Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals
UV–vis optical absorption measurements of the ethanol solvated quercetin molecule and the dihydrate triclinic quercetin crystal were performed, as well as the electronic structure of the ethanol solvated quercetin molecule and the properties of anhydrous and mono(di)hydrated quercetin crystals emplo...
- Autores:
-
de Paula V.F., Jr
Guedes M.I.F.
van Tilburg M.F
Vieira I.G.P.
Silva J.B.
dos Santos R.C.R.
Echeverry J.P.
Costa G
Silva B.P
Maia F.F., Jr.
Caetano E.W.S.
Freire V.N.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5499
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/5499
- Palabra clave:
- Mediciones de absorción optica
Cálculos DFT optoelectrónicos
Quercetina disuelta en etanol
Cristales de quercetina
Cristales moleculares hidratados
Cálculos de DFT
Propiedades estructurales
Propiedades optoelectrónicas
Estabilidad relativa
DFT calculations
Ethanol solvated quercetin
Hydrated molecular crystals
Optoelectronic properties
Quercetin crystals
Relative stability
Structural properties
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
| id |
UNIBAGUE2_f37652469d62afd1faf5eea7be954bac |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5499 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals |
| title |
Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals |
| spellingShingle |
Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals Mediciones de absorción optica Cálculos DFT optoelectrónicos Quercetina disuelta en etanol Cristales de quercetina Cristales moleculares hidratados Cálculos de DFT Propiedades estructurales Propiedades optoelectrónicas Estabilidad relativa DFT calculations Ethanol solvated quercetin Hydrated molecular crystals Optoelectronic properties Quercetin crystals Relative stability Structural properties |
| title_short |
Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals |
| title_full |
Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals |
| title_fullStr |
Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals |
| title_full_unstemmed |
Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals |
| title_sort |
Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals |
| dc.creator.fl_str_mv |
de Paula V.F., Jr Guedes M.I.F. van Tilburg M.F Vieira I.G.P. Silva J.B. dos Santos R.C.R. Echeverry J.P. Costa G Silva B.P Maia F.F., Jr. Caetano E.W.S. Freire V.N. |
| dc.contributor.author.none.fl_str_mv |
de Paula V.F., Jr Guedes M.I.F. van Tilburg M.F Vieira I.G.P. Silva J.B. dos Santos R.C.R. Echeverry J.P. Costa G Silva B.P Maia F.F., Jr. Caetano E.W.S. Freire V.N. |
| dc.subject.armarc.none.fl_str_mv |
Mediciones de absorción optica Cálculos DFT optoelectrónicos Quercetina disuelta en etanol Cristales de quercetina Cristales moleculares hidratados Cálculos de DFT Propiedades estructurales Propiedades optoelectrónicas Estabilidad relativa |
| topic |
Mediciones de absorción optica Cálculos DFT optoelectrónicos Quercetina disuelta en etanol Cristales de quercetina Cristales moleculares hidratados Cálculos de DFT Propiedades estructurales Propiedades optoelectrónicas Estabilidad relativa DFT calculations Ethanol solvated quercetin Hydrated molecular crystals Optoelectronic properties Quercetin crystals Relative stability Structural properties |
| dc.subject.proposal.eng.fl_str_mv |
DFT calculations Ethanol solvated quercetin Hydrated molecular crystals Optoelectronic properties Quercetin crystals Relative stability Structural properties |
| description |
UV–vis optical absorption measurements of the ethanol solvated quercetin molecule and the dihydrate triclinic quercetin crystal were performed, as well as the electronic structure of the ethanol solvated quercetin molecule and the properties of anhydrous and mono(di)hydrated quercetin crystals employing Density Functional Theory (DFT) calculations with a dispersion correction scheme. Unit cell geometry optimization of the anhydrous crystal has elucidated the structure of the anhydrous quercetin crystal (space group P21/a, monoclinic). Anhydrous quercetin exhibits a direct bandgap of 2.17 eV with large valence band dispersion, suggesting a semiconductor behavior for hole transport. Monohydrate quercetin has an indirect gap of 1.84 eV, while the solid dihydrate form has a Kohn-Sham indirect electronic bandgap of 2.00 eV, smaller than the experimental optical absorption bandgap of 2.40 eV. Applying the Δ-sol gap correction scheme, the bandgaps increase by about 1 eV. There is a significant optical anisotropy for all quercetin systems in the solid state, especially for the anhydrous form. © 2022 Elsevier Inc. |
| publishDate |
2022 |
| dc.date.issued.none.fl_str_mv |
2022-08 |
| dc.date.accessioned.none.fl_str_mv |
2025-08-20T16:45:54Z |
| dc.date.available.none.fl_str_mv |
2025-08-20T16:45:54Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
De Paula V., Guedes M.I.F., Van, M., Vieira, I., Silva, J., dos Santos, R., Echeverry, J., Costa G., Silva, B., Maia F.F., Caetano E.W.S. y Freire V.N. (2022). Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals. Journal of Solid State Chemistry, 312, 123242. DOI: 10.1016/j.jssc.2022.123242 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.jssc.2022.123242 |
| dc.identifier.eissn.none.fl_str_mv |
1095726X |
| dc.identifier.issn.none.fl_str_mv |
00224596 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/5499 |
| identifier_str_mv |
De Paula V., Guedes M.I.F., Van, M., Vieira, I., Silva, J., dos Santos, R., Echeverry, J., Costa G., Silva, B., Maia F.F., Caetano E.W.S. y Freire V.N. (2022). Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals. Journal of Solid State Chemistry, 312, 123242. DOI: 10.1016/j.jssc.2022.123242 10.1016/j.jssc.2022.123242 1095726X 00224596 |
| url |
https://hdl.handle.net/20.500.12313/5499 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationstartpage.none.fl_str_mv |
123242 |
| dc.relation.citationvolume.none.fl_str_mv |
312 |
| dc.relation.ispartofjournal.none.fl_str_mv |
Journal of Solid State Chemistry |
| dc.relation.references.none.fl_str_mv |
