Rapid prey manipulation and bite location preferences in three species of wandering spiders
Predator-prey interactions are the interspecific relationships of greatest interest in ecology. Spiders are among the most diverse and ubiquitous terrestrial predators on the planet. Their large dietary breadth is often linked with the development of specific predatory behaviors and morphological ad...
- Autores:
-
González-Gómez, Julio César
Simone, Yuri
Pérez, Lida Marcela Franco
Valenzuela-Rojas, Juan Carlos
van der Meijden, Arie
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5913
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/5913
https://sciencedirect.unibague.elogim.com/science/article/pii/S0376635724000986
- Palabra clave:
- Captura de presas
Arañas errantes - Mordedura
Arañas errantes - Especies
Animals
Poisonous
Gryllidae
Phoneutria
Predatory Behavior
Species Specificity
Spiders
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
| id |
UNIBAGUE2_e7aa60761bbb2bc817af20f9e57dafd5 |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5913 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Rapid prey manipulation and bite location preferences in three species of wandering spiders |
| title |
Rapid prey manipulation and bite location preferences in three species of wandering spiders |
| spellingShingle |
Rapid prey manipulation and bite location preferences in three species of wandering spiders Captura de presas Arañas errantes - Mordedura Arañas errantes - Especies Animals Poisonous Gryllidae Phoneutria Predatory Behavior Species Specificity Spiders |
| title_short |
Rapid prey manipulation and bite location preferences in three species of wandering spiders |
| title_full |
Rapid prey manipulation and bite location preferences in three species of wandering spiders |
| title_fullStr |
Rapid prey manipulation and bite location preferences in three species of wandering spiders |
| title_full_unstemmed |
Rapid prey manipulation and bite location preferences in three species of wandering spiders |
| title_sort |
Rapid prey manipulation and bite location preferences in three species of wandering spiders |
| dc.creator.fl_str_mv |
González-Gómez, Julio César Simone, Yuri Pérez, Lida Marcela Franco Valenzuela-Rojas, Juan Carlos van der Meijden, Arie |
| dc.contributor.author.none.fl_str_mv |
González-Gómez, Julio César Simone, Yuri Pérez, Lida Marcela Franco Valenzuela-Rojas, Juan Carlos van der Meijden, Arie |
| dc.subject.armarc.none.fl_str_mv |
Captura de presas Arañas errantes - Mordedura Arañas errantes - Especies |
| topic |
Captura de presas Arañas errantes - Mordedura Arañas errantes - Especies Animals Poisonous Gryllidae Phoneutria Predatory Behavior Species Specificity Spiders |
| dc.subject.proposal.eng.fl_str_mv |
Animals Poisonous Gryllidae Phoneutria Predatory Behavior Species Specificity Spiders |
| description |
Predator-prey interactions are the interspecific relationships of greatest interest in ecology. Spiders are among the most diverse and ubiquitous terrestrial predators on the planet. Their large dietary breadth is often linked with the development of specific predatory behaviors and morphological adaptations. However, studies on the predatory behavior of spiders have mostly focused on specialist species, leaving behind the ethological variability occurring in generalist species that allow them to respond to the different prey types. For three species of generalist wandering spiders, we searched images of predation events on the Internet to determine the most common prey. Subsequently, the focal predator species were then used in behavioral experiments. Using high-speed