, DOI: 10.1080 / 01431161.2019.1597294). Streambank topography: an accuracy assessment of UAV-based and traditional 3D reconstructions. International Journal of Remote Sensing, 41(1), 1-18.
Molina, P., Colomina, I., Victoria, P., Skaloud, J., Kornus, W., Prades, R., y otros. (July de 2012). Drones to the Rescue! Inside GNSS, 36-47.
Molina, P., Colomina, I., Victoria, T., Skaloud, J., Kornus, W., Prades, R., y otros. (August 25 - September 1, 2012). SEARCHING LOST PEOPLE WITH UAVS: THE SYSTEM AND RESULTS OF THE CLOSE-SEARCH PROJECT. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXII Congress of the International Society for Photogrammetry and Remote Sensing, (págs. 441-446). Melbourne, Australia.
Murphy, R. R., Steimle, E., Griffin, C., Cullins, C., Sala, H., & Pratt, K. (2008, https://doi.org/10.1002/rob.20235). Cooperative use of unmanned sea surface and micro aerial vehicles at Hurricane Wilma. Journal of Field robotics, 25(3), 164-180.
Natsagdorj, E. R.-O. (2017). An integrated methodology for soil moisture analysis using multispectral data in Mongolia. Geo-Spatial Information Science, 20(1), 46-55.
Nex, F., & Remondino, F. (2014, doi: 10.1007 / s12518-013-0120-x). UAV for 3D mapping applications: a review. Applied Geomatics, 6(1), 1-15.
Niethammer, R., A, J., & Travelletti, J. (2010). Uav-Based Remote Sensing of Landslides. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XXXVIII, 496–501.
Niethammer, U. J. (2012, doi:10.1016/j.enggeo.2011.03.012). UAV-based remote sensing of the super-sauze landslide: Evaluation and results. Engineering Geology, 128, 2-11.
Niethammer, U., Rothmund, S., Schwaderer, U., Zeman, J., & Joswig, M. (2011, doi: 10.5194/isprsarchives-XXXVIII-1-C22-161-2011). Open source image-processing tools for low-cost uav-based landslide investigations. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 38(1C22), 161-166.
Nikolakopoulos, K. K., & Sabatakakis, N. (2015, doi:10.1117/12.2195394). Active landslide monitoring using remote sensing data, GPS measurements and cameras on board UAV. Proceedings of SPIE, 9644, 96440E.
Nikolakopoulos, K., Kavoura, K., Depountis, N., i Kyriou, A., Argyropoulos, N., Koukouvelas, I., y otros. (2017, DOI: 10.1080/22797254.2017.1324741). Preliminary results from active landslide monitoring using multidisciplinary surveys. European Journal of Remote Sensing, 50(1).
Nissen, E., Krishnan, A. K., Arrowsmith, R., & Saripalli, S. (2012). Three-dimensional surface displacements and rotations from differencing pre- and post-earthquake LiDAR point clouds. Geophysical Research Letters , 39(16).
Petley, D. (September de 2012, DOI: 10.1130/G33217.1). Global patterns of loss of life from landslides. Geology, 40(10), 927-93.
Pfeifer, N., & Mandlburger, G. (s.f.). LIDAR data filtering and DTM generation. Shan J, Toth CK, editors. Topographic laser ranging and scanning. Principles and processing. Boca Raton (FL): Taylor and Francis, (págs. 307-334).
Pino, E. (2019). Los drones una herramienta para una agricultura eficiente: un futuro de alta tecnología. Idesia (Arica), 1(75-84), 37.
Pirotti, F., Guarnieri, A., & Vettore, A. (2013, doi: 10.5721/EuJRS20134605). State of the art of ground and aerial laser scanning technologies for high-resolution topography of the earth surface. European Journal Remote Sensing, 46, 66-78.
Pratt, K. S., Murphy, R., Stover, S., & Griffin, C. (2009). CONOPS and Autonomy Recommendations for VTOL Small Unmanned Aerial System Based on Hurricane Katrina Operations. Journal of Field Robotics, 26(8), 636-650.
Prokešová, R., Kardoš, M., & Medveová, A. (2010). Landslide dynamics from high-resolution aerial photographs: A case study from the Western Carpathians, Slovakia. Geomorphology, 101(1-2), 90.
Puri, V., Nayyar, A., & Raja, L. (2017). Agriculture drones: A modern breakthrough in precision agriculture. Journal of Statistics and Management Systems, 20(4), 507-518
Rau, J., Jhan, J., Lob, C., & Linb, Y. (s.f.). Landslide mapping using imagery acquired by a fixed-wing UAV. ISPRS International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, XXXVIII-1/C22, 195-200.
