Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual

La aireación es el principal consumidor de electricidad en el tratamiento de las aguas residuales municipales, presente en ciertos procesos biológicos, como los lodos activados, los cuales demandan entre el 50-70% de los costos de la energía necesaria para tratamiento del agua residual. Por consigui...

Full description

Autores:
Diaz Esteban, Diego Sebastian
Suarez Angarita, Julieth Daniela
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Militar Nueva Granada
Repositorio:
Repositorio UMNG
Idioma:
spa
OAI Identifier:
oai:repository.unimilitar.edu.co:10654/38966
Acceso en línea:
http://hdl.handle.net/10654/38966
Palabra clave:
AGUAS RESIDUALES
TRATAMIENTO TERRESTRE DE AGUAS RESIDUALES
LODOS ACTIVADOS
Fine bubble diffusers
Fouling
Chemical cleaning
Sludge activated
Discharge pressure
Oxygen transfer
Ultrasound
Difusores de burbuja fina
Ensuciamiento
Limpieza química
Lodos activados
Presión de descarga
Transferencia de oxígeno
Ultrasonido
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIMILTAR2_2254c3be6e9df15407b34b7bb7c94fda
oai_identifier_str oai:repository.unimilitar.edu.co:10654/38966
network_acronym_str UNIMILTAR2
network_name_str Repositorio UMNG
repository_id_str
dc.title.spa.fl_str_mv Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual
dc.title.translated.spa.fl_str_mv Evaluation of cleaning techniques in fine bubble diffuser membranes used in aerobic processes for wastewater treatment
title Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual
spellingShingle Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual
AGUAS RESIDUALES
TRATAMIENTO TERRESTRE DE AGUAS RESIDUALES
LODOS ACTIVADOS
Fine bubble diffusers
Fouling
Chemical cleaning
Sludge activated
Discharge pressure
Oxygen transfer
Ultrasound
Difusores de burbuja fina
Ensuciamiento
Limpieza química
Lodos activados
Presión de descarga
Transferencia de oxígeno
Ultrasonido
title_short Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual
title_full Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual
title_fullStr Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual
title_full_unstemmed Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual
title_sort Evaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residual
dc.creator.fl_str_mv Diaz Esteban, Diego Sebastian
Suarez Angarita, Julieth Daniela
dc.contributor.advisor.none.fl_str_mv Baquero Rodríguez, Gustavo Andrés
dc.contributor.author.none.fl_str_mv Diaz Esteban, Diego Sebastian
Suarez Angarita, Julieth Daniela
dc.subject.lemb.spa.fl_str_mv AGUAS RESIDUALES
TRATAMIENTO TERRESTRE DE AGUAS RESIDUALES
LODOS ACTIVADOS
topic AGUAS RESIDUALES
TRATAMIENTO TERRESTRE DE AGUAS RESIDUALES
LODOS ACTIVADOS
Fine bubble diffusers
Fouling
Chemical cleaning
Sludge activated
Discharge pressure
Oxygen transfer
Ultrasound
Difusores de burbuja fina
Ensuciamiento
Limpieza química
Lodos activados
Presión de descarga
Transferencia de oxígeno
Ultrasonido
dc.subject.keywords.spa.fl_str_mv Fine bubble diffusers
Fouling
Chemical cleaning
Sludge activated
Discharge pressure
Oxygen transfer
Ultrasound
dc.subject.proposal.spa.fl_str_mv Difusores de burbuja fina
Ensuciamiento
Limpieza química
Lodos activados
Presión de descarga
Transferencia de oxígeno
Ultrasonido
description La aireación es el principal consumidor de electricidad en el tratamiento de las aguas residuales municipales, presente en ciertos procesos biológicos, como los lodos activados, los cuales demandan entre el 50-70% de los costos de la energía necesaria para tratamiento del agua residual. Por consiguiente, para lograr una alta eficiencia de la transferencia de oxígeno en los tratamientos biológicos aeróbicos, son usados comúnmente los difusores de burbuja fina. El desempeño de las membranas de los difusores de burbuja fina es afectado por el ensuciamiento que comprende la acumulación de sustancias suspendidas o disueltas sobre su superficie y/o dentro de sus poros, ocasionando el incremento de los costos de operación, asociados a los sistemas de aireación. Con el propósito de mitigar el ensuciamiento en la industria del tratamiento de aguas residuales, son usadas diferentes técnicas de limpieza convencionales que traen consigo desventajas. El presente trabajo evalúa la técnica de limpieza convencional mediante la adición de agentes químicos y la limpieza con ultrasonido, siendo esta ultima una técnica novedosa para remover el ensuciamiento en difusores de burbuja fina; desde el punto de vista de la presión de descarga, costos de operación, eficiencia y transferencia de oxígeno en condiciones estándar. Los resultados muestran que la aplicación de las técnicas de limpieza recupera parcialmente la transferencia de oxígeno en las membranas difusoras y a la reducen los costos operativos.Concluyendo que, entre las tres técnicas de limpieza evaluadas, el ultrasonido es el que presenta los mejores resultados.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-02T16:17:56Z
dc.date.available.none.fl_str_mv 2021-10-02T16:17:56Z
dc.date.issued.none.fl_str_mv 2021-05-20
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.*.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10654/38966
dc.identifier.instname.spa.fl_str_mv instname:Universidad Militar Nueva Granada
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unimilitar.edu.co
url http://hdl.handle.net/10654/38966
identifier_str_mv instname:Universidad Militar Nueva Granada
reponame:Repositorio Institucional Universidad Militar Nueva Granada
repourl:https://repository.unimilitar.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ahmad, A. L., Lah, N. F. C., Ismail, S., & Ooi, B. S. (2012). Membrane Antifouling Methods and Alternatives: Ultrasound Approach. Separation & Purification Reviews, 41(4), 318-346. https://doi.org/10.1080/15422119.2011.617804