videos, handling patterns for different prey types (spider and cricket) were analyzed. Our results show a notable difference in handling patterns between prey types. We found that the spider prey was often rotated around the axis allowing the predator to bite in the ventral region of the prey and thus avoid a counterattack. Contrary, crickets were arbitrarily rotated. Our work may be an indication that these three species of generalist spiders have a preference for manipulating prey differently with a preference to rotate spiders, allowing them to exploit prey with various defensive mechanisms. |
| publishDate |
2024 |
| dc.date.issued.none.fl_str_mv |
2024-09 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-06T20:08:50Z |
| dc.date.available.none.fl_str_mv |
2025-11-06T20:08:50Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
González-Gómez, J., Simone, Y., Pérez, L., Valenzuela-Rojas, J. y van der Meijden, A. (2024). Rapid prey manipulation and bite location preferences in three species of wandering spiders. Behavioural Processes, 221. DOI: 10.1016/j.beproc.2024.105083 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.beproc.2024.105083 |
| dc.identifier.eissn.none.fl_str_mv |
18728308 |
| dc.identifier.issn.none.fl_str_mv |
03766357 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/5913 |
| dc.identifier.url.none.fl_str_mv |
https://sciencedirect.unibague.elogim.com/science/article/pii/S0376635724000986 |
| identifier_str_mv |
González-Gómez, J., Simone, Y., Pérez, L., Valenzuela-Rojas, J. y van der Meijden, A. (2024). Rapid prey manipulation and bite location preferences in three species of wandering spiders. Behavioural Processes, 221. DOI: 10.1016/j.beproc.2024.105083 10.1016/j.beproc.2024.105083 18728308 03766357 |
| url |
https://hdl.handle.net/20.500.12313/5913 https://sciencedirect.unibague.elogim.com/science/article/pii/S0376635724000986 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationvolume.none.fl_str_mv |
221 |
| dc.relation.ispartofjournal.none.fl_str_mv |
Behavioural Processes |
| dc.relation.references.none.fl_str_mv |
Abrams, P.A., 1986. Adaptive responses of predators to prey and prey to predators: the failure of the arms-race analogy. Evolution 40 (6), 1229–1247. https://doi.org/ 10.1111/j.1558-5646.1986.tb05747.x Abrams, P.A., Ginzburg, L.R., 2000. The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol. Evol. 15 (8), 337–341. https://doi.org/10.1016/ S0169-5347(00)01908-X. Blackledge, T.A., 1998. Signal conflict in spider webs driven by predators and prey. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 265 (1409), 1991–1996. https://doi.org/10.1098/ rspb.1998.0530 Blackledge, T.A., Scharff, N., Coddington, J.A., Szüts, T., Wenzel, J.W., Hayashi, C.Y., Agnarsson, I., 2009. Reconstructing web evolution and spider diversification in the molecular era. Proc. Natl. Acad. Sci. USA. https://doi.org/10.1073/ pnas.0901377106 Blackledge, T.A., Kuntner, M., Agnarsson, I., 2011. The form and function of spider orb webs (In). Adv. Insect Physiol. 175–262. https://doi.org/10.1016/B978-0-12- 415919-8.00004-5. Brodie, E.D., Brodie, E.D., 1999. Costs of exploiting poisonous prey: evolutionary tradeoffs in a predator-prey arms race. Evolution 53 (2), 626–631. https://doi.org/ 10.1111/j.1558-5646.1999.tb03798.x. Carbone, C., Teacher, A., Rowcliffe, J.M., 2007. The costs of carnivory. PLoS Biol. 5 (2), 0363–0368. https://doi.org/10.1371/journal.pbio.0050022 Carlson, B.E., McGinley, S., Rowe, M.P., 2014. Meek males and fighting females: Sexually-dimorphic antipredator behavior and locomotor performance is explained by morphology in bark scorpions (Centruroides vittatus). PLoS ONE 9 (5). https:// doi.org/10.1371/journal.pone.0097648 Collyer, M.L., Adams, D.C., 2018. RRPP: An R package for fitting linear models to highdimensional data using residual randomization. Methods Ecol. Evol. 9 (7), 1772–1779. https://doi.org/10.1111/2041-210X.13029. Cooper, A.M., Nelsen, D.R., Hayes, W.K., 2015. The strategic use of venom by spiders (Issue January,). Evolution of Venomous Animals and Their Toxins. Springer, Netherlands, pp. 1–18. https://doi.org/10.1007/978-94-007-6727-0_13-1 (Issue January,). Dawkins, R., Krebs, J.R., 1979. Arms races between and within species. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 205 (1161), 489–511. https://doi.org/10.1098/ rspb.1979.0081. Dejean, A., Orivel, J., Gibernau, M., 2002. Specialized predation on plataspid heteropterans in a coccinellid beetle: adaptive behavior and responses of prey attended or not by ants. Behav. Ecol. 13 (2), 154–159. 〈https://academic.oup.com/ beheco/article/13/2/154/200641〉 Domenici, P., Blagburn, J.M., Bacon, J.P., 2011. Animal escapology I: Theoretical issues and emerging trends in escape trajectories. J. Exp. Biol. 214 (15), 2463–2473. https://doi.org/10.1242/jeb.029652. Dugon, M.M., Wallace, A., 2012. Prey orientation and the role of venom availability in the predatory behaviour of the centipede Scolopendra subspinipes mutilans (Arthropoda: Chilopoda). J. Insect Physiol. 58 (6), 874–880. https://doi.org/ 10.1016/j.jinsphys.2012.03.014 Eggs, B., Wolff, J.O., Kuhn-Nentwig, L., Gorb, S.N., Nentwig, W., 2015. Hunting without a web: how lycosoid spiders subdue their prey. Ethology 121 (12), 1166–1177. https://doi.org/10.1111/eth.12432 Foelix, R.F., 1983. Biology of Spiders. , 16–16 Insect Syst. Evol. 14 (1). https://doi.org/ 10.1163/187631283X00371. Foerster, N.E., Henrique, B., Carvalho, G., Conte, C.E., 2017. Predation on Hypsiboas bischoffi (Anura: Hylidae) by Phoneutria nigriventer (Araneae: Ctenidae) in southern Brazil. Herpetol. Notes 10 (0), 403–404. Foerster, N.E., Henrique, B., Carvalho, G., Conte, C.E., 2017Folly, H., Arruda, L.F., De, Gomes, V.F., Neves, M.O., Feio, R.N., 2017. Predation on Ololygon carnevallii (Caramaschi and Kisteumacher, 1989) (Anura, Hylidae) by Phoneutria nigriventer (Keyserling, 1891) (Aranae, Ctenidae). Herpetol. Notes 10 (0), 365–367. Fox, J., Sanford, W., 2019. An R Companion toApplied Regression, Third Edition. SAGE. G García, L.F., Franco, V., Robledo-Ospina, L.E., Viera, C., Lacava, M., Willemart, R.H., 2016. The predation strategy of the recluse spider Loxosceles rufipes (lucas, 1834) against four prey species. J. Insect Behav. 29 (5), 515–526. https://doi.org/10.1007/ s10905-016-9578-9. García, L.F., Viera, C., Pekar, ´ S., 2018. Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator. Sci. Nat. 105 (3–4) https://doi.org/10.1007/s00114-018-1555-z. García, L.F., Rave, C., Arcila, K., García, C., Robledo-Ospina, L.E., Willemart, R.H., 2021. Do predators react differently to dangerous and larger prey? The case of a mygalomorph generalist spider preying upon insects. Zoology 144, 125863. https:// doi.org/10.1016/j.zool.2020.125863. García, L.F., Núnez, ˜ E., Lacava, M., Silva, H., Martínez, S., P´etillon, J., 2021. Experimental assessment of trophic ecology in a generalist spider predator: Implications for biocontrol in Uruguayan crops. J. Appl. Entomol. 145 (1–2), 82–91. https://doi.org/10.1111/jen.12811 Guppy, M., Guppy, S., Marchant, R., Priddel, D., Carlile, N., Fullagar, P., 2017. Nest predation of woodland birds in south-east Australia: importance of unexpected predators. Emu - Austral Ornithol. 117 (1), 92–96. https://doi.org/10.1080/ 01584197.2016.1258997 Hedrick, T.L., 2008. Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspiration Biomim. 3 (3), 034001 https://doi.org/10.1088/1748-3182/3/3/034001. Hustert, R., Baldus, M., 2010. Ballistic movements of jumping legs implemented as variable components of cricket behaviour. J. Exp. Biol. 213 (23), 4055–4064. https://doi.org/10.1242/jeb.043943. Hustert, R., Gnatzy, W., 1995. The Motor Program for Defensive Kicking in Crickets: Performance and Neural Control. J. Exp. Biol. 198 (6), 1275–1283. https://doi.org/ 10.1242/jeb.198.6.1275. Jackson, R.R., Stimson Wilcox, R., 1998. Spider-Eating Spiders: Despite the small size of their brain, jumping spiders in the genus Portia outwit other spiders with hunting techniques that include trial and error (In). Scientist Vol. 86 (Issue 4). K Karakoç, C., Clark, A.T., Chatzinotas, A., 2020. Diversity and coexistence are influenced by time-dependent species interactions in a predator–prey system. Ecol. Lett. 23 (6), 983–993. https://doi.org/10.1111/ele.13500. Kaston, B.J., 1964. The evolution of spider webs. Am. Zool. 4 (2), 191–207. https://doi. org/10.1093/icb/4.2.191. Kock, N., Lynn, G.S., 2012. Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. J. Assoc. Inf. Syst. 13 (7), 546–580. https://doi.org/10.17705/1jais.00302 Krauel, J.J., Brown, V.A., Westbrook, J.K., McCracken, G.F., 2018. Predator–prey interaction reveals local effects of high-altitude insect migration. Oecologia 186 (1), 49–58. https://doi.org/10.1007/s00442-017-3995-0 Lehner, P.N., 1996. Handbook of ethological methods, Vol. 2. Cambridge University Press. https://doi.org/10.5860/choice.34-4483 (In) Malli, H., Imboden, H., Kuhn-Nentwig, L., 1998. Quantifying the venom dose of the spider Cupiennius salei using monoclonal antibodies. Toxicon 36 (12). https://doi. org/10.1016/S0041-0101(98)00120-2. Malli, H., Kuhn-Nentwig, L., Imboden, H., Nentwig, W., 1999. Effects of size, motility and paralysation time of prey on the quantity of venom injected by the hunting spider Cupiennius salei. J. Exp. Biol. 202 (15), 2083–2089. M Mich´ alek, O., Kuhn-Nentwig, L., Pek´ ar, S., 2019. High specific efficiency of venom of two prey-specialized spiders. Toxins 11 (12). https://doi.org/10.3390/toxins11120687. Michalko, R., Pekar, ´ S., Entling, M.H., 2019. An updated perspective on spiders as generalist predators in biological control. Oecologia 189 (1), 21–36. https://doi.org/ 10.1007/s00442-018-4313-1 Morgenstern, D., King, G.F., 2013. The venom optimization hypothesis revisited. Toxicon 63 (1)), 120–128. https://doi.org/10.1016/j.toxicon.2012.11.022 Morse, D.H., 1999. Location of successful strikes on prey by juvenile crab spiders Misumena vatia (Araneae, Thomisidae). J. Arachnol. 27 (1). Mougi, A., Kishida, O., 2009. Reciprocal phenotypic plasticity can lead to stable predator-prey interaction. J. Anim. Ecol. 78 (6), 1172–1181. https://doi.org/ 10.1111/j.1365-2656.2009.01600.x. Moulder, B.C., Reichle, D.E., 1972. Significance of spider predation in the energy dynamics of forest-floor arthropod communities. Ecol. Monogr. 42 (4), 473–498. M Mukherjee, S., Heithaus, M.R., 2013. Dangerous prey and daring predators: a review. Biol. Rev. 88 (3), 550–563. https://doi.org/10.1111/brv.12014 Norberg, R.A., 1977. An ecological theory on foraging time and energetics and choice of optimal food-searching method. J. Anim. Ecol. 46 (2), 511. https://doi.org/ 10.2307/3827. Nyffeler, M., Birkhofer, K., 2017. An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci. Nat. 104 (3–4), 30. https://doi.org/ 10.1007/s00114-017-1440-1 Paz, N., 1988. Ecologia y aspectos del comportamiento en Linothele sp. (Araneae, Dipluridae). The. J. Arachnol. 