A. Sharma, D. Kashyap, K. Sak, H.S. Tuli, A.K. Sharma, Therapeutic charm of quercetin and its derivatives: a review of research and patents, Pharm. Pat. Anal. 7 (1) (2018) 15–32, https://doi.org/10.4155/ppa-2017-0030 ] G. Quercetin D'Andrea, A flavonol with multifaceted therapeutic applications? Fitoterapia 106 (2015) 256–271, https://doi.org/10.1016/j.fitote.2015.09.018 W. Wang, C. Sun, L. Mao, P. Ma, F. Liu, J. Yang, Y. Gao, The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review, Trends Food Sci. Technol. 56 (2016) 21–38, https://doi.org/10.1016/j.tifs.2016.07.004 K. Vasisht, K. Chadha, M. Karan, Y. Bhalla, A.K. Jena, R. Chadha, Enhancing biopharmaceutical parameters of bioflavonoid quercetin by cocrystallization, CrystEngComm 18 (8) (2016) 1403–1415, https://doi.org/10.1039/C5CE01899D X. Filip, I.-G. Grosu, M. Micl aus¸, C. Filip, NMR crystallography methods to probe complex hydrogen bonding networks: application to structure elucidation of anhydrous quercetin, CrystEngComm 15 (20) (2013) 4131, https://doi.org/ 10.1039/c3ce40299a. J. Sheng, G.M. Venkatesh, S.P. Duddu, D.J.W. Grant, Dehydration behavior of eprosartan mesylate dihydrate, J. Pharmacol. Sci. 88 (10) (1999) 1021–1029, https://doi.org/10.1021/js9900250 A. Raw, Regulatory considerations of pharmaceutical solid polymorphism in abbreviated new drug applications (ANDAs), Adv. Drug Deliv. Rev. 56 (3) (2004) 397–414, https://doi.org/10.1016/j.addr.2003.10.011. L. Yu, Amorphous pharmaceutical solids: preparation, characterization and stabilization, Adv. Drug Deliv. Rev. 48 (1) (2001) 27–42, https://doi.org/10.1016/ S0169-409X(01)00098-9. O.O. Brovarets’, D.M. Hovorun, Conformational diversity of the quercetin molecule: a quantum-chemical view, J. Biomol. Struct. Dyn. 38 (10) (2020) 2817–2836, https://doi.org/10.1080/07391102.2019.1656671. O.O. Brovarets’, M. Hovorun, D. A never-ending conformational story of the quercetin molecule: quantum-mechanical investigation of the O30 H and O40 H hydroxyl groups rotations, Appl. Sci. 10 (3) (2020) 1147, https://doi.org/10.3390/ app10031147. A. Berzin¸ s, D. Zvanin¸ a, A. Trimdale, Detailed analysis of packing efficiency allows rationalization of solvate formation propensity for selected structurally similar organic molecules, Cryst. Growth Des. 18 (4) (2018) 2040–2045, https://doi.org/ 10.1021/acs.cgd.7b01457. A. Kons, A. Berzin¸ s, A. Actin¸ s, Polymorphs and hydrates of sequifenadine hydrochloride: crystallographic explanation of observed phase transitions and thermodynamic stability, Cryst. Growth Des. 17 (3) (2017) 1146–1158, https:// doi.org/10.1021/acs.cgd.6b01534. M. Rossi, L.F. Rickles, W.A. Halpin, The crystal and molecular structure of quercetin: a biologically active and naturally occurring flavonoid, Bioorg. Chem. 14 (1) (1986) 55–69, https://doi.org/10.1016/0045-2068(86)90018-0 A.J. Smith, P. Kavuru, L. Wojtas, M.J. Zaworotko, R.D. Shytle, Cocrystals of quercetin with improved solubility and oral bioavailability, Mol. Pharm. 8 (5) (2011) 1867–1876, https://doi.org/10.1021/mp200209j. S. Olejniczak, M.J. Potrzebowski, Solid state NMR studies and density functional theory (DFT) calculations of conformers of QuercetinElectronic supplementary information (ESI) available: TGA profiles for samples 1 and 2 and 13C NMR shielding parameters, See, http://www.Rsc.Org/Suppdata/Ob/.Org.Biomol.Chem, 2004, https://doi.org/10.1039/b406861k, 2, 16, 2315 G.S. Borghetti, J.P. Carini, S.B. Honorato, A.P. Ayala, J.C.F. Moreira, V.L. Bassani, Physicochemical properties and thermal stability of quercetin hydrates in the solid state, Thermochim. Acta 539 (2012) 109–114, https://doi.org/10.1016/ j.tca.2012.04.015. G.Z. Jin, Y. Yamagata, K. Tomita, Structure of quercetin dihydrate, Acta Crystallogr. Sect. C Cryst. Struct. Commun. 46 (2) (1990) 310–313, https://doi.org/10.1107/ S0108270189006682. Y. Zheng, I.S. Haworth, Z. Zuo, M.S.S. Chow, A.H.L. Chow, Physicochemical and structural characterization of quercetin-β-cyclodextrin complexes, J. Pharmacol. Sci. 94 (5) (2005) 1079–1089, https://doi.org/10.1002/jps.20325 J. Azzi, A. Jraij, L. Auezova, S. Fourmentin, H. Greige-Gerges, Novel findings for quercetin encapsulation and preservation with cyclodextrins, liposomes, and drugin-cyclodextrin-in-liposomes, Food Hydrocolloids 81 (2018) 328–340, https:// doi.org/10.1016/j.foodhyd.2018.03.006. Z. Zhang, D. Li, C. Luo, C. Huang, R. Qiu, Z. Deng, H. Zhang, Cocrystals of natural products: improving the dissolution performance of flavonoids using betaine, Cryst. Growth Des. 19 (7) (2019) 3851–3859, https://doi.org/10.1021/acs.cgd.9b00294. M. Veverka, T. Dubaj, J. Gallovi c, V. Jorík, E. Veverkov a, M. Danihelov a, P. Simon, Cocrystals of quercetin: synthesis, characterization, and screening of biological activity, Monatsh. Chem. 146 (1) (2015) 99–109, https://doi.org/10.1007/s00706- 014-1314-6 A.S. Sinha, A.R. Maguire, S.E. Lawrence, Cocrystallization of nutraceuticals, Cryst. Growth Des. 15 (2) (2015) 984–1009, https://doi.org/10.1021/cg501009c. L. Zhang, D. Kong, H. Wang, L. Jiao, X. Zhao, J. Song, D. Yang, H. Yang, S. Yang, G. Du, et al., Cocrystal of apixaban–quercetin: improving solubility and bioavailability of drug combination of two poorly soluble drugs, Molecules 26 (9) (2021) 2677, https://doi.org/10.3390/molecules26092677. X. Cai, Z. Fang, J. Dou, A. Yu, G. Zhai, Bioavailability of quercetin: problems and promises, Curr. Med. Chem. 20 (20) (2013) 2572–2582, https://doi.org/10.2174/ 09298673113209990120. J. Zhao, J. Yang, Y. Xie, Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: an overview, Int. J. Pharm. 570 (2019) 118642, https://doi.org/10.1016/j.ijpharm.2019.118642. A.M. Silva, B.P. Silva, F.A.M. Sales, V.N. Freire, E. Moreira, U.L. Fulco, E.L. Albuquerque, F.F. Maia Jr., E.W.S. Caetano, Optical absorption and DFT calculations in L-aspartic acid anhydrous crystals: charge carrier effective masses point to semiconducting behavior, Phys. Rev. B 86 (19) (2012) 195201, https:// doi.org/10.1103/PhysRevB.86.195201. P.R. Tulip, S.J. Clark, Structural and electronic properties of L-amino acids, Phys. Rev. B 71 (19) (2005) 195117, https://doi.org/10.1103/PhysRevB.71.195117. S. Datta, D.J.W. Grant, Crystal structures of drugs: advances in determination, prediction and engineering, Nat. Rev. Drug Discov. 