Clasificación de la voz entre voces sanas y voces hiperfuncionales no fono traumáticas mediante el uso de algoritmos de inteligencia artificial basado en parámetros ambulatorios de la función vocal
El Desorden de la Voz Hiperfuncional no fono traumática (NPVH) es una enfermedad de la voz que afecta los músculos de la laringe durante la producción de la voz, lo que causa alteraciones en el funcionamiento vocal y su calidad. La detección temprana de este trastorno permite controlar estas alterac...
- Autores:
-
Moreno Lozano, Jorge Steban
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad Militar Nueva Granada
- Repositorio:
- Repositorio UMNG
- Idioma:
- spa
- OAI Identifier:
- oai:repository.umng.edu.co:10654/46094
- Acceso en línea:
- https://hdl.handle.net/10654/46094
- Palabra clave:
- ANALISIS DE LA VOZ - INTELIGENCIA ARTIFICIAL - APLICACIONES EN SALUD
PARAMETROS VOCALES - MONITOREO AMBULATORIO
INTELIGENCIA ARTIFICIAL - DIAGNOSTICO DE TRASTORNOS DE LA VOZ
Machine Learning
NPVH
SVM
Inteligencia Artificial
Medicina
Clasificacion
Machine Learning
NPVH
SVM
Artificial Inteligence
Medicine
Classification
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
UNIMILTAR2_162fe0eb6b53166e1abfd6f82ca60f3d |
|---|---|
| oai_identifier_str |
oai:repository.umng.edu.co:10654/46094 |
| network_acronym_str |
UNIMILTAR2 |
| network_name_str |
Repositorio UMNG |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Clasificación de la voz entre voces sanas y voces hiperfuncionales no fono traumáticas mediante el uso de algoritmos de inteligencia artificial basado en parámetros ambulatorios de la función vocal |
| dc.title.eng.fl_str_mv |
Voice classification between healthy voices and non-phonotraumatic hyperfunctional voices using artificial intelligence algorithms based on ambulatory parameters of vocal function |
| title |
Clasificación de la voz entre voces sanas y voces hiperfuncionales no fono traumáticas mediante el uso de algoritmos de inteligencia artificial basado en parámetros ambulatorios de la función vocal |
| spellingShingle |
Clasificación de la voz entre voces sanas y voces hiperfuncionales no fono traumáticas mediante el uso de algoritmos de inteligencia artificial basado en parámetros ambulatorios de la función vocal ANALISIS DE LA VOZ - INTELIGENCIA ARTIFICIAL - APLICACIONES EN SALUD PARAMETROS VOCALES - MONITOREO AMBULATORIO INTELIGENCIA ARTIFICIAL - DIAGNOSTICO DE TRASTORNOS DE LA VOZ Machine Learning NPVH SVM Inteligencia Artificial Medicina Clasificacion Machine Learning NPVH SVM Artificial Inteligence Medicine Classification |
| title_short |
Clasificación de la voz entre voces sanas y voces hiperfuncionales no fono traumáticas mediante el uso de algoritmos de inteligencia artificial basado en parámetros ambulatorios de la función vocal |
| title_full |
Clasificación de la voz entre voces sanas y voces hiperfuncionales no fono traumáticas mediante el uso de algoritmos de inteligencia artificial basado en parámetros ambulatorios de la función vocal |
| title_fullStr |
Clasificación de la voz entre voces sanas y voces hiperfuncionales no fono traumáticas mediante el uso de algoritmos de inteligencia artificial basado en parámetros ambulatorios de la función vocal |
| title_full_unstemmed |
Clasificación de la voz entre voces sanas y voces hiperfuncionales no fono traumáticas mediante el uso de algoritmos de inteligencia artificial basado en parámetros ambulatorios de la función vocal |
| title_sort |
Clasificación de la voz entre voces sanas y voces hiperfuncionales no fono traumáticas mediante el uso de algoritmos de inteligencia artificial basado en parámetros ambulatorios de la función vocal |
| dc.creator.fl_str_mv |
Moreno Lozano, Jorge Steban |
| dc.contributor.advisor.none.fl_str_mv |
Velasco Vivas, Alexandra Elizabeth |
| dc.contributor.author.none.fl_str_mv |
Moreno Lozano, Jorge Steban |
| dc.contributor.other.none.fl_str_mv |
Calvache Mora, Carlos Alberto Solaque Guzman, Leonardo Enrique Peñuela Calderon, Lina Maria |
| dc.subject.lemb.spa.fl_str_mv |
ANALISIS DE LA VOZ - INTELIGENCIA ARTIFICIAL - APLICACIONES EN SALUD PARAMETROS VOCALES - MONITOREO AMBULATORIO INTELIGENCIA ARTIFICIAL - DIAGNOSTICO DE TRASTORNOS DE LA VOZ |
| topic |
ANALISIS DE LA VOZ - INTELIGENCIA ARTIFICIAL - APLICACIONES EN SALUD PARAMETROS VOCALES - MONITOREO AMBULATORIO INTELIGENCIA ARTIFICIAL - DIAGNOSTICO DE TRASTORNOS DE LA VOZ Machine Learning NPVH SVM Inteligencia Artificial Medicina Clasificacion Machine Learning NPVH SVM Artificial Inteligence Medicine Classification |
