Synthesis and characterization of a novel colorimetric and fluorometric probe “Turn-on” for the detection of Cu2+ of derivatives rhodamine
A new Rhodamine-based “Turn On” fluorescent probe (E)- 3′,6′-bis(diethylamino)-2-((2,5-dimethoxybenzylidene)amino)spiro[isoindoline-1,9′-xanthen]-3-one (WGB) was synthesized. Results show that WGB is selective for Cu2+ cations, forming a WGB-Cu2+ complex in a 2:1 stoichiometry, confirmed through den...
- Autores:
-
Zuzunaga Sanchez, Camilo Andres
Yañez, Osvaldo
Galdámez, Antonio
Tapia, Victoria
Núñez, Marco T
Osorio-Román, Igor
García, Camilo
García-Beltrán, Olimpo
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5581
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/5581
https://www.sciencedirect.com/science/article/pii/S1010603022005019
- Palabra clave:
- Sonda colorimétrica - Características
Sonda fluorométrica - Características
Chemosensor
Colorimetric fluorescent dye
Cu2+ ions
Rhodamine derivate
Turn-On
- Rights
- openAccess
- License
- © 2022 The Author(s)
| id |
UNIBAGUE2_f0db4c928ac17b5b0c113d91f540e4af |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5581 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Synthesis and characterization of a novel colorimetric and fluorometric probe “Turn-on” for the detection of Cu2+ of derivatives rhodamine |
| title |
Synthesis and characterization of a novel colorimetric and fluorometric probe “Turn-on” for the detection of Cu2+ of derivatives rhodamine |
| spellingShingle |
Synthesis and characterization of a novel colorimetric and fluorometric probe “Turn-on” for the detection of Cu2+ of derivatives rhodamine Sonda colorimétrica - Características Sonda fluorométrica - Características Chemosensor Colorimetric fluorescent dye Cu2+ ions Rhodamine derivate Turn-On |
| title_short |
Synthesis and characterization of a novel colorimetric and fluorometric probe “Turn-on” for the detection of Cu2+ of derivatives rhodamine |
| title_full |
Synthesis and characterization of a novel colorimetric and fluorometric probe “Turn-on” for the detection of Cu2+ of derivatives rhodamine |
| title_fullStr |
Synthesis and characterization of a novel colorimetric and fluorometric probe “Turn-on” for the detection of Cu2+ of derivatives rhodamine |
| title_full_unstemmed |
Synthesis and characterization of a novel colorimetric and fluorometric probe “Turn-on” for the detection of Cu2+ of derivatives rhodamine |
| title_sort |
Synthesis and characterization of a novel colorimetric and fluorometric probe “Turn-on” for the detection of Cu2+ of derivatives rhodamine |
| dc.creator.fl_str_mv |
Zuzunaga Sanchez, Camilo Andres Yañez, Osvaldo Galdámez, Antonio Tapia, Victoria Núñez, Marco T Osorio-Román, Igor García, Camilo García-Beltrán, Olimpo |
| dc.contributor.author.none.fl_str_mv |
Zuzunaga Sanchez, Camilo Andres Yañez, Osvaldo Galdámez, Antonio Tapia, Victoria Núñez, Marco T Osorio-Román, Igor García, Camilo García-Beltrán, Olimpo |
| dc.subject.armarc.none.fl_str_mv |
Sonda colorimétrica - Características Sonda fluorométrica - Características |
| topic |
Sonda colorimétrica - Características Sonda fluorométrica - Características Chemosensor Colorimetric fluorescent dye Cu2+ ions Rhodamine derivate Turn-On |
| dc.subject.proposal.eng.fl_str_mv |
Chemosensor Colorimetric fluorescent dye Cu2+ ions Rhodamine derivate Turn-On |
| description |
A new Rhodamine-based “Turn On” fluorescent probe (E)- 3′,6′-bis(diethylamino)-2-((2,5-dimethoxybenzylidene)amino)spiro[isoindoline-1,9′-xanthen]-3-one (WGB) was synthesized. Results show that WGB is selective for Cu2+ cations, forming a WGB-Cu2+ complex in a 2:1 stoichiometry, confirmed through density functional theory (DFT) electronic structure calculations and reactive molecular dynamics (MD) simulations. Theoretical calculations agreed with the experimental data. The detection limit of WGB-Cu+2 complex is 6.76 × 10-8 M. Preliminary studies employing epifluorescence microscopy demonstrate that Cu2+ can be imaged in neuroblastoma SH-SY5Y cells treated with WGB. |
| publishDate |
2023 |
| dc.date.issued.none.fl_str_mv |
2023-01-01 |
| dc.date.accessioned.none.fl_str_mv |
2025-09-01T21:08:15Z |
| dc.date.available.none.fl_str_mv |
2025-09-01T21:08:15Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
Segura, C., Yañez, O., Galdámez, A., Tapia, V., Núñez, M., Osorio-Román, I., García, C. y García-Beltrán, O. (2023). Synthesis and characterization of a novel colorimetric and fluorometric probe “Turn-on” for the detection of Cu2+ of derivatives rhodamine. Journal of Photochemistry and Photobiology A: Chemistry, 434. DOI: 10.1016/j.jphotochem.2022.114278 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.jphotochem.2022.114278 |
| dc.identifier.eissn.none.fl_str_mv |
18732666 |
| dc.identifier.issn.none.fl_str_mv |
Journal of Photochemistry and Photobiology A: Chemistry |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/5581 |
| dc.identifier.url.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1010603022005019 |
| identifier_str_mv |
Segura, C., Yañez, O., Galdámez, A., Tapia, V., Núñez, M., Osorio-Román, I., García, C. y García-Beltrán, O. (2023). Synthesis and characterization of a novel colorimetric and fluorometric probe “Turn-on” for the detection of Cu2+ of derivatives rhodamine. Journal of Photochemistry and Photobiology A: Chemistry, 434. DOI: 10.1016/j.jphotochem.2022.114278 10.1016/j.jphotochem.2022.114278 18732666 Journal of Photochemistry and Photobiology A: Chemistry |
