Enhancing the Luminescence Efficiency of Triphenylamine-Thiophene Aggregation-Induced Emission Luminogens Using Shell-Isolated Nanoparticle-Enhanced Fluorescence (SHINEF)

Shell-isolated nanoparticle-enhanced fluorescence (SHINEF) is a variation of surface-enhanced fluorescence (SEF) that involves the use of core-shell nanostructures to enhance fluorescence signals. This increase in signals is achieved due to the enhanced local electric field produced by light stimula...

Full description

Autores:
Zuzunaga Sanchez, Camilo Andres
García-Beltrán, Olimpo
Douglas-Gallardo, Oscar A
Osorio-Román, Igor
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5906
Acceso en línea:
https://hdl.handle.net/20.500.12313/5906
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00333
Palabra clave:
Luminógenos de emisión inducida - Eficiencia de luminiscencia
Computation theory
Electric fields
Energy transfer
Fluorescence
Light absorption
Plasmonics
Shells (structures)
Silica
Silver nanoparticles
SiO2 nanoparticles
Substrates
Rights
closedAccess
License
© 2024 American Chemical Society.
id UNIBAGUE2_ff5fc100c58340ecc1206663a3f9ac8b
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5906
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Enhancing the Luminescence Efficiency of Triphenylamine-Thiophene Aggregation-Induced Emission Luminogens Using Shell-Isolated Nanoparticle-Enhanced Fluorescence (SHINEF)
title Enhancing the Luminescence Efficiency of Triphenylamine-Thiophene Aggregation-Induced Emission Luminogens Using Shell-Isolated Nanoparticle-Enhanced Fluorescence (SHINEF)
spellingShingle Enhancing the Luminescence Efficiency of Triphenylamine-Thiophene Aggregation-Induced Emission Luminogens Using Shell-Isolated Nanoparticle-Enhanced Fluorescence (SHINEF)
Luminógenos de emisión inducida - Eficiencia de luminiscencia
Computation theory
Electric fields
Energy transfer
Fluorescence
Light absorption
Plasmonics
Shells (structures)
Silica
Silver nanoparticles
SiO2 nanoparticles
Substrates
title_short Enhancing the Luminescence Efficiency of Triphenylamine-Thiophene Aggregation-Induced Emission Luminogens Using Shell-Isolated Nanoparticle-Enhanced Fluorescence (SHINEF)
title_full Enhancing the Luminescence Efficiency of Triphenylamine-Thiophene Aggregation-Induced Emission Luminogens Using Shell-Isolated Nanoparticle-Enhanced Fluorescence (SHINEF)
title_fullStr Enhancing the Luminescence Efficiency of Triphenylamine-Thiophene Aggregation-Induced Emission Luminogens Using Shell-Isolated Nanoparticle-Enhanced Fluorescence (SHINEF)
title_full_unstemmed Enhancing the Luminescence Efficiency of Triphenylamine-Thiophene Aggregation-Induced Emission Luminogens Using Shell-Isolated Nanoparticle-Enhanced Fluorescence (SHINEF)
title_sort Enhancing the Luminescence Efficiency of Triphenylamine-Thiophene Aggregation-Induced Emission Luminogens Using Shell-Isolated Nanoparticle-Enhanced Fluorescence (SHINEF)
dc.creator.fl_str_mv Zuzunaga Sanchez, Camilo Andres
García-Beltrán, Olimpo
Douglas-Gallardo, Oscar A
Osorio-Román, Igor
dc.contributor.author.none.fl_str_mv Zuzunaga Sanchez, Camilo Andres
García-Beltrán, Olimpo
Douglas-Gallardo, Oscar A
Osorio-Román, Igor
dc.subject.armarc.none.fl_str_mv Luminógenos de emisión inducida - Eficiencia de luminiscencia
topic Luminógenos de emisión inducida - Eficiencia de luminiscencia
Computation theory
Electric fields
Energy transfer
Fluorescence
Light absorption
Plasmonics
Shells (structures)
Silica
Silver nanoparticles
SiO2 nanoparticles
Substrates
dc.subject.proposal.eng.fl_str_mv Computation theory
Electric fields
Energy transfer
Fluorescence
Light absorption
Plasmonics
Shells (structures)
Silica
Silver nanoparticles
SiO2 nanoparticles
Substrates
description Shell-isolated nanoparticle-enhanced fluorescence (SHINEF) is a variation of surface-enhanced fluorescence (SEF) that involves the use of core-shell nanostructures to enhance fluorescence signals. This increase in signals is achieved due to the enhanced local electric field produced by light stimulation toward the plasmonic metal core of the core-shell nanostructure. In SHINEF, a thin insulating shell is introduced around a plasmonic metal core, creating a structure that enhances the fluorescence of nearby molecules while minimizing the unwanted interactions with the metal core, such as energy transfer events. In this study, we explore the fluorescence enhancement produced by silver nanoparticles (AgNPs) coated with SiO2 for two triphenylamine-thiophene aggregation-induced emission (AIE) luminogens, 5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophene-2-carbaldehyde (TTY) and 5′-(4-(bis(4-methoxyphenyl)amino)phenyl)-[2,2′-bithiophene]-5-carbaldehyde (TTO), deposited on glass substrates. The results derived from emission and extinction spectra reveal that enhancement depends mainly on the concentrations of both molecules and AgNPs on the substrate as well as the selected excitation wavelength to carry out the measurement. A maximum experimental enhancement factor of 8.0 is achieved when the molecular concentration is at its lowest level, in combination with a higher AgNP concentration. These results are also rationalized in terms of computational simulation based on Mie theory. Simulated optical extinction spectra and the enhanced local external electric field around AgNPs have been carried out to compare with the obtained experimental results. This enhancement induces a significant decrease in lifetimes when the molecules are in the proximity of the nanostructured surface. These findings underscore the potential use of plasmonic nanoparticles as an effective alternative for enhancing the fluorescence of molecules with AIE characteristics.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-05-02