| dc.subject.proposal.spa.fl_str_mv |
Machine Learning NPVH SVM Inteligencia Artificial Medicina Clasificacion |
| dc.subject.proposal.eng.fl_str_mv |
Machine Learning NPVH SVM Artificial Inteligence Medicine Classification |
| description |
El Desorden de la Voz Hiperfuncional no fono traumática (NPVH) es una enfermedad de la voz que afecta los músculos de la laringe durante la producción de la voz, lo que causa alteraciones en el funcionamiento vocal y su calidad. La detección temprana de este trastorno permite controlar estas alteraciones y mejorar la calidad de vidas de las personas que lo padecen. El presente trabajó aborda el planteamiento y desarrollo de un sistema de clasificación de pacientes en dos grupos, pacientes sanos y pacientes enfermos con el Desorden de la Voz Hiperfuncional no fono traumática (NPVH). Para lograr esto, se aplicaron técnicas de preprocesamiento de datos, selección de características y se utilizó Support Vector Machine (SVM) como base del algoritmo de clasificación desarrollado en Python. Con el fin obtener resultados satisfactorios, se realizaron pruebas de validación del algoritmo modificando la cantidad de datos de entrada, así como las constantes y funciones de Kernel del SVM. Se utilizaron las herramientas de validación cruzada y la matriz de confusión como indicadores de rendimiento para evaluar las diferentes pruebas realizadas. Se logró alcanzar una precisión validada de hasta el 85% utilizando 11 datos de entrada del algoritmo de un conjunto inicial de 330 datos. Gracias a este proceso, se pudieron determinar los datos más relevantes para diferenciar entre los dos grupos de pacientes. |
| publishDate |
2023 |
| dc.date.issued.none.fl_str_mv |
2023-09-29 |
| dc.date.accessioned.none.fl_str_mv |
2024-11-13T20:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-11-13T20:13:38Z |
| dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
| format |
http://purl.org/coar/resource_type/c_7a1f |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10654/46094 |
| dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Militar Nueva Granada |
| dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Militar Nueva Granada |
| dc.identifier.repourl.none.fl_str_mv |
repourl:https://repository.umng.edu.co |
| url |
https://hdl.handle.net/10654/46094 |
| identifier_str_mv |
instname:Universidad Militar Nueva Granada reponame:Repositorio Institucional Universidad Militar Nueva Granada repourl:https://repository.umng.edu.co |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.spa.fl_str_mv |
Daniel S. Kermany, Michael Goldbaum, Wenjia Cai, ..., M. Anthony Lewis, Huimin Xia, Kang Zhang(2018). Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning(1-5) Muhammad Khalid Khan Niazi PhD, Anil V Parwani MD Metin N Gurcan PhD (2019). Digital pathology and artificial intelligence.(1-6) Ghulam Muhammada,∗, Mansour Alsulaimana, Zulfiqar Ali a,b, Tamer A. Mesallamc,d,e, Mohamed Farahat c,d, Khalid H. Malki c,d, Ahmed Al-nasheri a, Mohamed A. Bencherif a.(2019). Voice pathology detection using interlaced derivative pattern on glottal source excitation.(1-4) Huijun Ding a, Zixiong Gu a, Peng Dai b, Zhou Zhou c, Lu Wang d, Xiaoxiao Wu e (2021). Deep connected attention (DCA) ResNet for robust voice pathology detection and classification.(1-6). Fang S.-H., Tsao Y., Hsiao M.-J., Chen J.-Y., Lai Y.-H., Lin F.-C., Wang C.-T.(2019). Detection of pathological voice using cepstrum vectors: A deep learning approach(634-641). Alhussein M., Muhammad G(2018) Voice pathology detection using deep learning on mobile healthcare framework. Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolutional sequence to sequence learning. arXiv preprint arXiv:1705.03122v2, 2017. Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc V. Le. Massive exploration of neural machine translation architectures. CoRR, abs/1703.03906, 2017. Szolovits, P. (Ed.). (2019). Artificial Intelligence in Medicine (1st ed.). Robert E. Hillman, Cara E. Stepp, Jarrad H. Van Stan, Matías Zañartu and Daryush D. Mehta.