| url |
https://hdl.handle.net/20.500.12313/5581 https://www.sciencedirect.com/science/article/pii/S1010603022005019 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationstartpage.none.fl_str_mv |
114278 |
| dc.relation.citationvolume.none.fl_str_mv |
434 |
| dc.relation.ispartofjournal.none.fl_str_mv |
Journal of Photochemistry and Photobiology A: Chemistry |
| dc.relation.references.none.fl_str_mv |
Q. Zhang, R. Ma, Z. Li, Z. Liu, A multi-responsive crown ether-based colorimetric/ fluorescent chemosensor for highly selective detection of Al3+, Cu2+ and Mg2+, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 228 (2020) 117857. 10.1016/j. saa.2019.117857 D.J. Fanna, L.M.P. Lima, G. Wei, F. Li, J.K. Reynolds, A colorimetric chemosensor for quantification of exchangeable Cu2+ in soil, Chemosphere. 238 (2020), https://doi.org/10.1016/j.chemosphere.2019.124664. S. Li, D. Cao, X. Meng, Z. Hu, Z. Li, C. Yuan, T. Zhou, X. Han, W. Ma, A novel fluorescent chemosensor based on coumarin and quinolinyl-benzothiazole for sequential recognition of Cu2+ and PPi and its applicability in live cell imaging, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 230 (2020) 118022. 10.1016/j. saa.2019.118022 W.W. Wang, Y. Wang, W.N. Wu, X.L. Zhao, Z.Q. Xu, Z.H. Xu, X.X. Li, Y.C. Fan, Pyrrole-quinazoline derivative as an easily accessible turn-off optical chemosensor for Cu2+ and resultant Cu2+ complex as a turn-on sensor for pyrophosphate in almost neat aqueous solution, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 226 (2020) 117592. 10.1016/j.saa.2019.117592 M.H. Mahnashi, A.M. Mahmoud, S.A. Alkahtani, R. Ali, M.M. El-Wekil, A novel imidazole derived colorimetric and fluorometric chemosensor for bifunctional detection of copper (II) and sulphide ions in environmental water samples, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 228 (2020) 117846. 10.1016/j. saa.2019.117846. Y. Li, H. Zhou, S. Yin, H. Jiang, N. Niu, H. Huang, S.A. Shahzad, C. Yu, A BOPHY probe for the fluorescence turn-on detection of Cu2+, Sensors Actuators, B Chem. 235 (2016) 33–38, https://doi.org/10.1016/j.snb.2016.05.055. P.C. Huang, H. Fang, J.J. Xiong, F.Y. Wu, Ultrasensitive turn-on fluorescence detection of Cu2 + based on p-dimethylaminobenzamide derivative and the application to cell imaging, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 173 (2017) 264–269, https://doi.org/10.1016/j.saa.2016.09.011 K. Wechakorn, S. Prabpai, K. Suksen, P. Kanjanasirirat, Y. Pewkliang, S. Borwornpinyo, P. Kongsaeree, A rhodamine-triazole fluorescent chemodosimeter for Cu2+ detection and its application in bioimaging, Luminescence. 33 (2018) 64–70, https://doi.org/10.1002/bio.3373. G. Xu, J. Wang, G. Si, M. Wang, X. Xue, B. Wu, S. Zhou, A novel highly selective chemosensor based on curcumin for detection of Cu2+ and its application for bioimaging, Sensors Actuators, B Chem. 230 (2016) 684–689, https://doi.org/ 10.1016/j.snb.2016.02.110 D. Sharma, A. Kuba, R. Thomas, R. Kumar, H.J. Choi, S.K. Sahoo, An aqueous friendly chemosensor derived from vitamin B6 cofactor for colorimetric sensing of Cu2+ and fluorescent turn-off sensing of Fe3+, Spectrochim. Acta - Part A Mol, Biomol. Spectrosc. 153 (2016) 393–396, https://doi.org/10.1016/j. saa.2015.08.051. S. Cao, Q. Jin, L. Geng, L. Mu, S. Dong, A “turn-on” fluorescent probe for the detection of Cu2+ in living cells based on a signaling mechanism of NN isomerization, New J. Chem. 40 (2016) 6264–6269, https://doi.org/10.1039/ c5nj03649f W. Lin, L. Long, B. Chen, W. Tan, W. Gao, Fluorescence turn-on detection of Cu2+ in water samples and living cells based on the unprecedented copper-mediated dihydrorosamine oxidation reaction, Chem. Commun. 46 (2010) 1311–1313, https://doi.org/10.1039/b919531a. M. Kaur, M.J. Cho, D.H. Choi, A phenothiazine-based “naked-eye” fluorescent probe for the dual detection of Hg2+ and Cu2+: Application as a solid state sensor, Dye. Pigment. 125 (2016) 1–7, https://doi.org/10.1016/j.dyepig.2015.09.030. H.F. Xie, C.J. Yu, Y.L. Huang, H. Xu, Q.L. Zhang, X.H. Sun, X. Feng, C. Redshaw, A turn-off fluorescent probe for the detection of Cu2+ based on a tetraphenylethylene-functionalized salicylaldehyde Schiff-base, Mater. Chem. Front. 4 (2020) 1500–1506, https://doi.org/10.1039/c9qm00759h. P.N. Borase, P.B. Thale, G.S. Shankarling, Dihydroquinazolinone based “turn-off” fluorescence sensor for detection of Cu2+ ions, Dye. Pigment. 134 (2016) 276–284, https://doi.org/10.1016/j.dyepig.2016.07.025. R. Nagarajan, H.I. Ryoo, B.D. Vanjare, N. Gyu Choi, K. Hwan Lee, Novel phenylalanine derivative-based turn-off fluorescent chemosensor for selective Cu2 + detection in physiological pH, J. Photochem. Photobiol. A Chem. 418 (2021), 113435, https://doi.org/10.1016/j.jphotochem.2021.113435. A.K. Mahapatra, G. Hazra, N.K. Das, S. Goswami, A highly selective triphenylamine-based indolylmethane derivatives as colorimetric and turn-off fluorimetric sensor toward Cu2+ detection by deprotonation of secondary amines, Sensors Actuators, B Chem. 156 (2011) 456–462, https://doi.org/10.1016/j. snb.2011.04.009 C. Palacios, The role of nutrients in bone health, from A to Z, Crit. Rev. Food Sci. Nutr. 46 (2006) 621–628, https://doi.org/10.1080/10408390500466174 D. Strausak, J.F.B. Mercer, H.H. Dieter, W. Stremmel, G. Multhaup, Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases, Brain