dc.date.accessioned.none.fl_str_mv 2025-11-06T16:55:31Z
dc.date.available.none.fl_str_mv 2025-11-06T16:55:31Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Segura, C., García-Beltrán, O., Douglas-Gallardo, O. y Osorio-Román, I. (2024). Enhancing the Luminescence Efficiency of Triphenylamine-Thiophene Aggregation-Induced Emission Luminogens Using Shell-Isolated Nanoparticle-Enhanced Fluorescence (SHINEF). Journal of Physical Chemistry C, 128(17), 7177 - 7187. DOI: 10.1021/acs.jpcc.4c00333
dc.identifier.doi.none.fl_str_mv 10.1021/acs.jpcc.4c00333
dc.identifier.eissn.none.fl_str_mv 19327455
dc.identifier.issn.none.fl_str_mv 19327447
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5906
dc.identifier.url.none.fl_str_mv https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00333
identifier_str_mv Segura, C., García-Beltrán, O., Douglas-Gallardo, O. y Osorio-Román, I. (2024). Enhancing the Luminescence Efficiency of Triphenylamine-Thiophene Aggregation-Induced Emission Luminogens Using Shell-Isolated Nanoparticle-Enhanced Fluorescence (SHINEF). Journal of Physical Chemistry C, 128(17), 7177 - 7187. DOI: 10.1021/acs.jpcc.4c00333
10.1021/acs.jpcc.4c00333
19327455
19327447
url https://hdl.handle.net/20.500.12313/5906
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00333
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 7187
dc.relation.citationissue.none.fl_str_mv 17
dc.relation.citationstartpage.none.fl_str_mv 7177
dc.relation.citationvolume.none.fl_str_mv 128
dc.relation.ispartofjournal.none.fl_str_mv Journal of Physical Chemistry C
dc.relation.references.none.fl_str_mv Phosphor Quantum Dots Bera D. , Qian L. , Holloway P.H. DOI: 10.1002/9780470985687.ch2
Aggregation-Induced Emission Hong Y. , Lam J.W.Y. , Tang B.Z. DOI: 10.1039/c1cs15113d
Fluorescence Aggregation-Caused Quenching versus Aggregation-Induced Emission: A Visual Teaching Technology for Undergraduate Chemistry Students Ma X. , Sun R. , Cheng J. , ... Xiang H. , Zhou X. Journal of Chemical EducationOpen source preview, 2016 DOI: 10.1021/acs.jchemed.5b00483
Journey of Aggregation-Induced Emission Research He Z. , Ke C. , Tang B.Z. DOI: 10.1021/acsomega.8b00062
Recent Advances in Cation Sensing Using Aggregation-Induced Emission Chua M.H. , Zhou H. , Zhu Q. , Tang B.Z. , Xu J. DOI: 10.1039/D0QM00607F
Aggregation-Induced Emission luminogens for Activity-Based Sensing Wang D. , Tang B.Z. Accounts of Chemical ResearchOpen source preview, 2019 DOI: 10.1021/acs.accounts.9b00305
Recent Advances and Perspectives of Aggregation-Induced Emission as an Emerging Platform for Detection and Bioimaging Khan I.M. , Niazi S. , Khan M.K.I. , ... Yue L. , Wang Z. DOI: 10.1016/j.trac.2019.115637
Discovery of Aggregation-Induced Emission luminogens (AIEgens) from Orange Peel Qi C. , Li Q. , Chen P. , ... Feng H. , Tang B.Z. Dyes and PigmentsOpen source preview, 2023 DOI: 10.1016/j.dyepig.2023.111367
Inspiration from Nature: BioAIEgens for Biomedical and Sensing Applications Lee M.M.S. , Yu E.Y. , Chau J.H.C. , ... Wang D. , Tang B.Z. BiomaterialsOpen source preview, 2022 DOI: 10.1016/j.biomaterials.2022.121712
Aggregation-Induced Emission for Visualization in Materials Science Li K. , Lin Y. , Lü C. DOI: 10.1002/asia.201801760
Status and Prospects of Aggregation-Induced Emission Materials in Organic Optoelectronic Devices BT Ma D. DOI: 10.1007/978-3-030-89933-2_6
Aggregation-Induced Emission luminogens for Organic Light-Emitting Diodes with a Single-Component Emitting Layer Hwang J. , Nagaraju P. , Cho M. , Choi D.H. DOI: 10.1002/agt2.199
New White Light-Emitting Halochromic Stilbenes with Remarkable Quantum Yields and Aggregation-Induced Emission Panahi F. , Mahmoodi A. , Ghodrati S. , Abdi A.A. , Eshghi F. Scientific ReportsOpen source preview, 2022 DOI: 10.1038/s41598-022-06435-w
Shell-Isolated Nanoparticle-Enhanced Fluorescence (SHINEF) of CdTe Quantum Dots Ramírez-Maureira M. , Víctor Vargas C. , Riveros A.L. , Goulet P.J.G. , Osorio-Román I.O. Materials Chemistry and PhysicsOpen source preview, 2015 DOI: 10.1016/j.matchemphys.2014.12.003
Plasmon Enhanced Fluorescence with Aggregated Shell-Isolated Nanoparticles Osorio-Román I.O. , Guerrero A.R. , Albella P. , Aroca R.F. Analytical ChemistryOpen source preview, 2014 DOI: 10.1021/ac502424g
Plasmon-Enhanced Fluorescence for Ellagic Acid Detection Based on Surface Structure of Gold Nanoparticles Yu W. , Sun W. , Zhang Y. , ... Liu M. , Yang Y. Analytical and Bioanalytical ChemistryOpen source preview, 2023 DOI: 10.1007/s00216-023-04792-7