16 (1), 5–22. https://doi.org/10.1093/besa/21.1.52 Pek´ ar, S., Toft, S., 2014. Trophic specialisation in a predatory group: The case of preyspecialised spiders (Araneae). Biol. Rev. 90 (3), 744–761. https://doi.org/10.1111/ brv.12133 Pek´ ar, S., Martiˇsova, ´ M., Bilde, T., 2011. Intersexual trophic niche partitioning in an anteating spider (Araneae: Zodariidae). PLoS ONE 6 (1), 1–7. https://doi.org/10.1371/ journal.pone.0014603. Platnick, N.I. (2020). Spiders of the world: a natural history. In Hilos Tensados (Issue) Pollard, S.D., 1986. Prey capture in Dysdera crocata (Araneae: Dysderidae), a longfanged spider. N. Z. J. Zool. 13 (1), 149–150. https://doi.org/10.1080/ 03014223.1986.10422656. Pollard, S.D., 1990. The feeding strategy of a crab spider, Diaea sp. indet. (Araneae: Thomisidae): post-capture decision rules. J. Zool. 222 (4) https://doi.org/10.1111/ j.1469-7998.1990.tb06017.x Rez ˇ ´ aˇc, M., Pekar, ´ S., 2007. Evidence for woodlice-specialization in Dysdera spiders: Behavioural versus developmental approaches. Physiol. Entomol. 32 (4), 367–371. https://doi.org/10.1111/j.1365-3032.2007.00588.x Schendel, Rash, Jenner, Undheim, 2019. The diversity of venom: the importance of behavior and venom system morphology in understanding its ecology and evolution. Toxins 11 (11), 666. https://doi.org/10.3390/toxins11110666 Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9 (7), 671–675. https://doi.org/10.1038/nmeth.2089 Segovia, J.M.G., Del-claro, K., & Hirata, R. (2015). Delicate fangs, smart killing: the predation strategy of the recluse spider. 101. Sierra Ramírez, D., Guevara, G., Franco P´erez, L.M., Meijden, A., Gonz´ alez-Gomez, ´ J.C., Carlos Valenzuela-Rojas, J., Prada Quiroga, C.F., 2021. Deciphering the diet of a wandering spider ( Phoneutria boliviensis; Araneae: Ctenidae) by DNA metabarcoding of gut contents. , ece3.7320 Ecol. Evol.. https://doi.org/10.1002/ ece3.7320 Simone, Y., Garcia, L.F., Lacava, M., van der Meijden, A., Viera, C., 2018. Predatory versatility in females of the scorpion Bothriurus bonariensis (Scorpiones: Bothriuridae): overcoming prey with different defensive mechanisms. J. Insect Behav. 31 (4), 402–415. https://doi.org/10.1007/s10905-018-9677-x Tsai, Y.-Y., Pek´ ar, S., 2019. Prey acceptance and conditional foraging behavior in the cribellate-web spider Titanoeca quadriguttata (Araneae: Titanoecidae). J. Arachnol. 47 (2), 202. https://doi.org/10.1636/JoA-S-18-083. Valenzuela-Rojas, J.C., Gonzalez-G ´ omez, ´ J.C., Guevara, G., Franco, L.M., ReinosoFlorez, ´ G., García, L.F., 2020. Notes on the feeding habits of a wandering spider, Phoneutria boliviensis (Arachnida: Ctenidae). J. Arachnol. 48 (1), 43–48. https:// doi.org/10.1636/0161-8202-48.1.43 Van Valen, L., 1973. A new evolutionary law. Evolut. Theory 1, 1–30 Vermeij, G.J., 1982. Unsuccessful predation and evolution. Am. Nat. 120 (6), 701–720. Von May, R., Biggi, E., C´ ardenas, H., Isabel Diaz, M., Alarcon, ´ C., Herrera, V., SantaCruz, R., Tomasinelli, F., Westeen, E.P., S´ anchez-Paredes, C.M., Larson, J.G., Title, P. O., Grundler, M.R., Grundler, M.C., Rabosky, A.R.D., Rabosky, D.L., 2019. Ecological interactions between arthropods and small vertebrates in a lowland Amazon rainforest. Amphib. Reptile Conserv. 