Al-Amoudi, A., & Lovitt, R. W. (2007). Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. Journal of Membrane Science, 303(1-2), 4-28. https://doi.org/10.1016/j.memsci.2007.06.002
American Society of Civil Engineers. (2007). Measurement of oxygen transfer in clean water ASCE standard, ASCE/EWRI 2-06. American Society of Civil Engineers. http://dx.doi.org/10.1061/9780784408483
Ang, W. S., Tiraferri, A., Chen, K. L., & Elimelech, M. (2011). Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent. Journal of Membrane Science, 376(1-2), 196-206. https://doi.org/10.1016/j.memsci.2011.04.020
ASALE, R.-, & RAE. (2021). Diccionario de la lengua española. «Diccionario de la lengua española» - Edición del Tricentenario. https://dle.rae.es/ultrasonido
ASCE. (2018). Standard Guidelines for In-Process Oxygen Transfer Testing (2.a ed.). American Society of Civil Engineers. https://doi.org/10.1061/9780784401149
Baquero-Rodríguez, G. A., Lara-Borrero, J. A., Nolasco, D., & Rosso, D. (2018). A Critical Review of the Factors Affecting Modeling Oxygen Transfer by Fine-Pore Diffusers in Activated Sludge. Water Environment Research, 90(5), 431-441. https://doi.org/10.2175/106143017X15131012152988
Brepols, C., Drensla, K., Trimborn, M., Engelhardt, N., & Janot, A. (2008). Strategies for chemical cleaning in large scale membrane bioreactors. Water Sci. Technol., 457-463. https://doi.org/10.2166/wst.2008.112
Chai, X., Kobayashi, T., & Fujii, N. (1999). Ultrasound-associated cleaning of polymeric membranes for water treatment. Separation and Purification Technology, 15(2), 139-146. https://doi.org/10.1016/S1383- 5866(98)00091-4
Chen, J. P., Kim, S. L., & Ting, Y. P. (2003). Optimization of membrane physical and chemical cleaning by a statistically designed approach. Journal of Membrane Science, 219(1), 27-45. https://doi.org/10.1016/S0376-7388(03)00174-1
De Souza, Nigel. P., & Basu, O. D. (2013). Comparative analysis of physical cleaning operations for fouling control of hollow fiber membranes in drinking water treatment. Journal of Membrane Science, 436, 28-35. https://doi.org/10.1016/j.memsci.2013.02.014
Drews, A. (2010). Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures. Journal of Membrane Science, 363(1-2), 1-28. https://doi.org/10.1016/j.memsci.2010.06.046
enel codensa. (2020). Tarifas de energía eléctrica reguladas por la comisión de regulación de energia y gas (CREG) Enero de 2020. https://www.enel.com.co/content/dam/enel-co/espa%C3%B1ol/personas/1- 17-1/2020/Tarifario-enero-2020.pdf
Garrido-Baserba, M., Asvapathanagul, P., Park, H.-D., Kim, T.-S., Baquero-Rodriguez, G. A., Olson, B. H., & Rosso, D. (2018). Impact of fouling on the decline of aeration efficiency under different operational conditions at WRRFs. Science of The Total Environment, 639, 248-257. https://doi.org/10.1016/j.scitotenv.2018.05.036
Hendricks, D. (2011). Fundamentals of Water Treatment Unit Processes—Physical, Chemical, and Biological. IWA Publishing.
Holenda, B., Domokos, Fazakas, & Rédey. (2008). Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. 32, 1270-1278. https://doi.org/10.1016/j.compchemeng.2007.06.008
Jenkins, T. E. (2014). Aeration Control System Design: A Practical Guide to Energy and Process Optimization (1a. ed.). WILEY.
Jiang, L.-M., Chen, L., Zhou, Z., Sun, D., Li, Y., Zhang, M., Liu, Y., Du, S., Chen, G., & Yao, J. (2020). Fouling characterization and aeration performance recovery of fine-pore diffusers operated for 10 years in a full-scale wastewater treatment plant. Bioresource Technology, 123197. https://doi.org/10.1016/j.biortech.2020.123197
Jolly, M., Green, S., Wallis-Lage, C., & Buchanan, A. (2010). Energy saving in activated sludge plants by the use of more efficient fine bubble diffusers. Water and Environment Journal, 24(1), 58-64. https://doi.org/10.1111/j.1747-6593.2009.00164.x
Judd, S. (2011). The MBR Book: Principles and Applications of Membrane Bioreactors for Water (2a. ed.). https://www.elsevier.com/books/the-mbr-book/judd/978-0-08-096682-3
Kabsch-Korbutowicz, M., Biłyk, A., & Mołczan, M. (2006). The effect of feed water pretreatment on ultrafiltration membrane performance. Polish Journal of Environmental Studies, 15(5), 719-725.
Kim, Y., & Boyle, W. C. (1993). Mechanisms of Fouling in Fine‐Pore Diffuser Aeration. Journal of Environmental Engineering, 119(6), 1119-1138. https://doi.org/10.1061/(ASCE)0733-9372(1993)119:6(1119)
Kobayashi, T., Kobayashi, T., Hosaka, Y., & Fujii, N. (2003). Ultrasound-enhanced membrane-cleaning processes applied water treatments: Influence of sonic frequency on filtration treatments. Ultrasonics, 41(3), 185-190. https://doi.org/10.1016/S0041-624X(02)00462-6
Koros, W. J., Ma, Y. H., & Shimidzu, T. (1996). Terminology for membranes and membrane processes (IUPAC Recommendations 1996). Pure and Applied Chemistry, 68(7), 1479-1489. https://doi.org/10.1351/pac199668071479
Kyllönen, H., Pirkonen, P., & Nyström, M. (2005). Membrane filtration enhanced by ultrasound: A review. Desalination, 181(1-3), 319-335. https://doi.org/10.1016/j.desal.2005.06.003
Kyllönen, H., Pirkonen, P., Nyström, M., Nuortila-Jokinen, J., & Grönroos, A. (2006). Experimental aspects of ultrasonically enhanced cross-flow membrane filtration of industrial wastewater. Ultrasonics Sonochemistry, 13(4), 295-302. https://doi.org/10.1016/j.ultsonch.2005.04.006
Lenntech. (1998, 2021). Glosario del agua. https://www.lenntech.es/glosario-agua.htm
Li, J., Sanderson, R. D., & Jacobs, E. P. (2002). Ultrasonic cleaning of nylon microfiltration membranes fouled by Kraft paper mill effluent. Journal of Membrane Science, 205(1), 247-257. https://doi.org/10.1016/S0376-7388(02)00121-7
Liu, C. Y., Caothien, S., Hayes, J., Caothuy, T., & Otoyo, T. (2001). Membrane Chemical Cleaning: From Art to Science.
