Repair resources scheduling for attention of transitory road disruptions in humanitarian aid networks

The paper examines a proposal on scheduling repair resources to deal with temporary road disruptions in humanitarian aid networks. A mathematical model was formulated, which took minimizing the total time of completion of the repair, as well as the arrival and departure times of crews and repair tea...

Full description

Autores:
Rojas Trejos, Carlos Alberto
Meisel, Jose D.
Adarme-Jaimes, Wilson
Orejuela Cabrera, Juan Pablo
Tipo de recurso:
Article of investigation
Fecha de publicación:
2025
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/6063
Acceso en línea:
https://hdl.handle.net/20.500.12313/6063
https://www.sciencedirect.com/science/article/pii/S0360835225001664
Palabra clave:
Interrupciones viales transitorias - Redes de ayuda humanitaria
Access restoration
Humanitarian logistics
Mathematical model
Repair scheduling
Rights
closedAccess
License
© 2025 The Author(s)
id UNIBAGUE2_f36d49e3e450e6c60c27600c6612bc62
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/6063
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Repair resources scheduling for attention of transitory road disruptions in humanitarian aid networks
title Repair resources scheduling for attention of transitory road disruptions in humanitarian aid networks
spellingShingle Repair resources scheduling for attention of transitory road disruptions in humanitarian aid networks
Interrupciones viales transitorias - Redes de ayuda humanitaria
Access restoration
Humanitarian logistics
Mathematical model
Repair scheduling
title_short Repair resources scheduling for attention of transitory road disruptions in humanitarian aid networks
title_full Repair resources scheduling for attention of transitory road disruptions in humanitarian aid networks
title_fullStr Repair resources scheduling for attention of transitory road disruptions in humanitarian aid networks
title_full_unstemmed Repair resources scheduling for attention of transitory road disruptions in humanitarian aid networks
title_sort Repair resources scheduling for attention of transitory road disruptions in humanitarian aid networks
dc.creator.fl_str_mv Rojas Trejos, Carlos Alberto
Meisel, Jose D.
Adarme-Jaimes, Wilson
Orejuela Cabrera, Juan Pablo
dc.contributor.author.none.fl_str_mv Rojas Trejos, Carlos Alberto
Meisel, Jose D.
Adarme-Jaimes, Wilson
Orejuela Cabrera, Juan Pablo
dc.subject.armarc.none.fl_str_mv Interrupciones viales transitorias - Redes de ayuda humanitaria
topic Interrupciones viales transitorias - Redes de ayuda humanitaria
Access restoration
Humanitarian logistics
Mathematical model
Repair scheduling
dc.subject.proposal.eng.fl_str_mv Access restoration
Humanitarian logistics
Mathematical model
Repair scheduling
description The paper examines a proposal on scheduling repair resources to deal with temporary road disruptions in humanitarian aid networks. A mathematical model was formulated, which took minimizing the total time of completion of the repair, as well as the arrival and departure times of crews and repair teams, and relations of precedence and complementarity between resources and the availability of resources into consideration. To validate the model, a real case study was used, where a region is presented, which has been affected by floods that generate temporary road disruptions. Finally, a scenario analysis of the model was performed so that the impact on performance related to the variation of parameters of interest, such as the availability of resources, the repair times of the crews, the machine operating times and the expected restoration completion time can be studied. The results showed that the impact on the scheduling of repair resources and the total repair time depends on the required conditions of the roads that are going to be repaired, interdependence, and resources availability. However, the findings indicated that increases beyond resource availability have no effect on the total completion time. Better results can be achieved in total completion time if arrival and completion times of available resources are properly synchronized. This research is a contribution on the importance of relations of precedence in the scheduling for road repair, the interdependence of resources and the special conditions of allocation between crews and type of machinery according to the affected track, and its impact on the completion times of the repair.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-11-28T22:46:06Z