Ruiz E., M. A., & Ndomab, A. (2019). The uses of unmanned aerial vehicles –UAV’s- (or drones) in social logistic: Natural disasters response and humanitarian relief aid. Procedia Computer Science, 149, 375-383
Silvagni, M., Tonoli, A., Zenerino, E., & Chiaberge, M. (2017, DOI: 10.1080/19475705.2016.1238852). Multipurpose UAV for search and rescue operations in mountain avalanche events. Geomatics, Natural Hazards and Risk, 8(1), 18-33.
Slob, S., & Hack, R. (s.f.). 3D terrestrial laser scanning as a new field measurement and monitoring technique. Hack R, Azzam R, Charlier R, editors. Engineering geology for infrastructure planning in Europe: a European perspective. Berlin/Heidelberg: Springer, (págs. 179-189).
Solar, L., Barra, A., Herrera, G., Bianchini, S., Monserrat, O., Béjar-Pizarro, M., y otros. (2018, https://doi.org/10.1080/19475705.2017.1413013). Fast detection of ground motions on vulnerable elements using Sentinel-1 InSAR data. Geomatics, Natural Hazards and Risk, 9(1), 152-174.
Spreafico, M. C., Perotti, L., Cervi, F., Bacenetti, M., Bitelli, G., Girelli, V. A., y otros. (2015, DOI: 10.5721/EuJRS20154835). Terrestrial Remote Sensing techniques to complement conventional geomechanical surveys for the assessment of landslide hazard: The San Leo case study (Italy). European Journal of Remote Sensing, 48(1), 639-660.
Stumpf, A., Malet, J., Kerle, N., Niethammer, U., & Rothmund, S. (2013, doi:10.1016/j.geomorph.2012.12.010). Image-based mapping of surface fissures for the investigation of landslide dynamics. Geomorphology, 186(15), 12-27
Taddese B., H., & Burud, I. (2018, DOI: 10.1080/22797254.2018.1432993). Application of unmanned aerial vehicles in earth resources monitoring: focus on evaluating potentials for forest monitoring in Ethiopia. European Journal of Remote Sensing, 51(1), 326-335.
Turner, D., Lucieer, A., & De Jong, S. (s.f.). Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sensing, 7, 1736-1757.
Ujike, K., & Takagi, M. (2004, Available from: http://www.aars.org/acrs/proceeding/ACRS2004/Papers/3LS04-4.htm). Measurement of landslide displacement by object extraction with ground based portable Lased Scanner. Proceedings of the 25th Asian Conference on Remote Sensing, (págs. 83-89). Chiangmai, Thailand.
Vosselman, G., & Sithole, G. (2004). Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds. ISPRS Journal Photogrammetry Remote Sensing, 1, 85-101.
Wempen, J. M. (January de 2020). Application of DInSAR for short period monitoring of initial subsidence due to longwall mining in the mountain west United States. International Journal of Mining Science and Technology, 30(1), 33-37.
Wempen, J., & McCarter, M. (2017). Comparison of L-band and X-band differential interferometric synthetic aperture radar for mine subsidence monitoring in Central Utah. International Journal of Mining Science and Technology, 27(1), 159-163.
Westoby, M., Brasington, J., Glasser, N., Hambrey, M., & Reynolds, J. (2012). Structure-from motion photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314.
Wieczorek, G., & Snyder, J. (2009). Monitoring slope movements. R. Young & L. Norby (Eds.), Geological Society of America. Boulder, CO: Geological Monitoring, (págs. 245-271).
Xiang, X., & Tian, L. (2011). Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform . Biosyst. Eng., 108(2), 104–113.
Zarco-Tejada, P., & Berni, J. (8-10 de febrero de 2012). Monitoreo de la vegetación mediante un sensor de imágenes micro-hiperespectrales a bordo de un vehículo aéreo no tripulado (UAV). Proceedings of the EuroCOW 2012, European espacial data research (EuroSDR). Castelldefels, España.