Increasing the Enhancement Factor in Plasmon-Enhanced Fluorescence with Shell-Isolated Nanoparticles Camacho S.A. , Aoki P.H.B. , Albella P. , ... Constantino C.J.L.J.L. , Aroca R.F. Journal of Physical Chemistry COpen source preview, 2016 DOI: 10.1021/acs.jpcc.5b09215
Optical Properties of Metallic Nanoparticles: Manipulating Light, Heat and Forces at the Nanoscale Coronado E.A. , Encina E.R. , Stefani F.D. NanoscaleOpen source preview, 2011 DOI: 10.1039/c1nr10788g
Surface-Enhanced Fluorescence with Shell-Isolated Nanoparticles (SHINEF) Guerrero A.R. , Aroca R.F. Angewandte Chemie International EditionOpen source preview, 2011 DOI: 10.1002/ange.201004806
Optical Studies of Dynamics in Noble Metal nanostructures Hartland G.V. DOI: 10.1021/cr1002547
Field Enhancement around Metal Nanoparticles and Nanoshells: A Systematic Investigation Tanabe K. Journal of Physical Chemistry COpen source preview, 2008 DOI: 10.1021/jp806000
The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment Lance Kelly K. , Coronado E.A. , Zhao L. , Schatz G.C. Journal of Physical Chemistry BOpen source preview, 2003 DOI: 10.1021/jp026731y
Metal-Enhanced Fluorescence of Mixed Coumarin Dyes by Silver and Gold Nanoparticles: Towards plasmonic Thin-Film Luminescent Solar Concentrator El-Bashir S.M. , Barakat F.M. , Alsalhi M.S. Journal of LuminescenceOpen source preview, 2013 DOI: 10.1016/j.jlumin.2013.04.029
Enhancement of Light Amplification of Cspbbr3 Perovskite Quantum Dot Films via Surface Encapsulation by Pmma Polymer Qaid S.M. , Ghaithan H.M. , AlHarbi K.K. , Al-Asbahi B.A. , Aldwayyan A.S. PolymersOpen source preview, 2021 DOI: 10.3390/polym13152574
Distance and Wavelength Dependent Quenching of Molecular Fluorescence by Au@SiO2 core-shell Nanoparticles Reineck P. , Ǵomez D.E. , Ng S.H. , ... Mulvaney P.A. , Bach U. ACS NanoOpen source preview, 2013 DOI: 10.1021/nn401775e
Facile Synthesis of AIEgens with Wide Color Tunability for Cellular Imaging and Therapy Xu W. , Lee M.M.S. , Zhang Z. , ... Wang D. , Tang B.Z. Chemical ScienceOpen source preview, 2019 DOI: 10.1039/C8SC05805A
Effect on the Optical Efficiency and Photostability of Luminescent Solar Concentrator Based on the Deposition of AgSiO2@NPs Segura C. , Vargas V.A. , Valenzuela-Fernández R.A. , Danna C.S. , Osorio-Román I.O. ACS Applied Energy MaterialsOpen source preview, 2020 DOI: 10.1021/acsaem.0c01094
Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols Lee P.C. , Meisel D. Journal of Physical ChemistryOpen source preview, 1982 DOI: 10.1021/j100214a025
NIH Image to ImageJ: 25 Years of Image Analysis Schneider C.A. , Rasband W.S. , Eliceiri K.W. DOI: 10.1038/nmeth.2089
WSxM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology Horcas I. , Fernández R. , Gómez-Rodríguez J.M. , ... Goḿez-Herrero J. , Baró A.M. Review of Scientific InstrumentsOpen source preview, 2007 DOI: 10.1063/1.2432410
PyMieLab_V1.0: A Software for Calculating the Light Scattering and Absorption of Spherical Particles Ma D. , Tuersun P. , Cheng L. , Zheng Y. , Abulaiti R. HeliyonOpen source preview, 2022 DOI: 10.1016/j.heliyon.2022.e11469
Optical Constant of the Nobel Metals Johnson P.P.B. , Christy R.W. Physical Review B Condensed MatterOpen source preview, 1972 DOI: 10.1103/PhysRevB.6.4370
Exploitation of Multiple Incidences Spectrometric Measurements for Thin Film Reverse Engineering Gao L. , Lemarchand F.E. , Lequime M.R. Optics ExpressOpen source preview, 2012 DOI: 10.1364/OE.20.015734
Dielectric Properties of Silver Nanoparticles Coated with Silica Shells of Different Thicknesses Quinsaat J.E.Q. , Nüesch F.A. , Hofmann H. , Opris D.M. Rsc AdvancesOpen source preview, 2013 DOI: 10.1039/c3ra23192e
Surface Enhanced Fluorescence Fort E. , Grésillon S. Journal of Physics D Applied PhysicsOpen source preview, 2008 DOI: 10.1088/0022-3727/41/1/013001
Twisted Intramolecular Charge Transfer (TICT) and Twists beyond TICT: From Mechanisms to Rational Designs of Bright and Sensitive Fluorophores Wang C. , Chi W. , Qiao Q. , ... Xu Z. , Liu X.G. DOI: 10.1039/D1CS00239B
Photophysical Analysis of Aggregation-Induced Emission (AIE) luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films Segura C. , Ormazábal-Toledo R. , García-Beltrán O. , ... Flores C. , Osorio-Román I.O. Chemistry A European JournalOpen source preview, 2024 DOI: 10.1002/chem.202302940
Ag@SiO2 core-shell nanostructures: Distance-Dependent Plasmon Coupling and SERS Investigation Shanthil M. , Thomas R. , Swathi R.S. , George T.K. Journal of Physical Chemistry LettersOpen source preview, 2012 DOI: 10.1021/jz3004014
plasmonic Enhancement of Stability and Brightness in Organic Light-Emitting Devices Fusella M.A. , Saramak R. , Bushati R. , ... Thompson N.J. , Brown J.J. NatureOpen source preview, 2020 DOI: 10.1038/s41586-020-2684-z
Nanoparticle-Enhanced Silver-Nanowire plasmonic Electrodes for High-Performance Organic Optoelectronic Devices Kim T., Kang S., Heo J., ... Ko H., Kim J.Y. DOI: 10.1002/adma.201800659
plasmonic Luminescent Solar Concentrator Barik P. , Pradhan M. DOI: 10.1016/j.solener.2021.01.018