13 (1), 65–77. W Wigger, E., Kuhn-Nentwig, L., Nentwig, W., 2002. The venom optimisation hypothesis: A spider injects large venom quantities only into difficult prey types. Toxicon 40 (6), 749–752. https://doi.org/10.1016/S0041-0101(01)00277-X Willemart, R.H., Lacava, M., 2017. Foraging strategies of cursorial and ambush spiders. Behaviour and Ecology of Spiders. Springer International Publishing, pp. 227–245. https://doi.org/10.1007/978-3-319-65717-2_9. Wilson, R.P., Shepard, E.L.C., Laich, A.G., Frere, E., Quintana, F., 2010. Pedalling downhill and freewheeling up; a penguin perspective on foraging. Aquat. Biol. 8 (3), 193–202. https://doi.org/10.3354/ab00230. Wolf, M., Weissing, F.J., 2012. Animal personalities: consequences for ecology and evolution. Trends Ecol. Evol. 27 (8), 452–461. https://doi.org/10.1016/j. tree.2012.05.001 Wolff, J.O., Gorb, S.N., 2012. Comparative morphology of pretarsal scopulae in eleven spider families. Arthropod Struct. Dev. 41 (5), 419–433. https://doi.org/10.1016/j. asd.2012.04.004. Wolff, J.O., van der Meijden, A., Herberstein, M.E., 2017. Distinct spinning patterns gain differentiated loading tolerance of silk thread anchorages in spiders with different ecology. Proc. R. Soc. B: Biol. Sci. 284 (1859) https://doi.org/10.1098/ rspb.2017.1124. Yoshida, M., 1989. Predatory behavior of three japanese species of metleucauge (Araneae, Tetragnathidae). Source.: J. Arachnol. 17 (1), 15–25. Zeng, Y., Crews, S., 2018. Biomechanics of omnidirectional strikes in flat spiders. J. Exp. Biol. 221 (7) https://doi.org/10.1242/jeb.166512. |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
| eu_rights_str_mv |
closedAccess |
| rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier B.V. |
| dc.publisher.place.none.fl_str_mv |
Suiza |
| publisher.none.fl_str_mv |
Elsevier B.V. |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/d372b3d2-08d8-4cbc-88a5-a5262bcc8dce/download https://repositorio.unibague.edu.co/bitstreams/443eada5-6b64-49c4-9813-78a02eec2057/download https://repositorio.unibague.edu.co/bitstreams/104ce2bf-1159-4619-bc62-ca99791db418/download https://repositorio.unibague.edu.co/bitstreams/8803ecf8-371b-4454-b415-3ef3ce506347/download |
| bitstream.checksum.fl_str_mv |
7c91823adabf7f7a9f32310e08b2d985 5664e007b386f9f86f6be6e046ca736b 2fa3e590786b9c0f3ceba1b9656b7ac3 ac72b28eee56198a0c380ccaf82f0077 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059957792768000 |
| spelling |
González-Gómez, Julio Césard74aff8b-0a84-477b-920c-bb40dac14a63-1Simone, Yurie59a6490-77ac-49bc-ae89-26bbb43ab4ac-1Pérez, Lida Marcela Franco60fc0c6a-ec98-4f41-b82f-a608afbf855c-1Valenzuela-Rojas, Juan Carlos55c9334e-b2a6-407f-b0cd-3ce2d17bf287-1van der Meijden, Arieb513e704-9379-4ced-afd3-4fef89aa878a-12025-11-06T20:08:50Z2025-11-06T20:08:50Z2024-09Predator-prey interactions are the interspecific relationships of greatest interest in ecology. Spiders are among the most diverse and ubiquitous terrestrial predators on the planet. Their large dietary breadth is often linked with the development of specific predatory behaviors and morphological adaptations. However, studies on the predatory behavior of spiders have mostly focused on specialist species, leaving behind the ethological variability occurring in generalist species that allow them to respond to the different prey types. For three species of generalist wandering spiders, we searched images of predation events on the Internet to determine the most common prey. Subsequently, the focal predator species were then used in behavioral experiments. Using high-speed videos, handling patterns for different prey types (spider and cricket) were analyzed. Our results show a notable difference in handling patterns between prey types. We found that the spider prey was often rotated around the axis allowing the predator to bite in the ventral region of the prey and thus avoid a counterattack. Contrary, crickets were arbitrarily rotated. Our work may be an indication that these three species of