3 (1) (2004) 42–57, https:// doi.org/10.1038/nrd1280. K. Honer, E. Kalfaoglu, C. Pico, J. McCann, J. Baltrusaitis, Mechanosynthesis of magnesium and calcium salt–urea ionic cocrystal fertilizer materials for improved nitrogen management, ACS Sustain. Chem. Eng. 5 (10) (2017) 8546–8550, https:// doi.org/10.1021/acssuschemeng.7b02621. Z. Hao, A. Iqbal, Some aspects of organic pigments, Chem. Soc. Rev. 26 (3) (1997) 203, https://doi.org/10.1039/cs9972600203. J. Mei, Y. Diao, A.L. Appleton, L. Fang, Z. Bao, Integrated materials design of organic semiconductors for field-effect transistors, J. Am. Chem. Soc. 135 (18) (2013) 6724–6746, https://doi.org/10.1021/ja400881n O. Ostroverkhova, Organic optoelectronic materials: mechanisms and applications, Chem. Rev. 116 (22) (2016) 13279–13412, https://doi.org/10.1021/ acs.chemrev.6b00127. M.B. da Silva, T.S. Francisco, F.F. Maia Jr., E.W.S. Caetano, U.L. Fulco, E.L. Albuquerque, V.N. Freire, Improved description of the structural and optoelectronic properties of DNA/RNA nucleobase anhydrous crystals: experiment and dispersion-corrected density functional theory calculations, Phys. Rev. B 96 (8) (2017), 085206, https://doi.org/10.1103/PhysRevB.96.085206. F.F. Maia Jr., V.N. Freire, E.W.S. Caetano, D.L. Azevedo, F.A.M. Sales, E.L. Albuquerque, Anhydrous crystals of DNA bases are wide gap semiconductors, J. Chem. Phys. 134 (17) (2011) 175101, https://doi.org/10.1063/1.3584680. E.W.S. Caetano, J.R. Pinheiro, M. Zimmer, V.N. Freire, G.A. Farias, G.A. Bezerra, B.S. Cavada, J.R.L. Fernandez, J.R. Leite, M.C.F. De Oliveira, et al., Molecular signature in the photoluminescence of alpha-Glycine, L-alanine and L-asparagine crystals: detection, ab initio calculations, and bio-sensor applications, AIP Conf. Proc. 772 (2005) 1095–1096, https://doi.org/10.1063/1.1994494. July 2016 J.S. Rodríguez, G. Costa, M.B. Da Silva, B.P. Silva, L.J. Honorio, P. De Lima-Neto, R.C.R. Santos, E.W.S. Caetano, H.W.L. Alves, V.N. Freire, Structural and optoelectronic properties of the α-, β-, and γ-Glycine polymorphs and the Glycine dihydrate crystal: a DFT study, Cryst. Growth Des. 19 (9) (2019) 5204–5217, https://doi.org/10.1021/acs.cgd.9b00593. A.M. Silva, S.N. Costa, F.A.M. Sales, V.N. Freire, E.M. Bezerra, R.P. Santos, U.L. Fulco, E.L. Albuquerque, E.W.S. Caetano, Vibrational spectroscopy and phonon-related properties of the l -aspartic acid anhydrous monoclinic crystal, J. Phys. Chem. 119 (49) (2015) 11791–11803, https://doi.org/10.1021/ acs.jpca.5b08784. A.M. Silva, S.N. Costa, B.P. Silva, V.N. Freire, U.L. Fulco, E.L. Albuquerque, E.W.S. Caetano, F.F. Maia Jr., Assessing the role of water on the electronic structure and vibrational spectra of monohydrated L-aspartic acid crystals, Cryst. Growth Des. 13 (11) (2013) 4844–4851, https://doi.org/10.1021/cg401016v. J.R. C^andido-Júnior, F.A.M. Sales, S.N. Costa, P. de Lima-Neto, D.L. Azevedo, E.W.S. Caetano, E.L. Albuquerque, V.N. Freire, Monoclinic and orthorhombic cysteine crystals are small gap insulators, Chem. Phys. Lett. 512 (4–6) (2011) 208–210, https://doi.org/10.1016/j.cplett.2011.07.028. E.W.S. Caetano, U.L. Fulco, E.L. Albuquerque, A.H. de Lima Costa, S.N. Costa, A.M. Silva, F.A.M. Sales, V.N. Freire, Anhydrous proline crystals: structural optimization, optoelectronic properties, effective masses and frenkel exciton energy, J. Phys. Chem. Solid. 121 (2018), https://doi.org/10.1016/ j.jpcs.2018.05.006 S.N. Costa, F.A.M. Sales, V.N. Freire, F.F. Maia, E.W.S. Caetano, L.O. Ladeira, E.L. Albuquerque, U.L. Fulco, L-serine anhydrous crystals: structural, electronic, and optical properties by first-principles calculations, and optical absorption measurement, Cryst. Growth Des. 13 (7) (2013) 2793–2802, https://doi.org/ 10.1021/cg400111w. M.Z.S. Flores, V.N. Freire, R.P. Dos Santos, G.A. Farias, E.W.S. Caetano, M.C.F. De Oliveira, J.R.L. Fernandez, L.M.R. Scolfaro, M.J.B. Bezerra, T.M. Oliveira, et al., Optical absorption and electronic band structure first-principles calculations of α-Glycine crystals, Phys. Rev. B Condens. Matter 77 (11) (2008) 115104, https:// doi.org/10.1103/PhysRevB.77.115104. M.B. Da Silva, A.M. Da Cunha, R.C.R. Santos, A. Valentini, E.W.S. Caetano, V.N. Freire, Changing the gap type of solid state boric acid by heating: a dispersioncorrected density functional study of α-, β-, and γ-metaboric acid polymorphs, New J. Chem. 41 (24) (2017), https://doi.org/10.1039/c7nj02945d. M. Bezerra Da Silva, R.C.R. Santos, P.T.C. Freire, E.W.S. Caetano, V.N. Freire, Vibrational properties of bulk boric acid 2A and 3T polymorphs and their twodimensional layers: measurements and density functional theory calculations, J. Phys. Chem. 122 (5) (2018), https://doi.org/10.1021/acs.jpca.7b10083. M.B. Da Silva, R.C.R. Dos Santos, A.M. da Cunha, A. Valentini, O.D.L. Pessoa, E.W.S. Caetano, V.N. Freire, Structural, electronic, and optical properties of bulk boric acid 2A and 3T polymorphs: experiment and density functional theory calculations, Cryst. Growth Des. 16 (11) (2016) 6631–6640, https://doi.org/ 10.1021/acs.cgd.6b01297. P. Klitou, C.M. Pask, L. Onoufriadi, I. Rosbottom, E. Simone, Solid-state characterization and role of solvent molecules on the crystal structure, packing, and physiochemical properties of different quercetin solvates, Cryst. Growth Des. 20 (10) (2020) 6573–6584, https://doi.org/10.1021/acs.cgd.0c00751. L.A. De Souza, W.M.G. Tavares, A.P.M. Lopes, M.M. Soeiro, W.B. De Almeida, Structural analysis of flavonoids in solution through DFT 1H NMR chemical shift calculations: epigallocatechin, kaempferol and quercetin, Chem. Phys. Lett. 676 (2017) 46–52, https://doi.org/10.1016/j.cplett.2017.03.038. ] S. Antonczak, Electronic description of four flavonoids revisited by DFT method, J. Mol. Struct. 856 (1–3) (2008) 38–45, https://doi.org/10.1016/j.theochem.2008.01.014. ] N. Russo, M. Toscano, N. Uccella, Semiempirical molecular modeling into quercetin reactive site: structural, conformational, and electronic features, J. Agric. Food Chem. 48 (8) (2000) 3232–3237, https://doi.org/10.1021/jf990469h M. Leopoldini, T. Marino, N. Russo, M. Toscano, Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent, Theor. Chem. Acc. 111 (2–6) (2004) 210–216, https:// doi.org/10.1007/s00214-003-0544-1. J.P. Cornard, J.C. Merlin, A.C. Boudet, L. Vrielynck, Structural study of quercetin by vibrational and electronic spectroscopies combined with semiempirical calculations, Biospectroscopy 3 (3) (1997) 183–193, https://doi.org/10.1002/ (SICI)1520-6343, 1997, 3:3<183::AID-BSPY2>3.0.CO, 7, 2. M. Biler, D. Biedermann, K. Valentov a, V. K ren, M. Kubala, Quercetin and its analogues: optical and acido–basic properties, Phys. Chem. Chem. Phys. 19 (39) (2017) 26870–26879, https://doi.org/10.1039/C7CP03845C. J. Ren, S. Meng, C.E. Lekka, E. Kaxiras, Complexation