Res. Bull. 55 (2001) 175–185, https://doi.org/10.1016/S0361-9230(01) 00454-3 V. Desai, S.G. Kaler, Role of copper in human neurological disorders, Am. J. Clin. Nutr. 88 (2008) 855–858, https://doi.org/10.1093/ajcn/88.3.855s. M. Araya, M. Olivares, F. Pizarro, M. Gonz´ alez, H. Speisky, R. Uauy, Gastrointestinal symptoms and blood indicators of copper load in apparently healthy adults undergoing controlled copper exposure, Am. J. Clin. Nutr. 77 (2003) 646–650, https://doi.org/10.1093/ajcn/77.3.646. I.D. Capel, M.H. Pinnock, H.M. Dorrell, D.C. Williams, E.C. Grant, Comparison of concentrations of some trace, bulk, and toxic metals in the hair of normal and dyslexic children, Clin. Chem. 27 (1981) 879–881, https://doi.org/10.1093/ clinchem/27.6.8 I. Bremner, Manifestations of copper excess, Am. J. Clin. Nutr. 67 (1998), https:// doi S.G. Kaler, Diagnosis and therapy of Menkes syndrome, a genetic form of copper deficiency, Am. J. Clin. Nutr. 67 (1998), https://doi.org/10.1093/ajcn/ 67.5.102 D.R. Brown, Copper and prion disease, Brain Res. Bull. 55 (2001) 165–173, https://doi.org/10.1016/S0361-9230(01)00453-1 Y.H. Hung, A.I. Bush, R.A. Cherny, Copper in the brain and Alzheimer’s disease, J. Biol. Inorg. Chem. 15 (2010) 61–76, https://doi.org/10.1007/s00775-009-0600- y P. Higueras, R. Oyarzun, J. Oyarzún, H. Maturana, J. Lillo, D. Morata, Environmental assessment of copper-gold-mercury mining in the Andacollo and Punitaqui districts, northern Chile, Appl. Geochemistry. 19 (2004) 1855–1864, https://doi.org/10.1016/j.apgeochem.2004.04.001. B. Halliwell, Reactive Oxygen Species and the Central Nervous System, J. Neurochem. 59 (1992) 1609–1623, https://doi.org/10.1111/j.1471-4159.1992. tb109 , R. Azmoodeh, Hollow fiber supported liquid membrane microextraction of Cu2+ followed by flame atomic absorption spectroscopy determination, Arab. J. Chem. 3 (1) (2010) 21–26. K. Sreenivasa Rao, T. Balaji, T. Prasada Rao, Y. Babu, G.R.K. Naidu, Determination of iron, cobalt, nickel, manganese, zinc, copper, cadmium and lead in human hair by inductively coupled plasma-atomic emission spectrometry, Spectrochim. Acta - Part B At. Spectrosc. 57 (2002) 1333–1338, https://doi.org/10.1016/S0584-8547 (02)00045-9 M.S. Glover, J.M. Dilger, F. Zhu, D.E. Clemmer, The binding of Ca2+, Co2+, Ni2+, Cu 2+, and Zn2+ cations to angiotensin i determined by mass spectrometry based techniques, Int. J. Mass Spectrom. 354–355 (2013) 318–325, https://doi.org/ 10.1016/j.ijms.2013.0 M.A. Nolan, S.P. Kounaves, Microfabricated array of iridium microdisks as a substrate for direct determination of Cu2+ or Hg2+ using square-wave anodic stripping voltammetry, Anal. Chem. 71 (1999) 3567–3573, https://doi.org/ 10.1021/ac990126 A.E. Murekhina, D.N. Yarullin, M.A. Sovina, P.A. Kitaev, G.A. Gamov, Copper (II) -Catalyzed Oxidation of Ascorbic Acid : Ionic Strength Effect and Analytical Use in Aqueous Solution, (2022) 1–12. Q. He, Z. Hu, Y. Jiang, X. Chang, Z. Tu, L. Zhang, Preconcentration of Cu(II), Fe(III) and Pb(II) with 2-((2-aminoethylamino)methyl)phenol-functionalized activated carbon followed by ICP-OES determination, J. Hazard. Mater. 175 (2010) 710–714, https://doi.org/10.1016/j.jhazmat.2009.10.067. M.A. Deshmukh, R. Celiesiute, A. Ramanaviciene, M.D. Shirsat, A. Ramanavicius, EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper (II), lead (II) and mercury (II) ions, Electrochim. Acta. 259 (2018) 930–938, https://doi.org/10.1016/j.electacta.2017.10.131 Y. Cao, J. Li, J. Liu, H. Liu, Y. Jiang, H. Zhang, Preparation and characterisation of a novel copper-imprinted polymer based on β-cyclodextrin copolymers for selective determination of Cu 2+ ions, Polym. Int. 68 (2019) 694–699, https://doi.org/ 10.1002/pi.575 V. Dujols, F. Ford, A.W. Czarnik, A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water, J. Am. Chem. Soc. 119 (1997) 7386–7387, https:// doi.org/10.1021/ja971221g. H.A. Benesi, J.H. Hildebrand, A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons, J. Am. Chem. Soc. 71 (1949) 2703–2707, https://doi.org/10.1021/ja01176a030. S.R. Liu, S.P. Wu, An NBD-based sensitive and selective fluorescent sensor for copper(II) ion, J. Fluoresc. 21 (2011) 1599–1605, https://doi.org/10.1007/ s10895-011-0848-9. O. García-Beltran, ´ N. Mena, E.G. P´erez, B.K. Cassels, M.T. Nunez, ˜ F. Werlinger, D. Zavala, M.E. Aliaga, P. Pavez, The development of a fluorescence turn-on sensor for cysteine, glutathione and other biothiols. A kinetic study, Tetrahedron Lett. (2011), https://doi.org/10.1016/j.tetlet.2011.09.137. M.E. Aliaga, M. Gazitua, A. Rojas-Bolanos, ˜ M. Fuentes-Estrada, D. Durango, O. García-Beltran, ´ A selective thioxothiazolidin-coumarin probe for Hg2+ based on its desulfurization reaction. Exploring its potential for live cell imaging, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 224 (2020) 117372. 