Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review

Enzyme–substrate interactions play a fundamental role in elucidating synthesis pathways and synthetic biology, as they allow for the understanding of important aspects of a reaction. Establishing the interaction experimentally is a slow and costly process, which is why this problem has been addresse...

Full description

Autores:
Salas-Nuñez, Luis F.
Barrera-Ocampo, Alvaro
Caicedo, Paola A.
Cortes, Natalie
Osorio, Edison H
Villegas-Torres, Maria F.
González Barrios, Andres F.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5807
Acceso en línea:
https://hdl.handle.net/20.500.12313/5807
https://www.mdpi.com/2218-1989/14/3/154
Palabra clave:
Aprendizaje automático
Artificial intelligence
Computational studies
Enzyme classification
Enzyme–substrate interaction
Molecular descriptors
Synthesis routes
Rraining data
Rights
openAccess
License
© 2024 by the authors.
id UNIBAGUE2_ff7e7863d33e18f4504b7d9ce681e5fe
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5807
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review
title Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review
spellingShingle Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review
Aprendizaje automático
Artificial intelligence
Computational studies
Enzyme classification
Enzyme–substrate interaction
Molecular descriptors
Synthesis routes
Rraining data
title_short Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review
title_full Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review
title_fullStr Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review
title_full_unstemmed Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review
title_sort Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review
dc.creator.fl_str_mv Salas-Nuñez, Luis F.
Barrera-Ocampo, Alvaro
Caicedo, Paola A.
Cortes, Natalie
Osorio, Edison H
Villegas-Torres, Maria F.
González Barrios, Andres F.
dc.contributor.author.none.fl_str_mv Salas-Nuñez, Luis F.
Barrera-Ocampo, Alvaro
Caicedo, Paola A.
Cortes, Natalie
Osorio, Edison H
Villegas-Torres, Maria F.
González Barrios, Andres F.
dc.subject.armarc.none.fl_str_mv Aprendizaje automático
topic Aprendizaje automático
Artificial intelligence
Computational studies
Enzyme classification
Enzyme–substrate interaction
Molecular descriptors
Synthesis routes
Rraining data
dc.subject.proposal.eng.fl_str_mv Artificial intelligence
Computational studies
Enzyme classification
Enzyme–substrate interaction
Molecular descriptors
Synthesis routes
Rraining data
description Enzyme–substrate interactions play a fundamental role in elucidating synthesis pathways and synthetic biology, as they allow for the understanding of important aspects of a reaction. Establishing the interaction experimentally is a slow and costly process, which is why this problem has been addressed using computational methods such as molecular dynamics, molecular docking, and Monte Carlo simulations. Nevertheless, this type of method tends to be computationally slow when dealing with a large search space. Therefore, in recent years, methods based on artificial intelligence, such as support vector machines, neural networks, or decision trees, have been implemented, significantly reducing the computing time and covering vast search spaces. These methods significantly reduce the computation time and cover broad search spaces, rapidly reducing the number of interacting candidates, as they allow repetitive processes to be automated and patterns to be extracted, are adaptable, and have the capacity to handle large amounts of data. This article analyzes these artificial intelligence-based approaches, presenting their common structure, advantages, disadvantages, limitations, challenges, and future perspectives.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-03
dc.date.accessioned.none.fl_str_mv 2025-10-17T23:24:53Z
dc.date.available.none.fl_str_mv 2025-10-17T23:24:53Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Salas-Nuñez, L., Barrera-Ocampo, A., Caicedo, P., Cortes, N., Osorio, E., Villegas-Torres, M. y González Barrios, A. (2024). Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review. Metabolites, 14(3). DOI: 10.3390/metabo14030154
dc.identifier.doi.none.fl_str_mv 10.3390/metabo14030154
dc.identifier.issn.none.fl_str_mv 22181989
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5807
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/2218-1989/14/3/154
identifier_str_mv Salas-Nuñez, L., Barrera-Ocampo, A., Caicedo, P., Cortes, N., Osorio, E., Villegas-Torres, M. y González Barrios, A. (2024). Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review. Metabolites, 14(3). DOI: 10.3390/metabo14030154
10.3390/metabo14030154
22181989
url https://hdl.handle.net/20.500.12313/5807
https://www.mdpi.com/2218-1989/14/3/154
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationissue.none.fl_str_mv 3
dc.relation.citationvolume.none.fl_str_mv 14
dc.relation.ispartofjournal.none.fl_str_mv Metabolites
dc.relation.references.none.fl_str_mv Stephanopoulos, G. Synthetic Biology and Metabolic Engineering. ACS Synth. Biol. 2012, 1, 514–525
García-Granados, R.; Lerma-Escalera, J.A.; Morones-Ramírez, J.R. Metabolic Engineering and Synthetic Biology: Synergies, Future, and Challenges. Front. Bioeng. Biotechnol. 2019, 7, 36.