of flavonoids with iron: structure and optical signatures, J. Phys. Chem. B 112 (6) (2008) 1845–1850, https://doi.org/10.1021/jp076881e. C.E. Lekka, J. Ren, S. Meng, E. Kaxiras, Structural, electronic, and optical properties of representative CuFlavonoid complexes, J. Phys. Chem. B 113 (18) (2009) 6478–6483, https://doi.org/10.1021/jp807948z. N. Baildya, N.N. Ghosh, A.P. Chattopadhyay, Anti-corrosive properties of quercetin and its derivatives on Fe(111) surface: a quantum chemical approach, SN Appl. Sci. 1 (7) (2019) 735, https://doi.org/10.1007/s42452-019-0772-1. ] A. Bora, S. Avram, L. Crisan, L. Halip, R. Curpan, L. Pacureanu, I. Ciucanu, Theoretical investigations of quercetin and its analogues as anticancer agents, Rev. Roum. Chem. 60 (1–2) (2015) 175–181. W. Cai, Y. Chen, L. Xie, H. Zhang, C. Hou, Characterization and density functional theory study of the antioxidant activity of quercetin and its sugar-containing analogues, Eur. Food Res. Technol. 238 (1) (2014) 121–128, https://doi.org/ 10.1007/s00217-013-2091-x. J.G.G. da Silva Filho, V.N.N. Freire, E.W.S.W.S. Caetano, L.O.O. Ladeira, U.L.L. Fulco, E.L.L. Albuquerque, A comparative density functional theory study of electronic structure and optical properties of -aminobutyric acid and its cocrystals with oxalic and benzoic acid, Chem. Phys. Lett. 587 (2013) 20–24, https://doi.org/ 10.1016/j.cplett.2013.09.051. N.S. Vila-Nova, S.M. Morais, M.J.C. Falc~ao, C.M.L. Bevilaqua, F.C.M. Rondon, M.E. Wilson, I.G.P. Vieira, H.F. Andrade, Leishmanicidal and cholinesterase inhibiting activities of phenolic compounds of dimorphandra gardneriana and platymiscium floribundum, native plants from caatinga biome, Pesqui. Vet. Bras. 32 (11) (2012) 1164–1168, https://doi.org/10.1590/S0100-736X2012001100015. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al., Gaussian 09, Gaussian, Inc., Wallingford CT, 2009. N.M. O’boyle, A.L. Tenderholt, K.M. Langner, Cclib: a library for packageindependent computational chemistry algorithms, J. Comput. Chem. 29 (5) (2008) 839–845, https://doi.org/10.1002/jcc.20823. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter 14 (11) (2002) 2717–2744, https://doi.org/10.1088/ 0953-8984/14/11/301. D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45 (7) (1980) 566–569, https://doi.org/10.1103/ PhysRevLett.45.566. J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 (10) (1981) 5048–5079, https://doi.org/10.1103/PhysRevB.23.5048. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865–3868, https://doi.org/10.1103/ PhysRevLett.77.3865. A. Tkatchenko, Current understanding of van der Waals effects in realistic materials, Adv. Funct. Mater. 25 (13) (2015) 2054–2061, https://doi.org/10.1002/ adfm.201403029 J.S. Lin, A. Qteish, M.C. Payne, V. Heine, Optimized and transferable nonlocal separable ab initio pseudopotentials, Phys. Rev. B 47 (8) (1993) 4174–4180, https://doi.org/10.1103/PhysRevB.47.4174. B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen, Relaxation of crystals with the quasi-Newton method, J. Comput. Phys. 131 (1997) 233–240, https://doi.org/ 10.1006/jcph.1996.5612. H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B 13 (12) (1976) 5188–5192, https://doi.org/10.1103/PhysRevB.16.1748. J.D. Pack, H.J. Monkhorst, Special points for brillouin-zone integrations”—a reply, Phys. Rev. B 16 (4) (1977) 1748–1749, https://doi.org/10.1103/ PhysRevB.16.1748. S. Baroni, S. De Gironcoli, A. Dal Corso, P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73 (2) (2001) 515–562, https://doi.org/10.1103/RevModPhys.73.515. M.K.Y. Chan, G. Ceder, Efficient band gap prediction for solids, Phys. Rev. Lett. 105 (19) (2010) 5–8, https://doi.org/10.1103/PhysRevLett.105.196403. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2 (2) (1969) 65–71, https://doi.org/10.1107/ S0021889869006558 P. Papan, J. Kantapan, P. Sangthong, P. Meepowpan, N. Dechsupa, Iron (III)- Quercetin complex: synthesis, physicochemical characterization, and MRI cell tracking toward potential applications in regenerative medicine, Contrast Media Mol. Imaging 2020 (2020) 1–22, https://doi.org/10.1155/2020/8877862. Y.S. Murillo-Acevedo, L. Giraldo, P.S. Poon, J. Matos, J.C. Moreno-Piraj an, The cramer's rule for the parametrization of phenol and its hydroxylated byproducts: UV spectroscopy vs. High performance liquid chromatography, Environ. Sci. Pollut. Res. 28 (6) (2021) 6746–6757, https://doi.org/10.1007/s11356-020- 10897-8. H.P. Hendrickson, A.D. Kaufman, C.E. Lunte, Electrochemistry of catecholcontaining flavonoids, J. Pharm. Biomed. Anal. 12 (3) (1994) 325–334, https:// doi.org/10.1016/0731-7085(94)90007-8. S. Domagała, P. Munshi, M. Ahmed, B. Guillot, C. Jelsch, Structural analysis and multipole modelling of quercetin monohydrate – a quantitative and comparative study, Acta Crystallogr. Sect. B Struct. Sci. 67 (1) (2011) 63–78, https://doi.org/ 10.1107/S0108768110041996. P. Klitou, I. Rosbottom, E. Simone, Synthonic modeling of quercetin and its hydrates: explaining crystallization behavior in terms of molecular conformation and crystal packing, Cryst. Growth Des. 19 (8) (2019) 4774–4783, https://doi.org/ 10.1021/acs.cgd.9b00650 K. Burke, L.O. Wagner, DFT in a nutshell, Int. J. Quant. Chem. 113 (2) (2013) 96–101, https://doi.org/10.1002/qua.24259 A.J. Garza, G.E. Scuseria, Predicting band gaps with hybrid density functionals, J. Phys. Chem. Lett. 7 (20) (2016) 4165–4170, https://doi.org/10.1021/acs.jpclett.6b01807. S. Refaely-Abramson, S. Sharifzadeh, M. Jain, R. Baer, J.B. Neaton, L. Kronik, Gap renormalization of molecular crystals from density-functional theory, Phys. Rev. B 88 (8) (2013), 081204, https://doi.org/10.1103/PhysRevB.88.081204. J. Heyd, G.E. Scuseria, Efficient hybrid density functional calculations in solids: assessment of the heyd–scuseria–ernzerhof screened Coulomb hybrid functional, J. Chem. Phys. 121 (3) (2004) 1187–1192, https://doi.org/10.1063/1.1760074. W. Perger, Calculation of band gaps in molecular crystals using hybrid functional theory, Chem. Phys. Lett. 368 (3–4) (2003) 319–323, https://doi.org/10.1016/ S0009-2614(02)01879-1. X. Leng, F. Jin, M. Wei, Y. Ma, GW method and bethe-salpeter equation for calculating electronic excitations, Wiley Interdiscip. Rev. Comput. Mol. Sci. 6 (5) (2016) 532–550, https://doi.org/10.1002/wcms.1265. K. Hummer, C. Ambrosch-Draxl, Oligoacene exciton binding energies: their dependence on molecular size, Phys. Rev. B 71 (8) (2005), 081202, https://doi.org/ 10.1103/PhysRevB.71.081202. D. Moses, J. Wang, A.J. Heeger, N. Kirova, S. Brazovski, Singlet exciton binding energy in poly(phenylene vinylene), Proc. Natl. Acad. Sci. Unit. States Am. 98 (24) (2001) 13496–13500, https://doi.org/10.1073/pnas.241497098. R.S. Mulliken, Electronic population analysis on LCAO-MO molecular wave functions. IV. Bonding and antibonding in LCAO and valence-bond theories, J. Chem. Phys. 23 (10) (1955) 1833, https://doi.org/10.1063/1.1740588. F.L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities, Theor. Chim. Acta 44 (2) (1977) 129–138, https://doi.org/10.1007/BF00549096. M. Fox, Optical Properties of Solids, second ed., First edit, Oxford University Press, 2010 https://doi.org/10.1119/1.1691372. |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Inc. |
