Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual
La aireación es el principal consumidor de electricidad en el tratamiento de las aguas residuales municipales, presente en ciertos procesos biológicos, como los lodos activados, los cuales demandan entre el 50-70% de los costos de la energía necesaria para tratamiento del agua residual. Por consigui...
- Autores:
-
Diaz Esteban, Diego Sebastian
Suarez Angarita, Julieth Daniela
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Militar Nueva Granada
- Repositorio:
- Repositorio UMNG
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unimilitar.edu.co:10654/38966
- Acceso en línea:
- http://hdl.handle.net/10654/38966
- Palabra clave:
- AGUAS RESIDUALES
TRATAMIENTO TERRESTRE DE AGUAS RESIDUALES
LODOS ACTIVADOS
Fine bubble diffusers
Fouling
Chemical cleaning
Sludge activated
Discharge pressure
Oxygen transfer
Ultrasound
Difusores de burbuja fina
Ensuciamiento
Limpieza química
Lodos activados
Presión de descarga
Transferencia de oxígeno
Ultrasonido
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UNIMILTAR2_2254c3be6e9df15407b34b7bb7c94fda |
---|---|
oai_identifier_str |
oai:repository.unimilitar.edu.co:10654/38966 |
network_acronym_str |
UNIMILTAR2 |
network_name_str |
Repositorio UMNG |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual |
dc.title.translated.spa.fl_str_mv |
Evaluation of cleaning techniques in fine bubble diffuser membranes used in aerobic processes for wastewater treatment |
title |
Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual |
spellingShingle |
Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual AGUAS RESIDUALES TRATAMIENTO TERRESTRE DE AGUAS RESIDUALES LODOS ACTIVADOS Fine bubble diffusers Fouling Chemical cleaning Sludge activated Discharge pressure Oxygen transfer Ultrasound Difusores de burbuja fina Ensuciamiento Limpieza química Lodos activados Presión de descarga Transferencia de oxígeno Ultrasonido |
title_short |
Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual |
title_full |
Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual |
title_fullStr |
Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual |
title_full_unstemmed |
Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual |
title_sort |
Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual |
dc.creator.fl_str_mv |
Diaz Esteban, Diego Sebastian Suarez Angarita, Julieth Daniela |
dc.contributor.advisor.none.fl_str_mv |
Baquero Rodríguez, Gustavo Andrés |
dc.contributor.author.none.fl_str_mv |
Diaz Esteban, Diego Sebastian Suarez Angarita, Julieth Daniela |
dc.subject.lemb.spa.fl_str_mv |
AGUAS RESIDUALES TRATAMIENTO TERRESTRE DE AGUAS RESIDUALES LODOS ACTIVADOS |
topic |
AGUAS RESIDUALES TRATAMIENTO TERRESTRE DE AGUAS RESIDUALES LODOS ACTIVADOS Fine bubble diffusers Fouling Chemical cleaning Sludge activated Discharge pressure Oxygen transfer Ultrasound Difusores de burbuja fina Ensuciamiento Limpieza química Lodos activados Presión de descarga Transferencia de oxígeno Ultrasonido |
dc.subject.keywords.spa.fl_str_mv |
Fine bubble diffusers Fouling Chemical cleaning Sludge activated Discharge pressure Oxygen transfer Ultrasound |
dc.subject.proposal.spa.fl_str_mv |
Difusores de burbuja fina Ensuciamiento Limpieza química Lodos activados Presión de descarga Transferencia de oxígeno Ultrasonido |
description |
La aireación es el principal consumidor de electricidad en el tratamiento de las aguas residuales municipales, presente en ciertos procesos biológicos, como los lodos activados, los cuales demandan entre el 50-70% de los costos de la energía necesaria para tratamiento del agua residual. Por consiguiente, para lograr una alta eficiencia de la transferencia de oxígeno en los tratamientos biológicos aeróbicos, son usados comúnmente los difusores de burbuja fina. El desempeño de las membranas de los difusores de burbuja fina es afectado por el ensuciamiento que comprende la acumulación de sustancias suspendidas o disueltas sobre su superficie y/o dentro de sus poros, ocasionando el incremento de los costos de operación, asociados a los sistemas de aireación. Con el propósito de mitigar el ensuciamiento en la industria del tratamiento de aguas residuales, son usadas diferentes técnicas de limpieza convencionales que traen consigo desventajas. El presente trabajo evalúa la técnica de limpieza convencional mediante la adición de agentes químicos y la limpieza con ultrasonido, siendo esta ultima una técnica novedosa para remover el ensuciamiento en difusores de burbuja fina; desde el punto de vista de la presión de descarga, costos de operación, eficiencia y transferencia de oxígeno en condiciones estándar. Los resultados muestran que la aplicación de las técnicas de limpieza recupera parcialmente la transferencia de oxígeno en las membranas difusoras y a la reducen los costos operativos.Concluyendo que, entre las tres técnicas de limpieza evaluadas, el ultrasonido es el que presenta los mejores resultados. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-02T16:17:56Z |
dc.date.available.none.fl_str_mv |
2021-10-02T16:17:56Z |
dc.date.issued.none.fl_str_mv |
2021-05-20 |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.*.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10654/38966 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Militar Nueva Granada |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Militar Nueva Granada |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unimilitar.edu.co |
url |
http://hdl.handle.net/10654/38966 |
identifier_str_mv |