López Vázquez, C. M., Buitrón Méndez, G., García, H. A., & Cervantes Carrillo, F. J. (2017). Biological Wastewater Treatment: Principles, Modeling and Design. Water Intelligence Online, 16, 9781780409146. https://doi.org/10.2166/9781780409146
Luján-Facundo, M. J., Mendoza-Roca, J. A., Cuartas-Uribe, B., & Álvarez-Blanco, S. (2013). Ultrasonic cleaning of ultrafiltration membranes fouled with BSA solution. Separation and Purification Technology, 120, 275-281. https://doi.org/10.1016/j.seppur.2013.10.018
Manahan, S. E. (2007). Introducción a la química ambiental (1a.20 ed.). Reverte SA.
Maskooki, A., Kobayashi, T., Mortazavi, S. A., & Maskooki, A. (2008). Effect of low frequencies and mixed wave of ultrasound and EDTA on flux recovery and cleaning of microfiltration membranes. Separation and Purification Technology, 59(1), 67-73. https://doi.org/10.1016/j.seppur.2007.05.028
Metcalf, E., Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R., & Burton, F. (2013). Wastewater Engineering: Treatment and Resource Recovery (Edición: 5). McGraw-Hill Education.
Mueller, J. A., Boyle, W. C., & Pöpel, H. J. (2002). Aeration: Principles and practice (Vol. 11). CRC Press.
Muthukumaran, S., Kentish, S. E., Stevens, G. W., Ashokkumar, M., & Mawson, R. (2007). The application of ultrasound to dairy ultrafiltration: The influence of operating conditions. Journal of Food Engineering, 81(2), 364-373. https://doi.org/10.1016/j.jfoodeng.2006.11.008
Muthukumaran, S, Yang, K., Seuren, A., Kentish, S., Ashokkumar, M., Stevens, G. W., & Grieser, F. (2004). The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry. Separation and Purification Technology, 39(1), 99-107. https://doi.org/10.1016/j.seppur.2003.12.013
Muthukumaran, Shobha, Kentish, S. E., Stevens, G. W., & Ashokkumar, M. (2011). APPLICATION OF ULTRASOUND IN MEMBRANE SEPARATION PROCESSES: A REVIEW. Reviews in Chemical Engineering, 22(3), 155-194. https://doi.org/10.1515/REVCE.2006.22.3.155
Naik, K. S., & Stenstrom, M. K. (2012). Instructions for DO Parameter Estimation Program 3.0.3* (DOPar3) [Instructions for use]. http://www.seas.ucla.edu/stenstro/DOPar3-0-3.zip
Peirce, J. J., Weiner, R. F., & Vesilind, P. A. (1998). Chapter 8—Wastewater Treatment. En Environmental Pollution and Control (pp. 105-123). 4a. ed. https://doi.org/10.1016/B978-0-7506-9899-3.X5000-7
Qasim, M., Darwish, N. N., Mhiyo, S., Darwish, N. A., & Hilal, N. (2018). The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination, 443, 143-164. https://doi.org/10.1016/j.desal.2018.04.007
Qasim, S. R., & Zhu, G. (2018). Wastewater Treatment and Reuse, Theory and Design Examples (Vol. 1). 1a. ed. https://doi.org/10.1201/b22368
Rieth, M. G., Boyle, W. C., & Ewing, L. (1990). Effects of Selected Design Parameters on the Fouling Characteristics of Ceramic Diffusers. Research Journal of the Water Pollution Control Federation, 62(7), 877-886. https://doi.org/10.2307 / 25043930
Rosso, D. (Ed.). (2018). Aeration, Mixing, and Energy: Bubbles and Sparks (1a ed.). IWA Publishing.
Rosso, D., Larson, L. E., & Stenstrom, M. K. (2008). Aeration of large-scale municipal wastewater treatment plants: State of the art. Water Science and Technology, 57(7), 973-978. https://doi.org/10.2166/wst.2008.218
Rosso, D., & Stenstrom, M. K. (2006). Economic Implications of Fine-Pore Diffuser Aging. Water Environment Research, 78(8), 810-815. https://doi.org/10.2175/106143006X101683
Rosso, D., & Stenstrom, M. K. (2007). Energy-saving benefits of denitrification. 3, 29-38.
Schmit, F. L., Redmon, D. T., & Ewing, L. (1985). In place gas cleaning of diffusion elements (Patent N.o US4889620A). https://patents.google.com/patent/US4889620A/enSGS
SGS Colombia SAS. (2018). Informe de muestreo de agua residual no doméstica (EHS-LAB-I-F-09-05; p. 10). SGS Colombia SAS.
Shu, L., Xing, W., & Xu, N. (2007). Effect of Ultrasound on the Treatment of Emulsification Wastewater by Ceramic Membranes* *Supported by the Special Funds for Major State Basic Research Program of China (973 Program, No.2003CB615707) and the National Natural Science Foundation of China (No.20436030). Chinese Journal of Chemical Engineering, 15(6), 855-860. https://doi.org/10.1016/S1004-9541(08)60014-2
Sui, P., Wen, X., & Huang, X. (2008). Feasibility of employing ultrasound for on-line membrane fouling control in an anaerobic membrane bioreactor. Desalination, 219(1), 203-213. https://doi.org/10.1016/j.desal.2007.02.034
Trägårdh, G. (1989). Membrane cleaning. Desalination, 71(3), 325-335. https://doi.org/10.1016/0011- 9164(89)85033-7
U.S. EPA. (1985). Fine pore (fine bubble) Aeration systems (625/8-85/010). Environmental Protection Agency United States.
U.S. EPA. (1989). Desing Manual: Fine Pore Aeration Systems. Center for Environmental Research Informantion. https://nepis.epa.gov/
U.S. EPA. (1999). Wasterwater Technology Fact Sheet—Fine Bubble Aeration. Environmental Protection Agency. EPA 832-F-99-065
Von Sperling, M. (2007). Basic principles of wastewater treatment (Vol. 2). IWA Publishing.