(2020). Differences in Daily Voice Use Measures Between Female Patients With Nonphonotraumatic Vocal Hyperfunction and Matched Controls. Hillman, R. E., Stepp, C. E., Van Stan J. H., Zañartu, M., & Mehta, D. D. (2020). An Updated Theoretical Framework for Vocal Hyperfunction. American Journal of Speech-Language Pathology. Stepp, C. E., Lester-Smith, R. A., Abur, D., Daliri, A., Pieter N., J., & Lupiani, A. A. (2017). Evidence for Auditory-Motor Impairment in Individuals With Hyperfunctional Voice Disorders. Journal of Speech, Language, and Hearing Research: JSLHR. Lee, S. H., Yu, J. F., Fang, T. J., & Lee, G. S. (2019). Vocal fold nodules: A disorder of phonation organs or auditory feedback? Clinical otolaryngology: official journal of ENT-UK; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery. Jennifer Oates, Alison Winkworth. (2008) Characterising hyperfunctional voice disorders: Etiology, assessment, treatment and prevention. International Journal of Speech-Language Pathology. Haydar Ankışhana, Sıtkı Çağdaş, İnamb(2021) Voice pathology detection by using the deep network architecture. Cesari U., De Pietro G., Marciano E., Niri C., Sannino G., Verde L. (2018)Voice disorder detection via an m-Health system: Design and results of a clinical study to evaluate Vox4Health. M. Kim, B. Cao, K. An, J. Wang,(2018) Dysarthric speech recognition using convolutional LSTM neural network. Verde L., De Pietro G., Sannino G.(2019)Voice disorder identification by using machine learning techniques. Janet Baker.(2009) The role of psychogenic and psychosocial factors in the development of functional voice disorders. Martins RHG, do Amaral HA, Tavares ELM, Martins MG, Gonc ̧alves TM, Dias NH,(2016) Voice disorders: etiology and diagnosis, Journal of voice 30. S. Russell, P. Norvig and M. Chang, Artificial intelligence, 3rd ed. Harlow, England: Pearson Education Limited, 2016, pp. 10-20. Jarrad H. Van Stan,a,b,c Andrew J. Ortiz,a Juan P. Cortes,a,b Katherine L. Marks,a,c Laura E.(2021) Differences in Daily Voice Use Measures Between Female Patients With Nonphonotraumatic Vocal Hyperfunction and Matched Controls. Robert E. Hillman, Cara E. Stepp, Jarrad H. Van Stan. (2020). An Updated Theoretical Framework for Vocal Hyperfunction. Espinoza, V. M., Mehta, D. D., Van Stan, J. H., Hillman, R. E.,& Zañartu, M. (2017). Uncertainty of glottal airflow estimation during continuous speech using impedance-based inverse filtering of the neck-surface acceleration signal. The Journal of the Acoustical Society of America. Ziethe, A., Petermann, S., Hoppe, U., Greiner, N., Bruning, M.,Bohr, C., & Dollinger, M. (2019). Control of fundamental frequency in dysphonic patients during phonation and speech. Journal of Voice. Cortés, J. P., Espinoza, V. M., Ghassemi, M., Mehta, D. D., Van Stan, J. H., Hillman, R. E., Guttag, J. V., & Zañartu, M. (2018). Ambulatory assessment of phonotraumatic vocal hyperfunction using glottal airflow measures estimated from neck-surface acceleration. Marks, K. L., Lin, J. Z., Burns, J. A., Hron, T. A., Hillman, R. E., & Mehta, D. D. (2020). Estimation of subglottal pressure from neck surface vibration in patients with voice disorders. Journal of Speech, Language, and Hearing Research. Van Stan, J. H., Mehta, D. D., Ortiz, A. J., Burns, J. A., Toles, L. E., Marks, K. L., Vangel, M., Hron, T., Zeitels, S., & Hillman, R. E. (2020b). Differences in weeklong ambulatory vocal behavior between female patients with phonotraumatic lesions and matched controls. Journal of Speech. Language, and Hearing Research. Stepp, C. E., Lester-Smith, R. A., Abur, D., Daliri, A., Pieter Noordzij, J., & Lupiani, A. A. (2017). Evidence for auditory-motor impairment in individuals with hyperfunctional voice disorders. Journal of Speech, Language, and Hearing Research. Jock A. Blackard , Denis J. Dean.(2000) Comparative Accuracies of Artificial Neural Networks and Discriminant Analysis in Predicting Forest Cover Types from Cartographic Variables. M.V. Valueva, N.N. Nagornov, P.A. Lyakhov, G.V. Valuev, N.I. Chervyakov,(2020). Application of the residue number system to reduce hardware costs of the convolutional neural network implementation,Mathematics and Computers in Simulation. Titze, I. R. (2021). Simulation of Vocal Loudness Regulation with Lung Pressure, Vocal Fold Adduction, and Source-Airway Interaction. Sundberg, J. (2018). Flow Glottogram and Subglottal Pressure Relationship in Singers and Untrained Voices. Chang A, Karnell MP. (2004). Perceived phonatory effort and phonation threshold pressure across a prolonged voice loading task: A study of vocal fatigue. J Voice. Guzman M, Calvache C, Romero L, Muñoz D, Olavarria C, Madrid S, et al. Do (2015) Different Semi-Occluded Voice Exercises Affect Vocal Fold Adduction Differently in Subjects Diagnosed with Hyperfunctional Dysphonia. Colton RH, Casper JK, Leonard RJ. (2015). Understanding voice problem: A physiological perspective for diagnosis and treatment: Fourth edition. Titze IR, Švec JG, Popolo PS.