generalist spiders have a preference for manipulating prey differently with a preference to rotate spiders, allowing them to exploit prey with various defensive mechanisms.application/pdfGonzález-Gómez, J., Simone, Y., Pérez, L., Valenzuela-Rojas, J. y van der Meijden, A. (2024). Rapid prey manipulation and bite location preferences in three species of wandering spiders. Behavioural Processes, 221. DOI: 10.1016/j.beproc.2024.10508310.1016/j.beproc.2024.1050831872830803766357https://hdl.handle.net/20.500.12313/5913https://sciencedirect.unibague.elogim.com/science/article/pii/S0376635724000986engElsevier B.V.Suiza221Behavioural ProcessesAbrams, P.A., 1986. Adaptive responses of predators to prey and prey to predators: the failure of the arms-race analogy. Evolution 40 (6), 1229–1247. https://doi.org/ 10.1111/j.1558-5646.1986.tb05747.xAbrams, P.A., Ginzburg, L.R., 2000. The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol. Evol. 15 (8), 337–341. https://doi.org/10.1016/ S0169-5347(00)01908-X.Blackledge, T.A., 1998. Signal conflict in spider webs driven by predators and prey. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 265 (1409), 1991–1996. https://doi.org/10.1098/ rspb.1998.0530Blackledge, T.A., Scharff, N., Coddington, J.A., Szüts, T., Wenzel, J.W., Hayashi, C.Y., Agnarsson, I., 2009. Reconstructing web evolution and spider diversification in the molecular era. Proc. Natl. Acad. Sci. USA. https://doi.org/10.1073/ pnas.0901377106Blackledge, T.A., Kuntner, M., Agnarsson, I., 2011. The form and function of spider orb webs (In). Adv. Insect Physiol. 175–262. https://doi.org/10.1016/B978-0-12- 415919-8.00004-5.Brodie, E.D., Brodie, E.D., 1999. Costs of exploiting poisonous prey: evolutionary tradeoffs in a predator-prey arms race. Evolution 53 (2), 626–631. https://doi.org/ 10.1111/j.1558-5646.1999.tb03798.x.Carbone, C., Teacher, A., Rowcliffe, J.M., 2007. The costs of carnivory. PLoS Biol. 5 (2), 0363–0368. https://doi.org/10.1371/journal.pbio.0050022Carlson, B.E., McGinley, S., Rowe, M.P., 2014. Meek males and fighting females: Sexually-dimorphic antipredator behavior and locomotor performance is explained by morphology in bark scorpions (Centruroides vittatus). PLoS ONE 9 (5). https:// doi.org/10.1371/journal.pone.0097648Collyer, M.L., Adams, D.C., 2018. RRPP: An R package for fitting linear models to highdimensional data using residual randomization. Methods Ecol. Evol. 9 (7), 1772–1779. https://doi.org/10.1111/2041-210X.13029.Cooper, A.M., Nelsen, D.R., Hayes, W.K., 2015. The strategic use of venom by spiders (Issue January,). Evolution of Venomous Animals and Their Toxins. Springer, Netherlands, pp. 1–18. https://doi.org/10.1007/978-94-007-6727-0_13-1 (Issue January,).Dawkins, R., Krebs, J.R., 1979. Arms races between and within species. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 205 (1161), 489–511. https://doi.org/10.1098/ rspb.1979.0081.Dejean, A., Orivel, J., Gibernau, M., 2002. Specialized predation on plataspid heteropterans in a coccinellid beetle: adaptive behavior and responses of prey attended or not by ants. Behav. Ecol. 13 (2), 154–159. 〈https://academic.oup.com/ beheco/article/13/2/154/200641〉Domenici, P., Blagburn, J.M., Bacon, J.P., 2011. Animal escapology I: Theoretical issues and emerging trends in escape trajectories. J. Exp. Biol. 214 (15), 2463–2473. https://doi.org/10.1242/jeb.029652.Dugon, M.M., Wallace, A., 2012. Prey orientation and the role of venom availability in the predatory behaviour of the centipede Scolopendra subspinipes mutilans (Arthropoda: Chilopoda). J. Insect Physiol. 