Fluorescence Enhancement at Hot-Spots: The Case of Ag Nanoparticle Aggregates Gill R. , Le Ru E.C. Physical Chemistry Chemical PhysicsOpen source preview, 2011 DOI: 10.1039/c1cp21008d
Metal-Enhanced Fluorescence Using Aggregated Silver Nanoparticles Xia B. , He F. , Li L. Colloids and Surfaces A Physicochemical and Engineering AspectsOpen source preview, 2014 DOI: 10.1016/j.colsurfa.2013.12.029
Aggregation of Metal-Nanoparticle-Induced Fluorescence Enhancement and Its Application in Sensing Li S. , He J. , Xu Q.H. DOI: 10.1021/acsomega.9b03560
Gap-Enhanced Optical Bistability in plasmonic Core-Nonlinear Shell Dimers Movsisyan A.S. , Parsamyan H.A. NanoscaleOpen source preview, 2024 DOI: 10.1039/D3NR04237E
Large-Area Enhancement of Far-Field Fluorescence Intensity Using Planar nanostructures Nyman M. , Shevchenko A.N. , Shavrin I. , ... Lindfors K. , KAIVOLA M.A.J. APL PhotonicsOpen source preview, 2019 DOI: 10.1063/1.5096270
Simultaneous Near-Field and Far-Field Fluorescence Microscopy of Single Molecules Ruckstuhl T. , Verdes D. , Winterflood C.M. , Seeger S. Optics ExpressOpen source preview, 2011 DOI: 10.1364/OE.19.006836
Comparison of Near- and Far-Field Measures for Plasmon Resonance of Metallic Nanoparticles Ross B.M. , Lee L.P. Optics LettersOpen source preview, 2009 DOI: 10.1364/OL.34.000896
On the Energy Shift between Near-Field and Far-Field Peak Intensities in Localized Plasmon Systems Zuloaga J. , Nordlander P.J. Nano LettersOpen source preview, 2011 DOI: 10.1021/nl1043242
Mechanisms of Spectral Profile Modification in Surface-Enhanced Fluorescence Le Ru E.C. , Etchegoin P.G. , Grand J. , ... Aubard J. , Lévi G. Journal of Physical Chemistry COpen source preview, 2007 DOI: 10.1021/jp076003g
Spectral Distortions in Metal-Enhanced Fluorescence: Experimental Evidence for Ultra-Fast and Slow Transitions Knoblauch R. , Ben-Hamo H. , Marks R.S. , Geddes C.D. Journal of Physical Chemistry COpen source preview, 2020 DOI: 10.1021/acs.jpcc.9b11055
Plasmon-Enhanced Fluorescence and Spectral Modification in SHINEF Aroca R.F. , Teo G.Y. , Mohan H. , ... Albella P. , Moreno F.F. Journal of Physical Chemistry COpen source preview, 2011 DOI: 10.1021/jp205997u
Radiative Decay Engineering: 2. Effects of Silver Island Films on Fluorescence Intensity, Lifetimes, and Resonance Energy Transfer Lakowicz J.R. , Shen Y. , D'Auria S. , ... Gryczyński Z.K. , Gryczyński I. Analytical BiochemistryOpen source preview, 2002 DOI: 10.1006/abio.2001.5503
Radiative Decay Engineering: Biophysical and Biomedical Applications Lakowicz J.R. DOI: 10.1006/abio.2001.5377
Radiative and Non-Radiative Decay of a Single Molecule Close to a Metallic Nanoparticle Carminati R. , Greffet J.J. , Henkel C. , Vigoureux J.M. Optics CommunicationsOpen source preview, 2006 DOI: 10.1016/j.optcom.2005.12.009
Resonance Energy Transfer from a Fluorescent Dye to a Metal Nanoparticle Bhowmick S. , Saini S. , Shenoy V.B. , Bagchi B. Journal of Chemical PhysicsOpen source preview, 2006 DOI: 10.1063/1.2400037
plasmonic Enhancement of Molecular Fluorescence near Silver Nanoparticles: Theory, Modeling, and Experiment Guzatov D.V. , Vaschenko S.V. , Stankevich V.V. , ... Glukhov Y.F. , Gaponenko S.V. Journal of Physical Chemistry COpen source preview, 2012 DOI: 10.1021/jp301598w
Spectral Variation of Fluorescence Lifetime near Single Metal Nanoparticles Li J. , Krasavin A.V. , Webster L. , ... Zayats A.V. , Richards D.R. Scientific ReportsOpen source preview, 2016 DOI: 10.1038/srep21349
Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles Chen Y. , Munechika K. , Ginger D.S. Nano LettersOpen source preview, 2007 DOI: 10.1021/nl062795z
Correlating Metal-Enhanced Fluorescence and Structural Properties in Ag@SiO2 Core-Shell Nanoparticles Asselin J. , Legros P. , Gŕegoire A. , Boudreau D. PlasmonicsOpen source preview, 2016 DOI: 10.1007/s11468-016-0186-5
High-Throughput Single-Particle Analysis of Metal-Enhanced Fluorescence in Free Solution Using Ag@SiO2 core-shell Nanoparticles Yan Y. , Meng L. , Zhang W. , ... Yang Z. , Yan X. ACS SensorsOpen source preview, 2017 DOI: 10.1021/acssensors.7b00522
Fluorescent core-shell Ag@SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms Aslan K. , Wu M. , Lakowicz J.R. , Geddes C.D. Journal of the American Chemical SocietyOpen source preview, 2007 DOI: 10.1021/ja0680820
Metal-Enhanced Fluorescence: An Emerging Tool in Biotechnology Aslan K. , Gryczyński I. , Malicka J. , ... Lakowicz J.R. , Geddes C.D. DOI: 10.1016/j.copbio.2005.01.001
Amplified Production of Singlet Oxygen in Aqueous Solution Using Metal Enhancement Effects Mooi S.M. , Heyne B. Photochemistry and PhotobiologyOpen source preview, 2014 DOI: 10.1111/php.12176
The Role of Electron Affi Nity in Determining Whether Fullerenes Catalyze or Inhibit Photooxidation of Polymers for Solar Cells Hoke E.T. , Sachs-Quintana I.T. , Lloyd M.T. , ... Kopidakis N. , McGehee M.D. Advanced Energy MaterialsOpen source preview, 2012 DOI: 10.1002/aenm.201200169
dc.rights.none.fl_str_mv © 2024 American Chemical Society.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv © 2024 American Chemical Society.