dc.date.available.none.fl_str_mv 2025-11-28T22:46:06Z
dc.date.issued.none.fl_str_mv 2025-05
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Rojas Trejos, Carlos Alberto., Meisel, Jose D., Adarme-Jaimes, Wilson. y Orejuela Cabrera, Juan Pablo. (2025). Repair resources scheduling for attention of transitory road disruptions in humanitarian aid networks. Computers and Industrial Engineering, 203. DOI: 10.1016/j.cie.2025.111020
dc.identifier.doi.none.fl_str_mv 10.1016/j.cie.2025.111020
dc.identifier.issn.none.fl_str_mv 03608352
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/6063
dc.identifier.url.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0360835225001664
identifier_str_mv Rojas Trejos, Carlos Alberto., Meisel, Jose D., Adarme-Jaimes, Wilson. y Orejuela Cabrera, Juan Pablo. (2025). Repair resources scheduling for attention of transitory road disruptions in humanitarian aid networks. Computers and Industrial Engineering, 203. DOI: 10.1016/j.cie.2025.111020
10.1016/j.cie.2025.111020
03608352
url https://hdl.handle.net/20.500.12313/6063
https://www.sciencedirect.com/science/article/pii/S0360835225001664
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationvolume.none.fl_str_mv 203
dc.relation.ispartofjournal.none.fl_str_mv Computers and Industrial Engineering
dc.relation.references.none.fl_str_mv Aksu, D. T., & Ozdamar, L. (2014). A mathematical model for post-disaster road restoration: Enabling accessibility and evacuation. Transportation Research Part ELogistics and Transportation Review, 61, 56–67. https://doi.org/10.1016/j. tre.2013.10.009
Alinaghian, M., Aghaie, M., & Sabbagh, M. S. (2019). A mathematical model for location of temporary relief centers and dynamic routing of aerial rescue vehicles. Computers and Industrial Engineering, 131(17), 227–241. https://doi.org/10.1016/j. cie.2019.03.002
Arif, A., Wang, Z., Chen, C., & Chen, B. (2020). A stochastic multi-commodity logistic model for disaster preparation in distribution systems. IEEE Transactions on Smart Grid, 11(1), 565–576. https://doi.org/10.1109/TSG.2019.2925620
Baxter, A. E., Wilborn Lagerman, H. E., & Keskinocak, P. (2020). Quantitative modeling in disaster management: A literature review. Retrieved from IBM Journal of Research and Development. https://www.scopus.com/inward/record.uri?eid=2-s2.0-850 81615488&doi=10.1147%2FJRD.2019.2960356&partnerID=40&md5=719517a 68324f26165a4852b4737e7c1
Çelik, M. (2016). Network restoration and recovery in humanitarian operations: Framework, literature review, and research directions. Surveys in Operations Research and Management Science, 21(2), 47–61. https://doi.org/10.1016/j. sorms.2016.12.001
Coco, A. A., Duhamel, C., & Santos, A. C. (2020). Modeling and solving the multi-period disruptions scheduling problem on urban networks. Annals of Operations Research, 285(1–2), 427–443. https://doi.org/10.1007/s10479-019-03248-5
Edrissi, A., Nourinejad, M., & Roorda, M. J. (2015). Transportation network reliability in emergency response. Transportation Research Part E: Logistics and Transportation Review, 80, 56–73. https://doi.org/10.1016/j.tre.2015.05.005
Habib, M. S., Lee, Y. H., & Memon, M. S. (2016). Mathematical models in humanitarian supply chain management: A systematic literature review. Mathematical Problems in Engineering, 2016. https://doi.org/10.1155/2016/3212095