Choi, K.R.; Jang, W.D.; Yang, D.; Cho, J.S.; Park, D.; Lee, S.Y. Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering. Trends Biotechnol. 2019, 37, 817–837
Mazurenko, S.; Prokop, Z.; Damborsky, J. Machine Learning in Enzyme Engineering. ACS Catal. 2020, 10, 1210–1223
Banerjee, D.; Jindra, M.A.; Linot, A.J.; Pfleger, B.F.; Maranas, C.D. EnZymClass: Substrate Specificity Prediction Tool of Plant Acyl-ACP Thioesterases Based on Ensemble Learning. Curr. Res. Biotechnol. 2022, 4, 1–9
Feehan, R.; Montezano, D.; Slusky, J.S.G. Machine Learning for Enzyme Engineering, Selection and Design. Protein Eng. Des. Sel. 2021, 34, gzab019.
Robinson, S.L.; Smith, M.D.; Richman, J.E.; Aukema, K.G.; Wackett, L.P. Machine Learning-Based Prediction of Activity and Substrate Specificity for OleA Enzymes in the Thiolase Superfamily. Synth. Biol. 2020, 5, ysaa004.
Du, K.-L.; Swamy, M.N.S. Fundamentals of Machine Learning. In Neural Networks and Statistical Learning; Du, K.-L., Swamy, M.N.S., Eds.; Springer: London, UK, 2014; pp. 15–65. ISBN 978-1-4471-5571-3.
Trappenberg, T. Fundamentals of Machine Learning; Oxford University Press: Oxford, UK, 2019; ISBN 9780198828044.
LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444.
Janiesch, C.; Zschech, P.; Heinrich, K. Machine Learning and Deep Learning. Electron. Mark. 2021, 31, 685–695
Pereira, F.C.; Borysov, S.S. Chapter 2—Machine Learning Fundamentals. In Mobility Patterns, Big Data and Transport Analytics; Antoniou, C., Dimitriou, L., Pereira, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 9–29. ISBN 978-0-12-812970-8.
Chowdhary, P. Fundamentals of Artificial Intelligence; Springer: New Delhi, India, 2020; ISBN 978-81-322-3970-3
Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010
Darwiche, A. Modeling and Reasoning with Bayesian Networks; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780521884389.
Ramos, F.T.; Cozman, F.G. Anytime Anyspace Probabilistic Inference. Int. J. Approx. Reason. 2005, 38, 53–80.
Somvanshi, M.; Chavan, P.; Tambade, S.; Shinde, S.V. A Review of Machine Learning Techniques Using Decision Tree and Support Vector Machine. In Proceedings of the 2016 International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 12–13 August 2016; pp. 1–7
Mou, Z.; Eakes, J.; Cooper, C.J.; Foster, C.M.; Standaert, R.F.; Podar, M.; Doktycz, M.J.; Parks, J.M. Machine Learning-Based Prediction of Enzyme Substrate Scope: Application to Bacterial Nitrilases. Proteins Struct. Funct. Bioinform. 2021, 89, 336–347.
Amin, S.R.; Erdin, S.; Ward, R.M.; Lua, R.C.; Lichtarge, O. Prediction and Experimental Validation of Enzyme Substrate Specificity in Protein Structures. Proc. Natl. Acad. Sci. USA 2013, 110, E4195–E4202.
Kroll, A.; Ranjan, S.; Engqvist, M.K.M.; Lercher, M.J. A General Model to Predict Small Molecule Substrates of Enzymes Based on Machine and Deep Learning. Nat. Commun. 2023, 14, 2787.
Hammoudeh, Z.; Lowd, D. Training Data Influence Analysis and Estimation: A Survey. arXiv 2023, arXiv:2212.04612.
Paullada, A.; Raji, I.D.; Bender, E.M.; Denton, E.; Hanna, A. Data and Its (Dis)Contents: A Survey of Dataset Development and Use in Machine Learning Research. Patterns 2021, 2, 100336.
Gudivada, V.N.; Irfan, M.T.; Fathi, E.; Rao, D.L. Chapter 5—Cognitive Analytics: Going Beyond Big Data Analytics and Machine Learning. In Handbook of Statistics; Gudivada, V.N., Raghavan, V.V., Govindaraju, V., Rao, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 35, pp. 169–205. ISBN 0169-7161.
Chen, H.; Li, T.; Fan, X.; Luo, C. Feature Selection for Imbalanced Data Based on Neighborhood Rough Sets. Inf. Sci. 2019, 483, 1–20
Kim, J.; Kim, J. The Impact of Imbalanced Training Data on Machine Learning for Author Name Disambiguation. Scientometrics 2018, 117, 511–526.
Narwane, S.; Sawarkar, S. Machine Learning and Class Imbalance: A Literature Survey. Ind. Eng. J. 2019, 12.
Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao, M.; Ranzato, M.; Senior, A.; Tucker, P.; Yang, K.; et al. Large Scale Distributed Deep Networks. In Advances in Neural Information Processing Systems; Pereira, F., Burges, C.J., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25.
Li, F.; Yuan, L.; Lu, H.; Li, G.; Chen, Y.; Engqvist, M.K.M.; Kerkhoven, E.J.; Nielsen, J. Deep Learning-Based Kcat Prediction Enables Improved Enzyme-Constrained Model Reconstruction. Nat. Catal. 2022, 5, 662–672
Koutsandreas, T.; Pilalis, E.; Chatziioannou, A. A Machine-Learning Approach for Theof Enzymatic Activity of Proteins in Metagenomic Samples. In Artificial Intelligence Applications and Innovations, Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations, Paphos, Cyprus, 30 September–2 October 2013; Papadopoulos, H., Andreou, A.S., Iliadis, L., Maglogiannis, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 81–87.
