Exploración de técnicas de inteligencia artificial para la predicción de resultados de la etapa de análisis por elementos finitos en el proceso de diseño mecánico

El diseño mecánico hoy día se ve optimizado gracias al uso de tecnologías y programas especializados que ayudan en el proceso, estos con el fin de llegar a resultados exitosos en la implementación final. Una herramienta clave dentro de estas tecnologías es el análisis por método de los elementos fin...

Full description

Autores:
Vasquez Naranjo, David Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Militar Nueva Granada
Repositorio:
Repositorio UMNG
Idioma:
spa
OAI Identifier:
oai:repository.unimilitar.edu.co:10654/38313
Acceso en línea:
http://hdl.handle.net/10654/38313
Palabra clave:
INTELIGENCIA ARTIFICIAL
TECNOLOGIA DE LA INFORMACION
machine learning
artificial intelligence
mechanical design
finite element method analysis
FEM
autoencoder
machine learning
inteligencia artificial
diseño mecanico
analisis por el metodo de los elementos finitos
FEM
autoencoder
retroalimentacion
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:El diseño mecánico hoy día se ve optimizado gracias al uso de tecnologías y programas especializados que ayudan en el proceso, estos con el fin de llegar a resultados exitosos en la implementación final. Una herramienta clave dentro de estas tecnologías es el análisis por método de los elementos finitos FEM que permite evaluar un elemento de estudio, bajo diferentes configuraciones de operación, sin embargo, llevar a cabo estos análisis, en ciertos casos, puede llegar a tomar horas o hasta días en solucionarse, lo que hace ineficiente el proceso de diseño y análisis mecánico de la actualidad. En el presente trabajo de grado se presentará la implementación de diferentes modelos de inteligencia artificial IA aplicados al análisis FEM, con el fin no solo de mejorar el tiempo requerido por prueba, sino generar un asistente capaz de ayudar y retroalimentar al usuario. A lo largo del trabajo se mostrarán herramientas clave para el correcto funcionamiento de las herramientas IA que llevarán a operaciones de reducción de dimensionalidad y tratamiento estadístico de los datos. Finalmente, el resultado logrará observarse en tres diferentes elementos mecánicos donde se evaluarán y comparan respecto a técnicas de análisis FEM convencionales para demostrar su correcto funcionamiento.