Iloglu, S, & Albert, L. A. (2020). A maximal multiple coverage and network restoration problem for disaster recovery. Operations Research Perspectives. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85076843383&doi=10.1016%2Fj. orp.2019.100132&partnerID=40&md5=9e783fa41570f20ac3be34a824402d8b
Iloglu, S., & Albert, L. A. (2018). An integrated network design and scheduling problem for network recovery and emergency response. Operations Research Perspectives, 5 (August), 218–231. https://doi.org/10.1016/j.orp.2018.08.001
Kim, S., Shin, Y., Lee, G. M., & Moon, I. (2018). Network repair crew scheduling for short-term disasters. Applied Mathematical Modelling, 64, 510. https://doi.org/10.101 6/j.apm.2018.07.047
Ibarra-Rojas, O. J., Hernandez, L., & Ozuna, L. (2018). The accessibility vehicle routing problem. Journal of Cleaner Production, 172, 1514–1528. https://doi.org/10.1016/j. jclepro.2017.10.249
Li, C., Fang, Q., Ding, L., Cho, Y. K., & Chen, K. (2020). Time-dependent resilience analysis of a road network in an extreme environment. Transportation Research Part D: Transport and Environment, 85. https://doi.org/10.1016/j.trd.2020.102395
Li, P., Lan, H., & Saldanha-Da-Gama, F. (2019). A Bi-objective capacitated locationrouting problem for multiple perishable commodities. IEEE Access, 7, 136729–136742. https://doi.org/10.1109/ACCESS.2019.2941363
Lu, G., Xiong, Y., Ding, C., & Wang, Y. (2016). An optimal schedule for urban road network repair based on the greedy algorithm. PLoS ONE, 11(10). https://doi.org/ 10.1371/journal.pone.0164780
Morshedlou, N., Barker, K., Nicholson, C. D., & Sansavini, G. (2018). Adaptive capacity planning formulation for infrastructure networks. Journal of Infrastructure Systems, 24(4). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000432
Nurre, S. G., Cavdaroglu, B., Mitchell, J. E., Sharkey, T. C., & Wallace, W. A. (2012). Restoring infrastructure systems: An integrated network design and scheduling (INDS) problem. European Journal of Operational Research, 223(3), 794–806. https:// doi.org/10.1016/j.ejor.2012.07.010
Reddy, G. H., Chakrapani, P., Goswami, A. K., & Choudhury, N. B. D. (2017). Fuzzy based approach for restoration of distribution system during post natural disasters. IEEE Access, 6, 3448–3458. https://doi.org/10.1109/ACCESS.2017.2779823
Rodriguez-Espindola, O., Albores, P., & Brewster, C. (2018). Dynamic formulation for humanitarian response operations incorporating multiple organisations. International Journal of Production Economics, 204(August), 83–98. https://doi.org/10.1016/j. ijpe.2018.07.023
Sakuraba, C S, Santos, A. C., Prins, C., Bouillot, L., Durand, A., & Allenbach, B. (2016). Road network emergency accessibility planning after a major earthquake. EURO Journal on Computational Optimization. Retrieved from https://www.scopus.com/ inward/record.uri?eid=2-s2.0-85027971781&doi=10.1007%2Fs13675-016-0070- 2&partnerID=40&md5=656f79f6c423468df965487bccfed969.
Sanci, E., & Daskin, M. S. (2019). Integrating location and network restoration decisions in relief networks under uncertainty. European Journal of Operational Research, 279 (2), 335–350. https://doi.org/10.1016/j.ejor.2019.06.012
Shin, Y., Kim, S., & Moon, I. (2019). Integrated optimal scheduling of repair crew and relief vehicle after disaster. Computers and Operations Research, 105, 237–247. https://doi.org/10.1016/j.cor.2019.01.015
Vahdani, B., Veysmoradi, D., Shekari, N., & Mousavi, S. M. (2018). Multi-objective, multi-period location-routing model to distribute relief after earthquake by considering emergency roadway repair. Neural Computing and Applications, 30(3), 835–854. https://doi.org/10.1007/s00521-016-2696-7
Wu, J., & Wang, P. (2020). Post-disruption performance recovery to enhance resilience of interconnected network systems. Sustainable and Resilient Infrastructure. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85082017188&doi=10.1080%2F23789689.2019.1710073&partnerID=40 &md5=f4f461a1712f196f169974339afe5cf9.