10.1016/j. saa.2019.117372 M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Farkas, J.B. Foresman, J. V Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision C.01, Gaussian 09, Revis. C.01, Gaussian, Inc., Wallingford CT. (2010) A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: A Reactive Force Field for Hydrocarbons, J. Phys. Chem. A. 105 (2001) 9396–9409, https://doi.org/ 10.1021/jp004 L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, Packmol: A package for building initial configurations for molecular dynamics simulations, J. Comput. Chem. 30 (2009) 2157–2164, https://doi.org/10.1002/jcc.21224. O. Rahaman, A.C.T. van Duin, W.A. Goddard, D.J. Doren, Development of a ReaxFF Reactive Force Field for Glycine and Application to Solvent Effect and Tautomerization, J. Phys. Chem. B. 115 (2) (2011) 249 S. Monti, A. Corozzi, P. Fristrup, K.L. Joshi, Y.K. Shin, P. Oelschlaeger, A.C.T. Van Duin, V. Barone, Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field, Phys. Chem. Chem. Phys. 15 (2013) 15062–15077, https://doi.org/10.1039/ c3cp51931g S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 117 (1995) 1–19, https://doi.org/10.1006/jcph.1995.1039. LAMMPS pair-style reax. Sandia National Laboratories. http://lammps.sandia.gov /doc/pai O. García-Beltran, ´ B.K. Cassels, N. Mena, M.T. Nunez, ˜ O. Yanez, ˜ J. Caballero, A coumarinylaldoxime as a specific sensor for Cu2+ and its biological application, Tetrahedron Lett. 55 (2014) 873–876, https://doi.org/10.1016/j. tetlet.2013.12 L.F. Zhang, J.L. Zhao, X. Zeng, L. Mu, X.K. Jiang, M. Deng, J.X. Zhang, G. Wei, Tuning with pH: The selectivity of a new rhodamine B derivative chemosensor for Fe3+ and Cu2+, Sensors Actuators, B Chem. 160 (2011) 662–669, https://doi.org/ 10.1016/j.snb.2011.08 Y. Hu, J. Zhang, Y.Z. Lv, X.H. Huang, S.L. Hu, A new rhodamine-based colorimetric chemosensor for naked-eye detection of Cu 2 + in aqueous solution, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 157 (2016) 164–169, https://doi.org/ 10.1016/j.saa.2015.12.03 S. Goswami, D. Sen, A.K. Das, N.K. Das, K. Aich, H.K. Fun, C.K. Quah, A.K. Maity, P. Saha, A new rhodamine-coumarin Cu2+-selective colorimetric and “off-on” fluorescence probe for effective use in chemistry and bioimaging along with its bound X-ray crystal structure, Sensors Actuators, B Chem. 183 (2013) 518–525, https://doi.org/10.1016/j.snb.2013.04.005. P.W. Cheah, M.P. Heng, H.M. Saad, K.S. Sim, K.W. Tan, Specific detection of Cu2+ by a pH-independent colorimetric rhodamine based chemosensor, Opt. Mater. (Amst). 114 (2021), 110990, https://doi.org/10.1016/j.optmat.2021.110990. Y. Hu, J. Zhang, Y. Lv, X. Huang, S. Hu, Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy A new rhodamine-based colorimetric chemosensor for naked-eye detection of Cu 2 + in aqueous solution, 157 (2016) 164–169. B. Zhang, Q. Diao, P. Ma, X. Liu, D. Song, X. Wang, Sensors and Actuators B : Chemical A sensitive fluorescent probe for Cu 2 + based on rhodamine B derivatives and its application to drinking water examination and living cells imaging, 225 (2016) 579–585. E. Wang, Y. Zhou, Q. Huang, L. Pang, H. Qiao, F. Yu, B. Gao, J. Zhang, Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy 5- Hydroxymethylfurfural modified rhodamine B dual-function derivative : Highly sensitive and selective optical detection of pH, 152 (2016) 327–335. W.N. Wu, H. Wu, R. Bin Zhong, Y. Wang, Z.H. Xu, X.L. Zhao, Z.Q. Xu, Y.C. Fan, Ratiometric fluorescent probe based on pyrrole-modified rhodamine 6G hydrazone for the imaging of Cu 2+ in lysosomes, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 212 (2019) 121–127. 10.1016/j.saa.2018.12.041. M. Tian, H. He, B. Wang, X. Wang, Y. Liu, F. Jiang, Dyes and Pigments A reactionbased turn-on fl uorescent sensor for the detection of Cu (II) with excellent sensitivity and selectivity : Synthesis, DFT calculations, kinetics and application in real water samples, Dye. Pigment. 165 (2019) 383–390, https://doi.org/10.1016/j. dyepig.2019.02.043 N. Arslan, G.A. Geyik, K. Koran, F. Ozen, D. Aydin, S¸ . Nihan, K. Elmas, Fluorescence “ Turn On – Off ” Sensing of Copper (II) Ions Utilizing Coumarin – Based Chemosensor : Experimental Study, Mineral and Drinking Water Analysis, Theoretical Calculation, 2020, pp. 317–327. G. Kim, D. Choi, C. Kim, A Benzothiazole-Based Fluorescence Turn-on Sensor for Copper (II), (2021) 1203–1209 G.T. Selvan, C. Varadaraju, R.T. Selvan, I.V.M. V Enoch, P.M. Selvakumar, On / O ff Fluorescent Chemosensor for Selective Detection of Divalent Iron and Copper Ions : Molecular Logic Operation and Protein Binding, (2018). 10.1021/ acsomega.8b00748. L. Qu, C. Yin, F. Huo, J. Chao, Y. Zhang, Sensors and Actuators B : Chemical A pyridoxal-based dual chemosensor for visual detection of copper ion and ratiometric fluorescent detection of zinc ion, Sensors Actuators B. Chem. 191 (2014) 158–164, https://doi.org/10.1016/j.snb.2013.09.114. M. Aarjane, S. Slassi, A. Amine, Novel highly selective and sensitive fl uorescent sensor for copper detection based on N -acylhydrazone acridone derivative, J. Mol. Struct. 1199 (2020), 126990, https://doi.org/10.1016/j.molstruc.2019.126990. B. Wang, W. Xu, K. Gan, K. Xu, Q. Chen, W. Wei, W. Wu, Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy On the synthesis and performance of a simple colorimetric and fluorescent chemosensor for Cu 2 + with good reversibility, 277 (2022) 1–7. 10.1016/j.saa.2022.121245. A.K. Kudva, S.V. Raghu, Short communication A versatile rhodamine B-derived fluorescent probe for selective copper (II) sensing, Inorg. Chem. Commun. 141 (2022), 109501, https://doi.org/10.1016/j.inoche.2022.109501. S. Sawminathan, S. Munusamy, S. Manickam, A simple quinazolinone-isophorone based colorimetric chemosensor for the reversible detection of copper (II) and its application in real samples, J. Mol. Struct. 