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.accessrights.*.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
Attribution-NonCommercial-NoDerivatives 4.0 International
Acceso abierto
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv applicaction/pdf
dc.coverage.sede.spa.fl_str_mv Campus UMNG
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Estudios a Distancia
dc.publisher.grantor.spa.fl_str_mv Universidad Militar Nueva Granada
institution Universidad Militar Nueva Granada
bitstream.url.fl_str_mv http://repository.unimilitar.edu.co/bitstream/10654/39586/4/AlonsoGomezLuisFernando2021.pdf
http://repository.unimilitar.edu.co/bitstream/10654/39586/5/license.txt
http://repository.unimilitar.edu.co/bitstream/10654/39586/6/AlonsoGomezLuisFernando2021.pdf.jpg
bitstream.checksum.fl_str_mv 06417172e61f9fc90740aed77c44611d
a609d7e369577f685ce98c66b903b91b
a41491ebff0875823787e588acfd4b0f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UMNG
repository.mail.fl_str_mv bibliodigital@unimilitar.edu.co
_version_ 1837098487332732928
spelling Chavez, SaiethAlonso Gómez, Luis FernandoIngeniero Civil2021-12-21T21:45:49Z2021-12-21T21:45:49Z2021-04-05http://hdl.handle.net/10654/39586instname:Universidad Militar Nueva Granadareponame:Repositorio Institucional Universidad Militar Nueva Granadarepourl:https://repository.unimilitar.edu.coLos deslizamientos de tierra son uno de los peligros y riesgos más costoso y fatales para cualquier infraestructura vial, que frecuentemente amenazan e influyen en la situación socioeconómica, principalmente, de los países en vía de desarrollo. Frecuentemente, los estudios de deslizamiento se hacen de manera directa, in situ, siendo muchos de ellos costosos y un reto dada la dificultad que se pueden presentar al acceder a las zonas de estudio. Los datos de los sensores remotos se pueden usar en el monitoreo de deslizamientos de tierra, mapeo, simulación, predicción y evaluación de peligros y otras investigaciones. El presente artículo presenta una revisión bibliográfica en estudios relacionados con el uso de drones y sensores remotos para el seguimiento y monitoreo de laderas, de una manera descriptiva y que permita por medio de la documentación incorporar información relevante para poder abordar futuros estudios más específicos que permitan tener en cuenta el monitoreo de deslizamientos de tierra, las técnicas de sensores remotos, drones y la aplicación global de este conjunto de nuevas tecnologías.Landslides are one of the most costly and fatal hazards and risks for any road infrastructure, often threatening and influencing the socio-economic situation mainly in developing countries. Landslide studies are often carried out directly on site, and many are costly and challenging given the difficulty of access to study areas. Remote sensing data can be used in landslide monitoring, mapping, simulation, hazard prediction and assessment, and other research. This article presents a literature review on studies related to the use of drones and remote sensing for slope tracking and monitoring, in a descriptive manner that allows through documentation to incorporate relevant information in order to address future more specific studies to take into account landslide monitoring, remote sensing techniques, drones and the global application of this set of new technologies.PregradoLandslides are one of the most costly and fatal hazards and risks for any road infrastructure, often threatening and influencing the socio-economic situation mainly in developing countries. Landslide studies are often carried out directly on site, and many are costly and challenging given the difficulty of access to study areas. Remote sensing data can be used in landslide monitoring, mapping, simulation, hazard prediction and assessment, and other research. This article presents a literature review on studies related to the use of drones and remote sensing for slope tracking and monitoring, in a descriptive manner that allows through documentation to incorporate relevant information in