http://purl.org/coar/access_right/c_14cb
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv closedAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
dc.publisher.place.none.fl_str_mv Estados Unidos
publisher.none.fl_str_mv American Chemical Society
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/6f6b050f-074e-4023-ad40-aca23d085f53/download
https://repositorio.unibague.edu.co/bitstreams/ec64deea-1011-4fe5-8849-03682c8a1ea8/download
https://repositorio.unibague.edu.co/bitstreams/5c87d2bc-6f7f-417c-b413-4461ebca9717/download
https://repositorio.unibague.edu.co/bitstreams/6f109666-5cb6-44d4-b8d8-f377d7f9e687/download
bitstream.checksum.fl_str_mv 7ce6e269279092322ec25048b711adab
daa8ba2610aa26eed34d90caecb08d70
2fa3e590786b9c0f3ceba1b9656b7ac3
30a2b9741292cf19f0fe50d243b31515
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059969309278208
spelling Zuzunaga Sanchez, Camilo Andresd8e3ec65-da95-477d-a223-08020b5db4ef600García-Beltrán, Olimpodfe2bbe7-81d5-415c-9be6-6469a5a40c75-1Douglas-Gallardo, Oscar A7cb6c2c9-3777-40bb-bd45-0b0d6b822f93-1Osorio-Román, Igorc1772296-47dd-43b9-8f89-fd6eb665662b-12025-11-06T16:55:31Z2025-11-06T16:55:31Z2024-05-02Shell-isolated nanoparticle-enhanced fluorescence (SHINEF) is a variation of surface-enhanced fluorescence (SEF) that involves the use of core-shell nanostructures to enhance fluorescence signals. This increase in signals is achieved due to the enhanced local electric field produced by light stimulation toward the plasmonic metal core of the core-shell nanostructure. In SHINEF, a thin insulating shell is introduced around a plasmonic metal core, creating a structure that enhances the fluorescence of nearby molecules while minimizing the unwanted interactions with the metal core, such as energy transfer events. In this study, we explore the fluorescence enhancement produced by silver nanoparticles (AgNPs) coated with SiO2 for two triphenylamine-thiophene aggregation-induced emission (AIE) luminogens, 5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophene-2-carbaldehyde (TTY) and 5′-(4-(bis(4-methoxyphenyl)amino)phenyl)-[2,2′-bithiophene]-5-carbaldehyde (TTO), deposited on glass substrates. The results derived from emission and extinction spectra reveal that enhancement depends mainly on the concentrations of both molecules and AgNPs on the substrate as well as the selected excitation wavelength to carry out the measurement. A maximum experimental enhancement factor of 8.0 is achieved when the molecular concentration is at its lowest level, in combination with a higher AgNP concentration. These results are also rationalized in terms of computational simulation based on Mie theory. Simulated optical extinction spectra and the enhanced local external electric field around AgNPs have been carried out to compare with the obtained experimental results. This enhancement induces a significant decrease in lifetimes when the molecules are in the proximity of the nanostructured surface. These findings underscore the potential use of plasmonic nanoparticles as an effective alternative for enhancing the fluorescence of molecules with AIE characteristics.application/pdfSegura, C., García-Beltrán, O., Douglas-Gallardo, O. y Osorio-Román, I. (2024). Enhancing the Luminescence Efficiency of Triphenylamine-Thiophene Aggregation-Induced Emission Luminogens Using Shell-Isolated Nanoparticle-Enhanced Fluorescence (SHINEF). Journal of Physical Chemistry C, 128(17), 7177 - 7187. DOI: 10.1021/acs.jpcc.4c0033310.1021/acs.jpcc.4c003331932745519327447https://hdl.handle.net/20.500.12313/5906https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00333engAmerican Chemical SocietyEstados Unidos7187177177128Journal of Physical Chemistry CPhosphor Quantum Dots Bera D. , Qian L. , Holloway P.H. DOI: 10.1002/9780470985687.ch2Aggregation-Induced Emission Hong Y. , Lam J.W.Y. , Tang B.Z. DOI: 10.1039/c1cs15113dFluorescence Aggregation-Caused Quenching versus Aggregation-Induced Emission: A Visual Teaching Technology for Undergraduate Chemistry Students Ma X. , Sun R. , Cheng J. , ... Xiang H. , Zhou X. Journal of Chemical EducationOpen source preview, 2016 DOI: 10.1021/acs.jchemed.5b00483Journey of Aggregation-Induced Emission Research He Z. , Ke C. , Tang B.Z. DOI: 10.1021/acsomega.8b00062Recent Advances in Cation Sensing Using Aggregation-Induced Emission Chua M.H. , Zhou H. , Zhu Q. , Tang B.Z. , Xu J. DOI: 10.1039/D0QM00607FAggregation-Induced Emission luminogens for Activity-Based Sensing