(2003) Vocal dose measures: Quantifying accumulated vibration exposure in vocal fold tissues. J Speech, Lang Hear Res. Calvache-Mora CA. (2020) Parámetros vocales para definir la severidad de una disfonía. Revista de Investigación e Innovación en Ciencias de la Salud Hillenbrand, J. M., Getty, L. A., Clark, M. J., & Wheeler, K. (1995). Acoustic characteristics of American English vowels. The Journal of the Acoustical Society of America, 97(5), 3099-3111 Titze, I. R. (1994). Principles of voice production. Prentice-Hall, Inc. Kent, R. D., & Read, C. (2002). The acoustic analysis of speech. Cengage Learning Titze, I. R., & Story, B. H. (2017). Acoustic analysis of speech. In R. J. Baken & M. J. Orlikoff (Eds.), Clinical measurement of speech and voice (3rd ed., pp. 3-23). Plural Publishing. Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Pearson. Gibbons, J. D., & Chakraborti, S. (2018). Nonparametric statistical inference. CRC Press. Sarika Hegde, Surendra Shetty, Smitha Rai, Thejaswi Dodderi (2019). A Survey on Machine Learning Approaches for Automatic Detection of Voice Disorders,Journal of Voice. Tsuyoshi Kojima, Shintaro Fujimura, Koki Hasebe, Yusuke Okanoue, Otsuki Shuya, Ryohei Yuki, Kazuhiko Shoji, Ryusuke Hori, Yo Kishimoto, Koichi Omori (2021). Objective Assessment of Pathological Voice Using Artificial Intelligence Based on the GRBAS Scale, Journal of Voice. Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3), 27. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. Capítulo 6: Kernel Methods User guide: contents. (n.d.). Scikit-learn. https://scikit-learn.org/stable/user_guide.html Espinoza Catalán, Víctor; Zañartu, M (2014). Estudio Dinámico de Parámetros de Filtrado Inverso para el Seguimiento Ambulatorio de la Función Vocal. |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.creativecommons.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
| dc.rights.local.spa.fl_str_mv |
Acceso abierto |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 International Acceso abierto http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.spa.fl_str_mv |
applicaction/pdf |
| dc.coverage.sede.spa.fl_str_mv |
Calle 100 |
| dc.publisher.program.spa.fl_str_mv |
Ingeniería en Mecatrónica |
| dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
| dc.publisher.grantor.spa.fl_str_mv |
Universidad Militar Nueva Granada |
| institution |
Universidad Militar Nueva Granada |
| bitstream.url.fl_str_mv |
https://repository.umng.edu.co/bitstreams/4d39eb38-64db-4d3f-ab5d-307ede434405/download https://repository.umng.edu.co/bitstreams/e9cc8f16-9a66-4e49-b110-0d4c318ccb39/download https://repository.umng.edu.co/bitstreams/56d607dc-b3ce-4dfd-b49b-4ace48ee05b1/download |
| bitstream.checksum.fl_str_mv |
9b09037090a1fbc105c03fa73c7be074 a609d7e369577f685ce98c66b903b91b 47c6a67f2e87fcc27a3f104edc8d2be0 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional UMNG |
| repository.mail.fl_str_mv |
bibliodigital@unimilitar.edu.co |
| _version_ |
1851052834570633216 |
| spelling |
Velasco Vivas, Alexandra ElizabethMoreno Lozano, Jorge StebanIngeniero en MecatrónicaCalvache Mora, Carlos AlbertoSolaque Guzman, Leonardo EnriquePeñuela Calderon, Lina Maria2024-11-13T20:13:38Z2024-11-13T20:13:38Z2023-09-29https://hdl.handle.net/10654/46094instname:Universidad Militar Nueva Granadareponame:Repositorio Institucional Universidad Militar Nueva Granadarepourl:https://repository.umng.edu.coEl Desorden de la Voz Hiperfuncional no fono traumática (NPVH) es una enfermedad de la voz que afecta los músculos de la laringe durante la producción de la voz, lo que causa alteraciones en el funcionamiento vocal y su calidad. La detección temprana de este trastorno permite controlar estas alteraciones y mejorar la calidad de vidas de las personas que lo padecen. El presente trabajó aborda el planteamiento y desarrollo de un sistema de clasificación de pacientes en dos grupos, pacientes sanos y pacientes enfermos con el Desorden de la Voz Hiperfuncional no