order to address future more specific studies to take into account landslide monitoring, remote sensing techniques, drones and the global application of this set of new technologies.applicaction/pdfspahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Attribution-NonCommercial-NoDerivatives 4.0 InternationalAcceso abiertoUso de drones y sensores remotos para el monitoreo de laderas: una revisiónUsing drones and remote sensing for slope monitoring: a reviewSENSORES REMOTOSAVIONES SIN PILOTOFALLAS ESTRUCTURALESRemote sensingdroneslandslidesdetectionnatural hazardsSensores remotosdronesderrumbesdetecciónPeligros NaturalesTesis/Trabajo de grado - Monografía - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fIngeniería CivilFacultad de Estudios a DistanciaUniversidad Militar Nueva GranadaAbellan, A., Jaboyedoff, M., Oppikofer, T., & Vilaplana, J. M. (2009). Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rock fall event. Nat Hazards Earth Syst Sc, 9, 365-372.Agüera, F., Carvajal, F., & Pérez, M. (2011). Measuring sunflower nitrogen status from an unmanned aerial vehicle-based system and an on the ground device. ISPRS Annals of the Photogrametry Remote Sensing and Spatial Information Sciences , XXVIII-1 / C2, 33 - 37, (págs. 33-37).Aguilar, F. J., Agüera, F., Aguilar, M. A., & Carvajal, F. (s.f.). Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy. Photogrammetric Eng Remote Sensing, 71, 805-816.Alizadeh, M., Ngah, I., Hashim, M., Pradhan, B., & Pour, A. (2018, doi: 10.3390/rs10060975). A Hybrid Analytic Network Process and Artificial Neural Network (ANP-ANN) Model for Urban Earthquake Vulnerability Assessment. Remote sensing, 10, 975.Baldo, M., Bicocchi, C., Chiocchini, U., Giordan, D., & Lollino, G. (2009). LIDAR monitoring of mass wasting processes: The Radicofani landslide, Province of Siena, Central Italy. Geomorphology, 105(3), 193-201.Barbarella, M., & Fiani, M. (Febrero de 2013, https://doi.org/10.5721/EuJRS20134608). Monitoring of large landslides by Terrestrial Laser Scanning techniques: field data collection and processing. European Journal of Remote Sensing, 46(1), 126-151.Boccardo, P., Chiabrando, F., Dutto, F., Tonolo, F. G., & Lingua, A. (2015). UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications. Sensors, 15(7), 15717-15737.Briese, C. (s.f.). Extraction of digital terrain models. Vosselman G, Maas HG, editors. Airborne and terrestrial laser scanning. Dunbeath: Whittles, (págs. 135-167).Campos, J. (2017). Diseño innovador se sensor para laderas sistema previsor de taludes. Tesis doctoral, Universidad Nacional Autonoma de Mexico.Carvajal, F., Agüera, F., & Pérez, M. (2012). Surveying a Landslide in a Road Embankment Using Unmanned Aerial Vehicle Photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XXXVIII-1, 201-206.Castagnetti, C., Bertacchini, E., & Rivola, R. (2014, doi:10.1117/12.2067407). A reliable methodology for monitoring unstable slopes: The multi-platform and multi-sensor approach. roceedings of SPIE, 9245, Earth Resources and Environmental Remote Sensing/GIS Applications V, 92450J. .Chávez, E. J., García, A. C., Pérez, A. G., & Carreño, O. E. (2015). Uso de vehículos aéreos no tripulados para la caracterización del paisaje sumergido; Bahía Estacahuite. Ciencia y Mar, 51, 35-40.Cheng, Z., Yue, L., Peng, G., Wenlong, C., Hui, L., Yong, H., y otros. (1555-1581 de 2020, DOI: 10.1080/01431161.2019.1672904). Landslide mapping with remote sensing: challenges and opportunities. International Journal of Remote Sensing, 41(4).Choi, K., & Lee, I. (2011, DOI: 10.5194/isprsarchives-XXXVIII-1-C22-247-2011). A UAV based close-range rapid aerial monitoring system for emergency responses. ISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, XXXVIII-1/C22(1), 247-252.Chou, T., Yeh, M. L., Chen, Y., & Chen, Y. H. (2010). Disaster monitoring and management by the unmanned aerial vehicle technology. En: Wagner W , Székely B , editores. Simposio ISPRS TC VII - 100 años ISPRS. Viena : Archivos internacionales de fotogrametría, teledetección e información espacial, (págs. 137-142).Colomina, I., & Molina, P. (2014, doi: 10.1016 / j.isprsjprs.2014.02.013). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97.Concepción-Toledo, D., González-Suárez, E., García-Prado, R., & Miño-Valdés, J. (2019, http://dx.doi.org/10.18004/ucsa/2409-8752/2019.006(01)076-087 ). Investigation methodology: Origin and construction of a doctoral thesis. Revista Científica de la UCSA, 6(1), 076-087.Costa, F. G., Ueyama, J., Braun, T., Pessin, G., Osório, F. S., & Vargas, P. A. (22-27 de julio de 2012). The use of unmanned aerial vehicles and wireless sensor network in agricultural applications. Simposio internacional de geociencias y teledetección del IEEE (IGARSS). Munich, Alemania.Dahal, R., Hasegawa, S., Masuda, T., & Yamanaka, M. (2006). Roadside slope failures in Nepal during torrential rainfall and their mitigation. Disaster mitigation of debris flow, slope failures and landslides, (Interpraevent 2007), Universal Academy Press, Tokyo, 2, 503-514.Fiani, M., & Siani, N. (Sep 26 - Oct 01, Available from: http://cipa.icomos.org/fileadmin/template/doc/TURIN/277.pdf). Comparison of terrestrial laser scanners in production of DEMs for Cetara tower. CIPA 2005 XX International Symposium, (pág. 2005). Torino (Italy).Flores, D. A., Saito, C., Paredes, J. A., & Trujillano, F. (2017). Aerial photography for 3D reconstruction in the Peruvian Highlands through a fixed-wing UAV system. Proc. - 2017 IEEE Int. Conf. Mechatronics, ICM 2017, 388-392.Garianoab, S. L., & Guzzetti, F. ( Novembe de 2016). Landslides in a changing climate. Earth-Science Reviews, 162, 227-252.Giordan, D., Manconi, A., Remondino, F., & Nex, F. (2017 de DOI: 10.1080/19475705.2017.1315619). Use of unmanned aerial vehicles in monitoring application and management of natural hazards. Geomatics, Natural Hazards and Risk , 8(1), 1-4.Grenzdörffer, G. J., & Niemeyer, F. (2011). UAV-based BRDF-measurements of agricutltural surfaces with PFIFFikus. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(1/C22), 229-234.Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M. H., Loye, A., Metzger, R., y otros. (2012). Use of LIDAR in landslide investigations: a review. Nat Hazads, 61, 5-28.Koeva, M., Muneza, M., Gevaert, C., Gerke, M., & Nex, F. (2018, DOI: 10.1080/00396265.2016.1268756). Using UAVs for map creation and updating. A case study in Rwanda. Survey Review, 50(361), 312-325.Kraus, K., & Pfeifer, N. (Available from: http://www.isprs.org/proceedings/xxxiv/3-w4/pdf/kraus.pdf). Advanced DTM generation from LIDAR data. ISPRS Archives, XXXIV-3/W4, 23-30.Lin, J., Tao, H., Wang, Y., & Huang, Z. (2010, doi:10.1109/GEOINFORMATICS.2010.5567777). Practical application of unmanned aerial vehicles for mountain hazards survey. 18th International Conference on Geoinformatics, (págs. 1-5). Beijing.Lucieer, A. D. (s.f.). Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography, 38(1), 97-116.Lucieer, A., Turner, D., King, D. H., & Robinson, S. A. (2014). Using an unmanned aerial vehicle (UAV) to capture micro-topography of antarctic moss beds. International Journal Applied Eath Observation Geoinformation, 27, 53-62.Manfreda, S., & al., e. (2018). On the use of unmanned aerial systems for environmental monitoring. Remote Sens., 10(4).Martha, T., Kerle, N., Jetten, V., Van Westen, C., & Kumar, K. (s.f.). Landslide volumetric analysis using cartosat-1-derived dems. IEEE Geoscience And Remote Sensing Letters, 7, 582-586.Meinen, B. U., & Robinson, D. T. (2020, DOI: 10.1080 / 01431161.2019.1597294). Streambank topography: an accuracy assessment of UAV-based and traditional 3D reconstructions. International Journal of Remote Sensing, 41(1), 1-18.Molina, P., Colomina, I., Victoria, P., Skaloud, J., Kornus, W., Prades, R., y otros. (July de 2012). Drones to the Rescue! Inside GNSS, 36-47.Molina, P., Colomina, I., Victoria, T., Skaloud, J., Kornus, W., Prades, R., y otros. (August 25 - September 1, 2012). SEARCHING LOST PEOPLE WITH UAVS: THE SYSTEM AND RESULTS OF THE CLOSE-SEARCH PROJECT. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXII Congress of the International Society for Photogrammetry and Remote Sensing, (págs. 441-446). Melbourne, Australia.Murphy, R. R., Steimle, E., Griffin, C., Cullins, C., Sala, H., & Pratt, K. (2008, https://doi.org/10.1002/rob.20235). Cooperative use of unmanned sea surface and micro aerial vehicles at Hurricane Wilma. Journal of Field robotics, 25(3), 164-180.Natsagdorj, E. R.-O. (2017). An integrated methodology for soil moisture analysis using multispectral data in Mongolia. Geo-Spatial Information Science, 20(1), 46-55.Nex, F., & Remondino, F. (2014, doi: 10.1007 / s12518-013-0120-x). UAV for 3D mapping applications: a review. Applied Geomatics, 6(1), 1-15.Niethammer, R., A, J., & Travelletti, J. (2010). Uav-Based Remote Sensing of Landslides. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XXXVIII, 496–501.Niethammer, U. J. (2012, doi:10.1016/j.enggeo.2011.03.012). UAV-based remote sensing of the super-sauze landslide: Evaluation and results. Engineering Geology, 128, 2-11.Niethammer, U., Rothmund, S., Schwaderer, U., Zeman, J., & Joswig, M. (2011, doi: 10.5194/isprsarchives-XXXVIII-1-C22-161-2011). Open source image-processing tools for low-cost uav-based landslide investigations. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 38(1C22), 161-166.Nikolakopoulos, K. K., & Sabatakakis, N. (2015, doi:10.1117/12.2195394). Active landslide monitoring using remote sensing data, GPS measurements and cameras on board UAV. Proceedings of SPIE, 9644, 96440E.Nikolakopoulos, K., Kavoura, K., Depountis, N., i Kyriou, A., Argyropoulos, N., Koukouvelas, I., y otros. (2017, DOI: 10.1080/22797254.2017.1324741). Preliminary results from active landslide monitoring using multidisciplinary surveys. European Journal of Remote Sensing, 50(1).Nissen, E., Krishnan, A. K., Arrowsmith, R., & Saripalli, S. (2012). Three-dimensional surface displacements and rotations from differencing pre- and post-earthquake LiDAR point clouds. Geophysical Research Letters , 39(16).Petley, D. (September de 2012, DOI: 10.1130/G33217.1). Global patterns of loss of life from landslides. Geology, 40(10), 927-93.Pfeifer, N., & Mandlburger, G. (s.f.). LIDAR data filtering and DTM generation. Shan J, Toth CK, editors. Topographic laser ranging and scanning. Principles and processing. Boca Raton (FL): Taylor and Francis, (págs. 307-334).Pino, E. (2019). Los drones una herramienta para una agricultura eficiente: un futuro de alta tecnología. Idesia (Arica), 1(75-84), 37.Pirotti, F., Guarnieri, A., & Vettore, A. (2013, doi: 10.5721/EuJRS20134605). State of the art of ground and aerial laser scanning technologies for high-resolution topography of the earth surface. European Journal Remote Sensing, 46, 66-78.Pratt, K. S., Murphy, R., Stover, S., & Griffin, C. (2009). CONOPS and Autonomy Recommendations for VTOL Small Unmanned Aerial System Based on Hurricane Katrina Operations. Journal of Field Robotics, 26(8), 636-650.Prokešová, R., Kardoš, M., & Medveová, A. (2010). Landslide dynamics from high-resolution aerial photographs: A case study from the Western Carpathians, Slovakia. Geomorphology, 101(1-2), 90.Puri, V., Nayyar, A., & Raja, L. (2017). Agriculture drones: A modern breakthrough in precision agriculture. Journal of Statistics and Management Systems, 20(4), 507-518Rau, J., Jhan, J., Lob, C., & Linb, Y. (s.f.). Landslide mapping using imagery acquired by a fixed-wing UAV. ISPRS International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, XXXVIII-1/C22, 195-200.Ruiz E., M. A., & Ndomab, A. (2019). The uses of unmanned aerial vehicles –UAV’s- (or drones) in social logistic: Natural disasters response and humanitarian relief aid. Procedia Computer Science, 149, 375-383Silvagni, M., Tonoli, A., Zenerino, E., & Chiaberge, M. (2017, DOI: 10.1080/19475705.2016.1238852). Multipurpose UAV for search and rescue operations in mountain avalanche events. Geomatics, Natural Hazards and Risk, 8(1), 18-33.Slob, S., & Hack, R. (s.f.). 