| dc.publisher.place.none.fl_str_mv |
United States |
| publisher.none.fl_str_mv |
Academic Press Inc. |
| dc.source.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S002245962200367X |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/d3129033-d170-4b13-9b9d-9aaced8cc837/download https://repositorio.unibague.edu.co/bitstreams/d1ae067c-4685-4271-b90b-8dcdc2b2a421/download https://repositorio.unibague.edu.co/bitstreams/9ee6f8c9-bb85-4204-9dcd-19feb06531fe/download https://repositorio.unibague.edu.co/bitstreams/c6ee706e-6b47-453d-8cee-0b907c2d3f1e/download |
| bitstream.checksum.fl_str_mv |
2fa3e590786b9c0f3ceba1b9656b7ac3 8308057d83953275a2570d4805d356c2 bfd48129854093fd16b8bf73a9c5fc0d 9dbbc1382710fd21c98b6e8ed238e427 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059982795014144 |
| spelling |
de Paula V.F., Jrb75bdd3c-a46a-40e6-9613-dafd6c04df31-1Guedes M.I.F.33c4ba1c-9b53-4766-8aa4-447bf11090d2-1van Tilburg M.Fa267af8b-436b-42f8-9172-15d5021ecb70-1Vieira I.G.P.35c3a70c-0a8a-4d3e-89f6-12873c5cf629-1Silva J.B.a0178073-3d0b-4828-9bc0-27805bd84904-1dos Santos R.C.R.6e7e9908-6733-4f7b-9797-a3999b124008-1Echeverry J.P.d5f99fd0-040a-4cbc-b427-e9953bfc6b61-1Costa G33996a41-5e80-47de-836f-d687c058bf9d-1Silva B.P50441154-705b-41f9-8fe6-e437f653d405-1Maia F.F., Jr.6efa5224-79d7-4cb8-9904-2eb2bbeb2603-1Caetano E.W.S.d96a83c7-6218-4290-a809-af08d579b8c2-1Freire V.N.1119f4d9-2b49-44ff-b0b1-adc5c5374d84-12025-08-20T16:45:54Z2025-08-20T16:45:54Z2022-08UV–vis optical absorption measurements of the ethanol solvated quercetin molecule and the dihydrate triclinic quercetin crystal were performed, as well as the electronic structure of the ethanol solvated quercetin molecule and the properties of anhydrous and mono(di)hydrated quercetin crystals employing Density Functional Theory (DFT) calculations with a dispersion correction scheme. Unit cell geometry optimization of the anhydrous crystal has elucidated the structure of the anhydrous quercetin crystal (space group P21/a, monoclinic). Anhydrous quercetin exhibits a direct bandgap of 2.17 eV with large valence band dispersion, suggesting a semiconductor behavior for hole transport. Monohydrate quercetin has an indirect gap of 1.84 eV, while the solid dihydrate form has a Kohn-Sham indirect electronic bandgap of 2.00 eV, smaller than the experimental optical absorption bandgap of 2.40 eV. Applying the Δ-sol gap correction scheme, the bandgaps increase by about 1 eV. There is a significant optical anisotropy for all quercetin systems in the solid state, especially for the anhydrous form. © 2022 Elsevier Inc.application/pdfDe Paula V., Guedes M.I.F., Van, M., Vieira, I., Silva, J., dos Santos, R., Echeverry, J., Costa G., Silva, B., Maia F.F., Caetano E.W.S. y Freire V.N. (2022). Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals. Journal of Solid State Chemistry, 312, 123242. DOI: 10.1016/j.jssc.2022.12324210.1016/j.jssc.2022.1232421095726X00224596https://hdl.handle.net/20.500.12313/5499engAcademic Press Inc.United States123242312Journal of Solid State ChemistryA. Sharma, D. Kashyap, K. Sak, H.S. Tuli, A.K. Sharma, Therapeutic charm of quercetin and its derivatives: a review of research and patents, Pharm. Pat. Anal. 7 (1) (2018) 15–32, https://doi.org/10.4155/ppa-2017-0030] G. Quercetin D'Andrea, A flavonol with multifaceted therapeutic applications? Fitoterapia 106 (2015) 256–271, https://doi.org/10.1016/j.fitote.2015.09.018W. Wang, C. Sun, L. Mao, P. Ma, F. Liu, J. Yang, Y. Gao, The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review, Trends Food Sci. Technol. 56 (2016) 21–38, https://doi.org/10.1016/j.tifs.2016.07.004K. Vasisht, K. Chadha, M. Karan, Y. Bhalla, A.K. Jena, R. Chadha, Enhancing biopharmaceutical parameters of bioflavonoid quercetin by cocrystallization, CrystEngComm 18 (8) (2016) 1403–1415, https://doi.org/10.1039/C5CE01899DX. Filip, I.-G. Grosu, M. Micl aus¸, C. Filip, NMR crystallography methods to probe complex hydrogen bonding networks: application to structure elucidation of anhydrous quercetin, CrystEngComm 15 (20) (2013) 4131, https://doi.org/ 10.1039/c3ce40299a.J. Sheng, G.M. Venkatesh, S.P. Duddu, D.J.W. Grant, Dehydration behavior of eprosartan mesylate dihydrate, J. Pharmacol. Sci. 88 (10) (1999) 1021–1029, https://doi.org/10.1021/js9900250A. Raw, Regulatory considerations of pharmaceutical solid polymorphism in abbreviated new drug applications (ANDAs), Adv. Drug Deliv. Rev. 56 (3) (2004) 397–414, https://doi.org/10.1016/j.addr.2003.10.011.L. Yu, Amorphous pharmaceutical solids: preparation, characterization and stabilization, Adv. Drug Deliv. Rev. 48 (1) (2001) 27–42, https://doi.org/10.1016/ S0169-409X(01)00098-9.O.O. Brovarets’, D.M. Hovorun, Conformational diversity of the quercetin molecule: a quantum-chemical view, J. Biomol. Struct. Dyn. 38 (10) (2020) 2817–2836, https://doi.org/10.1080/07391102.2019.1656671.O.O. Brovarets’, M. Hovorun, D. A never-ending conformational story of the quercetin molecule: quantum-mechanical investigation of the O30 H and O40 H hydroxyl groups rotations, Appl. Sci. 10 (3) (2020) 1147, https://doi.org/10.3390/ app10031147.A. Berzin¸ s, D. Zvanin¸ a, A. Trimdale, Detailed analysis of packing efficiency allows rationalization of solvate formation propensity for selected structurally similar organic molecules, Cryst. Growth Des. 18 (4) (2018) 2040–2045, https://doi.org/ 10.1021/acs.cgd.7b01457.A. Kons, A. Berzin¸ s, A. Actin¸ s, Polymorphs and hydrates of sequifenadine hydrochloride: crystallographic explanation of observed phase transitions and thermodynamic stability, Cryst. Growth Des. 17 (3) (2017) 1146–1158, https:// doi.org/10.1021/acs.cgd.6b01534.M. Rossi, L.F. Rickles, W.A. Halpin, The crystal and molecular structure of quercetin: a biologically active and naturally occurring flavonoid, Bioorg. Chem. 14 (1) (1986) 55–69, https://doi.org/10.1016/0045-2068(86)90018-0A.J. Smith, P. Kavuru, L. Wojtas, M.J. Zaworotko, R.D. Shytle, Cocrystals of quercetin with improved solubility and oral bioavailability, Mol. Pharm. 