Apweiler, R.; Bairoch, A.; Wu, C.H. Protein Sequence Databases. Curr. Opin. Chem. Biol. 2004, 8, 76–80
Consortium, T.U. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531
wwPDB consortium. Protein Data Bank: The Single Global Archive for 3D Macromolecular Structure Data. Nucleic Acids Res. 2019, 47, D520–D528.
Caspi, R.; Billington, R.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Midford, P.E.; Ong, W.K.; Paley, S.; Subhraveti, P.; Karp, P.D. The MetaCyc Database of Metabolic Pathways and Enzymes—A 2019 Update. Nucleic Acids Res. 2020, 48, D445–D453.
Chang, A.; Jeske, L.; Ulbrich, S.; Hofmann, J.; Koblitz, J.; Schomburg, I.; Neumann-Schaal, M.; Jahn, D.; Schomburg, D. BRENDA, the ELIXIR Core Data Resource in 2021: New Developments and Updates. Nucleic Acids Res. 2021, 49, D498–D508.
Kanehisa, M.; Sato, Y.; Kawashima, M. KEGG Mapping Tools for Uncovering Hidden Features in Biological Data. Protein Sci. 2022, 31, 47–53.
Pruitt, K.D.; Tatusova, T.; Brown, G.R.; Maglott, D.R. NCBI Reference Sequences (RefSeq): Current Status, New Features and Genome Annotation Policy. Nucleic Acids Res. 2012, 40, D130–D135.
Karp, P.D.; Riley, M.; Saier, M.; Paulsen, I.T.; Paley, S.M.; Pellegrini-Toole, A. The EcoCyc and MetaCyc Databases. Nucleic Acids Res. 2000, 28, 56–59
Taheri, K.; Moradi, H.; Tavassolipour, M. Collaboration Graph for Feature Set Partitioning in Data Classification. Expert Syst. Appl. 2023, 213, 118988.
Cordeiro de Amorim, R. Unsupervised Feature Selection for Large Data Sets. Pattern Recognit. Lett. 2019, 128, 183–189.
Wang, J.; Yang, B.; Revote, J.; Leier, A.; Marquez-Lago, T.T.; Webb, G.; Song, J.; Chou, K.-C.; Lithgow, T. POSSUM: A Bioinformatics Toolkit for Generating Numerical Sequence Feature Descriptors Based on PSSM Profiles. Bioinformatics 2017, 33, 2756–2758.
Dong, L.; Wang, R.; Chen, D. Incremental Feature Selection with Fuzzy Rough Sets for Dynamic Data Sets. Fuzzy Sets Syst. 2023, 467, 108503
Parthasarathi, R.; Dhawan, A. Chapter 5—In Silico Approaches for Predictive Toxicology. In In Vitro Toxicology; Dhawan, A., Kwon, S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 91–109. ISBN 978-0-12-804667-8.
Chandrasekaran, B.; Abed, S.N.; Al-Attraqchi, O.; Kuche, K.; Tekade, R.K. Chapter 21—Computer-Aided Prediction of Pharmacokinetic (ADMET) Properties. In Dosage Form Design Parameters; Tekade, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 731–755. ISBN 978-0-12-814421-3.
Ben-Hur, A.; Ong, C.S.; Sonnenburg, S.; Schölkopf, B.; Rätsch, G. Support Vector Machines and Kernels for Computational Biology. PLoS Comput. Biol. 2008, 4, e1000173.
Yu, C.-Y.; Chou, L.-C.; Chang, D.T.-H. Predicting Protein-Protein Interactions in Unbalanced Data Using the Primary Structure of Proteins. BMC Bioinform. 2010, 11, 167.
Saigo, H.; Vert, J.-P.; Ueda, N.; Akutsu, T. Protein Homology Detection Using String Alignment Kernels. Bioinformatics 2004, 20, 1682–1689.
Yang, K.K.; Wu, Z.; Arnold, F.H. Machine-Learning-Guided Directed Evolution for Protein Engineering. Nat. Methods 2019, 16, 687–694
Çamoǧlu, O.; Can, T.; Singh, A.K.; Wang, Y.-F. Decision Tree Based Information Integration for Automated Protein Classification. J. Bioinform. Comput. Biol. 2005, 3, 717–742.
Kroll, A.; Engqvist, M.; Heckmann, D.; Lercher, M. Deep Learning Allows Genome-Scale Prediction of Michaelis Constants from Structural Features. PLoS Biol. 2021, 19, e3001402
Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph Neural Networks: A Review of Methods and Applications. AI Open 2020, 1, 57–81.
Yang, K.; Swanson, K.; Jin, W.; Coley, C.; Eiden, P.; Gao, H.; Guzman-Perez, A.; Hopper, T.; Kelley, B.; Mathea, M.; et al. Analyzing Learned Molecular Representations for Property Prediction. J. Chem. Inf. Model. 2019, 59, 3370–3388.