3D terrestrial laser scanning as a new field measurement and monitoring technique. Hack R, Azzam R, Charlier R, editors. Engineering geology for infrastructure planning in Europe: a European perspective. Berlin/Heidelberg: Springer, (págs. 179-189).Solar, L., Barra, A., Herrera, G., Bianchini, S., Monserrat, O., Béjar-Pizarro, M., y otros. (2018, https://doi.org/10.1080/19475705.2017.1413013). Fast detection of ground motions on vulnerable elements using Sentinel-1 InSAR data. Geomatics, Natural Hazards and Risk, 9(1), 152-174.Spreafico, M. C., Perotti, L., Cervi, F., Bacenetti, M., Bitelli, G., Girelli, V. A., y otros. (2015, DOI: 10.5721/EuJRS20154835). Terrestrial Remote Sensing techniques to complement conventional geomechanical surveys for the assessment of landslide hazard: The San Leo case study (Italy). European Journal of Remote Sensing, 48(1), 639-660.Stumpf, A., Malet, J., Kerle, N., Niethammer, U., & Rothmund, S. (2013, doi:10.1016/j.geomorph.2012.12.010). Image-based mapping of surface fissures for the investigation of landslide dynamics. Geomorphology, 186(15), 12-27Taddese B., H., & Burud, I. (2018, DOI: 10.1080/22797254.2018.1432993). Application of unmanned aerial vehicles in earth resources monitoring: focus on evaluating potentials for forest monitoring in Ethiopia. European Journal of Remote Sensing, 51(1), 326-335.Turner, D., Lucieer, A., & De Jong, S. (s.f.). Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sensing, 7, 1736-1757.Ujike, K., & Takagi, M. (2004, Available from: http://www.aars.org/acrs/proceeding/ACRS2004/Papers/3LS04-4.htm). Measurement of landslide displacement by object extraction with ground based portable Lased Scanner. Proceedings of the 25th Asian Conference on Remote Sensing, (págs. 83-89). Chiangmai, Thailand.Vosselman, G., & Sithole, G. (2004). Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds. ISPRS Journal Photogrammetry Remote Sensing, 1, 85-101.Wempen, J. M. (January de 2020). Application of DInSAR for short period monitoring of initial subsidence due to longwall mining in the mountain west United States. International Journal of Mining Science and Technology, 30(1), 33-37.Wempen, J., & McCarter, M. (2017). Comparison of L-band and X-band differential interferometric synthetic aperture radar for mine subsidence monitoring in Central Utah. International Journal of Mining Science and Technology, 27(1), 159-163.Westoby, M., Brasington, J., Glasser, N., Hambrey, M., & Reynolds, J. (2012). Structure-from motion photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314.Wieczorek, G., & Snyder, J. (2009). Monitoring slope movements. R. Young & L. Norby (Eds.), Geological Society of America. Boulder, CO: Geological Monitoring, (págs. 245-271).Xiang, X., & Tian, L. (2011). Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform . Biosyst. Eng., 108(2), 104–113.Zarco-Tejada, P., & Berni, J. (8-10 de febrero de 2012). Monitoreo de la vegetación mediante un sensor de imágenes micro-hiperespectrales a bordo de un vehículo aéreo no tripulado (UAV). Proceedings of the EuroCOW 2012, European espacial data research (EuroSDR). Castelldefels, España.Campus UMNGORIGINALAlonsoGomezLuisFernando2021.pdfAlonsoGomezLuisFernando2021.pdfTrabajo de gradoapplication/pdf210364http://repository.unimilitar.edu.co/bitstream/10654/39586/4/AlonsoGomezLuisFernando2021.pdf06417172e61f9fc90740aed77c44611dMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83420http://repository.unimilitar.edu.co/bitstream/10654/39586/5/license.txta609d7e369577f685ce98c66b903b91bMD55THUMBNAILAlonsoGomezLuisFernando2021.pdf.jpgAlonsoGomezLuisFernando2021.pdf.jpgIM Thumbnailimage/jpeg5647http://repository.unimilitar.edu.co/bitstream/10654/39586/6/AlonsoGomezLuisFernando2021.pdf.jpga41491ebff0875823787e588acfd4b0fMD5610654/39586oai:repository.unimilitar.edu.co:10654/395862021-12-23 01:03:12.649Repositorio Institucional