Yan, J., Hu, B., Xie, K., Tai, H. M., & Li, W. (2020). Post-disaster power system restoration planning considering sequence dependent repairing period. International Journal of Electrical Power and Energy Systems, 117. https://doi.org/10.1016/j. ijepes.2019.105612
Yan, S., & Shih, Y.-L. (2009). Optimal scheduling of emergency roadway repair and subsequent relief distribution. Computers and Operations Research, 36(6), 2049–2065. https://doi.org/10.1016/j.cor.2008.07.002
Zhang, Z., Wang, Z., & Zhou, H. (2020). An emergency resource allocation method based on supernetwork for urban disaster. Advances in Intelligent Systems and Computing, 1017, 248–255. https://doi.org/10.1007/978-3-030-25128-4_33
Zhou, Y., Liu, J., Zhang, Y., & Gan, X. (2017). A multi-objective evolutionary algorithm for multi-period dynamic emergency resource scheduling problems. Transportation Research Part E: Logistics and Transportation Review, 99, 77–95. https://doi. org/10.1016/j.tre.2016.12.011.
dc.rights.none.fl_str_mv © 2025 The Author(s)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv © 2025 The Author(s)
http://purl.org/coar/access_right/c_14cb
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv closedAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Ltd
dc.publisher.place.none.fl_str_mv Reino Unido
publisher.none.fl_str_mv Elsevier Ltd
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/aae2ab48-d4fb-47b3-b302-1cd2236931eb/download
https://repositorio.unibague.edu.co/bitstreams/761f0ad2-9d2c-44d6-a909-09b680e3a02e/download
https://repositorio.unibague.edu.co/bitstreams/8075409e-4a45-44d7-83ed-e833ed2ec86d/download
https://repositorio.unibague.edu.co/bitstreams/3a6ccb8e-7b38-44a4-ad93-90dea5c61711/download
bitstream.checksum.fl_str_mv 2fa3e590786b9c0f3ceba1b9656b7ac3
ac467939f37bff194aa41369c19feb96
381a3457b9a0f1525fddcdff276e4b2d
80206dacbf62d712367577b14eb0758d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059990855417856
spelling Rojas Trejos, Carlos Alberto5b67722a-42d2-4dec-8983-605e894bfb20-1Meisel, Jose D.fb6ee7e4-d71a-4ad0-ada1-224714cb0696-1Adarme-Jaimes, Wilson4638c849-3ee8-4896-9d69-63a4e7b1f10e-1Orejuela Cabrera, Juan Pablo32562675-4883-408c-a7c9-12f5e6cfa2c1-12025-11-28T22:46:06Z2025-11-28T22:46:06Z2025-05The paper examines a proposal on scheduling repair resources to deal with temporary road disruptions in humanitarian aid networks. A mathematical model was formulated, which took minimizing the total time of completion of the repair, as well as the arrival and departure times of crews and repair teams, and relations of precedence and complementarity between resources and the availability of resources into consideration. To validate the model, a real case study was used, where a region is presented, which has been affected by floods that generate temporary road disruptions. Finally, a scenario analysis of the model was performed so that the impact on performance related to the variation of parameters of interest, such as the availability of resources, the repair times of the crews, the machine operating times and the expected restoration completion time can be studied. The results showed that the impact on the scheduling of repair resources and the total repair time depends on the required conditions of the roads that are going to be repaired, interdependence, and resources availability. However, the findings indicated that increases beyond resource availability have no effect on the total completion time. Better results can be achieved in total completion time if arrival and completion times of available resources are properly synchronized. This research is a contribution on the importance of relations of precedence in the scheduling for road repair, the interdependence of resources and the special conditions of allocation between crews and type of machinery according to the affected track, and its impact on the completion times of the repair.application/pdfRojas Trejos, Carlos Alberto., Meisel, Jose D., Adarme-Jaimes, Wilson. y Orejuela Cabrera, Juan Pablo. (2025). Repair resources scheduling for attention of transitory road disruptions in humanitarian aid networks. Computers and Industrial Engineering, 203. DOI: 