1257 (2022), 132633, https://doi.org/ 10.1016/j.molstruc.2022.132633 J.A.E.S. Heo, B. Suh, C. Kim, Selective detection of Cu 2 + by benzothiazole-based colorimetric chemosensor : a DFT study, J. Chem. Sci. (2022) 1–10, https://doi. org/10.1007/s12039-022-02037 A.N. Meshkov, G.A. Gamov, Talanta KEV : A free software for calculating the equilibrium composition and determining the equilibrium constants using UV – Vis and potentiometric data, Talanta. 198 (2019) 200–205, https://doi.org/10.1016/j. talanta.2019.01.107. G.A. Gamov, A.N. Meshkov, M.N. Zavalishin, M.V. Petrova, A.Y. Khokhlova, A. V. Gashnikova, V.A. Sharnin, Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Binding of pyridoxal, pyridoxal 5 ′ -phosphate and derived hydrazones to bovine serum albumin in aqueous solution, Spectrochim, Acta Part A Mol. Biomol. Spectrosc. 233 (2020), 118165, https://doi.org/10.1016/ j.saa.2020.118165. G.A. Zhurko, D.A. Zhurko, Chemcraft - graphical software for visualization of quantum chemistry computations., (2018). |
| dc.rights.eng.fl_str_mv |
© 2022 The Author(s) |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| rights_invalid_str_mv |
© 2022 The Author(s) http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier B.V. |
| dc.publisher.place.none.fl_str_mv |
Países bajos |
| publisher.none.fl_str_mv |
Elsevier B.V. |
| dc.source.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1010603022005019 |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/1ea2f870-1fa7-45a2-ba7b-2447ca0fe74b/download https://repositorio.unibague.edu.co/bitstreams/cb613432-eb43-426e-97b9-270be3d3c8e1/download https://repositorio.unibague.edu.co/bitstreams/c71c25ea-0852-472f-a91b-fbceaeebe7b3/download https://repositorio.unibague.edu.co/bitstreams/a3d76940-1545-4b03-b953-e586bfa17d74/download |
| bitstream.checksum.fl_str_mv |
3b8e783c195413502568d981f06481a9 50404f3e2a2d875084db2b7a2f8d2f6d a16c785842f3fe3de4785089e5e4ae95 2fa3e590786b9c0f3ceba1b9656b7ac3 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059958003531776 |
| spelling |
Zuzunaga Sanchez, Camilo Andresd8e3ec65-da95-477d-a223-08020b5db4ef600Yañez, Osvaldo2cf4e584-65f4-4612-a255-91946983e93a-1Galdámez, Antonioa24c3944-06a6-4e80-b30f-f6180b21eb78-1Tapia, Victoria4a5e6fc1-b00f-4ff8-95ac-ecaa9f6fc2df-1Núñez, Marco T4b5cf28b-0047-4d6d-b693-86ab67af165f-1Osorio-Román, Igorc1772296-47dd-43b9-8f89-fd6eb665662b-1García, Camiloa242acd0-27fc-4f74-9edf-a79f4a8315af-1García-Beltrán, Olimpodfe2bbe7-81d5-415c-9be6-6469a5a40c75-12025-09-01T21:08:15Z2025-09-01T21:08:15Z2023-01-01A new Rhodamine-based “Turn On” fluorescent probe (E)- 3′,6′-bis(diethylamino)-2-((2,5-dimethoxybenzylidene)amino)spiro[isoindoline-1,9′-xanthen]-3-one (WGB) was synthesized. Results show that WGB is selective for Cu2+ cations, forming a WGB-Cu2+ complex in a 2:1 stoichiometry, confirmed through density functional theory (DFT) electronic structure calculations and reactive molecular dynamics (MD) simulations. Theoretical calculations agreed with the experimental data. The detection limit of WGB-Cu+2 complex is 6.76 × 10-8 M. Preliminary studies employing epifluorescence microscopy demonstrate that Cu2+ can be imaged in neuroblastoma SH-SY5Y cells treated with WGB.application/pdfSegura, C., Yañez, O., Galdámez, A., Tapia, V., Núñez, M., Osorio-Román, I., García, C. y García-Beltrán, O. (2023). Synthesis and characterization of a novel colorimetric and fluorometric probe “Turn-on” for the detection of Cu2+ of derivatives rhodamine. Journal of Photochemistry and Photobiology A: Chemistry, 434. DOI: 10.1016/j.jphotochem.2022.11427810.1016/j.jphotochem.2022.11427818732666Journal of Photochemistry and Photobiology A: Chemistryhttps://hdl.handle.net/20.500.12313/5581https://www.sciencedirect.com/science/article/pii/S1010603022005019engElsevier B.V.Países bajos114278434Journal of Photochemistry and Photobiology A: ChemistryQ. Zhang, R. Ma, Z. Li, Z. Liu, A multi-responsive crown ether-based colorimetric/ fluorescent chemosensor for highly selective detection of Al3+, Cu2+ and Mg2+, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 228 (2020) 117857. 10.1016/j. saa.2019.117857D.J. Fanna, L.M.P. Lima, G. Wei, F. Li, J.K. Reynolds, A colorimetric chemosensor for quantification of exchangeable Cu2+ in soil, Chemosphere. 238 (2020), https://doi.org/10.1016/j.chemosphere.2019.124664.S. Li, D. Cao, X. Meng, Z. Hu, Z. Li, C. Yuan, T. Zhou, X. Han, W. Ma, A novel fluorescent chemosensor based on coumarin and quinolinyl-benzothiazole for sequential recognition of Cu2+ and PPi and its applicability in live cell imaging, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 230 (2020) 118022. 10.1016/j. saa.2019.118022W.W. Wang, Y. Wang, W.N. Wu, X.L. Zhao, Z.Q. Xu, Z.H. Xu, X.X. Li, Y.C. Fan, Pyrrole-quinazoline derivative as an easily accessible turn-off optical chemosensor for Cu2+ and resultant Cu2+ complex as a turn-on sensor for pyrophosphate in almost neat aqueous solution, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 226 (2020) 117592. 10.1016/j.saa.2019.117592M.H. Mahnashi, A.M. Mahmoud, S.A. Alkahtani, R. Ali, M.M. El-Wekil, A novel imidazole derived colorimetric and fluorometric chemosensor for bifunctional detection of copper (II) and sulphide ions in environmental water samples, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 228 (2020) 117846. 