instname:Universidad Militar Nueva Granada reponame:Repositorio Institucional Universidad Militar Nueva Granada repourl:https://repository.unimilitar.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Ahmad, A. L., Lah, N. F. C., Ismail, S., & Ooi, B. S. (2012). Membrane Antifouling Methods and Alternatives: Ultrasound Approach. Separation & Purification Reviews, 41(4), 318-346. https://doi.org/10.1080/15422119.2011.617804 Al-Amoudi, A., & Lovitt, R. W. (2007). Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. Journal of Membrane Science, 303(1-2), 4-28. https://doi.org/10.1016/j.memsci.2007.06.002 American Society of Civil Engineers. (2007). Measurement of oxygen transfer in clean water ASCE standard, ASCE/EWRI 2-06. American Society of Civil Engineers. http://dx.doi.org/10.1061/9780784408483 Ang, W. S., Tiraferri, A., Chen, K. L., & Elimelech, M. (2011). Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent. Journal of Membrane Science, 376(1-2), 196-206. https://doi.org/10.1016/j.memsci.2011.04.020 ASALE, R.-, & RAE. (2021). Diccionario de la lengua española. «Diccionario de la lengua española» - Edición del Tricentenario. https://dle.rae.es/ultrasonido ASCE. (2018). Standard Guidelines for In-Process Oxygen Transfer Testing (2.a ed.). American Society of Civil Engineers. https://doi.org/10.1061/9780784401149 Baquero-Rodríguez, G. A., Lara-Borrero, J. A., Nolasco, D., & Rosso, D. (2018). A Critical Review of the Factors Affecting Modeling Oxygen Transfer by Fine-Pore Diffusers in Activated Sludge. Water Environment Research, 90(5), 431-441. https://doi.org/10.2175/106143017X15131012152988 Brepols, C., Drensla, K., Trimborn, M., Engelhardt, N., & Janot, A. (2008). Strategies for chemical cleaning in large scale membrane bioreactors. Water Sci. Technol., 457-463. https://doi.org/10.2166/wst.2008.112 Chai, X., Kobayashi, T., & Fujii, N. (1999). Ultrasound-associated cleaning of polymeric membranes for water treatment. Separation and Purification Technology, 15(2), 139-146. https://doi.org/10.1016/S1383- 5866(98)00091-4 Chen, J. P., Kim, S. L., & Ting, Y. P. (2003). Optimization of membrane physical and chemical cleaning by a statistically designed approach. Journal of Membrane Science, 219(1), 27-45. https://doi.org/10.1016/S0376-7388(03)00174-1 De Souza, Nigel. P., & Basu, O. D. (2013). Comparative analysis of physical cleaning operations for fouling control of hollow fiber membranes in drinking water treatment. Journal of Membrane Science, 436, 28-35. https://doi.org/10.1016/j.memsci.2013.02.014 Drews, A. (2010). Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures. Journal of Membrane Science, 363(1-2), 1-28. https://doi.org/10.1016/j.memsci.2010.06.046 enel codensa. (2020). Tarifas de energía eléctrica reguladas por la comisión de regulación de energia y gas (CREG) Enero de 2020. https://www.enel.com.co/content/dam/enel-co/espa%C3%B1ol/personas/1- 17-1/2020/Tarifario-enero-2020.pdf Garrido-Baserba, M., Asvapathanagul, P., Park, H.-D., Kim, T.-S., Baquero-Rodriguez, G. A., Olson, B. H., & Rosso, D. (2018). Impact of fouling on the decline of aeration efficiency under different operational conditions at WRRFs. Science of The Total Environment, 639, 248-257. https://doi.org/10.1016/j.scitotenv.2018.05.036 Hendricks, D. (2011). Fundamentals of Water Treatment Unit Processes—Physical, Chemical, and Biological. IWA Publishing. Holenda, B., Domokos, Fazakas, & Rédey. (2008). Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. 32, 1270-1278. https://doi.org/10.1016/j.compchemeng.2007.06.008 Jenkins, T. E. (2014). Aeration Control System Design: A Practical Guide to Energy and Process Optimization (1a. ed.). WILEY. Jiang, L.-M., Chen, L., Zhou, Z., Sun, D., Li, Y., Zhang, M., Liu, Y., Du, S., Chen, G., & Yao, J. (2020). Fouling characterization and aeration performance recovery of fine-pore diffusers operated for 10 years in a full-scale wastewater treatment plant. Bioresource Technology, 123197. https://doi.org/10.1016/j.biortech.2020.123197 Jolly, M., Green, S., Wallis-Lage, C., & Buchanan, A. (2010). Energy saving in activated sludge plants by the use of more efficient fine bubble diffusers. Water and Environment Journal, 24(1), 58-64. https://doi.org/10.1111/j.1747-6593.2009.00164.x Judd, S. (2011). The MBR Book: Principles and Applications of Membrane Bioreactors for Water (2a. ed.). https://www.elsevier.com/books/the-mbr-book/judd/978-0-08-096682-3 Kabsch-Korbutowicz, M., Biłyk, A., & Mołczan, M. (2006). The effect of feed water pretreatment on ultrafiltration membrane performance. Polish Journal of Environmental Studies, 15(5), 719-725. Kim, Y., & Boyle, W. C. (1993). Mechanisms of Fouling in Fine‐Pore Diffuser Aeration. Journal of Environmental Engineering, 119(6), 1119-1138. https://doi.org/10.1061/(ASCE)0733-9372(1993)119:6(1119) Kobayashi, T., Kobayashi, T., Hosaka, Y., & Fujii, N. (2003). Ultrasound-enhanced membrane-cleaning processes applied water treatments: Influence of sonic frequency on filtration treatments. Ultrasonics, 41(3), 185-190. https://doi.org/10.1016/S0041-624X(02)00462-6 Koros, W. J., Ma, Y. H., & Shimidzu, T. (1996). Terminology for membranes and membrane processes (IUPAC Recommendations 1996). Pure and Applied Chemistry, 68(7), 1479-1489. https://doi.org/10.1351/pac199668071479 Kyllönen, H., Pirkonen, P., & Nyström, M. (2005). Membrane filtration enhanced by ultrasound: A review. Desalination, 181(1-3), 319-335. https://doi.org/10.1016/j.desal.2005.06.003 Kyllönen, H., Pirkonen, P., Nyström, M., Nuortila-Jokinen, J., & Grönroos, A. (2006). Experimental aspects of ultrasonically enhanced cross-flow membrane filtration of industrial wastewater. Ultrasonics Sonochemistry, 13(4), 