Wan, M.-W., Yang, H.-L., Chang, C.-H., Reguyal, F., & Kan, C.-C. (2012). Fouling Elimination of PTFE Membrane under Precoagulation Process Combined with Ultrasound Irradiation. Journal of Environmental Engineering, 138(3), 337-343. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000406
Wang, Z., Ma, J., Tang, C. Y., Kimura, K., Wang, Q., & Han, X. (2014). Membrane cleaning in membrane bioreactors: A review. Journal of Membrane Science, 468, 276-307. https://doi.org/10.1016/j.memsci.2014.05.060
Xu, M., Wen, X., Huang, X., Yu, Z., & Zhu, M. (2013). Mechanisms of membrane fouling controlled by online ultrasound in an anaerobic membrane bioreactor for digestion of waste activated sludge. Journal of Membrane Science, 445, 119-126. https://doi.org/10.1016/j.memsci.2013.06.006
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.accessrights.*.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
Attribution-NonCommercial-NoDerivatives 4.0 International
Acceso abierto
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv applicaction/pdf
dc.coverage.sede.spa.fl_str_mv Campus UMNG
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.grantor.spa.fl_str_mv Universidad Militar Nueva Granada
institution Universidad Militar Nueva Granada
bitstream.url.fl_str_mv http://repository.unimilitar.edu.co/bitstream/10654/38966/2/license.txt
http://repository.unimilitar.edu.co/bitstream/10654/38966/1/DiazEstebanDiegoSebastianSuarezAngaritaJuliethDaniela2021.pdf
http://repository.unimilitar.edu.co/bitstream/10654/38966/3/DiazEstebanDiegoSebastianSuarezAngaritaJuliethDaniela2021.pdf.jpg
bitstream.checksum.fl_str_mv a609d7e369577f685ce98c66b903b91b
94a1a204019677fbfa40546a0d7d5fa8
4ae051a671935376709f2ffa5f2cca66
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UMNG
repository.mail.fl_str_mv bibliodigital@unimilitar.edu.co
_version_ 1837098437172002816
spelling Baquero Rodríguez, Gustavo AndrésDiaz Esteban, Diego SebastianSuarez Angarita, Julieth DanielaIngeniero Ambiental2021-10-02T16:17:56Z2021-10-02T16:17:56Z2021-05-20http://hdl.handle.net/10654/38966instname:Universidad Militar Nueva Granadareponame:Repositorio Institucional Universidad Militar Nueva Granadarepourl:https://repository.unimilitar.edu.coLa aireación es el principal consumidor de electricidad en el tratamiento de las aguas residuales municipales, presente en ciertos procesos biológicos, como los lodos activados, los cuales demandan entre el 50-70% de los costos de la energía necesaria para tratamiento del agua residual. Por consiguiente, para lograr una alta eficiencia de la transferencia de oxígeno en los tratamientos biológicos aeróbicos, son usados comúnmente los difusores de burbuja fina. El desempeño de las membranas de los difusores de burbuja fina es afectado por el ensuciamiento que comprende la acumulación de sustancias suspendidas o disueltas sobre su superficie y/o dentro de sus poros, ocasionando el incremento de los costos de operación, asociados a los sistemas de aireación. Con el propósito de mitigar el ensuciamiento en la industria del tratamiento de aguas residuales, son usadas diferentes técnicas de limpieza convencionales que traen consigo desventajas. El presente trabajo evalúa la técnica de limpieza convencional mediante la adición de agentes químicos y la limpieza con ultrasonido, siendo esta ultima una técnica novedosa para remover el ensuciamiento en difusores de burbuja fina; desde el punto de vista de la presión de descarga, costos de operación, eficiencia y transferencia de oxígeno en condiciones estándar. Los resultados muestran que la aplicación de las técnicas de limpieza recupera parcialmente la transferencia de oxígeno en las membranas difusoras y a la reducen los costos operativos.Concluyendo que, entre las tres técnicas de limpieza evaluadas, el ultrasonido es el que presenta los mejores resultados.1. GLOSARIO ...................................................................................................................... 10 2. RESUMEN........................................................................................................................ 13 3. INTRODUCCIÓN ............................................................................................................ 14 4. PLANTEAMIENTO DEL PROBLEMA ......................................................................... 16 5. DELIMITACIÓN.............................................................................................................. 18 5.1 Conceptual....................................................................................................................................18 5.2 Geográfica ....................................................................................................................................18 6. OBJETIVOS ..................................................................................................................... 20 6.1 Objetivo general...........................................................................................................................20 6.2 Objetivos específicos ..................................................................................................................20 7. ANTECEDENTES............................................................................................................ 21 8. JUSTIFICACIÓN ............................................................................................................. 24 9. MARCO TEÓRICO.......................................................................................................... 