8 (5) (2011) 1867–1876, https://doi.org/10.1021/mp200209j.S. Olejniczak, M.J. Potrzebowski, Solid state NMR studies and density functional theory (DFT) calculations of conformers of QuercetinElectronic supplementary information (ESI) available: TGA profiles for samples 1 and 2 and 13C NMR shielding parameters, See, http://www.Rsc.Org/Suppdata/Ob/.Org.Biomol.Chem, 2004, https://doi.org/10.1039/b406861k, 2, 16, 2315G.S. Borghetti, J.P. Carini, S.B. Honorato, A.P. Ayala, J.C.F. Moreira, V.L. Bassani, Physicochemical properties and thermal stability of quercetin hydrates in the solid state, Thermochim. Acta 539 (2012) 109–114, https://doi.org/10.1016/ j.tca.2012.04.015.G.Z. Jin, Y. Yamagata, K. Tomita, Structure of quercetin dihydrate, Acta Crystallogr. Sect. C Cryst. Struct. Commun. 46 (2) (1990) 310–313, https://doi.org/10.1107/ S0108270189006682.Y. Zheng, I.S. Haworth, Z. Zuo, M.S.S. Chow, A.H.L. Chow, Physicochemical and structural characterization of quercetin-β-cyclodextrin complexes, J. Pharmacol. Sci. 94 (5) (2005) 1079–1089, https://doi.org/10.1002/jps.20325J. Azzi, A. Jraij, L. Auezova, S. Fourmentin, H. Greige-Gerges, Novel findings for quercetin encapsulation and preservation with cyclodextrins, liposomes, and drugin-cyclodextrin-in-liposomes, Food Hydrocolloids 81 (2018) 328–340, https:// doi.org/10.1016/j.foodhyd.2018.03.006.Z. Zhang, D. Li, C. Luo, C. Huang, R. Qiu, Z. Deng, H. Zhang, Cocrystals of natural products: improving the dissolution performance of flavonoids using betaine, Cryst. Growth Des. 19 (7) (2019) 3851–3859, https://doi.org/10.1021/acs.cgd.9b00294.M. Veverka, T. Dubaj, J. Gallovi c, V. Jorík, E. Veverkov a, M. Danihelov a, P. Simon, Cocrystals of quercetin: synthesis, characterization, and screening of biological activity, Monatsh. Chem. 146 (1) (2015) 99–109, https://doi.org/10.1007/s00706- 014-1314-6A.S. Sinha, A.R. Maguire, S.E. Lawrence, Cocrystallization of nutraceuticals, Cryst. Growth Des. 15 (2) (2015) 984–1009, https://doi.org/10.1021/cg501009c.L. Zhang, D. Kong, H. Wang, L. Jiao, X. Zhao, J. Song, D. Yang, H. Yang, S. Yang, G. Du, et al., Cocrystal of apixaban–quercetin: improving solubility and bioavailability of drug combination of two poorly soluble drugs, Molecules 26 (9) (2021) 2677, https://doi.org/10.3390/molecules26092677.X. Cai, Z. Fang, J. Dou, A. Yu, G. Zhai, Bioavailability of quercetin: problems and promises, Curr. Med. Chem. 20 (20) (2013) 2572–2582, https://doi.org/10.2174/ 09298673113209990120.J. Zhao, J. Yang, Y. Xie, Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: an overview, Int. J. Pharm. 570 (2019) 118642, https://doi.org/10.1016/j.ijpharm.2019.118642.A.M. Silva, B.P. Silva, F.A.M. Sales, V.N. Freire, E. Moreira, U.L. Fulco, E.L. Albuquerque, F.F. Maia Jr., E.W.S. Caetano, Optical absorption and DFT calculations in L-aspartic acid anhydrous crystals: charge carrier effective masses point to semiconducting behavior, Phys. Rev. B 86 (19) (2012) 195201, https:// doi.org/10.1103/PhysRevB.86.195201.P.R. Tulip, S.J. Clark, Structural and electronic properties of L-amino acids, Phys. Rev. B 71 (19) (2005) 195117, https://doi.org/10.1103/PhysRevB.71.195117.S. Datta, D.J.W. Grant, Crystal structures of drugs: advances in determination, prediction and engineering, Nat. Rev. Drug Discov. 3 (1) (2004) 42–57, https:// doi.org/10.1038/nrd1280.K. Honer, E. Kalfaoglu, C. Pico, J. McCann, J. Baltrusaitis, Mechanosynthesis of magnesium and calcium salt–urea ionic cocrystal fertilizer materials for improved nitrogen management, ACS Sustain. Chem. Eng. 5 (10) (2017) 8546–8550, https:// doi.org/10.1021/acssuschemeng.7b02621.Z. Hao, A. Iqbal, Some aspects of organic pigments, Chem. Soc. Rev. 26 (3) (1997) 203, https://doi.org/10.1039/cs9972600203.J. Mei, Y. Diao, A.L. Appleton, L. Fang, Z. Bao, Integrated materials design of organic semiconductors for field-effect transistors, J. Am. Chem. Soc. 135 (18) (2013) 6724–6746, https://doi.org/10.1021/ja400881nO. Ostroverkhova, Organic optoelectronic materials: mechanisms and applications, Chem. Rev. 116 (22) (2016) 13279–13412, https://doi.org/10.1021/ acs.chemrev.6b00127.M.B. da Silva, T.S. Francisco, F.F. Maia Jr., E.W.S. Caetano, U.L. Fulco, E.L. Albuquerque, V.N. Freire, Improved description of the structural and optoelectronic properties of DNA/RNA nucleobase anhydrous crystals: experiment and dispersion-corrected density functional theory calculations, Phys. Rev. B 96 (8) (2017), 085206, https://doi.org/10.1103/PhysRevB.96.085206.F.F. Maia Jr., V.N. Freire, E.W.S. Caetano, D.L. Azevedo, F.A.M. Sales, E.L. Albuquerque, Anhydrous crystals of DNA bases are wide gap semiconductors, J. Chem. Phys. 134 (17) (2011) 175101, https://doi.org/10.1063/1.3584680.E.W.S. Caetano, J.R. Pinheiro, M. Zimmer, V.N. Freire, G.A. Farias, G.A. Bezerra, B.S. Cavada, J.R.L. Fernandez, J.R. Leite, M.C.F. De Oliveira, et al., Molecular signature in the photoluminescence of alpha-Glycine, L-alanine and L-asparagine crystals: detection, ab initio calculations, and bio-sensor applications, AIP Conf. Proc. 772 (2005) 1095–1096, https://doi.org/10.1063/1.1994494. July 2016J.S. Rodríguez, G. Costa, M.B. Da Silva, B.P. Silva, L.J. Honorio, P. De Lima-Neto, R.C.R. Santos, E.W.S. Caetano, H.W.L. Alves, V.N. Freire, Structural and optoelectronic properties of the α-, β-, and γ-Glycine polymorphs and the Glycine dihydrate crystal: a DFT study, Cryst. Growth Des. 19 (9) (2019) 5204–5217, https://doi.org/10.1021/acs.cgd.9b00593.A.M. Silva, S.N. Costa, F.A.M. Sales, V.N. Freire, E.M. Bezerra, R.P. Santos, U.L. Fulco, E.L. Albuquerque, E.W.S. Caetano, Vibrational spectroscopy and phonon-related properties of the l -aspartic acid anhydrous monoclinic crystal, J. Phys. Chem. 119 (49) (2015) 11791–11803, https://doi.org/10.1021/ acs.jpca.5b08784.A.M. Silva, S.N. Costa, B.P. Silva, V.N. Freire, U.L. Fulco, E.L. Albuquerque, E.W.S. Caetano, F.F. Maia Jr., Assessing the role of water on the electronic structure and vibrational spectra of monohydrated L-aspartic acid crystals, Cryst. Growth Des. 13 (11) (2013) 4844–4851, https://doi.org/10.1021/cg401016v.J.R. C^andido-Júnior, F.A.M. Sales, S.N. Costa, P. de Lima-Neto, D.L. Azevedo, E.W.S. Caetano, E.L. Albuquerque, V.N. Freire, Monoclinic and orthorhombic cysteine crystals are small gap insulators, Chem. Phys. Lett. 512 (4–6) (2011) 208–210, https://doi.org/10.1016/j.cplett.2011.07.028.E.W.S. Caetano, U.L. Fulco, E.L. Albuquerque, A.H. de Lima Costa, S.N. Costa, A.M. Silva, F.A.M. Sales, V.N. Freire, Anhydrous proline crystals: structural optimization, optoelectronic properties, effective masses and frenkel exciton energy, J. Phys. Chem. Solid. 