295-302. https://doi.org/10.1016/j.ultsonch.2005.04.006 Lenntech. (1998, 2021). Glosario del agua. https://www.lenntech.es/glosario-agua.htm Li, J., Sanderson, R. D., & Jacobs, E. P. (2002). Ultrasonic cleaning of nylon microfiltration membranes fouled by Kraft paper mill effluent. Journal of Membrane Science, 205(1), 247-257. https://doi.org/10.1016/S0376-7388(02)00121-7 Liu, C. Y., Caothien, S., Hayes, J., Caothuy, T., & Otoyo, T. (2001). Membrane Chemical Cleaning: From Art to Science. López Vázquez, C. M., Buitrón Méndez, G., García, H. A., & Cervantes Carrillo, F. J. (2017). Biological Wastewater Treatment: Principles, Modeling and Design. Water Intelligence Online, 16, 9781780409146. https://doi.org/10.2166/9781780409146 Luján-Facundo, M. J., Mendoza-Roca, J. A., Cuartas-Uribe, B., & Álvarez-Blanco, S. (2013). Ultrasonic cleaning of ultrafiltration membranes fouled with BSA solution. Separation and Purification Technology, 120, 275-281. https://doi.org/10.1016/j.seppur.2013.10.018 Manahan, S. E. (2007). Introducción a la química ambiental (1a.20 ed.). Reverte SA. Maskooki, A., Kobayashi, T., Mortazavi, S. A., & Maskooki, A. (2008). Effect of low frequencies and mixed wave of ultrasound and EDTA on flux recovery and cleaning of microfiltration membranes. Separation and Purification Technology, 59(1), 67-73. https://doi.org/10.1016/j.seppur.2007.05.028 Metcalf, E., Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R., & Burton, F. (2013). Wastewater Engineering: Treatment and Resource Recovery (Edición: 5). McGraw-Hill Education. Mueller, J. A., Boyle, W. C., & Pöpel, H. J. (2002). Aeration: Principles and practice (Vol. 11). CRC Press. Muthukumaran, S., Kentish, S. E., Stevens, G. W., Ashokkumar, M., & Mawson, R. (2007). The application of ultrasound to dairy ultrafiltration: The influence of operating conditions. Journal of Food Engineering, 81(2), 364-373. https://doi.org/10.1016/j.jfoodeng.2006.11.008 Muthukumaran, S, Yang, K., Seuren, A., Kentish, S., Ashokkumar, M., Stevens, G. W., & Grieser, F. (2004). The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry. Separation and Purification Technology, 39(1), 99-107. https://doi.org/10.1016/j.seppur.2003.12.013 Muthukumaran, Shobha, Kentish, S. E., Stevens, G. W., & Ashokkumar, M. (2011). APPLICATION OF ULTRASOUND IN MEMBRANE SEPARATION PROCESSES: A REVIEW. Reviews in Chemical Engineering, 22(3), 155-194. https://doi.org/10.1515/REVCE.2006.22.3.155 Naik, K. S., & Stenstrom, M. K. (2012). Instructions for DO Parameter Estimation Program 3.0.3* (DOPar3) [Instructions for use]. http://www.seas.ucla.edu/stenstro/DOPar3-0-3.zip Peirce, J. J., Weiner, R. F., & Vesilind, P. A. (1998). Chapter 8—Wastewater Treatment. En Environmental Pollution and Control (pp. 105-123). 4a. ed. https://doi.org/10.1016/B978-0-7506-9899-3.X5000-7 Qasim, M., Darwish, N. N., Mhiyo, S., Darwish, N. A., & Hilal, N. (2018). The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination, 443, 143-164. https://doi.org/10.1016/j.desal.2018.04.007 Qasim, S. R., & Zhu, G. (2018). Wastewater Treatment and Reuse, Theory and Design Examples (Vol. 1). 1a. ed. https://doi.org/10.1201/b22368 Rieth, M. G., Boyle, W. C., & Ewing, L. (1990). Effects of Selected Design Parameters on the Fouling Characteristics of Ceramic Diffusers. Research Journal of the Water Pollution Control Federation, 62(7), 877-886. https://doi.org/10.2307 / 25043930 Rosso, D. (Ed.). (2018). Aeration, Mixing, and Energy: Bubbles and Sparks (1a ed.). IWA Publishing. Rosso, D., Larson, L. E., & Stenstrom, M. K. (2008). Aeration of large-scale municipal wastewater treatment plants: State of the art. Water Science and Technology, 57(7), 973-978. https://doi.org/10.2166/wst.2008.218 Rosso, D., & Stenstrom, M. K. (2006). Economic Implications of Fine-Pore Diffuser Aging. Water Environment Research, 78(8), 810-815. https://doi.org/10.2175/106143006X101683 Rosso, D., & Stenstrom, M. K. (2007). Energy-saving benefits of denitrification. 3, 29-38. Schmit, F. L., Redmon, D. T., & Ewing, L. (1985). In place gas cleaning of diffusion elements (Patent N.o US4889620A). https://patents.google.com/patent/US4889620A/enSGS SGS Colombia SAS. (2018). Informe de muestreo de agua residual no doméstica (EHS-LAB-I-F-09-05; p. 10). SGS Colombia SAS. Shu, L., Xing, W., & Xu, N. (2007). Effect of Ultrasound on the Treatment of Emulsification Wastewater by Ceramic Membranes* *Supported by the Special Funds for Major State Basic Research Program of China (973 Program, No.2003CB615707) and the National Natural Science Foundation of China (No.20436030). Chinese Journal of Chemical Engineering, 15(6), 855-860. https://doi.org/10.1016/S1004-9541(08)60014-2 Sui, P., Wen, X., & Huang, X. (2008). Feasibility of employing ultrasound for on-line membrane fouling control in an anaerobic membrane bioreactor. Desalination, 219(1), 203-213. https://doi.org/10.1016/j.desal.2007.02.034 Trägårdh, G. (1989). Membrane cleaning. Desalination, 71(3), 325-335. https://doi.org/10.1016/0011- 9164(89)85033-7 U.S. EPA. (1985). Fine pore (fine bubble) Aeration systems (625/8-85/010). Environmental Protection Agency United States. U.S. EPA. (1989). Desing Manual: Fine Pore Aeration Systems. Center for Environmental Research Informantion. https://nepis.epa.gov/ U.S. EPA. (1999). Wasterwater Technology Fact Sheet—Fine Bubble Aeration. Environmental Protection Agency. EPA 832-F-99-065 Von Sperling, M. (2007). Basic principles of wastewater treatment (Vol. 2). IWA Publishing. Wan, M.-W., Yang, H.-L., Chang, C.-H., Reguyal, F., & Kan, C.