fono traumática (NPVH). Para lograr esto, se aplicaron técnicas de preprocesamiento de datos, selección de características y se utilizó Support Vector Machine (SVM) como base del algoritmo de clasificación desarrollado en Python. Con el fin obtener resultados satisfactorios, se realizaron pruebas de validación del algoritmo modificando la cantidad de datos de entrada, así como las constantes y funciones de Kernel del SVM. Se utilizaron las herramientas de validación cruzada y la matriz de confusión como indicadores de rendimiento para evaluar las diferentes pruebas realizadas. Se logró alcanzar una precisión validada de hasta el 85% utilizando 11 datos de entrada del algoritmo de un conjunto inicial de 330 datos. Gracias a este proceso, se pudieron determinar los datos más relevantes para diferenciar entre los dos grupos de pacientes.The Non-Phonotraumatic Hyperfunctional Voice Disorder (NPVH) is a voice disorder that affects the muscles of the larynx during voice production, causing disturbances in vocal function and quality. Early detection of this disorder allows for the management of these disturbances and the improvement of the quality of life for affected individuals. This study addresses the design and development of a patient classification system into two groups: healthy patients and patients suffering from Non-Phonotraumatic Hyperfunctional Voice Disorder (NPVH). To achieve this, data preprocessing techniques and feature selection were applied, and Support Vector Machine (SVM) was used as the basis for the classification algorithm developed in Python. In order to obtain satisfactory results, algorithm validation tests were conducted by modifying the input data quantity, as well as SVM kernel constants and functions. Cross-validation tools and the confusion matrix were used as performance indicators to evaluate the various tests conducted. A validated accuracy of up to 85% was achieved using 11 input data in the algorithm from an initial dataset of 330 records. This process enabled the determination of the most relevant data for differentiation between the two groups of patients.1. Introducción 9 1.2 Identificación del problema 11 1.3 Objetivos 12 1.3.1 Objetivo general 12 1.3.2 Objetivos especificos 12 1.4 Metodologia 12 1.5 Antecedentes 13 2. Procesamiento de datos 16 2.1 Recopilación de características escogidas 16 2.2 Comportamiento de los datos 18 2.3 Representación gráfica de los datos 21 2.4 Matriz de gráficos 23 2.5 Test Kolmogórov-Smirnov y COHEN D 24 2.5.1 Test Kolmogórov-Smirnov 24 2.5.2 Cohen-D 26 3. Desarrollo algoritmo clasificador 28 3.1 Comparación y selección del algoritmo 29 3.2 SUPPORT VECTOR MACHINE 31 3.3 Implementación del SVM. 34 3.4 Selección de características. 35 3.4.1 Selección univariable de características. 36 3.4.2 Selección de características Forward. 37 3.4.3 Recursive Feature Elimination. 39 4. Validación 43 4.1 Matriz de Confusión 43 4.2 Tabla comparativa de resultados 46 4.2.1 10 Características iniciales con el test K-S < 5%. 47 4.2.2 26 Características iniciales con el test K-S < 10%. 48 4.2.3 Características seleccionadas con selección univariable. 48 4.2.4 13 Características seleccionadas con selección recursiva. 49 5. Conclusiones y recomendaciones 51 BIBLIOGRAFÍA 54Pregradoapplicaction/pdfspahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 InternationalAcceso abiertohttp://purl.org/coar/access_right/c_abf2Clasificación de la voz entre voces sanas y voces hiperfuncionales no fono traumáticas mediante el uso de algoritmos de inteligencia artificial basado en parámetros ambulatorios de la función vocalVoice classification between healthy voices and non-phonotraumatic hyperfunctional voices using artificial intelligence algorithms based on ambulatory parameters of vocal functionANALISIS DE LA VOZ - INTELIGENCIA ARTIFICIAL - APLICACIONES EN SALUDPARAMETROS VOCALES - MONITOREO AMBULATORIOINTELIGENCIA ARTIFICIAL - DIAGNOSTICO DE TRASTORNOS DE LA VOZMachine LearningNPVHSVMInteligencia ArtificialMedicinaClasificacionMachine LearningNPVHSVMArtificial InteligenceMedicineClassificationTesis/Trabajo de grado - Monografía - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fIngeniería en MecatrónicaFacultad de IngenieríaUniversidad Militar Nueva GranadaDaniel S. Kermany, Michael Goldbaum, Wenjia Cai, ..., M. Anthony Lewis, Huimin Xia, Kang Zhang(2018). Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning(1-5)Muhammad Khalid Khan Niazi PhD, Anil V Parwani MD Metin N Gurcan PhD (2019). Digital pathology and artificial intelligence.(1-6)Ghulam Muhammada,∗, Mansour Alsulaimana, Zulfiqar Ali a,b, Tamer A. Mesallamc,d,e, Mohamed Farahat c,d, Khalid H. Malki c,d, Ahmed Al-nasheri a, Mohamed A. Bencherif a.(2019). Voice pathology detection using interlaced derivative pattern on glottal source excitation.(1-4)Huijun Ding a, Zixiong Gu a, Peng Dai b, Zhou Zhou c, Lu Wang d, Xiaoxiao Wu e (2021). Deep connected attention (DCA) ResNet for robust voice pathology detection and classification.(1-6).Fang S.-H., Tsao Y., Hsiao M.-J., Chen J.-Y., Lai Y.-H., Lin F.-C., Wang C.-T.(2019). Detection of pathological voice using cepstrum vectors: A deep learning approach(634-641).Alhussein M., Muhammad G(2018) Voice pathology detection using deep learning on mobile healthcare framework.Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolutional sequence to sequence learning. arXiv preprint arXiv:1705.03122v2, 2017.Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc V. Le. Massive exploration of neural machine translation architectures. CoRR, abs/1703.03906, 2017.Szolovits, P. (Ed.). (2019). Artificial Intelligence in Medicine (1st ed.).Robert E. Hillman, Cara E. Stepp, Jarrad H. Van Stan, Matías Zañartu and Daryush D. Mehta.(2020). Differences in Daily Voice Use Measures Between Female Patients With Nonphonotraumatic Vocal Hyperfunction and Matched Controls.Hillman, R. E., Stepp, C. E., Van Stan J. H., Zañartu, M., & Mehta, D. D. (2020). An Updated Theoretical Framework for Vocal Hyperfunction. American Journal of Speech-Language Pathology.Stepp, C. E., Lester-Smith, R. A., Abur, D., Daliri, A., Pieter N., J., & Lupiani, A. A. (2017). Evidence for Auditory-Motor Impairment in Individuals With Hyperfunctional Voice Disorders. Journal of Speech, Language, and Hearing Research: JSLHR.Lee, S. H., Yu, J. F., Fang, T. J., & Lee, G. S. (2019). Vocal fold nodules: A disorder of phonation organs or auditory feedback? Clinical otolaryngology: official journal of ENT-UK; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery.Jennifer Oates, Alison Winkworth. (2008) Characterising hyperfunctional voice disorders: Etiology, assessment, treatment and prevention. International Journal of Speech-Language Pathology.Haydar Ankışhana, Sıtkı Çağdaş, İnamb(2021) Voice pathology detection by using the deep network architecture.Cesari U., De Pietro G., Marciano E., Niri C., Sannino G., Verde L. (2018)Voice disorder detection via an m-Health system: Design and results of a clinical study to evaluate Vox4Health.M. Kim, B. Cao, K. An, J. Wang,(2018) Dysarthric speech recognition using convolutional LSTM neural network.Verde L., De Pietro G., Sannino G.(2019)Voice disorder identification by using machine learning techniques.Janet Baker.(2009) The role of psychogenic and psychosocial factors in the development of functional voice disorders.Martins RHG, do Amaral HA, Tavares ELM, Martins MG, Gonc ̧alves TM, Dias NH,(2016) Voice disorders: etiology and diagnosis, Journal of voice 30.S. Russell, P. Norvig and M. Chang, Artificial intelligence, 3rd ed. Harlow, England: Pearson Education Limited, 2016, pp. 10-20.Jarrad H. Van Stan,a,b,c Andrew J. Ortiz,a Juan P. Cortes,a,b Katherine L. Marks,a,c Laura E.(2021) Differences in Daily Voice Use Measures Between Female Patients With Nonphonotraumatic Vocal Hyperfunction and Matched Controls.Robert E. Hillman, Cara E. Stepp, Jarrad H. Van Stan. (2020). An Updated Theoretical Framework for Vocal Hyperfunction.Espinoza, V. M., Mehta, D. D., Van Stan, J. H., Hillman, R. E.,& Zañartu, M. (2017). Uncertainty of glottal airflow estimation during continuous speech using impedance-based inverse filtering of the neck-surface acceleration signal. The Journal of the Acoustical Society of America.Ziethe, A., Petermann, S., Hoppe, U., Greiner, N., Bruning, M.,Bohr, C., & Dollinger, M. (2019). Control of fundamental frequency in dysphonic patients during phonation and speech. Journal of Voice.Cortés, J. P., Espinoza, V. M., Ghassemi, M., Mehta, D. D., Van Stan, J. H., Hillman, R. E., Guttag, J. V., & Zañartu, M. (2018). Ambulatory assessment of phonotraumatic vocal hyperfunction using glottal airflow measures estimated from neck-surface acceleration.Marks, K. L., Lin, J. Z., Burns, J. A., Hron, T. A., Hillman, R. E., & Mehta, D. D. (2020). Estimation