Prince, S.J.D. Understanding Deep Learning; The MIT Press: Cambridge, MA, USA, 2023; ISBN 9780262048644.
Alaskar, H.; Saba, T. Machine Learning and Deep Learning: A Comparative Review. In Proceedings of Integrated Intelligence Enable Networks and Computing; Springer: Singapore, 2021; pp. 143–150. ISBN 978-981-33-6306-9.
Deshpande, M.; Karypis, G. Evaluation of Techniques for Classifying Biological Sequences. In Proceedings of the Advances in Knowledge Discovery and Data Mining, Tainan, Taiwan, 13–16 May 2014; Chen, M.-S., Yu, P.S., Liu, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 417–431.
Xing, Z.; Pei, J.; Keogh, E. A Brief Survey on Sequence Classification. SIGKDD Explor. Newsl. 2010, 12, 40–48
Goldman, S.; Das, R.; Yang, K.K.; Coley, C.W. Machine Learning Modeling of Family Wide Enzyme-Substrate Specificity Screens. PLoS Comput. Biol. 2022, 18, e1009853.
Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate Prediction of Protein Structures and Interactions Using a Three-Track Neural Network. Science 2021, 373, 871–876
Upadhyay, V.; Boorla, V.S.; Maranas, C.D. Rank-Ordering of Known Enzymes as Starting Points for Re-Engineering Novel Substrate Activity Using a Convolutional Neural Network. Metab. Eng. 2023, 78, 171–182
Costa, E.P.; Lorena, A.C.; Carvalho, A.C.P.L.F.; Freitas, A.A.; Holden, N. Comparing Several Approaches for Hierarchical Classification of Proteins with Decision Trees. In Advances in Bioinformatics and Computational Biology, Proceedings of the Second Brazilian Symposium on Bioinformatics, BSB 2007, Angra dos Reis, Brazil, 29–31 August 2007; Sagot, M.-F., Walter, M.E.M.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 126–137.
Ebrahimi, M. Sequence-Based Prediction of Enzyme Thermostability Through Bioinformatics Algorithms. Curr. Bioinform. 2010, 5, 195–203.
Si, S.; Zhang, H.; Keerthi, S.S.; Mahajan, D.; Dhillon, I.S.; Hsieh, C.-J. Gradient Boosted Decision Trees for High Dimensional Sparse Output. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 3182–3190.
Feehan, R.; Franklin, M.W.; Slusky, J.S.G. Machine Learning Differentiates Enzymatic and Non-Enzymatic Metals in Proteins. Nat. Commun. 2021, 12, 3712.
Leslie, C.; Eskin, E.; Noble, W.S. The spectrum kernel: A string kernel for svm protein classification. In Biocomputing; World Scientific Publishing: Singapore, 2002; pp. 564–575.
Muda, H.M.; Saad, P.; Othman, R.M. Remote Protein Homology Detection and Fold Recognition Using Two-Layer Support Vector Machine Classifiers. Comput. Biol. Med. 2011, 41, 687–699.
Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53.
Mittal, R.; Arora, S.; Bansal, V.; Bhatia, M.P.S. An Extensive Study on Deep Learning: Techniques, Applications. Arch. Comput. Methods Eng. 2021, 28, 4471–4485
Li, S.; Wan, F.; Shu, H.; Jiang, T.; Zhao, D.; Zeng, J. MONN: A Multi-Objective Neural Network for Predicting Compound-Protein Interactions and Affinities. Cell Syst. 2020, 10, 308–322.e11.
Wu, K.E.; Yang, K.K.; van den Berg, R.; Alamdari, S.; Zou, J.Y.; Lu, A.X.; Amini, A.P. Protein Structure Generation via Folding Diffusion. Nat. Commun. 2024, 15, 1059.
Guo, Z.; Liu, J.; Wang, Y.; Chen, M.; Wang, D.; Xu, D.; Cheng, J. Diffusion Models in Bioinformatics: A New Wave of Deep Learning Revolution in Action. arXiv 2023, arXiv:2302.10907.
Corso, G.; Stärk, H.; Bowen, J.; Barzilay, R.; Jaakkola, T. DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking. arXiv 2023, arXiv:2210.01776.
Watson, J.L.; Juergens, D.; Bennett, N.R.; Trippe, B.L.; Yim, J.; Eisenach, H.E.; Ahern, W.; Borst, A.J.; Ragotte, R.J.; Milles, L.F.; et al. De Novo Design of Protein Structure and Function with RFdiffusion. Nature 2023, 620, 1089–1100.
Canela, M.Á.; Alegre, I.; Ibarra, A. Out-of-Sample Validation. In Quantitative Methods for Management: A Practical Approach; Springer International Publishing: Cham, Switzerland, 2019; pp. 83–89. ISBN 978-3-030-17554-2.
Repecka, D.; Jauniskis, V.; Karpus, L.; Rembeza, E.; Rokaitis, I.; Zrimec, J.; Poviloniene, S.; Laurynenas, A.; Viknander, S.; Abuajwa, W.; et al. Expanding Functional Protein Sequence Spaces Using Generative Adversarial Networks. Nat. Mach. Intell. 2021, 3, 324–333.
Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation. In Advances in Artificial Intelligence, Proceedings of the AI 2006: Advances in Artificial Intelligence, Hobart, Australia, 4–8 December 2006; Sattar, A., Kang, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1015–1021.
dc.rights.eng.fl_str_mv © 2024 by the authors.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv © 2024 by the authors.
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.place.none.fl_str_mv Suiza
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/ee750d3e-446f-4fe1-b2aa-b51b4fc3c7ed/download
https://repositorio.unibague.edu.co/bitstreams/d81e1b1c-c40c-4601-b73d-4cc8ba7ae61a/download
https://repositorio.unibague.edu.co/bitstreams/c2c85e43-af90-4ea3-af5c-3546b4e08f05/download
https://repositorio.unibague.edu.co/bitstreams/e1bd6601-0db3-49b6-8f18-87ca1b28e77f/download
bitstream.checksum.fl_str_mv 2fa3e590786b9c0f3ceba1b9656b7ac3
26534add8b0bd66790d3b18e52e267c1
b5624d39030e67e1e36de46d45e8d657
82d4b66a9f732e7d21ea0942525efc90
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059993495732224
spelling Salas-Nuñez, Luis F.13ef3bff-84c8-4225-821a-36450b94a55a-1Barrera-Ocampo, Alvaro523fb227-3b4d-4781-9e26-3de0f8c13cea-1Caicedo, Paola A.2ab1bc0c-d668-4bd3-90c6-664c5bda174f-1Cortes, Nataliece9c654f-72b9-4163-a73a-c1c71903ba7e-1Osorio, Edison H087e0c0b-d49f-4915-b7fa-272d785c30af-1Villegas-Torres, Maria F.cc6dce60-c296-4a92-9343-bc93bd09ecb1-1González Barrios, Andres F.12232898-90c2-4399-9193-98b116a31116-12025-10-17T23:24:53Z2025-10-17T23:24:53Z2024-03Enzyme–substrate interactions play a fundamental role in elucidating synthesis pathways and synthetic biology, as they allow for the understanding of important aspects of a reaction. Establishing the interaction experimentally is a slow and costly process, which is why this problem has been addressed using computational methods such as molecular dynamics, molecular docking, and Monte Carlo simulations. Nevertheless, this type of method tends to be computationally slow when dealing with a large search space. Therefore, in recent years, methods based on artificial intelligence, such as support vector machines, neural networks, or decision trees, have been implemented, significantly reducing the computing time and covering vast search spaces. These methods significantly reduce the computation time and cover broad search spaces, rapidly reducing the number of interacting candidates, as they allow repetitive processes to be automated and patterns to be extracted, are adaptable, and have the capacity to handle large amounts of data. This article analyzes these artificial intelligence-based approaches, presenting their common structure, advantages, disadvantages, limitations, challenges, and future perspectives.application/pdfSalas-Nuñez, L., Barrera-Ocampo, A., Caicedo, P., Cortes, N., Osorio, E., Villegas-Torres, M. y González Barrios, A. (2024). Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review. Metabolites, 14(3). DOI: 10.3390/metabo1403015410.3390/metabo1403015422181989https://hdl.handle.net/20.500.12313/5807https://www.mdpi.com/2218-1989/14/3/154engMultidisciplinary Digital Publishing Institute (MDPI)Suiza314MetabolitesStephanopoulos, G. Synthetic Biology and Metabolic Engineering. ACS Synth. Biol. 2012, 1, 514–525García-Granados, R.; Lerma-Escalera, J.A.; Morones-Ramírez, J.R. Metabolic Engineering and Synthetic Biology: Synergies, Future, and Challenges. Front. Bioeng. Biotechnol. 2019, 7, 36.Choi, K.R.; Jang, W.D.; Yang, D.; Cho, J.S.; Park, D.; Lee, S.Y. Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering. Trends Biotechnol. 2019, 37, 817–837Mazurenko, S.; Prokop, Z.; Damborsky, J. Machine Learning in Enzyme Engineering. ACS Catal. 2020, 10, 1210–1223Banerjee, D.; Jindra, M.A.; Linot, A.J.; Pfleger, B.F.; Maranas, C.D. EnZymClass: Substrate Specificity Prediction Tool of Plant Acyl-ACP Thioesterases Based on Ensemble Learning. Curr. Res. Biotechnol. 2022, 4, 1–9Feehan, R.; Montezano, D.; Slusky, J.S.G. Machine Learning for Enzyme Engineering, Selection and Design. Protein Eng. Des. Sel. 2021, 34, gzab019.Robinson, S.L.; Smith, M.D.; Richman, J.E.; Aukema, K.G.; Wackett, L.P. Machine Learning-Based Prediction of Activity and Substrate Specificity for OleA Enzymes in the Thiolase Superfamily. Synth. Biol. 2020, 5, ysaa004.Du, K.-L.; Swamy, M.N.S. Fundamentals of Machine Learning. In Neural Networks and Statistical Learning; Du, K.