10.1016/j. saa.2019.117846.Y. Li, H. Zhou, S. Yin, H. Jiang, N. Niu, H. Huang, S.A. Shahzad, C. Yu, A BOPHY probe for the fluorescence turn-on detection of Cu2+, Sensors Actuators, B Chem. 235 (2016) 33–38, https://doi.org/10.1016/j.snb.2016.05.055.P.C. Huang, H. Fang, J.J. Xiong, F.Y. Wu, Ultrasensitive turn-on fluorescence detection of Cu2 + based on p-dimethylaminobenzamide derivative and the application to cell imaging, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 173 (2017) 264–269, https://doi.org/10.1016/j.saa.2016.09.011K. Wechakorn, S. Prabpai, K. Suksen, P. Kanjanasirirat, Y. Pewkliang, S. Borwornpinyo, P. Kongsaeree, A rhodamine-triazole fluorescent chemodosimeter for Cu2+ detection and its application in bioimaging, Luminescence. 33 (2018) 64–70, https://doi.org/10.1002/bio.3373.G. Xu, J. Wang, G. Si, M. Wang, X. Xue, B. Wu, S. Zhou, A novel highly selective chemosensor based on curcumin for detection of Cu2+ and its application for bioimaging, Sensors Actuators, B Chem. 230 (2016) 684–689, https://doi.org/ 10.1016/j.snb.2016.02.110D. Sharma, A. Kuba, R. Thomas, R. Kumar, H.J. Choi, S.K. Sahoo, An aqueous friendly chemosensor derived from vitamin B6 cofactor for colorimetric sensing of Cu2+ and fluorescent turn-off sensing of Fe3+, Spectrochim. Acta - Part A Mol, Biomol. Spectrosc. 153 (2016) 393–396, https://doi.org/10.1016/j. saa.2015.08.051.S. Cao, Q. Jin, L. Geng, L. Mu, S. Dong, A “turn-on” fluorescent probe for the detection of Cu2+ in living cells based on a signaling mechanism of NN isomerization, New J. Chem. 40 (2016) 6264–6269, https://doi.org/10.1039/ c5nj03649fW. Lin, L. Long, B. Chen, W. Tan, W. Gao, Fluorescence turn-on detection of Cu2+ in water samples and living cells based on the unprecedented copper-mediated dihydrorosamine oxidation reaction, Chem. Commun. 46 (2010) 1311–1313, https://doi.org/10.1039/b919531a.M. Kaur, M.J. Cho, D.H. Choi, A phenothiazine-based “naked-eye” fluorescent probe for the dual detection of Hg2+ and Cu2+: Application as a solid state sensor, Dye. Pigment. 125 (2016) 1–7, https://doi.org/10.1016/j.dyepig.2015.09.030.H.F. Xie, C.J. Yu, Y.L. Huang, H. Xu, Q.L. Zhang, X.H. Sun, X. Feng, C. Redshaw, A turn-off fluorescent probe for the detection of Cu2+ based on a tetraphenylethylene-functionalized salicylaldehyde Schiff-base, Mater. Chem. Front. 4 (2020) 1500–1506, https://doi.org/10.1039/c9qm00759h.P.N. Borase, P.B. Thale, G.S. Shankarling, Dihydroquinazolinone based “turn-off” fluorescence sensor for detection of Cu2+ ions, Dye. Pigment. 134 (2016) 276–284, https://doi.org/10.1016/j.dyepig.2016.07.025.R. Nagarajan, H.I. Ryoo, B.D. Vanjare, N. Gyu Choi, K. Hwan Lee, Novel phenylalanine derivative-based turn-off fluorescent chemosensor for selective Cu2 + detection in physiological pH, J. Photochem. Photobiol. A Chem. 418 (2021), 113435, https://doi.org/10.1016/j.jphotochem.2021.113435.A.K. Mahapatra, G. Hazra, N.K. Das, S. Goswami, A highly selective triphenylamine-based indolylmethane derivatives as colorimetric and turn-off fluorimetric sensor toward Cu2+ detection by deprotonation of secondary amines, Sensors Actuators, B Chem. 156 (2011) 456–462, https://doi.org/10.1016/j. snb.2011.04.009C. Palacios, The role of nutrients in bone health, from A to Z, Crit. Rev. Food Sci. Nutr. 46 (2006) 621–628, https://doi.org/10.1080/10408390500466174D. Strausak, J.F.B. Mercer, H.H. Dieter, W. Stremmel, G. Multhaup, Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases, Brain Res. Bull. 55 (2001) 175–185, https://doi.org/10.1016/S0361-9230(01) 00454-3V. Desai, S.G. Kaler, Role of copper in human neurological disorders, Am. J. Clin. Nutr. 88 (2008) 855–858, https://doi.org/10.1093/ajcn/88.3.855s.M. Araya, M. Olivares, F. Pizarro, M. Gonz´ alez, H. Speisky, R. Uauy, Gastrointestinal symptoms and blood indicators of copper load in apparently healthy adults undergoing controlled copper exposure, Am. J. Clin. Nutr. 77 (2003) 646–650, https://doi.org/10.1093/ajcn/77.3.646.I.D. Capel, M.H. Pinnock, H.M. Dorrell, D.C. Williams, E.C. Grant, Comparison of concentrations of some trace, bulk, and toxic metals in the hair of normal and dyslexic children, Clin. Chem. 27 (1981) 879–881, https://doi.org/10.1093/ clinchem/27.6.8I. Bremner, Manifestations of copper excess, Am. J. Clin. Nutr. 67 (1998), https:// doiS.G. Kaler, Diagnosis and therapy of Menkes syndrome, a genetic form of copper deficiency, Am. J. Clin. Nutr. 67 (1998), https://doi.org/10.1093/ajcn/ 67.5.102D.R. Brown, Copper and prion disease, Brain Res. Bull. 55 (2001) 165–173, https://doi.org/10.1016/S0361-9230(01)00453-1Y.H. Hung, A.I. Bush, R.A. Cherny, Copper in the brain and Alzheimer’s disease, J. Biol. Inorg. Chem. 15 (2010) 61–76, https://doi.org/10.1007/s00775-009-0600- yP. Higueras, R. Oyarzun, J. Oyarzún, H. Maturana, J. Lillo, D. Morata, Environmental assessment of copper-gold-mercury mining in the Andacollo and Punitaqui districts, northern Chile, Appl. Geochemistry. 19 (2004) 1855–1864, https://doi.org/10.1016/j.apgeochem.2004.04.001.B. Halliwell, Reactive Oxygen Species and the Central Nervous System, J. Neurochem. 59 (1992) 1609–1623, https://doi.org/10.1111/j.1471-4159.1992. tb109, R. Azmoodeh, Hollow fiber supported liquid membrane microextraction of Cu2+ followed by flame atomic absorption spectroscopy determination, Arab. J. Chem. 3 (1) (2010) 21–26.K. Sreenivasa Rao, T. Balaji, T. Prasada Rao, Y. Babu, G.R.K. Naidu, Determination of iron, cobalt, nickel, manganese, zinc, copper, cadmium and lead in human hair by inductively coupled plasma-atomic emission spectrometry, Spectrochim. Acta - Part B At. Spectrosc. 