of subglottal pressure from neck surface vibration in patients with voice disorders. Journal of Speech, Language, and Hearing Research.Van Stan, J. H., Mehta, D. D., Ortiz, A. J., Burns, J. A., Toles, L. E., Marks, K. L., Vangel, M., Hron, T., Zeitels, S., & Hillman, R. E. (2020b). Differences in weeklong ambulatory vocal behavior between female patients with phonotraumatic lesions and matched controls. Journal of Speech. Language, and Hearing Research.Stepp, C. E., Lester-Smith, R. A., Abur, D., Daliri, A., Pieter Noordzij, J., & Lupiani, A. A. (2017). Evidence for auditory-motor impairment in individuals with hyperfunctional voice disorders. Journal of Speech, Language, and Hearing Research.Jock A. Blackard , Denis J. Dean.(2000) Comparative Accuracies of Artificial Neural Networks and Discriminant Analysis in Predicting Forest Cover Types from Cartographic Variables.M.V. Valueva, N.N. Nagornov, P.A. Lyakhov, G.V. Valuev, N.I. Chervyakov,(2020). Application of the residue number system to reduce hardware costs of the convolutional neural network implementation,Mathematics and Computers in Simulation.Titze, I. R. (2021). Simulation of Vocal Loudness Regulation with Lung Pressure, Vocal Fold Adduction, and Source-Airway Interaction.Sundberg, J. (2018). Flow Glottogram and Subglottal Pressure Relationship in Singers and Untrained Voices.Chang A, Karnell MP. (2004). Perceived phonatory effort and phonation threshold pressure across a prolonged voice loading task: A study of vocal fatigue. J Voice.Guzman M, Calvache C, Romero L, Muñoz D, Olavarria C, Madrid S, et al. Do (2015) Different Semi-Occluded Voice Exercises Affect Vocal Fold Adduction Differently in Subjects Diagnosed with Hyperfunctional Dysphonia.Colton RH, Casper JK, Leonard RJ. (2015). Understanding voice problem: A physiological perspective for diagnosis and treatment: Fourth edition.Titze IR, Švec JG, Popolo PS.(2003) Vocal dose measures: Quantifying accumulated vibration exposure in vocal fold tissues. J Speech, Lang Hear Res.Calvache-Mora CA. (2020) Parámetros vocales para definir la severidad de una disfonía. Revista de Investigación e Innovación en Ciencias de la SaludHillenbrand, J. M., Getty, L. A., Clark, M. J., & Wheeler, K. (1995). Acoustic characteristics of American English vowels. The Journal of the Acoustical Society of America, 97(5), 3099-3111Titze, I. R. (1994). Principles of voice production. Prentice-Hall, Inc.Kent, R. D., & Read, C. (2002). The acoustic analysis of speech. Cengage LearningTitze, I. R., & Story, B. H. (2017). Acoustic analysis of speech. In R. J. Baken & M. J. Orlikoff (Eds.), Clinical measurement of speech and voice (3rd ed., pp. 3-23). Plural Publishing.Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Pearson.Gibbons, J. D., & Chakraborti, S. (2018). Nonparametric statistical inference. CRC Press.Sarika Hegde, Surendra Shetty, Smitha Rai, Thejaswi Dodderi (2019). A Survey on Machine Learning Approaches for Automatic Detection of Voice Disorders,Journal of Voice.Tsuyoshi Kojima, Shintaro Fujimura, Koki Hasebe, Yusuke Okanoue, Otsuki Shuya, Ryohei Yuki, Kazuhiko Shoji, Ryusuke Hori, Yo Kishimoto, Koichi Omori (2021). Objective Assessment of Pathological Voice Using Artificial Intelligence Based on the GRBAS Scale, Journal of Voice.Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3), 27.Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. Capítulo 6: Kernel MethodsUser guide: contents. (n.d.). Scikit-learn. https://scikit-learn.org/stable/user_guide.htmlEspinoza Catalán, Víctor; Zañartu, M (2014). Estudio Dinámico de Parámetros de Filtrado Inverso para el Seguimiento Ambulatorio de la Función Vocal.Calle 100ORIGINALMorenoLozanoJorgeMoreno2023.pdfMorenoLozanoJorgeMoreno2023.pdfTrabajo de gradoapplication/pdf1978993https://repository.umng.edu.co/bitstreams/4d39eb38-64db-4d3f-ab5d-307ede434405/download9b09037090a1fbc105c03fa73c7be074MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83420https://repository.umng.edu.co/bitstreams/e9cc8f16-9a66-4e49-b110-0d4c318ccb39/downloada609d7e369577f685ce98c66b903b91bMD52THUMBNAILMorenoLozanoJorgeMoreno2023.pdf.jpgMorenoLozanoJorgeMoreno2023.pdf.jpgIM Thumbnailimage/jpeg4241https://repository.umng.edu.co/bitstreams/56d607dc-b3ce-4dfd-b49b-4ace48ee05b1/download47c6a67f2e87fcc27a3f104edc8d2be0MD5310654/46094oai:repository.umng.edu.co:10654/460942024-12-08 