25 9.1 Difusores empleados en el tratamiento de aguas.....................................................................26 9.1.1 Difusores de burbuja gruesa:............................................................................................. 26 9.1.2 Difusores de burbuja fina:................................................................................................. 27 9.2 Ensuciamiento de los difusores .................................................................................................28 9.3 Limpieza de difusores de membrana utilizadas en la industria del agua .............................30 9.4 Tratamientos de limpieza de membrana en difusores de burbuja fina .................................31 9.4.1 Limpieza física:................................................................................................................. 31 9.4.2 Limpieza química:............................................................................................................. 31 9.5 Limpieza de membranas con ultrasonido.................................................................................32 9.5.1 Antecedentes de limpieza de membranas con ultrasonido................................................ 32 10. METODOLOGÍA ............................................................................................................. 35 11. RESULTADOS Y ANÁLISIS DE RESULTADOS ........................................................ 43 11.1 Análisis de las técnicas de limpieza en difusores de burbuja fina a escala 1:33.................43 11.1.1 Evaluación de la transferencia de oxígeno:....................................................................... 44 11.1.2 Evaluación de la presión de descarga (DWP):.................................................................. 46 11.1.3 Costos de operación – Banco de pruebas:......................................................................... 47 11.2 Simulación de limpieza a diferentes configuraciones de procesos de lodos activados......49 11.2.1 Evaluación de la transferencia de oxígeno:....................................................................... 49 11.2.2 Evaluación de los costos de operación.............................................................................. 52 12. CONCLUSIONES ............................................................................................................ 54 13. REFERENCIAS BIBLIOGRÁFICAS.............................................................................. 56 14. ANEXOS .......................................................................................................................... 61 A. Implementación de limpieza de membranas de ultra y microfiltración con ultrasonido. ..61 B. Tipos de difusores empleados en el tratamiento de agua residual ........................................63 C. Características de difusores disponibles en el mercado por diferentes fabricantes............64 D. Limpieza química en difusores de membrana tubulares (Jiang et al., 2020).......................65 E. Ecuaciones de aireación..............................................................................................................66 F. Estructuración de difusores de burbuja fina a escala 1:33 .....................................................67 G. Hoja de cálculo de la aplicación de resultados a diferentes configuraciones de procesos de lodos activados.............................................................................................................................67Aeration is the main consumer of electricity in municipal wastewater treatment, present in certain biological processes, such as activated sludge, which demand between 50-70% of the energy costs necessary for wastewater treatment. Therefore, in order to achieve high efficiency of oxygen transfer in the Aerobic biological treatments, fine bubble diffusers are commonly used. The performance of fine bubble diffuser membranes is affected by fouling, which comprises the accumulation of suspended or dissolved substances on their surface and / or within their pores, causing increased operating costs associated with air conditioning systems. aeration. In order to mitigate fouling in the industry of the wastewater treatment, different conventional cleaning techniques are used that bring with them disadvantages. The present work evaluates the conventional cleaning technique by adding chemical agents and cleaning with ultrasound, the latter being a novel technique to remove dirt in fine bubble diffusers; from the point of view of discharge pressure, operating costs, efficiency and oxygen transfer under standard conditions. The Results show that the application of cleaning techniques partially recovers the oxygen transfer in the diffuser membranes and reduces operating costs, concluding that, among the three cleaning techniques evaluated, ultrasound is the one that presents the best results.Pregradoapplicaction/pdfspahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Attribution-NonCommercial-NoDerivatives 4.0 InternationalAcceso abiertoEvaluación de técnicas de limpieza en membranas difusoras de burbuja fina empleadas en procesos aeróbicos para tratamiento de agua residualEvaluation of cleaning techniques in fine bubble diffuser membranes used in aerobic processes for wastewater treatmentAGUAS RESIDUALESTRATAMIENTO TERRESTRE DE AGUAS RESIDUALESLODOS ACTIVADOSFine bubble diffusersFoulingChemical cleaningSludge activatedDischarge pressureOxygen transferUltrasoundDifusores de burbuja finaEnsuciamientoLimpieza químicaLodos activadosPresión de descargaTransferencia de oxígenoUltrasonidoTesis/Trabajo de grado - Monografía - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fIngeniería AmbientalFacultad de IngenieríaUniversidad Militar Nueva GranadaAhmad, A. L., Lah, N. F. C., Ismail, S., & Ooi, B. S. (2012). Membrane Antifouling Methods and Alternatives: Ultrasound Approach. Separation & Purification Reviews, 41(4), 318-346. https://doi.org/10.1080/15422119.2011.617804Al-Amoudi, A., & Lovitt, R. W. (2007). Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. Journal of Membrane Science, 303(1-2), 4-28. https://doi.org/10.1016/j.memsci.2007.06.002American Society of Civil Engineers. (2007). Measurement of oxygen transfer in clean water ASCE standard, ASCE/EWRI 2-06. American Society of Civil Engineers. http://dx.doi.org/10.1061/9780784408483Ang, W. S., Tiraferri, A., Chen, K. L., & Elimelech, M. (2011). Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent. Journal of Membrane Science, 376(1-2), 196-206. https://doi.org/10.1016/j.memsci.2011.04.020ASALE, R.-, & RAE. (2021). Diccionario de la lengua española. «Diccionario de la lengua española» - Edición del Tricentenario. https://dle.rae.es/ultrasonidoASCE. (2018). Standard Guidelines for In-Process Oxygen Transfer Testing (2.a ed.). American Society of Civil Engineers. https://doi.org/10.1061/9780784401149Baquero-Rodríguez, G. A., Lara-Borrero, J. A., Nolasco, D., & Rosso, D. (2018). A Critical Review of the Factors Affecting Modeling Oxygen Transfer by Fine-Pore Diffusers in Activated Sludge. Water Environment Research, 90(5), 431-441. https://doi.org/10.2175/106143017X15131012152988Brepols, C., Drensla, K., Trimborn, M., Engelhardt, N., & Janot, A. (2008). Strategies for chemical cleaning in large scale membrane bioreactors. Water Sci. Technol., 457-463. https://doi.org/10.2166/wst.2008.112Chai, X., Kobayashi, T., & Fujii, N. (1999). Ultrasound-associated cleaning of polymeric membranes for water treatment. Separation and Purification Technology, 15(2), 139-146. https://doi.org/10.1016/S1383- 5866(98)00091-4Chen, J. P., Kim, S. L., & Ting, Y. P. (2003). Optimization of membrane physical and chemical cleaning by a statistically designed approach. Journal of Membrane Science, 219(1), 27-45. https://doi.org/10.1016/S0376-7388(03)00174-1De Souza, Nigel. P., & Basu, O. D. (2013). Comparative analysis of physical cleaning operations for fouling control of hollow fiber membranes in drinking water treatment. Journal of Membrane Science, 436, 28-35. https://doi.org/10.1016/j.memsci.2013.02.014Drews, A. (2010). Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures. Journal of Membrane Science, 363(1-2), 1-28. https://doi.org/10.1016/j.memsci.2010.06.046enel codensa. (2020). Tarifas de energía eléctrica reguladas por la comisión de regulación de energia y gas (CREG) Enero de 2020. https://www.enel.com.co/content/dam/enel-co/espa%C3%B1ol/personas/1- 17-1/2020/Tarifario-enero-2020.pdfGarrido-Baserba, M., Asvapathanagul, P., Park, H.-D., Kim, T.-S., Baquero-Rodriguez, G. A., Olson, B. H., & Rosso, D. (2018). Impact of fouling on the decline of aeration efficiency under different operational conditions at WRRFs. Science of The Total Environment, 639, 248-257. https://doi.org/10.1016/j.scitotenv.2018.05.036Hendricks, D. (2011). Fundamentals of Water Treatment Unit Processes—Physical, Chemical, and Biological. IWA Publishing.Holenda, B., Domokos, Fazakas, & Rédey. (2008). Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. 32, 1270-1278. https://doi.org/10.1016/j.compchemeng.2007.06.008Jenkins, T. E. (2014). Aeration Control System Design: A Practical Guide to Energy and Process Optimization (1a. ed.). WILEY.Jiang, L.-M., Chen, L., Zhou, Z., Sun, D., Li, Y., Zhang, M., Liu, Y., Du, S., Chen, G., & Yao, J. (2020). Fouling characterization and aeration performance recovery of fine-pore diffusers operated for 10 years in a full-scale wastewater treatment plant. Bioresource Technology, 123197. https://doi.org/10.1016/j.biortech.2020.123197Jolly, M., Green, S., Wallis-Lage, C., & Buchanan, A. (2010). Energy saving in activated sludge plants by the use of more efficient fine bubble diffusers. Water and Environment Journal, 24(1), 58-64. https://doi.org/10.1111/j.1747-6593.2009.00164.xJudd, S. (2011). The MBR Book: Principles and Applications of Membrane Bioreactors for Water (2a. ed.). https://www.elsevier.com/books/the-mbr-book/judd/978-0-08-096682-3Kabsch-Korbutowicz, M., Biłyk, A., & Mołczan, M. (2006). The effect of feed water pretreatment on ultrafiltration membrane performance. Polish Journal of Environmental Studies, 15(5), 719-725.Kim, Y., & Boyle, W. C. (1993). Mechanisms of Fouling in Fine‐Pore Diffuser Aeration. Journal of Environmental Engineering, 119(6), 1119-1138. https://doi.org/10.1061/(ASCE)0733-9372(1993)119:6(1119)Kobayashi, T., Kobayashi, T., Hosaka, Y., & Fujii, N. (2003). Ultrasound-enhanced membrane-cleaning processes applied water treatments: Influence of sonic frequency on filtration treatments. Ultrasonics, 41(3), 185-190. https://doi.org/10.1016/S0041-624X(02)00462-6Koros, W. J., Ma, Y. H., & Shimidzu, T. (1996). Terminology for membranes and membrane processes (IUPAC Recommendations 1996). Pure and Applied Chemistry, 68(7), 1479-1489. https://doi.org/10.1351/pac199668071479Kyllönen, H., Pirkonen, P., & Nyström, M. (2005). Membrane filtration enhanced by ultrasound: A review. Desalination, 181(1-3), 319-335. https://doi.org/10.1016/j.desal.2005.06.003Kyllönen, H., Pirkonen, P., Nyström, M., Nuortila-Jokinen, J., & Grönroos, A. (2006). Experimental aspects of ultrasonically enhanced cross-flow membrane filtration of industrial wastewater. Ultrasonics Sonochemistry, 13(4), 295-302. https://doi.org/10.1016/j.ultsonch.2005.04.006Lenntech. (1998, 2021). Glosario del