121 (2018), https://doi.org/10.1016/ j.jpcs.2018.05.006S.N. Costa, F.A.M. Sales, V.N. Freire, F.F. Maia, E.W.S. Caetano, L.O. Ladeira, E.L. Albuquerque, U.L. Fulco, L-serine anhydrous crystals: structural, electronic, and optical properties by first-principles calculations, and optical absorption measurement, Cryst. Growth Des. 13 (7) (2013) 2793–2802, https://doi.org/ 10.1021/cg400111w.M.Z.S. Flores, V.N. Freire, R.P. Dos Santos, G.A. Farias, E.W.S. Caetano, M.C.F. De Oliveira, J.R.L. Fernandez, L.M.R. Scolfaro, M.J.B. Bezerra, T.M. Oliveira, et al., Optical absorption and electronic band structure first-principles calculations of α-Glycine crystals, Phys. Rev. B Condens. Matter 77 (11) (2008) 115104, https:// doi.org/10.1103/PhysRevB.77.115104.M.B. Da Silva, A.M. Da Cunha, R.C.R. Santos, A. Valentini, E.W.S. Caetano, V.N. Freire, Changing the gap type of solid state boric acid by heating: a dispersioncorrected density functional study of α-, β-, and γ-metaboric acid polymorphs, New J. Chem. 41 (24) (2017), https://doi.org/10.1039/c7nj02945d.M. Bezerra Da Silva, R.C.R. Santos, P.T.C. Freire, E.W.S. Caetano, V.N. Freire, Vibrational properties of bulk boric acid 2A and 3T polymorphs and their twodimensional layers: measurements and density functional theory calculations, J. Phys. Chem. 122 (5) (2018), https://doi.org/10.1021/acs.jpca.7b10083.M.B. Da Silva, R.C.R. Dos Santos, A.M. da Cunha, A. Valentini, O.D.L. Pessoa, E.W.S. Caetano, V.N. Freire, Structural, electronic, and optical properties of bulk boric acid 2A and 3T polymorphs: experiment and density functional theory calculations, Cryst. Growth Des. 16 (11) (2016) 6631–6640, https://doi.org/ 10.1021/acs.cgd.6b01297.P. Klitou, C.M. Pask, L. Onoufriadi, I. Rosbottom, E. Simone, Solid-state characterization and role of solvent molecules on the crystal structure, packing, and physiochemical properties of different quercetin solvates, Cryst. Growth Des. 20 (10) (2020) 6573–6584, https://doi.org/10.1021/acs.cgd.0c00751.L.A. De Souza, W.M.G. Tavares, A.P.M. Lopes, M.M. Soeiro, W.B. De Almeida, Structural analysis of flavonoids in solution through DFT 1H NMR chemical shift calculations: epigallocatechin, kaempferol and quercetin, Chem. Phys. Lett. 676 (2017) 46–52, https://doi.org/10.1016/j.cplett.2017.03.038.] S. Antonczak, Electronic description of four flavonoids revisited by DFT method, J. Mol. Struct. 856 (1–3) (2008) 38–45, https://doi.org/10.1016/j.theochem.2008.01.014.] N. Russo, M. Toscano, N. Uccella, Semiempirical molecular modeling into quercetin reactive site: structural, conformational, and electronic features, J. Agric. Food Chem. 48 (8) (2000) 3232–3237, https://doi.org/10.1021/jf990469hM. Leopoldini, T. Marino, N. Russo, M. Toscano, Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent, Theor. Chem. Acc. 111 (2–6) (2004) 210–216, https:// doi.org/10.1007/s00214-003-0544-1.J.P. Cornard, J.C. Merlin, A.C. Boudet, L. Vrielynck, Structural study of quercetin by vibrational and electronic spectroscopies combined with semiempirical calculations, Biospectroscopy 3 (3) (1997) 183–193, https://doi.org/10.1002/ (SICI)1520-6343, 1997, 3:3<183::AID-BSPY2>3.0.CO, 7, 2.M. Biler, D. Biedermann, K. Valentov a, V. K ren, M. Kubala, Quercetin and its analogues: optical and acido–basic properties, Phys. Chem. Chem. Phys. 19 (39) (2017) 26870–26879, https://doi.org/10.1039/C7CP03845C.J. Ren, S. Meng, C.E. Lekka, E. Kaxiras, Complexation of flavonoids with iron: structure and optical signatures, J. Phys. Chem. B 112 (6) (2008) 1845–1850, https://doi.org/10.1021/jp076881e.C.E. Lekka, J. Ren, S. Meng, E. Kaxiras, Structural, electronic, and optical properties of representative CuFlavonoid complexes, J. Phys. Chem. B 113 (18) (2009) 6478–6483, https://doi.org/10.1021/jp807948z.N. Baildya, N.N. Ghosh, A.P. Chattopadhyay, Anti-corrosive properties of quercetin and its derivatives on Fe(111) surface: a quantum chemical approach, SN Appl. Sci. 1 (7) (2019) 735, https://doi.org/10.1007/s42452-019-0772-1.] A. Bora, S. Avram, L. Crisan, L. Halip, R. Curpan, L. Pacureanu, I. Ciucanu, Theoretical investigations of quercetin and its analogues as anticancer agents, Rev. Roum. Chem. 60 (1–2) (2015) 175–181.W. Cai, Y. Chen, L. Xie, H. Zhang, C. Hou, Characterization and density functional theory study of the antioxidant activity of quercetin and its sugar-containing analogues, Eur. Food Res. Technol. 238 (1) (2014) 121–128, https://doi.org/ 10.1007/s00217-013-2091-x.J.G.G. da Silva Filho, V.N.N. Freire, E.W.S.W.S. Caetano, L.O.O. Ladeira, U.L.L. Fulco, E.L.L. Albuquerque, A comparative density functional theory study of electronic structure and optical properties of -aminobutyric acid and its cocrystals with oxalic and benzoic acid, Chem. Phys. Lett. 587 (2013) 20–24, https://doi.org/ 10.1016/j.cplett.2013.09.051.N.S. Vila-Nova, S.M. Morais, M.J.C. Falc~ao, C.M.L. Bevilaqua, F.C.M. Rondon, M.E. Wilson, I.G.P. Vieira, H.F. Andrade, Leishmanicidal and cholinesterase inhibiting activities of phenolic compounds of dimorphandra gardneriana and platymiscium floribundum, native plants from caatinga biome, Pesqui. Vet. Bras. 32 (11) (2012) 1164–1168, https://doi.org/10.1590/S0100-736X2012001100015.M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al., Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.N.M. O’boyle, A.L. Tenderholt, K.M. Langner, Cclib: a library for packageindependent computational chemistry algorithms, J. Comput. Chem. 29 (5) (2008) 839–845, https://doi.org/10.1002/jcc.20823.M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter 14 (11) (2002) 2717–2744, https://doi.org/10.1088/ 0953-8984/14/11/301.D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45 (7) (1980) 566–569, https://doi.org/10.1103/ PhysRevLett.45.566.J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 (10) (1981) 5048–5079, https://doi.org/10.1103/PhysRevB.23.5048.J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865–3868, https://doi.org/10.1103/ PhysRevLett.77.3865.A. Tkatchenko, Current understanding of van der Waals effects in realistic materials, Adv. Funct. Mater. 