-C. (2012). Fouling Elimination of PTFE Membrane under Precoagulation Process Combined with Ultrasound Irradiation. Journal of Environmental Engineering, 138(3), 337-343. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000406 Wang, Z., Ma, J., Tang, C. Y., Kimura, K., Wang, Q., & Han, X. (2014). Membrane cleaning in membrane bioreactors: A review. Journal of Membrane Science, 468, 276-307. https://doi.org/10.1016/j.memsci.2014.05.060 Xu, M., Wen, X., Huang, X., Yu, Z., & Zhu, M. (2013). Mechanisms of membrane fouling controlled by online ultrasound in an anaerobic membrane bioreactor for digestion of waste activated sludge. Journal of Membrane Science, 445, 119-126. https://doi.org/10.1016/j.memsci.2013.06.006 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.accessrights.*.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 Attribution-NonCommercial-NoDerivatives 4.0 International Acceso abierto |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
applicaction/pdf |
dc.coverage.sede.spa.fl_str_mv |
Campus UMNG |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Militar Nueva Granada |
institution |
Universidad Militar Nueva Granada |
bitstream.url.fl_str_mv |
http://repository.unimilitar.edu.co/bitstream/10654/38966/2/license.txt http://repository.unimilitar.edu.co/bitstream/10654/38966/1/DiazEstebanDiegoSebastianSuarezAngaritaJuliethDaniela2021.pdf http://repository.unimilitar.edu.co/bitstream/10654/38966/3/DiazEstebanDiegoSebastianSuarezAngaritaJuliethDaniela2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
a609d7e369577f685ce98c66b903b91b 94a1a204019677fbfa40546a0d7d5fa8 4ae051a671935376709f2ffa5f2cca66 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UMNG |
repository.mail.fl_str_mv |
bibliodigital@unimilitar.edu.co |
_version_ |
1837098437172002816 |
spelling |
Baquero Rodríguez, Gustavo AndrésDiaz Esteban, Diego SebastianSuarez Angarita, Julieth DanielaIngeniero Ambiental2021-10-02T16:17:56Z2021-10-02T16:17:56Z2021-05-20http://hdl.handle.net/10654/38966instname:Universidad Militar Nueva Granadareponame:Repositorio Institucional Universidad Militar Nueva Granadarepourl:https://repository.unimilitar.edu.coLa aireación es el principal consumidor de electricidad en el tratamiento de las aguas residuales municipales, presente en ciertos procesos biológicos, como los lodos activados, los cuales demandan entre el 50-70% de los costos de la energía necesaria para tratamiento del agua residual. Por consiguiente, para lograr una alta eficiencia de la transferencia de oxígeno en los tratamientos biológicos aeróbicos, son usados comúnmente los difusores de burbuja fina. El desempeño de las membranas de los difusores de burbuja fina es afectado por el ensuciamiento que comprende la acumulación de sustancias suspendidas o disueltas sobre su superficie y/o dentro de sus poros, ocasionando el incremento de los costos de operación, asociados a los sistemas de aireación. Con el propósito de mitigar el ensuciamiento en la industria del tratamiento de aguas residuales, son usadas diferentes técnicas de limpieza convencionales que traen consigo desventajas. El presente trabajo evalúa la técnica de limpieza convencional mediante la adición de agentes químicos y la limpieza con ultrasonido, siendo esta ultima una técnica novedosa para remover el ensuciamiento en difusores de burbuja fina; desde el punto de vista de la presión de descarga, costos de operación, eficiencia y transferencia de oxígeno en condiciones estándar. Los resultados muestran que la aplicación de las técnicas de limpieza recupera parcialmente la transferencia de oxígeno en las membranas difusoras y a la reducen los costos operativos.Concluyendo que, entre las tres técnicas de limpieza evaluadas, el ultrasonido es el que presenta los mejores resultados.1. GLOSARIO ...................................................................................................................... 10 2. RESUMEN........................................................................................................................ 13 3. INTRODUCCIÓN ............................................................................................................ 14 4. PLANTEAMIENTO DEL PROBLEMA ......................................................................... 16 5. DELIMITACIÓN.............................................................................................................. 18 5.1 Conceptual....................................................................................................................................18 5.2 Geográfica ....................................................................................................................................18 6. OBJETIVOS ..................................................................................................................... 20 6.1 Objetivo general...........................................................................................................................20 6.2 Objetivos específicos ..................................................................................................................20 7. ANTECEDENTES............................................................................................................ 21 8. JUSTIFICACIÓN ............................................................................................................. 24 9. MARCO TEÓRICO.......................................................................................................... 25 9.1 Difusores empleados en el tratamiento de aguas.....................................................................26 9.1.1 Difusores de burbuja gruesa:............................................................................................. 