UMNGbibliodigital@unimilitar.edu.coRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hLCB0cmFiYWpvIGRlIGdyYWRvIG8gY3VhbHF1aWVyIG90cm8gZG9jdW1lbnRvCmNvbiBjYXLDoWN0ZXIgYWNhZMOpbWljbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sIGhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2bwp5IGRlIHN1cyBhbmV4b3MgZW4gZm9ybWF0byBkaWdpdGFsIG8gZWxlY3Ryw7NuaWNvLgoKRUwgRVNUVURJQU5URSAtIEFVVE9SLCBtYW5pZmllc3RhIHF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuCmVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvcgpsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KCkVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4KY3VhbnRvIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgZW4gY3Vlc3Rpw7NuLCBFTCBFU1RVRElBTlRFIC0gQVVUT1IsCmFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7CnBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCkFkZW3DoXMsICJMQSBVTklWRVJTSURBRCBNSUxJVEFSIE5VRVZBIEdSQU5BREEgY29tbyBpbnN0aXR1Y2nDs24gcXVlIGFsbWFjZW5hLCB5CnJlY29sZWN0YSBkYXRvcyBwZXJzb25hbGVzLCBhdGVuZGllbmRvIGxvIHByZWNlcHR1YWRvIGVuIGxhIGxleSAxNTgxIGRlIDIwMTIgeSBlbApEZWNyZXRvIDEzNzcgZGUgMjAxMywgcXVlIGRlc2Fycm9sbGFuIGVsIHByaW5jaXBpbyBjb25zdGl0dWNpb25hbCBxdWUgdGllbmVuIHRvZGFzCmxhcyBwZXJzb25hcyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIgeSByZWN0aWZpY2FyIHRvZG8gdGlwbyBkZSBpbmZvcm1hY2nDs24gcmVjb2dpZGEKbywgcXVlIGhheWEgc2lkbyBvYmpldG8gZGUgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBlbiBiYW5jb3MgbyBiYXNlcyBkZQpkYXRvcyB5IGVuIGdlbmVyYWwgZW4gYXJjaGl2b3MgZGUgZW50aWRhZGVzIHDDumJsaWNhcyBvIHByaXZhZGFzLCByZXF1aWVyZSBvYnRlbmVyCnN1IGF1dG9yaXphY2nDs24sIHBhcmEgcXVlLCBkZSBtYW5lcmEgbGlicmUsIHByZXZpYSwgZXhwcmVzYSwgdm9sdW50YXJpYSwgeQpkZWJpZGFtZW50ZSBpbmZvcm1hZGEsIHBlcm1pdGEgYSB0b2RhcyBudWVzdHJhcyBkZXBlbmRlbmNpYXMgYWNhZMOpbWljYXMgeQphZG1pbmlzdHJhdGl2YXMsIHJlY29sZWN0YXIsIHJlY2F1ZGFyLCBhbG1hY2VuYXIsIHVzYXIsIGNpcmN1bGFyLCBzdXByaW1pciwgcHJvY2VzYXIsCmNvbXBpbGFyLCBpbnRlcmNhbWJpYXIsIGRhciB0cmF0YW1pZW50bywgYWN0dWFsaXphciB5IGRpc3BvbmVyIGRlIGxvcyBkYXRvcyBxdWUKaGFuIHNpZG8gc3VtaW5pc3RyYWRvcyB5IHF1ZSBzZSBoYW4gaW5jb3Jwb3JhZG8gZW4gbnVlc3RyYXMgYmFzZXMgbyBiYW5jb3MgZGUKZGF0b3MsIG8gZW4gcmVwb3NpdG9yaW9zIGVsZWN0csOzbmljb3MgZGUgdG9kbyB0aXBvIGNvbiBxdWUgY3VlbnRhIGxhIFVuaXZlcnNpZGFkLgoKRXN0YSBpbmZvcm1hY2nDs24gZXMgeSBzZXLDoSB1dGlsaXphZGEgZW4gZWwgZGVzYXJyb2xsbyBkZSBsYXMgZnVuY2lvbmVzIHByb3BpYXMgZGUKbGEgVW5pdmVyc2lkYWQgZW4gc3UgY29uZGljacOzbiBkZSBpbnN0aXR1Y2nDs24gZGUgZWR1Y2FjacOzbiBzdXBlcmlvciwgZGUgZm9ybWEKZGlyZWN0YSBvIGEgdHJhdsOpcyBkZSB0ZXJjZXJvcyIuCgpTaSBzdSBkb2N1bWVudG8gZXMgZGUgYWNjZXNvIHJlc3RyaW5naWRvICwgc3UgdHJhYmFqbyBzZSBkZXBvc2l0YXLDoSBlbiBlbApSZXBvc2l0b3JpbyBVTU5HIMO6bmljYW1lbnRlIGNvbiBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRvY3VtZW50YWwgeSBtZW1vcmlhCmluc3RpdHVjaW9uYWwsIGVudGVuZGllbmRvIHF1ZSwgc2Vyw6EgY29uc3VsdGFkbyBkZSBmb3JtYSBjb250cm9sYWRhIHNvbGFtZW50ZSBwb3IKbGEgY29tdW5pZGFkIE5lb2dyYW5hZGluYS4KClNpIHN1IGRvY3VtZW50byBlcyBkZSBhY2Nlc28gYWJpZXJ0bywgcGFyYSBwZXJtaXRpciBhbCBSZXBvc2l0b3JpbyBVTU5HIHJlcHJvZHVjaXIsCnRyYWR1Y2lyIHkgZGlzdHJpYnVpciBzdSBlbnbDrW8gYSB0cmF2w6lzIGRlbCBtdW5kbywgbmVjZXNpdGFtb3Mgc3UgY29uZm9ybWlkYWQgZW4KbG9zIHNpZ3VpZW50ZXMgdMOpcm1pbm9zOgoKWSBhdXRvcml6YSBhIGxhIFVOSVZFUlNJREFEIE1JTElUQVIgTlVFVkEgR1JBTkFEQSwgcGFyYSBxdWUgZW4gbG9zIHTDqXJtaW5vcwplc3RhYmxlY2lkb3MgZW46CgpMZXkgMjMgZGUgMTk4Mi0gTGV5IDQ0IGRlIDE5OTMgLUxleSAxOTE1IGRlIDIwMTggLSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLQpEZWNyZXRvIDQ2MCBkZSAxOTk1IHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgdXRpbGljZSB5IHVzZSBwb3IKY3VhbHF1aWVyIG1lZGlvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sCmNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlCmRvY3VtZW50by4KCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc8OzbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlCnVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byB2aXJ0dWFsLAplbGVjdHLDs25pY28sIGRpZ2l0YWwsIHkgY3V5byB1c28gc2UgZGUgZW4gcmVkLCBpbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBldGMuLAp5IGVuIGdlbmVyYWwgZW4gY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxvcyBUw6lybWlub3MgeSBjb25kaWNpb25lcywgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwKYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYSBiaWJsaW9kaWdpdGFsQHVuaW1pbGl0YXIuZWR1LmNvCgpBY2VwdGUgVMOpcm1pbm9zIHkgY29uZGljaW9uZXMgc2VsZWNjaW9uYW5kbyAiQWNlcHRvIiB5IHB1bHNhbmRvICJDb21wbGV0YXIgZW52w61vIi4K