10.1016/j.cie.2025.11102010.1016/j.cie.2025.11102003608352https://hdl.handle.net/20.500.12313/6063https://www.sciencedirect.com/science/article/pii/S0360835225001664engElsevier LtdReino Unido203Computers and Industrial EngineeringAksu, D. T., & Ozdamar, L. (2014). A mathematical model for post-disaster road restoration: Enabling accessibility and evacuation. Transportation Research Part ELogistics and Transportation Review, 61, 56–67. https://doi.org/10.1016/j. tre.2013.10.009Alinaghian, M., Aghaie, M., & Sabbagh, M. S. (2019). A mathematical model for location of temporary relief centers and dynamic routing of aerial rescue vehicles. Computers and Industrial Engineering, 131(17), 227–241. https://doi.org/10.1016/j. cie.2019.03.002Arif, A., Wang, Z., Chen, C., & Chen, B. (2020). A stochastic multi-commodity logistic model for disaster preparation in distribution systems. IEEE Transactions on Smart Grid, 11(1), 565–576. https://doi.org/10.1109/TSG.2019.2925620Baxter, A. E., Wilborn Lagerman, H. E., & Keskinocak, P. (2020). Quantitative modeling in disaster management: A literature review. Retrieved from IBM Journal of Research and Development. https://www.scopus.com/inward/record.uri?eid=2-s2.0-850 81615488&doi=10.1147%2FJRD.2019.2960356&partnerID=40&md5=719517a 68324f26165a4852b4737e7c1Çelik, M. (2016). Network restoration and recovery in humanitarian operations: Framework, literature review, and research directions. Surveys in Operations Research and Management Science, 21(2), 47–61. https://doi.org/10.1016/j. sorms.2016.12.001Coco, A. A., Duhamel, C., & Santos, A. C. (2020). Modeling and solving the multi-period disruptions scheduling problem on urban networks. Annals of Operations Research, 285(1–2), 427–443. https://doi.org/10.1007/s10479-019-03248-5Edrissi, A., Nourinejad, M., & Roorda, M. J. (2015). Transportation network reliability in emergency response. Transportation Research Part E: Logistics and Transportation Review, 80, 56–73. https://doi.org/10.1016/j.tre.2015.05.005Habib, M. S., Lee, Y. H., & Memon, M. S. (2016). Mathematical models in humanitarian supply chain management: A systematic literature review. Mathematical Problems in Engineering, 2016. https://doi.org/10.1155/2016/3212095Iloglu, S, & Albert, L. A. (2020). A maximal multiple coverage and network restoration problem for disaster recovery. Operations Research Perspectives. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85076843383&doi=10.1016%2Fj. orp.2019.100132&partnerID=40&md5=9e783fa41570f20ac3be34a824402d8bIloglu, S., & Albert, L. A. (2018). An integrated network design and scheduling problem for network recovery and emergency response. Operations Research Perspectives, 5 (August), 218–231. https://doi.org/10.1016/j.orp.2018.08.001Kim, S., Shin, Y., Lee, G. M., & Moon, I. (2018). Network repair crew scheduling for short-term disasters. Applied Mathematical Modelling, 64, 510. https://doi.org/10.101 6/j.apm.2018.07.047Ibarra-Rojas, O. J., Hernandez, L., & Ozuna, L. (2018). The accessibility vehicle routing problem. Journal of Cleaner Production, 172, 1514–1528. https://doi.org/10.1016/j. jclepro.2017.10.249Li, C., Fang, Q., Ding, L., Cho, Y. K., & Chen, K. (2020). Time-dependent resilience analysis of a road network in an extreme environment. Transportation Research Part D: Transport and Environment, 85. https://doi.org/10.1016/j.trd.2020.102395Li, P., Lan, H., & Saldanha-Da-Gama, F. (2019). A Bi-objective capacitated locationrouting problem for multiple perishable commodities. IEEE Access, 7, 136729–136742. https://doi.org/10.1109/ACCESS.2019.2941363Lu, G., Xiong, Y., Ding, C., & Wang, Y. (2016). An optimal schedule for urban road network repair based on the greedy algorithm. PLoS ONE, 11(10). https://doi.org/ 10.1371/journal.pone.0164780Morshedlou, N., Barker, K., Nicholson, C. D., & Sansavini, G. (2018). Adaptive capacity planning formulation for infrastructure networks. Journal of Infrastructure Systems, 24(4). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000432Nurre, S. G., Cavdaroglu, B., Mitchell, J. E., Sharkey, T. C., & Wallace, W. A. (2012). Restoring infrastructure systems: An integrated network design and scheduling (INDS) problem. European Journal of Operational Research, 223(3), 794–806. https:// doi.org/10.1016/j.ejor.2012.07.010Reddy, G. H., Chakrapani, P., Goswami, A. K., & Choudhury, N. B. D. (2017). Fuzzy based approach for restoration of distribution system during post natural disasters. IEEE Access, 6, 3448–3458. https://doi.org/10.1109/ACCESS.2017.2779823Rodriguez-Espindola, O., Albores, P., & Brewster, C. (2018). Dynamic formulation for humanitarian response operations incorporating multiple organisations. International Journal of Production Economics, 204(August), 83–98. https://doi.org/10.1016/j. ijpe.2018.07.023Sakuraba, C S, Santos, A. C., Prins, C., Bouillot, L., Durand, A., & Allenbach, B. (2016). Road network emergency accessibility planning after a major earthquake. EURO Journal on Computational Optimization. Retrieved from https://www.scopus.com/ inward/record.uri?eid=2-s2.0-85027971781&doi=10.1007%2Fs13675-016-0070- 2&partnerID=40&md5=656f79f6c423468df965487bccfed969.Sanci, E., & Daskin, M. S. (2019). Integrating location and network restoration decisions in relief networks under uncertainty. European Journal of Operational Research, 279 (2), 335–350. https://doi.org/10.1016/j.ejor.2019.06.012Shin, Y., Kim, S., & Moon, I. (2019). Integrated optimal scheduling of repair crew and relief vehicle after disaster. Computers and Operations Research, 105, 237–247. https://doi.org/10.1016/j.cor.2019.01.015Vahdani, B., Veysmoradi, D., Shekari, N., & Mousavi, S. M. (2018). Multi-objective, multi-period location-routing model to distribute relief after earthquake by considering emergency roadway repair. Neural Computing and Applications, 30(3), 835–854. https://doi.org/10.1007/s00521-016-2696-7Wu, J., & Wang, P. (2020). Post-disruption performance recovery to enhance resilience of interconnected network systems. Sustainable and Resilient Infrastructure. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85082017188&doi=10.1080%2F23789689.2019.1710073&partnerID=40 &md5=f4f461a1712f196f169974339afe5cf9.Yan, J., Hu, B., Xie, K., Tai, H. M., & Li, W. (2020). Post-disaster power system restoration planning considering sequence dependent repairing period. International Journal of Electrical Power and Energy Systems, 117. https://doi.org/10.1016/j. ijepes.2019.105612Yan, S., & Shih, Y.-L. (2009). Optimal scheduling of emergency roadway repair and subsequent relief distribution. Computers and Operations Research, 36(6), 2049–2065. https://doi.org/10.1016/j.cor.2008.07.002Zhang, Z., Wang, Z., & Zhou, H. (2020). An emergency resource allocation method based on supernetwork for urban disaster. Advances in Intelligent Systems and Computing, 1017, 248–255. https://doi.org/10.1007/978-3-030-25128-4_33Zhou, Y., Liu, J., Zhang, Y., & Gan, X. (2017). A multi-objective evolutionary algorithm for multi-period dynamic emergency resource scheduling problems. Transportation Research Part E: Logistics and Transportation Review, 99, 77–95. https://doi. org/10.1016/j.tre.2016.12.011.© 2025 The Author(s)info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAtribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/Interrupciones viales transitorias - Redes de ayuda humanitariaAccess restorationHumanitarian logisticsMathematical modelRepair schedulingRepair resources scheduling for attention of transitory road disruptions in humanitarian aid networksArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/aae2ab48-d4fb-47b3-b302-1cd2236931eb/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf256180https://repositorio.unibague.edu.co/bitstreams/761f0ad2-9d2c-44d6-a909-09b680e3a02e/downloadac467939f37bff194aa41369c19feb96MD51TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain4733https://repositorio.unibague.edu.co/bitstreams/8075409e-4a45-44d7-83ed-e833ed2ec86d/download381a3457b9a0f1525fddcdff276e4b2dMD52THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg28540https://repositorio.unibague.edu.co/bitstreams/3a6ccb8e-7b38-44a4-ad93-90dea5c61711/download80206dacbf62d712367577b14eb0758dMD5320.500.12313/6063oai:repositorio.unibague.edu.co:20.500.12313/60632025-11-29 03:02:30.953https://creativecommons.org/licenses/by/4.0/© 2025 The Author(s)https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=