26 9.1.2 Difusores de burbuja fina:................................................................................................. 27 9.2 Ensuciamiento de los difusores .................................................................................................28 9.3 Limpieza de difusores de membrana utilizadas en la industria del agua .............................30 9.4 Tratamientos de limpieza de membrana en difusores de burbuja fina .................................31 9.4.1 Limpieza física:................................................................................................................. 31 9.4.2 Limpieza química:............................................................................................................. 31 9.5 Limpieza de membranas con ultrasonido.................................................................................32 9.5.1 Antecedentes de limpieza de membranas con ultrasonido................................................ 32 10. METODOLOGÍA ............................................................................................................. 35 11. RESULTADOS Y ANÁLISIS DE RESULTADOS ........................................................ 43 11.1 Análisis de las técnicas de limpieza en difusores de burbuja fina a escala 1:33.................43 11.1.1 Evaluación de la transferencia de oxígeno:....................................................................... 44 11.1.2 Evaluación de la presión de descarga (DWP):.................................................................. 46 11.1.3 Costos de operación – Banco de pruebas:......................................................................... 47 11.2 Simulación de limpieza a diferentes configuraciones de procesos de lodos activados......49 11.2.1 Evaluación de la transferencia de oxígeno:....................................................................... 49 11.2.2 Evaluación de los costos de operación.............................................................................. 52 12. CONCLUSIONES ............................................................................................................ 54 13. REFERENCIAS BIBLIOGRÁFICAS.............................................................................. 56 14. ANEXOS .......................................................................................................................... 61 A. Implementación de limpieza de membranas de ultra y microfiltración con ultrasonido. ..61 B. Tipos de difusores empleados en el tratamiento de agua residual ........................................63 C. Características de difusores disponibles en el mercado por diferentes fabricantes............64 D. Limpieza química en difusores de membrana tubulares (Jiang et al., 2020).......................65 E. Ecuaciones de aireación..............................................................................................................66 F. Estructuración de difusores de burbuja fina a escala 1:33 .....................................................67 G. Hoja de cálculo de la aplicación de resultados a diferentes configuraciones de procesos de lodos activados.............................................................................................................................67Aeration is the main consumer of electricity in municipal wastewater treatment, present in certain biological processes, such as activated sludge, which demand between 50-70% of the energy costs necessary for wastewater treatment. Therefore, in order to achieve high efficiency of oxygen transfer in the Aerobic biological treatments, fine bubble diffusers are commonly used. The performance of fine bubble diffuser membranes is affected by fouling, which comprises the accumulation of suspended or dissolved substances on their surface and / or within their pores, causing increased operating costs associated with air conditioning systems. aeration. In order to mitigate fouling in the industry of the wastewater treatment, different conventional cleaning techniques are used that bring with them disadvantages. The present work evaluates the conventional cleaning technique by adding chemical agents and cleaning with ultrasound, the latter being a novel technique to remove dirt in fine bubble diffusers; from the point of view of discharge pressure, operating costs, efficiency and oxygen transfer under standard conditions. The Results show that the application of cleaning techniques partially recovers the oxygen transfer in the diffuser membranes and reduces operating costs, concluding that, among the three cleaning techniques evaluated, ultrasound is the one that presents the best results.Pregradoapplicaction/pdfspahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Attribution-NonCommercial-NoDerivatives 4.0 InternationalAcceso abiertoEvaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residualEvaluation of cleaning techniques in fine bubble diffuser membranes used in aerobic processes for wastewater treatmentAGUAS RESIDUALESTRATAMIENTO TERRESTRE DE AGUAS RESIDUALESLODOS ACTIVADOSFine bubble diffusersFoulingChemical cleaningSludge activatedDischarge pressureOxygen transferUltrasoundDifusores de burbuja finaEnsuciamientoLimpieza químicaLodos activadosPresión de descargaTransferencia de oxígenoUltrasonidoTesis/Trabajo de grado - Monografía - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fIngeniería AmbientalFacultad de IngenieríaUniversidad Militar Nueva GranadaAhmad, A. L., Lah, N. F. C., Ismail, S., & Ooi, B. S. (2012). Membrane Antifouling Methods and Alternatives: Ultrasound Approach. Separation & Purification Reviews, 41(4), 318-346. https://doi.org/10.1080/15422119.2011.617804Al-Amoudi, A., & Lovitt, R. W. (2007). Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. Journal of Membrane Science, 303(1-2), 4-28. https://doi.org/10.1016/j.memsci.2007.06.002American Society of Civil Engineers. (2007). Measurement of oxygen transfer in clean water ASCE standard, ASCE/EWRI 2-06. American Society of Civil Engineers. http://dx.doi.org/10.1061/9780784408483Ang, W. S., Tiraferri, A., Chen, K. L., & Elimelech, M. (2011). Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent. Journal of Membrane Science, 376(1-2), 196-206. https://doi.org/10.1016/j.memsci.2011.04.020ASALE, R.-, & RAE. (2021). Diccionario de la lengua española. «Diccionario de la lengua española» - Edición del Tricentenario. https://dle.rae.es/ultrasonidoASCE. (2018). Standard Guidelines for In-Process Oxygen Transfer Testing (2.a ed.). American Society of Civil Engineers. https://doi.org/10.1061/9780784401149Baquero-Rodríguez, G. A., Lara-Borrero, J. A., Nolasco, D., & Rosso, D. (2018). A Critical Review of the Factors Affecting Modeling Oxygen Transfer by Fine-Pore Diffusers in Activated Sludge. Water Environment Research, 90(5), 431-441. https://doi.org/10.2175/106143017X15131012152988Brepols, C., Drensla, K., Trimborn, M., Engelhardt, N., & Janot, A. (2008). Strategies for chemical cleaning in large scale membrane bioreactors. Water Sci. Technol., 457-463. https://doi.org/10.2166/wst.2008.112Chai, X., Kobayashi, T., & Fujii, N. (1999). Ultrasound-associated cleaning of polymeric membranes for water treatment. Separation and Purification Technology, 15(2), 139-146. https://doi.org/10.1016/S1383- 5866(98)00091-4Chen, J. P., Kim, S. L., & Ting, Y. P. (2003). Optimization of membrane physical and chemical cleaning by a statistically designed approach. Journal of Membrane Science, 219(1), 27-45. https://doi.org/10.1016/S0376-7388(03)00174-1De Souza, Nigel. P., & Basu, O. D. (2013). Comparative analysis of physical cleaning operations for fouling control of hollow fiber membranes in drinking water treatment. Journal of Membrane Science, 436, 28-35. https://doi.org/10.1016/j.memsci.2013.02.014Drews, A. (2010). Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures. Journal of Membrane Science, 363(1-2), 1-28. https://doi.org/10.1016/j.memsci.2010.06.046enel codensa. (2020). Tarifas de energía eléctrica reguladas por la comisión de regulación de energia y gas (CREG) Enero de 2020. https://www.enel.com.co/content/dam/enel-co/espa%C3%B1ol/personas/1- 17-1/2020/Tarifario-enero-2020.pdfGarrido-Baserba, M., Asvapathanagul, P., Park, H.-D., Kim, T.-S., Baquero-Rodriguez, G. A., Olson, B. H., & Rosso, D. (2018). Impact of fouling on the decline of aeration efficiency under different operational conditions at WRRFs. Science of The Total Environment, 639, 248-257. https://doi.org/10.1016/j.scitotenv.2018.05.036Hendricks, D. (2011). Fundamentals of Water Treatment Unit Processes—Physical, Chemical, and Biological. IWA Publishing.Holenda, B., Domokos, Fazakas, & Rédey. (2008). Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. 32, 1270-1278. https://doi.org/10.1016/j.compchemeng.2007.06.008Jenkins, T. E. (2014). Aeration Control System Design: A Practical Guide to Energy and Process Optimization (1a. ed.). WILEY.Jiang, L.-M., Chen, L., Zhou, Z., Sun, D., Li, Y., Zhang, M., Liu, Y., Du, S., Chen, G., & Yao, J. (2020). Fouling characterization and aeration performance recovery of fine-pore diffusers operated for 10 years in a full-scale wastewater treatment plant. Bioresource Technology, 123197. https://doi.org/10.1016/j.biortech.2020.123197Jolly, M., Green, S., Wallis-Lage, C., & Buchanan, A. (2010). Energy saving in activated sludge plants by the use of more efficient fine bubble diffusers. Water and Environment Journal, 24(1), 58-64. https://doi.org/10.1111/j.1747-6593.2009.00164.xJudd, S. (2011). The MBR Book: Principles and Applications of Membrane Bioreactors for Water (2a. ed.). https://www.elsevier.com/books/the-mbr-book/judd/978-0-08-096682-3Kabsch-Korbutowicz, M., Biłyk, A., & Mołczan, M. (2006). The effect of feed water pretreatment on ultrafiltration membrane performance. Polish Journal of Environmental Studies, 15(5), 719-725.Kim, Y., & Boyle, W. C. (1993). Mechanisms of Fouling in Fine‐Pore Diffuser Aeration. Journal of Environmental Engineering, 119(6), 1119-1138. https://doi.org/10.1061/(ASCE)0733-9372(1993)119:6(1119)Kobayashi, T., Kobayashi, T., Hosaka, Y., & Fujii, N. (2003). Ultrasound-enhanced membrane-cleaning processes applied water treatments: Influence of sonic frequency on filtration treatments. Ultrasonics, 41(3), 185-190. https://doi.org/10.1016/S0041-624X(02)00462-6Koros, W. J., Ma, Y. H., & Shimidzu, T. (1996). Terminology for membranes and membrane processes (IUPAC Recommendations 1996). Pure and Applied Chemistry, 68(7), 1479-1489. https://doi.org/10.1351/pac199668071479Kyllönen, H., Pirkonen, P., & Nyström, M. (2005). Membrane filtration enhanced by ultrasound: A review. Desalination, 181(1-3), 319-335. https://doi.org/10.1016/j.desal.2005.06.003Kyllönen, H., Pirkonen, P., Nyström, M., Nuortila-Jokinen, J., & Grönroos, A. (2006). Experimental aspects of ultrasonically enhanced cross-flow membrane filtration of industrial wastewater. Ultrasonics Sonochemistry, 13(4), 295-302. https://doi.org/10.1016/j.ultsonch.2005.04.006Lenntech. (1998, 2021). Glosario del agua. https://www.lenntech.es/glosario-agua.htmLi, J., Sanderson, R. D., & Jacobs, E. P. (2002). Ultrasonic