57 (2002) 1333–1338, https://doi.org/10.1016/S0584-8547 (02)00045-9M.S. Glover, J.M. Dilger, F. Zhu, D.E. Clemmer, The binding of Ca2+, Co2+, Ni2+, Cu 2+, and Zn2+ cations to angiotensin i determined by mass spectrometry based techniques, Int. J. Mass Spectrom. 354–355 (2013) 318–325, https://doi.org/ 10.1016/j.ijms.2013.0M.A. Nolan, S.P. Kounaves, Microfabricated array of iridium microdisks as a substrate for direct determination of Cu2+ or Hg2+ using square-wave anodic stripping voltammetry, Anal. Chem. 71 (1999) 3567–3573, https://doi.org/ 10.1021/ac990126A.E. Murekhina, D.N. Yarullin, M.A. Sovina, P.A. Kitaev, G.A. Gamov, Copper (II) -Catalyzed Oxidation of Ascorbic Acid : Ionic Strength Effect and Analytical Use in Aqueous Solution, (2022) 1–12.Q. He, Z. Hu, Y. Jiang, X. Chang, Z. Tu, L. Zhang, Preconcentration of Cu(II), Fe(III) and Pb(II) with 2-((2-aminoethylamino)methyl)phenol-functionalized activated carbon followed by ICP-OES determination, J. Hazard. Mater. 175 (2010) 710–714, https://doi.org/10.1016/j.jhazmat.2009.10.067.M.A. Deshmukh, R. Celiesiute, A. Ramanaviciene, M.D. Shirsat, A. Ramanavicius, EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper (II), lead (II) and mercury (II) ions, Electrochim. Acta. 259 (2018) 930–938, https://doi.org/10.1016/j.electacta.2017.10.131Y. Cao, J. Li, J. Liu, H. Liu, Y. Jiang, H. Zhang, Preparation and characterisation of a novel copper-imprinted polymer based on β-cyclodextrin copolymers for selective determination of Cu 2+ ions, Polym. Int. 68 (2019) 694–699, https://doi.org/ 10.1002/pi.575V. Dujols, F. Ford, A.W. Czarnik, A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water, J. Am. Chem. Soc. 119 (1997) 7386–7387, https:// doi.org/10.1021/ja971221g.H.A. Benesi, J.H. Hildebrand, A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons, J. Am. Chem. Soc. 71 (1949) 2703–2707, https://doi.org/10.1021/ja01176a030.S.R. Liu, S.P. Wu, An NBD-based sensitive and selective fluorescent sensor for copper(II) ion, J. Fluoresc. 21 (2011) 1599–1605, https://doi.org/10.1007/ s10895-011-0848-9.O. García-Beltran, ´ N. Mena, E.G. P´erez, B.K. Cassels, M.T. Nunez, ˜ F. Werlinger, D. Zavala, M.E. Aliaga, P. Pavez, The development of a fluorescence turn-on sensor for cysteine, glutathione and other biothiols. A kinetic study, Tetrahedron Lett. (2011), https://doi.org/10.1016/j.tetlet.2011.09.137.M.E. Aliaga, M. Gazitua, A. Rojas-Bolanos, ˜ M. Fuentes-Estrada, D. Durango, O. García-Beltran, ´ A selective thioxothiazolidin-coumarin probe for Hg2+ based on its desulfurization reaction. Exploring its potential for live cell imaging, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 224 (2020) 117372. 10.1016/j. saa.2019.117372M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Farkas, J.B. Foresman, J. V Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision C.01, Gaussian 09, Revis. C.01, Gaussian, Inc., Wallingford CT. (2010)A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: A Reactive Force Field for Hydrocarbons, J. Phys. Chem. A. 105 (2001) 9396–9409, https://doi.org/ 10.1021/jp004L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, Packmol: A package for building initial configurations for molecular dynamics simulations, J. Comput. Chem. 30 (2009) 2157–2164, https://doi.org/10.1002/jcc.21224.O. Rahaman, A.C.T. van Duin, W.A. Goddard, D.J. Doren, Development of a ReaxFF Reactive Force Field for Glycine and Application to Solvent Effect and Tautomerization, J. Phys. Chem. B. 115 (2) (2011) 249S. Monti, A. Corozzi, P. Fristrup, K.L. Joshi, Y.K. Shin, P. Oelschlaeger, A.C.T. Van Duin, V. Barone, Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field, Phys. Chem. Chem. Phys. 15 (2013) 15062–15077, https://doi.org/10.1039/ c3cp51931gS. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 117 (1995) 1–19, https://doi.org/10.1006/jcph.1995.1039.LAMMPS pair-style reax. Sandia National Laboratories. http://lammps.sandia.gov /doc/paiO. García-Beltran, ´ B.K. Cassels, N. Mena, M.T. Nunez, ˜ O. Yanez, ˜ J. Caballero, A coumarinylaldoxime as a specific sensor for Cu2+ and its biological application, Tetrahedron Lett. 55 (2014) 873–876, https://doi.org/10.1016/j. tetlet.2013.12L.F. Zhang, J.L. Zhao, X. Zeng, L. Mu, X.K. Jiang, M. Deng, J.X. Zhang, G. Wei, Tuning with pH: The selectivity of a new rhodamine B derivative chemosensor for Fe3+ and Cu2+, Sensors Actuators, B Chem. 160 (2011) 662–669, https://doi.org/ 10.1016/j.snb.2011.08Y. Hu, J. Zhang, Y.Z. Lv, X.H. Huang, S.L. Hu, A new rhodamine-based colorimetric chemosensor for naked-eye detection of Cu 2 + in aqueous solution, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 157 (2016) 164–169, https://doi.org/ 10.1016/j.saa.2015.12.03S. Goswami, D. Sen, A.K. Das, N.K. Das, K. Aich, H.K. Fun, C.K. Quah, A.K. Maity, P. Saha, A new rhodamine-coumarin Cu2+-selective colorimetric and “off-on” fluorescence probe for effective use in chemistry and bioimaging along with its bound X-ray crystal structure, Sensors Actuators, B Chem. 183 (2013) 518–525, https://doi.org/10.1016/j.snb.2013.04.005.P.W. Cheah, M.P. Heng, H.M. Saad, K.S. Sim, K.W. Tan, Specific detection of Cu2+ by a pH-independent colorimetric rhodamine based chemosensor, Opt. Mater. (Amst). 