Wang D. , Tang B.Z. Accounts of Chemical ResearchOpen source preview, 2019 DOI: 10.1021/acs.accounts.9b00305Recent Advances and Perspectives of Aggregation-Induced Emission as an Emerging Platform for Detection and Bioimaging Khan I.M. , Niazi S. , Khan M.K.I. , ... Yue L. , Wang Z. DOI: 10.1016/j.trac.2019.115637Discovery of Aggregation-Induced Emission luminogens (AIEgens) from Orange Peel Qi C. , Li Q. , Chen P. , ... Feng H. , Tang B.Z. Dyes and PigmentsOpen source preview, 2023 DOI: 10.1016/j.dyepig.2023.111367Inspiration from Nature: BioAIEgens for Biomedical and Sensing Applications Lee M.M.S. , Yu E.Y. , Chau J.H.C. , ... Wang D. , Tang B.Z. BiomaterialsOpen source preview, 2022 DOI: 10.1016/j.biomaterials.2022.121712Aggregation-Induced Emission for Visualization in Materials Science Li K. , Lin Y. , Lü C. DOI: 10.1002/asia.201801760Status and Prospects of Aggregation-Induced Emission Materials in Organic Optoelectronic Devices BT Ma D. DOI: 10.1007/978-3-030-89933-2_6Aggregation-Induced Emission luminogens for Organic Light-Emitting Diodes with a Single-Component Emitting Layer Hwang J. , Nagaraju P. , Cho M. , Choi D.H. DOI: 10.1002/agt2.199New White Light-Emitting Halochromic Stilbenes with Remarkable Quantum Yields and Aggregation-Induced Emission Panahi F. , Mahmoodi A. , Ghodrati S. , Abdi A.A. , Eshghi F. Scientific ReportsOpen source preview, 2022 DOI: 10.1038/s41598-022-06435-wShell-Isolated Nanoparticle-Enhanced Fluorescence (SHINEF) of CdTe Quantum Dots Ramírez-Maureira M. , Víctor Vargas C. , Riveros A.L. , Goulet P.J.G. , Osorio-Román I.O. Materials Chemistry and PhysicsOpen source preview, 2015 DOI: 10.1016/j.matchemphys.2014.12.003Plasmon Enhanced Fluorescence with Aggregated Shell-Isolated Nanoparticles Osorio-Román I.O. , Guerrero A.R. , Albella P. , Aroca R.F. Analytical ChemistryOpen source preview, 2014 DOI: 10.1021/ac502424gPlasmon-Enhanced Fluorescence for Ellagic Acid Detection Based on Surface Structure of Gold Nanoparticles Yu W. , Sun W. , Zhang Y. , ... Liu M. , Yang Y. Analytical and Bioanalytical ChemistryOpen source preview, 2023 DOI: 10.1007/s00216-023-04792-7Increasing the Enhancement Factor in Plasmon-Enhanced Fluorescence with Shell-Isolated Nanoparticles Camacho S.A. , Aoki P.H.B. , Albella P. , ... Constantino C.J.L.J.L. , Aroca R.F. Journal of Physical Chemistry COpen source preview, 2016 DOI: 10.1021/acs.jpcc.5b09215Optical Properties of Metallic Nanoparticles: Manipulating Light, Heat and Forces at the Nanoscale Coronado E.A. , Encina E.R. , Stefani F.D. NanoscaleOpen source preview, 2011 DOI: 10.1039/c1nr10788gSurface-Enhanced Fluorescence with Shell-Isolated Nanoparticles (SHINEF) Guerrero A.R. , Aroca R.F. Angewandte Chemie International EditionOpen source preview, 2011 DOI: 10.1002/ange.201004806Optical Studies of Dynamics in Noble Metal nanostructures Hartland G.V. DOI: 10.1021/cr1002547Field Enhancement around Metal Nanoparticles and Nanoshells: A Systematic Investigation Tanabe K. Journal of Physical Chemistry COpen source preview, 2008 DOI: 10.1021/jp806000The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment Lance Kelly K. , Coronado E.A. , Zhao L. , Schatz G.C. Journal of Physical Chemistry BOpen source preview, 2003 DOI: 10.1021/jp026731yMetal-Enhanced Fluorescence of Mixed Coumarin Dyes by Silver and Gold Nanoparticles: Towards plasmonic Thin-Film Luminescent Solar Concentrator El-Bashir S.M. , Barakat F.M. , Alsalhi M.S. Journal of LuminescenceOpen source preview, 2013 DOI: 10.1016/j.jlumin.2013.04.029Enhancement of Light Amplification of Cspbbr3 Perovskite Quantum Dot Films via Surface Encapsulation by Pmma Polymer Qaid S.M. , Ghaithan H.M. , AlHarbi K.K. , Al-Asbahi B.A. , Aldwayyan A.S. PolymersOpen source preview, 2021 DOI: 10.3390/polym13152574Distance and Wavelength Dependent Quenching of Molecular Fluorescence by Au@SiO2 core-shell Nanoparticles Reineck P. , Ǵomez D.E. , Ng S.H. , ... Mulvaney P.A. , Bach U. ACS NanoOpen source preview, 2013 DOI: 10.1021/nn401775eFacile Synthesis of AIEgens with Wide Color Tunability for Cellular Imaging and Therapy Xu W. , Lee M.M.S. , Zhang Z. , ... Wang D. , Tang B.Z. Chemical ScienceOpen source preview, 2019 DOI: 10.1039/C8SC05805AEffect on the Optical Efficiency and Photostability of Luminescent Solar Concentrator Based on the Deposition of AgSiO2@NPs Segura C. , Vargas V.A. , Valenzuela-Fernández R.A. , Danna C.S. , Osorio-Román I.O. ACS Applied Energy MaterialsOpen source preview, 2020 DOI: 