cleaning of nylon microfiltration membranes fouled by Kraft paper mill effluent. Journal of Membrane Science, 205(1), 247-257. https://doi.org/10.1016/S0376-7388(02)00121-7Liu, C. Y., Caothien, S., Hayes, J., Caothuy, T., & Otoyo, T. (2001). Membrane Chemical Cleaning: From Art to Science.López Vázquez, C. M., Buitrón Méndez, G., García, H. A., & Cervantes Carrillo, F. J. (2017). Biological Wastewater Treatment: Principles, Modeling and Design. Water Intelligence Online, 16, 9781780409146. https://doi.org/10.2166/9781780409146Luján-Facundo, M. J., Mendoza-Roca, J. A., Cuartas-Uribe, B., & Álvarez-Blanco, S. (2013). Ultrasonic cleaning of ultrafiltration membranes fouled with BSA solution. Separation and Purification Technology, 120, 275-281. https://doi.org/10.1016/j.seppur.2013.10.018Manahan, S. E. (2007). Introducción a la química ambiental (1a.20 ed.). Reverte SA.Maskooki, A., Kobayashi, T., Mortazavi, S. A., & Maskooki, A. (2008). Effect of low frequencies and mixed wave of ultrasound and EDTA on flux recovery and cleaning of microfiltration membranes. Separation and Purification Technology, 59(1), 67-73. https://doi.org/10.1016/j.seppur.2007.05.028Metcalf, E., Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R., & Burton, F. (2013). Wastewater Engineering: Treatment and Resource Recovery (Edición: 5). McGraw-Hill Education.Mueller, J. A., Boyle, W. C., & Pöpel, H. J. (2002). Aeration: Principles and practice (Vol. 11). CRC Press.Muthukumaran, S., Kentish, S. E., Stevens, G. W., Ashokkumar, M., & Mawson, R. (2007). The application of ultrasound to dairy ultrafiltration: The influence of operating conditions. Journal of Food Engineering, 81(2), 364-373. https://doi.org/10.1016/j.jfoodeng.2006.11.008Muthukumaran, S, Yang, K., Seuren, A., Kentish, S., Ashokkumar, M., Stevens, G. W., & Grieser, F. (2004). The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry. Separation and Purification Technology, 39(1), 99-107. https://doi.org/10.1016/j.seppur.2003.12.013Muthukumaran, Shobha, Kentish, S. E., Stevens, G. W., & Ashokkumar, M. (2011). APPLICATION OF ULTRASOUND IN MEMBRANE SEPARATION PROCESSES: A REVIEW. Reviews in Chemical Engineering, 22(3), 155-194. https://doi.org/10.1515/REVCE.2006.22.3.155Naik, K. S., & Stenstrom, M. K. (2012). Instructions for DO Parameter Estimation Program 3.0.3* (DOPar3) [Instructions for use]. http://www.seas.ucla.edu/stenstro/DOPar3-0-3.zipPeirce, J. J., Weiner, R. F., & Vesilind, P. A. (1998). Chapter 8—Wastewater Treatment. En Environmental Pollution and Control (pp. 105-123). 4a. ed. https://doi.org/10.1016/B978-0-7506-9899-3.X5000-7Qasim, M., Darwish, N. N., Mhiyo, S., Darwish, N. A., & Hilal, N. (2018). The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination, 443, 143-164. https://doi.org/10.1016/j.desal.2018.04.007Qasim, S. R., & Zhu, G. (2018). Wastewater Treatment and Reuse, Theory and Design Examples (Vol. 1). 1a. ed. https://doi.org/10.1201/b22368Rieth, M. G., Boyle, W. C., & Ewing, L. (1990). Effects of Selected Design Parameters on the Fouling Characteristics of Ceramic Diffusers. Research Journal of the Water Pollution Control Federation, 62(7), 877-886. https://doi.org/10.2307 / 25043930Rosso, D. (Ed.). (2018). Aeration, Mixing, and Energy: Bubbles and Sparks (1a ed.). IWA Publishing.Rosso, D., Larson, L. E., & Stenstrom, M. K. (2008). Aeration of large-scale municipal wastewater treatment plants: State of the art. Water Science and Technology, 57(7), 973-978. https://doi.org/10.2166/wst.2008.218Rosso, D., & Stenstrom, M. K. (2006). Economic Implications of Fine-Pore Diffuser Aging. Water Environment Research, 78(8), 810-815. https://doi.org/10.2175/106143006X101683Rosso, D., & Stenstrom, M. K. (2007). Energy-saving benefits of denitrification. 3, 29-38.Schmit, F. L., Redmon, D. T., & Ewing, L. (1985). In place gas cleaning of diffusion elements (Patent N.o US4889620A). https://patents.google.com/patent/US4889620A/enSGSSGS Colombia SAS. (2018). Informe de muestreo de agua residual no doméstica (EHS-LAB-I-F-09-05; p. 10). SGS Colombia SAS.Shu, L., Xing, W., & Xu, N. (2007). Effect of Ultrasound on the Treatment of Emulsification Wastewater by Ceramic Membranes* *Supported by the Special Funds for Major State Basic Research Program of China (973 Program, No.2003CB615707) and the National Natural Science Foundation of China (No.20436030). Chinese Journal of Chemical Engineering, 15(6), 855-860. https://doi.org/10.1016/S1004-9541(08)60014-2Sui, P., Wen, X., & Huang, X. (2008). Feasibility of employing ultrasound for on-line membrane fouling control in an anaerobic membrane bioreactor. Desalination, 219(1), 203-213. https://doi.org/10.1016/j.desal.2007.02.034Trägårdh, G. (1989). Membrane cleaning. Desalination, 71(3), 325-335. https://doi.org/10.1016/0011- 9164(89)85033-7U.S. EPA. (1985). Fine pore (fine bubble) Aeration systems (625/8-85/010). Environmental Protection Agency United States.U.S. EPA. (1989). Desing Manual: Fine Pore Aeration Systems. Center for Environmental Research Informantion. https://nepis.epa.gov/U.S. EPA. (1999). Wasterwater Technology Fact Sheet—Fine Bubble Aeration. Environmental Protection Agency. EPA 832-F-99-065Von Sperling, M. (2007). Basic principles of wastewater treatment (Vol. 2). IWA Publishing.Wan, M.-W., Yang, H.-L., Chang, C.-H., Reguyal, F., & Kan, C.-C. (2012). Fouling Elimination of PTFE Membrane under Precoagulation Process Combined with Ultrasound Irradiation. Journal of Environmental Engineering, 138(3), 337-343. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000406Wang, Z., Ma, J., Tang, C. Y., Kimura, K., Wang, Q., & Han, X. (2014). Membrane cleaning in membrane bioreactors: A review. Journal of Membrane Science, 468, 276-307. https://doi.org/10.1016/j.memsci.2014.05.060Xu, M., Wen, X., Huang, X., Yu, Z., & Zhu, M. (2013). Mechanisms of membrane fouling controlled by online ultrasound in an anaerobic membrane bioreactor for digestion of waste activated sludge. Journal of Membrane Science, 445, 119-126. https://doi.org/10.1016/j.memsci.2013.06.006Campus UMNGLICENSElicense.txtlicense.txttext/plain; charset=utf-83420http://repository.unimilitar.edu.co/bitstream/10654/38966/2/license.txta609d7e369577f685ce98c66b903b91bMD52ORIGINALDiazEstebanDiegoSebastianSuarezAngaritaJuliethDaniela2021.pdfDiazEstebanDiegoSebastianSuarezAngaritaJuliethDaniela2021.pdfTrabajo de gradoapplication/pdf1270010http://repository.unimilitar.edu.co/bitstream/10654/38966/1/DiazEstebanDiegoSebastianSuarezAngaritaJuliethDaniela2021.pdf94a1a204019677fbfa40546a0d7d5fa8MD51THUMBNAILDiazEstebanDiegoSebastianSuarezAngaritaJuliethDaniela2021.pdf.jpgDiazEstebanDiegoSebastianSuarezAngaritaJuliethDaniela2021.pdf.jpgIM Thumbnailimage/jpeg4971http://repository.unimilitar.edu.co/bitstream/10654/38966/3/DiazEstebanDiegoSebastianSuarezAngaritaJuliethDaniela2021.pdf.jpg4ae051a671935376709f2ffa5f2cca66MD5310654/38966oai:repository.unimilitar.edu.co:10654/389662021-10-04 01:03:43.867Repositorio Institucional UMNGbibliodigital@unimilitar.edu.coRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hLCB0cmFiYWpvIGRlIGdyYWRvIG8gY3VhbHF1aWVyIG90cm8gZG9jdW1lbnRvCmNvbiBjYXLDoWN0ZXIgYWNhZMOpbWljbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sIGhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2bwp5IGRlIHN1cyBhbmV4b3MgZW4gZm9ybWF0byBkaWdpdGFsIG8gZWxlY3Ryw7NuaWNvLgoKRUwgRVNUVURJQU5URSAtIEFVVE9SLCBtYW5pZmllc3RhIHF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuCmVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvcgpsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KCkVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4KY3VhbnRvIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgZW4gY3Vlc3Rpw7NuLCBFTCBFU1RVRElBTlRFIC0gQVVUT1IsCmFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7CnBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCkFkZW3DoXMsICJMQSBVTklWRVJTSURBRCBNSUxJVEFSIE5VRVZBIEdSQU5BREEgY29tbyBpbnN0aXR1Y2nDs24gcXVlIGFsbWFjZW5hLCB5CnJlY29sZWN0YSBkYXRvcyBwZXJzb25hbGVzLCBhdGVuZGllbmRvIGxvIHByZWNlcHR1YWRvIGVuIGxhIGxleSAxNTgxIGRlIDIwMTIgeSBlbApEZWNyZXRvIDEzNzcgZGUgMjAxMywgcXVlIGRlc2Fycm9sbGFuIGVsIHByaW5jaXBpbyBjb25zdGl0dWNpb25hbCBxdWUgdGllbmVuIHRvZGFzCmxhcyBwZXJzb25hcyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIgeSByZWN0aWZpY2FyIHRvZG8gdGlwbyBkZSBpbmZvcm1hY2nDs24gcmVjb2dpZGEKbywgcXVlIGhheWEgc2lkbyBvYmpldG8gZGUgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBlbiBiYW5jb3MgbyBiYXNlcyBkZQpkYXRvcyB5IGVuIGdlbmVyYWwgZW4gYXJjaGl2b3MgZGUgZW50aWRhZGVzIHDDumJsaWNhcyBvIHByaXZhZGFzLCByZXF1aWVyZSBvYnRlbmVyCnN1IGF1dG9yaXphY2nDs24sIHBhcmEgcXVlLCBkZSBtYW5lcmEgbGlicmUsIHByZXZpYSwgZXhwcmVzYSwgdm9sdW50YXJpYSwgeQpkZWJpZGFtZW50ZSBpbmZvcm1hZGEsIHBlcm1pdGEgYSB0b2RhcyBudWVzdHJhcyBkZXBlbmRlbmNpYXMgYWNhZMOpbWljYXMgeQphZG1pbmlzdHJhdGl2YXMsIHJlY29sZWN0YXIsIHJlY2F1ZGFyLCBhbG1hY2VuYXIsIHVzYXIsIGNpcmN1bGFyLCBzdXByaW1pciwgcHJvY2VzYXIsCmNvbXBpbGFyLCBpbnRlcmNhbWJpYXIsIGRhciB0cmF0YW1pZW50bywgYWN0dWFsaXphciB5IGRpc3BvbmVyIGRlIGxvcyBkYXRvcyBxdWUKaGFuIHNpZG8gc3VtaW5pc3RyYWRvcyB5IHF1ZSBzZSBoYW4gaW5jb3Jwb3JhZG8gZW4gbnVlc3RyYXMgYmFzZXMgbyBiYW5jb3MgZGUKZGF0b3MsIG8gZW4gcmVwb3NpdG9yaW9zIGVsZWN0csOzbmljb3MgZGUgdG9kbyB0aXBvIGNvbiBxdWUgY3VlbnRhIGxhIFVuaXZlcnNpZGFkLgoKRXN0YSBpbmZvcm1hY2nDs24gZXMgeSBzZXLDoSB1dGlsaXphZGEgZW4gZWwgZGVzYXJyb2xsbyBkZSBsYXMgZnVuY2lvbmVzIHByb3BpYXMgZGUKbGEgVW5pdmVyc2lkYWQgZW4gc3UgY29uZGljacOzbiBkZSBpbnN0aXR1Y2nDs24gZGUgZWR1Y2FjacOzbiBzdXBlcmlvciwgZGUgZm9ybWEKZGlyZWN0YSBvIGEgdHJhdsOpcyBkZSB0ZXJjZXJvcyIuCgpTaSBzdSBkb2N1bWVudG8gZXMgZGUgYWNjZXNvIHJlc3RyaW5naWRvICwgc3UgdHJhYmFqbyBzZSBkZXBvc2l0YXLDoSBlbiBlbApSZXBvc2l0b3JpbyBVTU5HIMO6bmljYW1lbnRlIGNvbiBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRvY3VtZW50YWwgeSBtZW1vcmlhCmluc3RpdHVjaW9uYWwsIGVudGVuZGllbmRvIHF1ZSwgc2Vyw6EgY29uc3VsdGFkbyBkZSBmb3JtYSBjb250cm9sYWRhIHNvbGFtZW50ZSBwb3IKbGEgY29tdW5pZGFkIE5lb2dyYW5hZGluYS4KClNpIHN1IGRvY3VtZW50byBlcyBkZSBhY2Nlc28gYWJpZXJ0bywgcGFyYSBwZXJtaXRpciBhbCBSZXBvc2l0b3JpbyBVTU5HIHJlcHJvZHVjaXIsCnRyYWR1Y2lyIHkgZGlzdHJpYnVpciBzdSBlbnbDrW8gYSB0cmF2w6lzIGRlbCBtdW5kbywgbmVjZXNpdGFtb3Mgc3UgY29uZm9ybWlkYWQgZW4KbG9zIHNpZ3VpZW50ZXMgdMOpcm1pbm9zOgoKWSBhdXRvcml6YSBhIGxhIFVOSVZFUlNJREFEIE1JTElUQVIgTlVFVkEgR1JBTkFEQSwgcGFyYSBxdWUgZW4gbG9zIHTDqXJtaW5vcwplc3RhYmxlY2lkb3MgZW46CgpMZXkgMjMgZGUgMTk4Mi0gTGV5IDQ0IGRlIDE5OTMgLUxleSAxOTE1IGRlIDIwMTggLSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLQpEZWNyZXRvIDQ2MCBkZSAxOTk1IHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgdXRpbGljZSB5IHVzZSBwb3IKY3VhbHF1aWVyIG1lZGlvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sCmNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlCmRvY3VtZW50by4KCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc8OzbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlCnVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byB2aXJ0dWFsLAplbGVjdHLDs25pY28sIGRpZ2l0YWwsIHkgY3V5byB1c28gc2UgZGUgZW4gcmVkLCBpbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBldGMuLAp5IGVuIGdlbmVyYWwgZW4gY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxvcyBUw6lybWlub3MgeSBjb25kaWNpb25lcywgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwKYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYSBiaWJsaW9kaWdpdGFsQHVuaW1pbGl0YXIuZWR1LmNvCgpBY2VwdGUgVMOpcm1pbm9zIHkgY29uZGljaW9uZXMgc2VsZWNjaW9uYW5kbyAiQWNlcHRvIiB5IHB1bHNhbmRvICJDb21wbGV0YXIgZW52w61vIi4K |