03:02:19.327http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repository.umng.edu.coRepositorio Institucional UMNGbibliodigital@unimilitar.edu.coRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hLCB0cmFiYWpvIGRlIGdyYWRvIG8gY3VhbHF1aWVyIG90cm8gZG9jdW1lbnRvCmNvbiBjYXLDoWN0ZXIgYWNhZMOpbWljbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sIGhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2bwp5IGRlIHN1cyBhbmV4b3MgZW4gZm9ybWF0byBkaWdpdGFsIG8gZWxlY3Ryw7NuaWNvLgoKRUwgRVNUVURJQU5URSAtIEFVVE9SLCBtYW5pZmllc3RhIHF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuCmVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvcgpsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KCkVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4KY3VhbnRvIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgZW4gY3Vlc3Rpw7NuLCBFTCBFU1RVRElBTlRFIC0gQVVUT1IsCmFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7CnBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCkFkZW3DoXMsICJMQSBVTklWRVJTSURBRCBNSUxJVEFSIE5VRVZBIEdSQU5BREEgY29tbyBpbnN0aXR1Y2nDs24gcXVlIGFsbWFjZW5hLCB5CnJlY29sZWN0YSBkYXRvcyBwZXJzb25hbGVzLCBhdGVuZGllbmRvIGxvIHByZWNlcHR1YWRvIGVuIGxhIGxleSAxNTgxIGRlIDIwMTIgeSBlbApEZWNyZXRvIDEzNzcgZGUgMjAxMywgcXVlIGRlc2Fycm9sbGFuIGVsIHByaW5jaXBpbyBjb25zdGl0dWNpb25hbCBxdWUgdGllbmVuIHRvZGFzCmxhcyBwZXJzb25hcyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIgeSByZWN0aWZpY2FyIHRvZG8gdGlwbyBkZSBpbmZvcm1hY2nDs24gcmVjb2dpZGEKbywgcXVlIGhheWEgc2lkbyBvYmpldG8gZGUgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBlbiBiYW5jb3MgbyBiYXNlcyBkZQpkYXRvcyB5IGVuIGdlbmVyYWwgZW4gYXJjaGl2b3MgZGUgZW50aWRhZGVzIHDDumJsaWNhcyBvIHByaXZhZGFzLCByZXF1aWVyZSBvYnRlbmVyCnN1IGF1dG9yaXphY2nDs24sIHBhcmEgcXVlLCBkZSBtYW5lcmEgbGlicmUsIHByZXZpYSwgZXhwcmVzYSwgdm9sdW50YXJpYSwgeQpkZWJpZGFtZW50ZSBpbmZvcm1hZGEsIHBlcm1pdGEgYSB0b2RhcyBudWVzdHJhcyBkZXBlbmRlbmNpYXMgYWNhZMOpbWljYXMgeQphZG1pbmlzdHJhdGl2YXMsIHJlY29sZWN0YXIsIHJlY2F1ZGFyLCBhbG1hY2VuYXIsIHVzYXIsIGNpcmN1bGFyLCBzdXByaW1pciwgcHJvY2VzYXIsCmNvbXBpbGFyLCBpbnRlcmNhbWJpYXIsIGRhciB0cmF0YW1pZW50bywgYWN0dWFsaXphciB5IGRpc3BvbmVyIGRlIGxvcyBkYXRvcyBxdWUKaGFuIHNpZG8gc3VtaW5pc3RyYWRvcyB5IHF1ZSBzZSBoYW4gaW5jb3Jwb3JhZG8gZW4gbnVlc3RyYXMgYmFzZXMgbyBiYW5jb3MgZGUKZGF0b3MsIG8gZW4gcmVwb3NpdG9yaW9zIGVsZWN0csOzbmljb3MgZGUgdG9kbyB0aXBvIGNvbiBxdWUgY3VlbnRhIGxhIFVuaXZlcnNpZGFkLgoKRXN0YSBpbmZvcm1hY2nDs24gZXMgeSBzZXLDoSB1dGlsaXphZGEgZW4gZWwgZGVzYXJyb2xsbyBkZSBsYXMgZnVuY2lvbmVzIHByb3BpYXMgZGUKbGEgVW5pdmVyc2lkYWQgZW4gc3UgY29uZGljacOzbiBkZSBpbnN0aXR1Y2nDs24gZGUgZWR1Y2FjacOzbiBzdXBlcmlvciwgZGUgZm9ybWEKZGlyZWN0YSBvIGEgdHJhdsOpcyBkZSB0ZXJjZXJvcyIuCgpTaSBzdSBkb2N1bWVudG8gZXMgZGUgYWNjZXNvIHJlc3RyaW5naWRvICwgc3UgdHJhYmFqbyBzZSBkZXBvc2l0YXLDoSBlbiBlbApSZXBvc2l0b3JpbyBVTU5HIMO6bmljYW1lbnRlIGNvbiBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRvY3VtZW50YWwgeSBtZW1vcmlhCmluc3RpdHVjaW9uYWwsIGVudGVuZGllbmRvIHF1ZSwgc2Vyw6EgY29uc3VsdGFkbyBkZSBmb3JtYSBjb250cm9sYWRhIHNvbGFtZW50ZSBwb3IKbGEgY29tdW5pZGFkIE5lb2dyYW5hZGluYS4KClNpIHN1IGRvY3VtZW50byBlcyBkZSBhY2Nlc28gYWJpZXJ0bywgcGFyYSBwZXJtaXRpciBhbCBSZXBvc2l0b3JpbyBVTU5HIHJlcHJvZHVjaXIsCnRyYWR1Y2lyIHkgZGlzdHJpYnVpciBzdSBlbnbDrW8gYSB0cmF2w6lzIGRlbCBtdW5kbywgbmVjZXNpdGFtb3Mgc3UgY29uZm9ybWlkYWQgZW4KbG9zIHNpZ3VpZW50ZXMgdMOpcm1pbm9zOgoKWSBhdXRvcml6YSBhIGxhIFVOSVZFUlNJREFEIE1JTElUQVIgTlVFVkEgR1JBTkFEQSwgcGFyYSBxdWUgZW4gbG9zIHTDqXJtaW5vcwplc3RhYmxlY2lkb3MgZW46CgpMZXkgMjMgZGUgMTk4Mi0gTGV5IDQ0IGRlIDE5OTMgLUxleSAxOTE1IGRlIDIwMTggLSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLQpEZWNyZXRvIDQ2MCBkZSAxOTk1IHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgdXRpbGljZSB5IHVzZSBwb3IKY3VhbHF1aWVyIG1lZGlvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sCmNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlCmRvY3VtZW50by4KCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc8OzbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlCnVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byB2aXJ0dWFsLAplbGVjdHLDs25pY28sIGRpZ2l0YWwsIHkgY3V5byB1c28gc2UgZGUgZW4gcmVkLCBpbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBldGMuLAp5IGVuIGdlbmVyYWwgZW4gY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxvcyBUw6lybWlub3MgeSBjb25kaWNpb25lcywgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwKYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYSBiaWJsaW9kaWdpdGFsQHVuaW1pbGl0YXIuZWR1LmNvCgpBY2VwdGUgVMOpcm1pbm9zIHkgY29uZGljaW9uZXMgc2VsZWNjaW9uYW5kbyAiQWNlcHRvIiB5IHB1bHNhbmRvICJDb21wbGV0YXIgZW52w61vIi4K |