10.1021/acsaem.0c01094Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols Lee P.C. , Meisel D. Journal of Physical ChemistryOpen source preview, 1982 DOI: 10.1021/j100214a025NIH Image to ImageJ: 25 Years of Image Analysis Schneider C.A. , Rasband W.S. , Eliceiri K.W. DOI: 10.1038/nmeth.2089WSxM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology Horcas I. , Fernández R. , Gómez-Rodríguez J.M. , ... Goḿez-Herrero J. , Baró A.M. Review of Scientific InstrumentsOpen source preview, 2007 DOI: 10.1063/1.2432410PyMieLab_V1.0: A Software for Calculating the Light Scattering and Absorption of Spherical Particles Ma D. , Tuersun P. , Cheng L. , Zheng Y. , Abulaiti R. HeliyonOpen source preview, 2022 DOI: 10.1016/j.heliyon.2022.e11469Optical Constant of the Nobel Metals Johnson P.P.B. , Christy R.W. Physical Review B Condensed MatterOpen source preview, 1972 DOI: 10.1103/PhysRevB.6.4370Exploitation of Multiple Incidences Spectrometric Measurements for Thin Film Reverse Engineering Gao L. , Lemarchand F.E. , Lequime M.R. Optics ExpressOpen source preview, 2012 DOI: 10.1364/OE.20.015734Dielectric Properties of Silver Nanoparticles Coated with Silica Shells of Different Thicknesses Quinsaat J.E.Q. , Nüesch F.A. , Hofmann H. , Opris D.M. Rsc AdvancesOpen source preview, 2013 DOI: 10.1039/c3ra23192eSurface Enhanced Fluorescence Fort E. , Grésillon S. Journal of Physics D Applied PhysicsOpen source preview, 2008 DOI: 10.1088/0022-3727/41/1/013001Twisted Intramolecular Charge Transfer (TICT) and Twists beyond TICT: From Mechanisms to Rational Designs of Bright and Sensitive Fluorophores Wang C. , Chi W. , Qiao Q. , ... Xu Z. , Liu X.G. DOI: 10.1039/D1CS00239BPhotophysical Analysis of Aggregation-Induced Emission (AIE) luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films Segura C. , Ormazábal-Toledo R. , García-Beltrán O. , ... Flores C. , Osorio-Román I.O. Chemistry A European JournalOpen source preview, 2024 DOI: 10.1002/chem.202302940Ag@SiO2 core-shell nanostructures: Distance-Dependent Plasmon Coupling and SERS Investigation Shanthil M. , Thomas R. , Swathi R.S. , George T.K. Journal of Physical Chemistry LettersOpen source preview, 2012 DOI: 10.1021/jz3004014plasmonic Enhancement of Stability and Brightness in Organic Light-Emitting Devices Fusella M.A. , Saramak R. , Bushati R. , ... Thompson N.J. , Brown J.J. NatureOpen source preview, 2020 DOI: 10.1038/s41586-020-2684-zNanoparticle-Enhanced Silver-Nanowire plasmonic Electrodes for High-Performance Organic Optoelectronic Devices Kim T., Kang S., Heo J., ... Ko H., Kim J.Y. DOI: 10.1002/adma.201800659plasmonic Luminescent Solar Concentrator Barik P. , Pradhan M. DOI: 10.1016/j.solener.2021.01.018Fluorescence Enhancement at Hot-Spots: The Case of Ag Nanoparticle Aggregates Gill R. , Le Ru E.C. Physical Chemistry Chemical PhysicsOpen source preview, 2011 DOI: 10.1039/c1cp21008dMetal-Enhanced Fluorescence Using Aggregated Silver Nanoparticles Xia B. , He F. , Li L. Colloids and Surfaces A Physicochemical and Engineering AspectsOpen source preview, 2014 DOI: 10.1016/j.colsurfa.2013.12.029Aggregation of Metal-Nanoparticle-Induced Fluorescence Enhancement and Its Application in Sensing Li S. , He J. , Xu Q.H. DOI: 10.1021/acsomega.9b03560Gap-Enhanced Optical Bistability in plasmonic Core-Nonlinear Shell Dimers Movsisyan A.S. , Parsamyan H.A. NanoscaleOpen source preview, 2024 DOI: 10.1039/D3NR04237ELarge-Area Enhancement of Far-Field Fluorescence Intensity Using Planar nanostructures Nyman M. , Shevchenko A.N. , Shavrin I. , ... Lindfors K. , KAIVOLA M.A.J. APL PhotonicsOpen source preview, 2019 DOI: 10.1063/1.5096270Simultaneous Near-Field and Far-Field Fluorescence Microscopy of Single Molecules Ruckstuhl T. , Verdes D. , Winterflood C.M. , Seeger S. Optics ExpressOpen source preview, 2011 DOI: 10.1364/OE.19.006836Comparison of Near- and Far-Field Measures for Plasmon Resonance of Metallic Nanoparticles Ross B.M. , Lee L.P. Optics LettersOpen source preview, 2009 DOI: 10.1364/OL.34.000896On the Energy Shift between Near-Field and Far-Field Peak Intensities in Localized Plasmon Systems Zuloaga J. , Nordlander P.J. Nano LettersOpen source preview, 2011 DOI: 10.1021/nl1043242Mechanisms of Spectral Profile Modification in Surface-Enhanced Fluorescence Le Ru E.C. , Etchegoin P.G. , Grand J. , ... Aubard J. , Lévi G. Journal of Physical Chemistry COpen source preview, 2007 DOI: 10.1021/jp076003gSpectral Distortions in Metal-Enhanced Fluorescence: Experimental Evidence for Ultra-Fast and