-L., Swamy, M.N.S., Eds.; Springer: London, UK, 2014; pp. 15–65. ISBN 978-1-4471-5571-3.Trappenberg, T. Fundamentals of Machine Learning; Oxford University Press: Oxford, UK, 2019; ISBN 9780198828044.LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444.Janiesch, C.; Zschech, P.; Heinrich, K. Machine Learning and Deep Learning. Electron. Mark. 2021, 31, 685–695Pereira, F.C.; Borysov, S.S. Chapter 2—Machine Learning Fundamentals. In Mobility Patterns, Big Data and Transport Analytics; Antoniou, C., Dimitriou, L., Pereira, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 9–29. ISBN 978-0-12-812970-8.Chowdhary, P. Fundamentals of Artificial Intelligence; Springer: New Delhi, India, 2020; ISBN 978-81-322-3970-3Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010Darwiche, A. Modeling and Reasoning with Bayesian Networks; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780521884389.Ramos, F.T.; Cozman, F.G. Anytime Anyspace Probabilistic Inference. Int. J. Approx. Reason. 2005, 38, 53–80.Somvanshi, M.; Chavan, P.; Tambade, S.; Shinde, S.V. A Review of Machine Learning Techniques Using Decision Tree and Support Vector Machine. In Proceedings of the 2016 International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 12–13 August 2016; pp. 1–7Mou, Z.; Eakes, J.; Cooper, C.J.; Foster, C.M.; Standaert, R.F.; Podar, M.; Doktycz, M.J.; Parks, J.M. Machine Learning-Based Prediction of Enzyme Substrate Scope: Application to Bacterial Nitrilases. Proteins Struct. Funct. Bioinform. 2021, 89, 336–347.Amin, S.R.; Erdin, S.; Ward, R.M.; Lua, R.C.; Lichtarge, O. Prediction and Experimental Validation of Enzyme Substrate Specificity in Protein Structures. Proc. Natl. Acad. Sci. USA 2013, 110, E4195–E4202.Kroll, A.; Ranjan, S.; Engqvist, M.K.M.; Lercher, M.J. A General Model to Predict Small Molecule Substrates of Enzymes Based on Machine and Deep Learning. Nat. Commun. 2023, 14, 2787.Hammoudeh, Z.; Lowd, D. Training Data Influence Analysis and Estimation: A Survey. arXiv 2023, arXiv:2212.04612.Paullada, A.; Raji, I.D.; Bender, E.M.; Denton, E.; Hanna, A. Data and Its (Dis)Contents: A Survey of Dataset Development and Use in Machine Learning Research. Patterns 2021, 2, 100336.Gudivada, V.N.; Irfan, M.T.; Fathi, E.; Rao, D.L. Chapter 5—Cognitive Analytics: Going Beyond Big Data Analytics and Machine Learning. In Handbook of Statistics; Gudivada, V.N., Raghavan, V.V., Govindaraju, V., Rao, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 35, pp. 169–205. ISBN 0169-7161.Chen, H.; Li, T.; Fan, X.; Luo, C. Feature Selection for Imbalanced Data Based on Neighborhood Rough Sets. Inf. Sci. 2019, 483, 1–20Kim, J.; Kim, J. The Impact of Imbalanced Training Data on Machine Learning for Author Name Disambiguation. Scientometrics 2018, 117, 511–526.Narwane, S.; Sawarkar, S. Machine Learning and Class Imbalance: A Literature Survey. Ind. Eng. J. 2019, 12.Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao, M.; Ranzato, M.; Senior, A.; Tucker, P.; Yang, K.; et al. Large Scale Distributed Deep Networks. In Advances in Neural Information Processing Systems; Pereira, F., Burges, C.J., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25.Li, F.; Yuan, L.; Lu, H.; Li, G.; Chen, Y.; Engqvist, M.K.M.; Kerkhoven, E.J.; Nielsen, J. Deep Learning-Based Kcat Prediction Enables Improved Enzyme-Constrained Model Reconstruction. Nat. Catal. 2022, 5, 662–672Koutsandreas, T.; Pilalis, E.; Chatziioannou, A. A Machine-Learning Approach for Theof Enzymatic Activity of Proteins in Metagenomic Samples. In Artificial Intelligence Applications and Innovations, Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations, Paphos, Cyprus, 30 September–2 October 2013; Papadopoulos, H., Andreou, A.S., Iliadis, L., Maglogiannis, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 81–87.Apweiler, R.; Bairoch, A.; Wu, C.H. Protein Sequence Databases. Curr. Opin. Chem. Biol. 2004, 8, 76–80Consortium, T.U. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531wwPDB consortium. Protein Data Bank: The Single Global Archive for 3D Macromolecular Structure Data. Nucleic Acids Res. 2019, 47, D520–D528.Caspi, R.; Billington, R.