25 (13) (2015) 2054–2061, https://doi.org/10.1002/ adfm.201403029J.S. Lin, A. Qteish, M.C. Payne, V. Heine, Optimized and transferable nonlocal separable ab initio pseudopotentials, Phys. Rev. B 47 (8) (1993) 4174–4180, https://doi.org/10.1103/PhysRevB.47.4174.B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen, Relaxation of crystals with the quasi-Newton method, J. Comput. Phys. 131 (1997) 233–240, https://doi.org/ 10.1006/jcph.1996.5612.H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B 13 (12) (1976) 5188–5192, https://doi.org/10.1103/PhysRevB.16.1748.J.D. Pack, H.J. Monkhorst, Special points for brillouin-zone integrations”—a reply, Phys. Rev. B 16 (4) (1977) 1748–1749, https://doi.org/10.1103/ PhysRevB.16.1748.S. Baroni, S. De Gironcoli, A. Dal Corso, P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73 (2) (2001) 515–562, https://doi.org/10.1103/RevModPhys.73.515.M.K.Y. Chan, G. Ceder, Efficient band gap prediction for solids, Phys. Rev. Lett. 105 (19) (2010) 5–8, https://doi.org/10.1103/PhysRevLett.105.196403.H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2 (2) (1969) 65–71, https://doi.org/10.1107/ S0021889869006558P. Papan, J. Kantapan, P. Sangthong, P. Meepowpan, N. Dechsupa, Iron (III)- Quercetin complex: synthesis, physicochemical characterization, and MRI cell tracking toward potential applications in regenerative medicine, Contrast Media Mol. Imaging 2020 (2020) 1–22, https://doi.org/10.1155/2020/8877862.Y.S. Murillo-Acevedo, L. Giraldo, P.S. Poon, J. Matos, J.C. Moreno-Piraj an, The cramer's rule for the parametrization of phenol and its hydroxylated byproducts: UV spectroscopy vs. High performance liquid chromatography, Environ. Sci. Pollut. Res. 28 (6) (2021) 6746–6757, https://doi.org/10.1007/s11356-020- 10897-8.H.P. Hendrickson, A.D. Kaufman, C.E. Lunte, Electrochemistry of catecholcontaining flavonoids, J. Pharm. Biomed. Anal. 12 (3) (1994) 325–334, https:// doi.org/10.1016/0731-7085(94)90007-8.S. Domagała, P. Munshi, M. Ahmed, B. Guillot, C. Jelsch, Structural analysis and multipole modelling of quercetin monohydrate – a quantitative and comparative study, Acta Crystallogr. Sect. B Struct. Sci. 67 (1) (2011) 63–78, https://doi.org/ 10.1107/S0108768110041996.P. Klitou, I. Rosbottom, E. Simone, Synthonic modeling of quercetin and its hydrates: explaining crystallization behavior in terms of molecular conformation and crystal packing, Cryst. Growth Des. 19 (8) (2019) 4774–4783, https://doi.org/ 10.1021/acs.cgd.9b00650K. Burke, L.O. Wagner, DFT in a nutshell, Int. J. Quant. Chem. 113 (2) (2013) 96–101, https://doi.org/10.1002/qua.24259A.J. Garza, G.E. Scuseria, Predicting band gaps with hybrid density functionals, J. Phys. Chem. Lett. 7 (20) (2016) 4165–4170, https://doi.org/10.1021/acs.jpclett.6b01807.S. Refaely-Abramson, S. Sharifzadeh, M. Jain, R. Baer, J.B. Neaton, L. Kronik, Gap renormalization of molecular crystals from density-functional theory, Phys. Rev. B 88 (8) (2013), 081204, https://doi.org/10.1103/PhysRevB.88.081204.J. Heyd, G.E. Scuseria, Efficient hybrid density functional calculations in solids: assessment of the heyd–scuseria–ernzerhof screened Coulomb hybrid functional, J. Chem. Phys. 121 (3) (2004) 1187–1192, https://doi.org/10.1063/1.1760074.W. Perger, Calculation of band gaps in molecular crystals using hybrid functional theory, Chem. Phys. Lett. 368 (3–4) (2003) 319–323, https://doi.org/10.1016/ S0009-2614(02)01879-1.X. Leng, F. Jin, M. Wei, Y. Ma, GW method and bethe-salpeter equation for calculating electronic excitations, Wiley Interdiscip. Rev. Comput. Mol. Sci. 6 (5) (2016) 532–550, https://doi.org/10.1002/wcms.1265.K. Hummer, C. Ambrosch-Draxl, Oligoacene exciton binding energies: their dependence on molecular size, Phys. Rev. B 71 (8) (2005), 081202, https://doi.org/ 10.1103/PhysRevB.71.081202.D. Moses, J. Wang, A.J. Heeger, N. Kirova, S. Brazovski, Singlet exciton binding energy in poly(phenylene vinylene), Proc. Natl. Acad. Sci. Unit. States Am. 98 (24) (2001) 13496–13500, https://doi.org/10.1073/pnas.241497098.R.S. Mulliken, Electronic population analysis on LCAO-MO molecular wave functions. IV. Bonding and antibonding in LCAO and valence-bond theories, J. Chem. Phys. 23 (10) (1955) 1833, https://doi.org/10.1063/1.1740588.F.L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities, Theor. Chim. Acta 44 (2) (1977) 129–138, https://doi.org/10.1007/BF00549096.M. Fox, Optical Properties of Solids, second ed., First edit, Oxford University Press, 2010 https://doi.org/10.1119/1.1691372.Copyright © 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.sciencedirect.com/science/article/pii/S002245962200367XMediciones de absorción opticaCálculos DFT optoelectrónicosQuercetina disuelta en etanolCristales de quercetinaCristales moleculares hidratadosCálculos de DFTPropiedades estructuralesPropiedades optoelectrónicasEstabilidad relativaDFT calculationsEthanol solvated quercetinHydrated molecular crystalsOptoelectronic propertiesQuercetin crystalsRelative stabilityStructural propertiesOptical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystalsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/d3129033-d170-4b13-9b9d-9aaced8cc837/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf206286https://repositorio.unibague.edu.co/bitstreams/d1ae067c-4685-4271-b90b-8dcdc2b2a421/download8308057d83953275a2570d4805d356c2MD51TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain5188https://repositorio.unibague.edu.co/bitstreams/9ee6f8c9-bb85-4204-9dcd-19feb06531fe/downloadbfd48129854093fd16b8bf73a9c5fc0dMD52THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg28619https://repositorio.unibague.edu.co/bitstreams/c6ee706e-6b47-453d-8cee-0b907c2d3f1e/download9dbbc1382710fd21c98b6e8ed238e427MD5320.500.12313/5499oai:repositorio.unibague.edu.co:20.500.12313/54992025-08-21 03:02:22.052https://creativecommons.org/licenses/by-nc/4.0/Copyright © 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