114 (2021), 110990, https://doi.org/10.1016/j.optmat.2021.110990.Y. Hu, J. Zhang, Y. Lv, X. Huang, S. Hu, Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy A new rhodamine-based colorimetric chemosensor for naked-eye detection of Cu 2 + in aqueous solution, 157 (2016) 164–169.B. Zhang, Q. Diao, P. Ma, X. Liu, D. Song, X. Wang, Sensors and Actuators B : Chemical A sensitive fluorescent probe for Cu 2 + based on rhodamine B derivatives and its application to drinking water examination and living cells imaging, 225 (2016) 579–585.E. Wang, Y. Zhou, Q. Huang, L. Pang, H. Qiao, F. Yu, B. Gao, J. Zhang, Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy 5- Hydroxymethylfurfural modified rhodamine B dual-function derivative : Highly sensitive and selective optical detection of pH, 152 (2016) 327–335.W.N. Wu, H. Wu, R. Bin Zhong, Y. Wang, Z.H. Xu, X.L. Zhao, Z.Q. Xu, Y.C. Fan, Ratiometric fluorescent probe based on pyrrole-modified rhodamine 6G hydrazone for the imaging of Cu 2+ in lysosomes, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 212 (2019) 121–127. 10.1016/j.saa.2018.12.041.M. Tian, H. He, B. Wang, X. Wang, Y. Liu, F. Jiang, Dyes and Pigments A reactionbased turn-on fl uorescent sensor for the detection of Cu (II) with excellent sensitivity and selectivity : Synthesis, DFT calculations, kinetics and application in real water samples, Dye. Pigment. 165 (2019) 383–390, https://doi.org/10.1016/j. dyepig.2019.02.043N. Arslan, G.A. Geyik, K. Koran, F. Ozen, D. Aydin, S¸ . Nihan, K. Elmas, Fluorescence “ Turn On – Off ” Sensing of Copper (II) Ions Utilizing Coumarin – Based Chemosensor : Experimental Study, Mineral and Drinking Water Analysis, Theoretical Calculation, 2020, pp. 317–327.G. Kim, D. Choi, C. Kim, A Benzothiazole-Based Fluorescence Turn-on Sensor for Copper (II), (2021) 1203–1209G.T. Selvan, C. Varadaraju, R.T. Selvan, I.V.M. V Enoch, P.M. Selvakumar, On / O ff Fluorescent Chemosensor for Selective Detection of Divalent Iron and Copper Ions : Molecular Logic Operation and Protein Binding, (2018). 10.1021/ acsomega.8b00748.L. Qu, C. Yin, F. Huo, J. Chao, Y. Zhang, Sensors and Actuators B : Chemical A pyridoxal-based dual chemosensor for visual detection of copper ion and ratiometric fluorescent detection of zinc ion, Sensors Actuators B. Chem. 191 (2014) 158–164, https://doi.org/10.1016/j.snb.2013.09.114.M. Aarjane, S. Slassi, A. Amine, Novel highly selective and sensitive fl uorescent sensor for copper detection based on N -acylhydrazone acridone derivative, J. Mol. Struct. 1199 (2020), 126990, https://doi.org/10.1016/j.molstruc.2019.126990.B. Wang, W. Xu, K. Gan, K. Xu, Q. Chen, W. Wei, W. Wu, Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy On the synthesis and performance of a simple colorimetric and fluorescent chemosensor for Cu 2 + with good reversibility, 277 (2022) 1–7. 10.1016/j.saa.2022.121245.A.K. Kudva, S.V. Raghu, Short communication A versatile rhodamine B-derived fluorescent probe for selective copper (II) sensing, Inorg. Chem. Commun. 141 (2022), 109501, https://doi.org/10.1016/j.inoche.2022.109501.S. Sawminathan, S. Munusamy, S. Manickam, A simple quinazolinone-isophorone based colorimetric chemosensor for the reversible detection of copper (II) and its application in real samples, J. Mol. Struct. 1257 (2022), 132633, https://doi.org/ 10.1016/j.molstruc.2022.132633J.A.E.S. Heo, B. Suh, C. Kim, Selective detection of Cu 2 + by benzothiazole-based colorimetric chemosensor : a DFT study, J. Chem. Sci. (2022) 1–10, https://doi. org/10.1007/s12039-022-02037A.N. Meshkov, G.A. Gamov, Talanta KEV : A free software for calculating the equilibrium composition and determining the equilibrium constants using UV – Vis and potentiometric data, Talanta. 198 (2019) 200–205, https://doi.org/10.1016/j. talanta.2019.01.107.G.A. Gamov, A.N. Meshkov, M.N. Zavalishin, M.V. Petrova, A.Y. Khokhlova, A. V. Gashnikova, V.A. Sharnin, Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Binding of pyridoxal, pyridoxal 5 ′ -phosphate and derived hydrazones to bovine serum albumin in aqueous solution, Spectrochim, Acta Part A Mol. Biomol. Spectrosc. 233 (2020), 118165, https://doi.org/10.1016/ j.saa.2020.118165.G.A. Zhurko, D.A. Zhurko, Chemcraft - graphical software for visualization of quantum chemistry computations., (2018).© 2022 The Author(s)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.sciencedirect.com/science/article/pii/S1010603022005019Sonda colorimétrica - CaracterísticasSonda fluorométrica - CaracterísticasChemosensorColorimetric fluorescent dyeCu2+ ionsRhodamine derivateTurn-OnSynthesis and characterization of a novel colorimetric and fluorometric probe “Turn-on” for the detection of Cu2+ of derivatives rhodamineArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationORIGINALArtículo.pdfArtículo.pdfapplication/pdf292556https://repositorio.unibague.edu.co/bitstreams/1ea2f870-1fa7-45a2-ba7b-2447ca0fe74b/download3b8e783c195413502568d981f06481a9MD52TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain5177https://repositorio.unibague.edu.co/bitstreams/cb613432-eb43-426e-97b9-270be3d3c8e1/download50404f3e2a2d875084db2b7a2f8d2f6dMD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg31425https://repositorio.unibague.edu.co/bitstreams/c71c25ea-0852-472f-a91b-fbceaeebe7b3/downloada16c785842f3fe3de4785089e5e4ae95MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/a3d76940-1545-4b03-b953-e586bfa17d74/download2fa3e590786b9c0f3ceba1b9656b7ac3MD5120.500.12313/5581oai:repositorio.unibague.edu.co:20.500.12313/55812025-09-12 12:22:12.529https://creativecommons.org/licenses/by-nc/4.0/© 2022 The Author(s)https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