Slow Transitions Knoblauch R. , Ben-Hamo H. , Marks R.S. , Geddes C.D. Journal of Physical Chemistry COpen source preview, 2020 DOI: 10.1021/acs.jpcc.9b11055Plasmon-Enhanced Fluorescence and Spectral Modification in SHINEF Aroca R.F. , Teo G.Y. , Mohan H. , ... Albella P. , Moreno F.F. Journal of Physical Chemistry COpen source preview, 2011 DOI: 10.1021/jp205997uRadiative Decay Engineering: 2. Effects of Silver Island Films on Fluorescence Intensity, Lifetimes, and Resonance Energy Transfer Lakowicz J.R. , Shen Y. , D'Auria S. , ... Gryczyński Z.K. , Gryczyński I. Analytical BiochemistryOpen source preview, 2002 DOI: 10.1006/abio.2001.5503Radiative Decay Engineering: Biophysical and Biomedical Applications Lakowicz J.R. DOI: 10.1006/abio.2001.5377Radiative and Non-Radiative Decay of a Single Molecule Close to a Metallic Nanoparticle Carminati R. , Greffet J.J. , Henkel C. , Vigoureux J.M. Optics CommunicationsOpen source preview, 2006 DOI: 10.1016/j.optcom.2005.12.009Resonance Energy Transfer from a Fluorescent Dye to a Metal Nanoparticle Bhowmick S. , Saini S. , Shenoy V.B. , Bagchi B. Journal of Chemical PhysicsOpen source preview, 2006 DOI: 10.1063/1.2400037plasmonic Enhancement of Molecular Fluorescence near Silver Nanoparticles: Theory, Modeling, and Experiment Guzatov D.V. , Vaschenko S.V. , Stankevich V.V. , ... Glukhov Y.F. , Gaponenko S.V. Journal of Physical Chemistry COpen source preview, 2012 DOI: 10.1021/jp301598wSpectral Variation of Fluorescence Lifetime near Single Metal Nanoparticles Li J. , Krasavin A.V. , Webster L. , ... Zayats A.V. , Richards D.R. Scientific ReportsOpen source preview, 2016 DOI: 10.1038/srep21349Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles Chen Y. , Munechika K. , Ginger D.S. Nano LettersOpen source preview, 2007 DOI: 10.1021/nl062795zCorrelating Metal-Enhanced Fluorescence and Structural Properties in Ag@SiO2 Core-Shell Nanoparticles Asselin J. , Legros P. , Gŕegoire A. , Boudreau D. PlasmonicsOpen source preview, 2016 DOI: 10.1007/s11468-016-0186-5High-Throughput Single-Particle Analysis of Metal-Enhanced Fluorescence in Free Solution Using Ag@SiO2 core-shell Nanoparticles Yan Y. , Meng L. , Zhang W. , ... Yang Z. , Yan X. ACS SensorsOpen source preview, 2017 DOI: 10.1021/acssensors.7b00522Fluorescent core-shell Ag@SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms Aslan K. , Wu M. , Lakowicz J.R. , Geddes C.D. Journal of the American Chemical SocietyOpen source preview, 2007 DOI: 10.1021/ja0680820Metal-Enhanced Fluorescence: An Emerging Tool in Biotechnology Aslan K. , Gryczyński I. , Malicka J. , ... Lakowicz J.R. , Geddes C.D. DOI: 10.1016/j.copbio.2005.01.001Amplified Production of Singlet Oxygen in Aqueous Solution Using Metal Enhancement Effects Mooi S.M. , Heyne B. Photochemistry and PhotobiologyOpen source preview, 2014 DOI: 10.1111/php.12176The Role of Electron Affi Nity in Determining Whether Fullerenes Catalyze or Inhibit Photooxidation of Polymers for Solar Cells Hoke E.T. , Sachs-Quintana I.T. , Lloyd M.T. , ... Kopidakis N. , McGehee M.D. Advanced Energy MaterialsOpen source preview, 2012 DOI: 10.1002/aenm.201200169© 2024 American Chemical Society.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/Luminógenos de emisión inducida - Eficiencia de luminiscenciaComputation theoryElectric fieldsEnergy transferFluorescenceLight absorptionPlasmonicsShells (structures)SilicaSilver nanoparticlesSiO2 nanoparticlesSubstratesEnhancing the Luminescence Efficiency of Triphenylamine-Thiophene Aggregation-Induced Emission Luminogens Using Shell-Isolated Nanoparticle-Enhanced Fluorescence (SHINEF)Artículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain4017https://repositorio.unibague.edu.co/bitstreams/6f6b050f-074e-4023-ad40-aca23d085f53/download7ce6e269279092322ec25048b711adabMD52THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg21082https://repositorio.unibague.edu.co/bitstreams/ec64deea-1011-4fe5-8849-03682c8a1ea8/downloaddaa8ba2610aa26eed34d90caecb08d70MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/5c87d2bc-6f7f-417c-b413-4461ebca9717/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf173456https://repositorio.unibague.edu.co/bitstreams/6f109666-5cb6-44d4-b8d8-f377d7f9e687/download30a2b9741292cf19f0fe50d243b31515MD5120.500.12313/5906oai:repositorio.unibague.edu.co:20.500.12313/59062025-11-07 03:02:18.549https://creativecommons.org/licenses/by-nc/4.0/© 2024 American Chemical Society.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=