agua. https://www.lenntech.es/glosario-agua.htmLi, J., Sanderson, R. D., & Jacobs, E. P. (2002). Ultrasonic cleaning of nylon microfiltration membranes fouled by Kraft paper mill effluent. Journal of Membrane Science, 205(1), 247-257. https://doi.org/10.1016/S0376-7388(02)00121-7Liu, C. Y., Caothien, S., Hayes, J., Caothuy, T., & Otoyo, T. (2001). Membrane Chemical Cleaning: From Art to Science.López Vázquez, C. M., Buitrón Méndez, G., García, H. A., & Cervantes Carrillo, F. J. (2017). Biological Wastewater Treatment: Principles, Modeling and Design. Water Intelligence Online, 16, 9781780409146. https://doi.org/10.2166/9781780409146Luján-Facundo, M. J., Mendoza-Roca, J. A., Cuartas-Uribe, B., & Álvarez-Blanco, S. (2013). Ultrasonic cleaning of ultrafiltration membranes fouled with BSA solution. Separation and Purification Technology, 120, 275-281. https://doi.org/10.1016/j.seppur.2013.10.018Manahan, S. E. (2007). Introducción a la química ambiental (1a.20 ed.). Reverte SA.Maskooki, A., Kobayashi, T., Mortazavi, S. A., & Maskooki, A. (2008). Effect of low frequencies and mixed wave of ultrasound and EDTA on flux recovery and cleaning of microfiltration membranes. Separation and Purification Technology, 59(1), 67-73. https://doi.org/10.1016/j.seppur.2007.05.028Metcalf, E., Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R., & Burton, F. (2013). Wastewater Engineering: Treatment and Resource Recovery (Edición: 5). McGraw-Hill Education.Mueller, J. A., Boyle, W. C., & Pöpel, H. J. (2002). Aeration: Principles and practice (Vol. 11). CRC Press.Muthukumaran, S., Kentish, S. E., Stevens, G. W., Ashokkumar, M., & Mawson, R. (2007). The application of ultrasound to dairy ultrafiltration: The influence of operating conditions. Journal of Food Engineering, 81(2), 364-373. https://doi.org/10.1016/j.jfoodeng.2006.11.008Muthukumaran, S, Yang, K., Seuren, A., Kentish, S., Ashokkumar, M., Stevens, G. W., & Grieser, F. (2004). The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry. Separation and Purification Technology, 39(1), 99-107. https://doi.org/10.1016/j.seppur.2003.12.013Muthukumaran, Shobha, Kentish, S. E., Stevens, G. W., & Ashokkumar, M. (2011). APPLICATION OF ULTRASOUND IN MEMBRANE SEPARATION PROCESSES: A REVIEW. Reviews in Chemical Engineering, 22(3), 155-194. https://doi.org/10.1515/REVCE.2006.22.3.155Naik, K. S., & Stenstrom, M. K. (2012). Instructions for DO Parameter Estimation Program 3.0.3* (DOPar3) [Instructions for use]. http://www.seas.ucla.edu/stenstro/DOPar3-0-3.zipPeirce, J. J., Weiner, R. F., & Vesilind, P. A. (1998). Chapter 8—Wastewater Treatment. En Environmental Pollution and Control (pp. 105-123). 4a. ed. https://doi.org/10.1016/B978-0-7506-9899-3.X5000-7Qasim, M., Darwish, N. N., Mhiyo, S., Darwish, N. A., & Hilal, N. (2018). The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination, 443, 143-164. https://doi.org/10.1016/j.desal.2018.04.007Qasim, S. R., & Zhu, G. (2018). Wastewater Treatment and Reuse, Theory and Design Examples (Vol. 1). 1a. ed. https://doi.org/10.1201/b22368Rieth, M. G., Boyle, W. C., & Ewing, L. (1990). Effects of Selected Design Parameters on the Fouling Characteristics of Ceramic Diffusers. Research Journal of the Water Pollution Control Federation, 62(7), 877-886. https://doi.org/10.2307 / 25043930Rosso, D. (Ed.). (2018). Aeration, Mixing, and Energy: Bubbles and Sparks (1a ed.). IWA Publishing.Rosso, D., Larson, L. E., & Stenstrom, M. K. (2008). Aeration of large-scale municipal wastewater treatment plants: State of the art. Water Science and Technology, 57(7), 973-978. https://doi.org/10.2166/wst.2008.218Rosso, D., & Stenstrom, M. K. (2006). Economic Implications of Fine-Pore Diffuser Aging. Water Environment Research, 78(8), 810-815. https://doi.org/10.2175/106143006X101683Rosso, D., & Stenstrom, M. K. (2007). Energy-saving benefits of denitrification. 3, 29-38.Schmit, F. L., Redmon, D. T., & Ewing, L. (1985). In place gas cleaning of diffusion elements (Patent N.o US4889620A). https://patents.google.com/patent/US4889620A/enSGSSGS Colombia SAS. (2018). Informe de muestreo de agua residual no doméstica (EHS-LAB-I-F-09-05; p. 10). SGS Colombia SAS.Shu, L., Xing, W., & Xu, N. (2007). Effect of Ultrasound on the Treatment of Emulsification Wastewater by Ceramic Membranes* *Supported by the Special Funds for Major State Basic Research Program of China (973 Program, No.2003CB615707) and the National Natural Science Foundation of China (No.20436030). Chinese Journal of Chemical Engineering, 15(6), 855-860. https://doi.org/10.1016/S1004-9541(08)60014-2Sui, P., Wen, X., & Huang, X. (2008). Feasibility of employing ultrasound for on-line membrane fouling control in an anaerobic membrane bioreactor. Desalination, 219(1), 203-213. https://doi.org/10.1016/j.desal.2007.02.034Trägårdh, G. (1989). Membrane cleaning. Desalination, 71(3), 325-335. https://doi.org/10.1016/0011- 9164(89)85033-7U.S. EPA. (1985). Fine pore (fine bubble) Aeration systems (625/8-85/010). Environmental Protection Agency United States.U.S. EPA. (1989). Desing Manual: Fine Pore Aeration Systems. Center for Environmental Research Informantion. https://nepis.epa.gov/U.S. EPA. (1999). Wasterwater Technology Fact Sheet—Fine Bubble Aeration. Environmental Protection Agency. EPA 832-F-99-065Von Sperling, M. (2007). Basic principles of wastewater treatment (Vol. 2). IWA Publishing.Wan, M.-W., Yang, H.-L., Chang, C.-H., Reguyal, F., & Kan, C.-C. (2012). Fouling Elimination of PTFE Membrane under Precoagulation Process Combined with Ultrasound Irradiation. Journal of Environmental Engineering, 138(3), 337-343. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000406Wang, Z., Ma, J., Tang, C. Y., Kimura, K., Wang, Q., & Han, X. (2014). Membrane cleaning in membrane bioreactors: A review. Journal of Membrane Science, 468, 276-307. https://doi.org/10.1016/j.memsci.2014.05.060Xu, M., Wen, X., Huang, X., Yu, Z., & Zhu, M. (2013). Mechanisms of membrane fouling controlled by online ultrasound in an anaerobic membrane bioreactor for digestion of waste activated sludge. Journal of Membrane Science, 445, 119-126. https://doi.org/10.1016/j.memsci.2013.06.006Campus UMNGLICENSElicense.txtlicense.txttext/plain; charset=utf-83420http://repository.unimilitar.edu.co/bitstream/10654/38966/2/license.txta609d7e369577f685ce98c66b903b91bMD52ORIGINALDiazEstebanDiegoSebastianSuarezAngaritaJuliethDaniela2021.pdfDiazEstebanDiegoSebastianSuarezAngaritaJuliethDaniela2021.pdfTrabajo de gradoapplication/pdf1270010http://repository.unimilitar.edu.co/bitstream/10654/38966/1/DiazEstebanDiegoSebastianSuarezAngaritaJuliethDaniela2021.pdf94a1a204019677fbfa40546a0d7d5fa8MD51THUMBNAILDiazEstebanDiegoSebastianSuarezAngaritaJuliethDaniela2021.pdf.jpgDiazEstebanDiegoSebastianSuarezAngaritaJuliethDaniela2021.pdf.jpgIM Thumbnailimage/jpeg4971http://repository.unimilitar.edu.co/bitstream/10654/38966/3/DiazEstebanDiegoSebastianSuarezAngaritaJuliethDaniela2021.pdf.jpg4ae051a671935376709f2ffa5f2cca66MD5310654/38966oai:repository.unimilitar.edu.co:10654/389662021-10-04 01:03:43.867Repositorio Institucional UMNGbibliodigital@unimilitar.edu.coRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hLCB0cmFiYWpvIGRlIGdyYWRvIG8gY3VhbHF1aWVyIG90cm8gZG9jdW1lbnRvCmNvbiBjYXLDoWN0ZXIgYWNhZMOpbWljbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sIGhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2bwp5IGRlIHN1cyBhbmV4b3MgZW4gZm9ybWF0byBkaWdpdGFsIG8gZWxlY3Ryw7NuaWNvLgoKRUwgRVNUVURJQU5URSAtIEFVVE9SLCBtYW5pZmllc3RhIHF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuCmVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvcgpsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KCkVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4KY3VhbnRvIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgZW4gY3Vlc3Rpw7NuLCBFTCBFU1RVRElBTlRFIC0gQVVUT1IsCmFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7CnBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCkFkZW3DoXMsICJMQSBVTklWRVJTSURBRCBNSUxJVEFSIE5VRVZBIEdSQU5BREEgY29tbyBpbnN0aXR1Y2nDs24gcXVlIGFsbWFjZW5hLCB5CnJlY29sZWN0YSBkYXRvcyBwZXJzb25hbGVzLCBhdGVuZGllbmRvIGxvIHByZWNlcHR1YWRvIGVuIGxhIGxleSAxNTgxIGRlIDIwMTIgeSBlbApEZWNyZXRvIDEzNzcgZGUgMjAxMywgcXVlIGRlc2Fycm9sbGFuIGVsIHByaW5jaXBpbyBjb25zdGl0dWNpb25hbCBxdWUgdGllbmVuIHRvZGFzCmxhcyBwZXJzb25hcyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIgeSByZWN0aWZpY2FyIHRvZG8gdGlwbyBkZSBpbmZvcm1hY2nDs24gcmVjb2dpZGEKbywgcXVlIGhheWEgc2lkbyBvYmpldG8gZGUgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBlbiBiYW5jb3MgbyBiYXNlcyBkZQpkYXRvcyB5IGVuIGdlbmVyYWwgZW4gYXJjaGl2b3MgZGUgZW50aWRhZGVzIHDDumJsaWNhcyBvIHByaXZhZGFzLCByZXF1aWVyZSBvYnRlbmVyCnN1IGF1dG9yaXphY2nDs24sIHBhcmEgcXVlLCBkZSBtYW5lcmEgbGlicmUsIHByZXZpYSwgZXhwcmVzYSwgdm9sdW50YXJpYSwgeQpkZWJpZGFtZW50ZSBpbmZvcm1hZGEsIHBlcm1pdGEgYSB0b2RhcyBudWVzdHJhcyBkZXBlbmRlbmNpYXMgYWNhZMOpbWljYXMgeQphZG1pbmlzdHJhdGl2YXMsIHJlY29sZWN0YXIsIHJlY2F1ZGFyLCBhbG1hY2VuYXIsIHVzYXIsIGNpcmN1bGFyLCBzdXByaW1pciwgcHJvY2VzYXIsCmNvbXBpbGFyLCBpbnRlcmNhbWJpYXIsIGRhciB0cmF0YW1pZW50bywgYWN0dWFsaXphciB5IGRpc3BvbmVyIGRlIGxvcyBkYXRvcyBxdWUKaGFuIHNpZG8gc3VtaW5pc3RyYWRvcyB5IHF1ZSBzZSBoYW4gaW5jb3Jwb3JhZG8gZW4gbnVlc3RyYXMgYmFzZXMgbyBiYW5jb3MgZGUKZGF0b3MsIG8gZW4gcmVwb3NpdG9yaW9zIGVsZWN0csOzbmljb3MgZGUgdG9kbyB0aXBvIGNvbiBxdWUgY3VlbnRhIGxhIFVuaXZlcnNpZGFkLgoKRXN0YSBpbmZvcm1hY2nDs24gZXMgeSBzZXLDoSB1dGlsaXphZGEgZW4gZWwgZGVzYXJyb2xsbyBkZSBsYXMgZnVuY2lvbmVzIHByb3BpYXMgZGUKbGEgVW5pdmVyc2lkYWQgZW4gc3UgY29uZGljacOzbiBkZSBpbnN0aXR1Y2nDs24gZGUgZWR1Y2FjacOzbiBzdXBlcmlvciwgZGUgZm9ybWEKZGlyZWN0YSBvIGEgdHJhdsOpcyBkZSB0ZXJjZXJvcyIuCgpTaSBzdSBkb2N1bWVudG8gZXMgZGUgYWNjZXNvIHJlc3RyaW5naWRvICwgc3UgdHJhYmFqbyBzZSBkZXBvc2l0YXLDoSBlbiBlbApSZXBvc2l0b3JpbyBVTU5HIMO6bmljYW1lbnRlIGNvbiBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRvY3VtZW50YWwgeSBtZW1vcmlhCmluc3RpdHVjaW9uYWwsIGVudGVuZGllbmRvIHF1ZSwgc2Vyw6EgY29uc3VsdGFkbyBkZSBmb3JtYSBjb250cm9sYWRhIHNvbGFtZW50ZSBwb3IKbGEgY29tdW5pZGFkIE5lb2dyYW5hZGluYS4KClNpIHN1IGRvY3VtZW50byBlcyBkZSBhY2Nlc28gYWJpZXJ0bywgcGFyYSBwZXJtaXRpciBhbCBSZXBvc2l0b3JpbyBVTU5HIHJlcHJvZHVjaXIsCnRyYWR1Y2lyIHkgZGlzdHJpYnVpciBzdSBlbnbDrW8gYSB0cmF2w6lzIGRlbCBtdW5kbywgbmVjZXNpdGFtb3Mgc3UgY29uZm9ybWlkYWQgZW4KbG9zIHNpZ3VpZW50ZXMgdMOpcm1pbm9zOgoKWSBhdXRvcml6YSBhIGxhIFVOSVZFUlNJREFEIE1JTElUQVIgTlVFVkEgR1JBTkFEQSwgcGFyYSBxdWUgZW4gbG9zIHTDqXJtaW5vcwplc3RhYmxlY2lkb3MgZW46CgpMZXkgMjMgZGUgMTk4Mi0gTGV5IDQ0IGRlIDE5OTMgLUxleSAxOTE1IGRlIDIwMTggLSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLQpEZWNyZXRvIDQ2MCBkZSAxOTk1IHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgdXRpbGljZSB5IHVzZSBwb3IKY3VhbHF1aWVyIG1lZGlvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sCmNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlCmRvY3VtZW50by4KCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc8OzbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlCnVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byB2aXJ0dWFsLAplbGVjdHLDs25pY28sIGRpZ2l0YWwsIHkgY3V5byB1c28gc2UgZGUgZW4gcmVkLCBpbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBldGMuLAp5IGVuIGdlbmVyYWwgZW4gY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxvcyBUw6lybWlub3MgeSBjb25kaWNpb25lcywgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwKYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYSBiaWJsaW9kaWdpdGFsQHVuaW1pbGl0YXIuZWR1LmNvCgpBY2VwdGUgVMOpcm1pbm9zIHkgY29uZGljaW9uZXMgc2VsZWNjaW9uYW5kbyAiQWNlcHRvIiB5IHB1bHNhbmRvICJDb21wbGV0YXIgZW52w61vIi4K