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Midford, P.E.; Ong, W.K.; Paley, S.; Subhraveti, P.; Karp, P.D. The MetaCyc Database of Metabolic Pathways and Enzymes—A 2019 Update. Nucleic Acids Res. 2020, 48, D445–D453.Chang, A.; Jeske, L.; Ulbrich, S.; Hofmann, J.; Koblitz, J.; Schomburg, I.; Neumann-Schaal, M.; Jahn, D.; Schomburg, D. BRENDA, the ELIXIR Core Data Resource in 2021: New Developments and Updates. Nucleic Acids Res. 2021, 49, D498–D508.Kanehisa, M.; Sato, Y.; Kawashima, M. KEGG Mapping Tools for Uncovering Hidden Features in Biological Data. Protein Sci. 2022, 31, 47–53.Pruitt, K.D.; Tatusova, T.; Brown, G.R.; Maglott, D.R. NCBI Reference Sequences (RefSeq): Current Status, New Features and Genome Annotation Policy. Nucleic Acids Res. 2012, 40, D130–D135.Karp, P.D.; Riley, M.; Saier, M.; Paulsen, I.T.; Paley, S.M.; Pellegrini-Toole, A. The EcoCyc and MetaCyc Databases. Nucleic Acids Res. 2000, 28, 56–59Taheri, K.; Moradi, H.; Tavassolipour, M. Collaboration Graph for Feature Set Partitioning in Data Classification. Expert Syst. Appl. 2023, 213, 118988.Cordeiro de Amorim, R. Unsupervised Feature Selection for Large Data Sets. Pattern Recognit. Lett. 2019, 128, 183–189.Wang, J.; Yang, B.; Revote, J.; Leier, A.; Marquez-Lago, T.T.; Webb, G.; Song, J.; Chou, K.-C.; Lithgow, T. POSSUM: A Bioinformatics Toolkit for Generating Numerical Sequence Feature Descriptors Based on PSSM Profiles. Bioinformatics 2017, 33, 2756–2758.Dong, L.; Wang, R.; Chen, D. Incremental Feature Selection with Fuzzy Rough Sets for Dynamic Data Sets. Fuzzy Sets Syst. 2023, 467, 108503Parthasarathi, R.; Dhawan, A. Chapter 5—In Silico Approaches for Predictive Toxicology. In In Vitro Toxicology; Dhawan, A., Kwon, S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 91–109. ISBN 978-0-12-804667-8.Chandrasekaran, B.; Abed, S.N.; Al-Attraqchi, O.; Kuche, K.; Tekade, R.K. Chapter 21—Computer-Aided Prediction of Pharmacokinetic (ADMET) Properties. In Dosage Form Design Parameters; Tekade, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 731–755. ISBN 978-0-12-814421-3.Ben-Hur, A.; Ong, C.S.; Sonnenburg, S.; Schölkopf, B.; Rätsch, G. Support Vector Machines and Kernels for Computational Biology. PLoS Comput. Biol. 2008, 4, e1000173.Yu, C.-Y.; Chou, L.-C.; Chang, D.T.-H. Predicting Protein-Protein Interactions in Unbalanced Data Using the Primary Structure of Proteins. BMC Bioinform. 2010, 11, 167.Saigo, H.; Vert, J.-P.; Ueda, N.; Akutsu, T. Protein Homology Detection Using String Alignment Kernels. Bioinformatics 2004, 20, 1682–1689.Yang, K.K.; Wu, Z.; Arnold, F.H. Machine-Learning-Guided Directed Evolution for Protein Engineering. Nat. Methods 2019, 16, 687–694Çamoǧlu, O.; Can, T.; Singh, A.K.; Wang, Y.-F. Decision Tree Based Information Integration for Automated Protein Classification. J. Bioinform. Comput. Biol. 2005, 3, 717–742.Kroll, A.; Engqvist, M.; Heckmann, D.; Lercher, M. Deep Learning Allows Genome-Scale Prediction of Michaelis Constants from Structural Features. PLoS Biol. 2021, 19, e3001402Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph Neural Networks: A Review of Methods and Applications. AI Open 2020, 1, 57–81.Yang, K.; Swanson, K.; Jin, W.; Coley, C.; Eiden, P.; Gao, H.; Guzman-Perez, A.; Hopper, T.; Kelley, B.; Mathea, M.; et al. Analyzing Learned Molecular Representations for Property Prediction. J. Chem. Inf. Model. 2019, 59, 3370–3388.Prince, S.J.D. Understanding Deep Learning; The MIT Press: Cambridge, MA, USA, 2023; ISBN 9780262048644.Alaskar, H.; Saba, T. Machine Learning and Deep Learning: A Comparative Review. In Proceedings of Integrated Intelligence Enable Networks and Computing; Springer: Singapore, 2021; pp. 143–150. ISBN 978-981-33-6306-9.Deshpande, M.; Karypis, G. Evaluation of Techniques for Classifying Biological Sequences. In Proceedings of the Advances in Knowledge Discovery and Data Mining, Tainan, Taiwan, 13–16 May 2014; Chen, M.-S., Yu, P.S., Liu, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 417–431.Xing, Z.; Pei, J.; Keogh, E. A Brief Survey on Sequence Classification. SIGKDD Explor. Newsl. 2010, 12, 40–48Goldman, S.; Das, R.; Yang, K.K.; Coley, C.W. Machine Learning Modeling of Family Wide Enzyme-Substrate Specificity Screens. PLoS Comput. Biol. 2022, 18, e1009853.Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate Prediction of Protein Structures and Interactions Using a Three-Track Neural Network. Science 2021, 373, 871–876Upadhyay, V.; Boorla, V.S.; Maranas, C.D. Rank-Ordering of Known Enzymes as Starting Points for Re-Engineering Novel Substrate Activity Using a Convolutional Neural Network. Metab. Eng. 2023, 78, 171–182Costa, E.P.; Lorena, A.C.; Carvalho, A.C.P.L.F.; Freitas, A.A.; Holden, N. Comparing Several Approaches for Hierarchical Classification of Proteins with Decision Trees. In Advances in Bioinformatics and Computational Biology, Proceedings of the Second Brazilian Symposium on Bioinformatics, BSB 2007, Angra dos Reis, Brazil, 29–31 August 2007; Sagot, M.-F., Walter, M.E.M.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 126–137.Ebrahimi, M. Sequence-Based Prediction of Enzyme Thermostability Through Bioinformatics Algorithms. Curr. Bioinform. 2010, 5, 195–203.Si, S.; Zhang, H.; Keerthi, S.S.; Mahajan, D.; Dhillon, I.S.; Hsieh, C.-J. Gradient Boosted Decision Trees for High Dimensional Sparse Output. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 3182–3190.Feehan, R.; Franklin, M.W.; Slusky, J.S.G. Machine Learning Differentiates Enzymatic and Non-Enzymatic Metals in Proteins. Nat. Commun. 2021, 12, 3712.Leslie, C.; Eskin, E.; Noble, W.S. The spectrum kernel: A string kernel for svm protein classification. In Biocomputing; World Scientific Publishing: Singapore, 2002; pp. 564–575.Muda, H.M.; Saad, P.; Othman, R.M. Remote Protein Homology Detection and Fold Recognition Using Two-Layer Support Vector Machine Classifiers. Comput. Biol. Med. 2011, 41, 687–699.Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53.Mittal, R.; Arora, S.; Bansal, V.; Bhatia, M.P.S. An Extensive Study on Deep Learning: Techniques, Applications. Arch. Comput. Methods Eng. 2021, 28, 4471–4485Li, S.; Wan, F.; Shu, H.; Jiang, T.; Zhao, D.; Zeng, J. MONN: A Multi-Objective Neural Network for Predicting Compound-Protein Interactions and Affinities. Cell Syst. 2020, 10, 308–322.e11.Wu, K.E.; Yang, K.K.; van den Berg, R.; Alamdari, S.; Zou, J.Y.; Lu, A.X.; Amini, A.P. Protein Structure Generation via Folding Diffusion. Nat. Commun. 2024, 15, 1059.Guo, Z.; Liu, J.; Wang, Y.; Chen, M.; Wang, D.; Xu, D.; Cheng, J. Diffusion Models in Bioinformatics: A New Wave of Deep Learning Revolution in Action. arXiv 2023, arXiv:2302.10907.Corso, G.; Stärk, H.; Bowen, J.; Barzilay, R.; Jaakkola, T. DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking. arXiv 2023, arXiv:2210.01776.Watson, J.L.; Juergens, D.; Bennett, N.R.; Trippe, B.L.; Yim, J.; Eisenach, H.E.; Ahern, W.; Borst, A.J.; Ragotte, R.J.; Milles, L.F.; et al. De Novo Design of Protein Structure and Function with RFdiffusion. Nature 2023, 620, 1089–1100.Canela, M.Á.; Alegre, I.; Ibarra, A. Out-of-Sample Validation. In Quantitative Methods for Management: A Practical Approach; Springer International Publishing: Cham, Switzerland, 2019; pp. 83–89. ISBN 978-3-030-17554-2.Repecka, D.; Jauniskis, V.; Karpus, L.; Rembeza, E.; Rokaitis, I.; Zrimec, J.; Poviloniene, S.; Laurynenas, A.; Viknander, S.; Abuajwa, W.; et al. Expanding Functional Protein Sequence Spaces Using Generative Adversarial Networks. Nat. Mach. Intell. 2021, 3, 324–333.Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation. In Advances in Artificial Intelligence, Proceedings of the AI 2006: Advances in Artificial Intelligence, Hobart, Australia, 4–8 December 2006; Sattar, A., Kang, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1015–1021.© 2024 by the authors.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/Aprendizaje automáticoArtificial intelligenceComputational studiesEnzyme classificationEnzyme–substrate interactionMolecular descriptorsSynthesis routesRraining dataMachine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A ReviewArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/ee750d3e-446f-4fe1-b2aa-b51b4fc3c7ed/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain2085https://repositorio.unibague.edu.co/bitstreams/d81e1b1c-c40c-4601-b73d-4cc8ba7ae61a/download26534add8b0bd66790d3b18e52e267c1MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg21390https://repositorio.unibague.edu.co/bitstreams/c2c85e43-af90-4ea3-af5c-3546b4e08f05/downloadb5624d39030e67e1e36de46d45e8d657MD54ORIGINALArtículo.pdfArtículo.pdfapplication/pdf86456https://repositorio.unibague.edu.co/bitstreams/e1bd6601-0db3-49b6-8f18-87ca1b28e77f/download82d4b66a9f732e7d21ea0942525efc90MD5220.500.12313/5807oai:repositorio.unibague.edu.co:20.500.12313/58072025-10-18 03:02:51.831https://creativecommons.org/licenses/by-nc/4.0/© 2024 by the authors.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=