58 (6), 874–880. https://doi.org/ 10.1016/j.jinsphys.2012.03.014Eggs, B., Wolff, J.O., Kuhn-Nentwig, L., Gorb, S.N., Nentwig, W., 2015. Hunting without a web: how lycosoid spiders subdue their prey. Ethology 121 (12), 1166–1177. https://doi.org/10.1111/eth.12432Foelix, R.F., 1983. Biology of Spiders. , 16–16 Insect Syst. Evol. 14 (1). https://doi.org/ 10.1163/187631283X00371.Foerster, N.E., Henrique, B., Carvalho, G., Conte, C.E., 2017. Predation on Hypsiboas bischoffi (Anura: Hylidae) by Phoneutria nigriventer (Araneae: Ctenidae) in southern Brazil. Herpetol. Notes 10 (0), 403–404.Foerster, N.E., Henrique, B., Carvalho, G., Conte, C.E., 2017Folly, H., Arruda, L.F., De, Gomes, V.F., Neves, M.O., Feio, R.N., 2017. Predation on Ololygon carnevallii (Caramaschi and Kisteumacher, 1989) (Anura, Hylidae) by Phoneutria nigriventer (Keyserling, 1891) (Aranae, Ctenidae). Herpetol. Notes 10 (0), 365–367.Fox, J., Sanford, W., 2019. An R Companion toApplied Regression, Third Edition. SAGE. GGarcía, L.F., Franco, V., Robledo-Ospina, L.E., Viera, C., Lacava, M., Willemart, R.H., 2016. The predation strategy of the recluse spider Loxosceles rufipes (lucas, 1834) against four prey species. J. Insect Behav. 29 (5), 515–526. https://doi.org/10.1007/ s10905-016-9578-9.García, L.F., Viera, C., Pekar, ´ S., 2018. Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator. Sci. Nat. 105 (3–4) https://doi.org/10.1007/s00114-018-1555-z.García, L.F., Rave, C., Arcila, K., García, C., Robledo-Ospina, L.E., Willemart, R.H., 2021. Do predators react differently to dangerous and larger prey? The case of a mygalomorph generalist spider preying upon insects. Zoology 144, 125863. https:// doi.org/10.1016/j.zool.2020.125863.García, L.F., Núnez, ˜ E., Lacava, M., Silva, H., Martínez, S., P´etillon, J., 2021. Experimental assessment of trophic ecology in a generalist spider predator: Implications for biocontrol in Uruguayan crops. J. Appl. Entomol. 145 (1–2), 82–91. https://doi.org/10.1111/jen.12811Guppy, M., Guppy, S., Marchant, R., Priddel, D., Carlile, N., Fullagar, P., 2017. Nest predation of woodland birds in south-east Australia: importance of unexpected predators. Emu - Austral Ornithol. 117 (1), 92–96. https://doi.org/10.1080/ 01584197.2016.1258997Hedrick, T.L., 2008. Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspiration Biomim. 3 (3), 034001 https://doi.org/10.1088/1748-3182/3/3/034001.Hustert, R., Baldus, M., 2010. Ballistic movements of jumping legs implemented as variable components of cricket behaviour. J. Exp. Biol. 213 (23), 4055–4064. https://doi.org/10.1242/jeb.043943.Hustert, R., Gnatzy, W., 1995. The Motor Program for Defensive Kicking in Crickets: Performance and Neural Control. J. Exp. Biol. 198 (6), 1275–1283. https://doi.org/ 10.1242/jeb.198.6.1275.Jackson, R.R., Stimson Wilcox, R., 1998. Spider-Eating Spiders: Despite the small size of their brain, jumping spiders in the genus Portia outwit other spiders with hunting techniques that include trial and error (In). Scientist Vol. 86 (Issue 4). KKarakoç, C., Clark, A.T., Chatzinotas, A., 2020. Diversity and coexistence are influenced by time-dependent species interactions in a predator–prey system. Ecol. Lett. 23 (6), 983–993. https://doi.org/10.1111/ele.13500.Kaston, B.J., 1964. The evolution of spider webs. Am. Zool. 4 (2), 191–207. https://doi. org/10.1093/icb/4.2.191.Kock, N., Lynn, G.S., 2012. Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. J. Assoc. Inf. Syst. 13 (7), 546–580. https://doi.org/10.17705/1jais.00302Krauel, J.J., Brown, V.A., Westbrook, J.K., McCracken, G.F., 2018. Predator–prey interaction reveals local effects of high-altitude insect migration. Oecologia 186 (1), 49–58. https://doi.org/10.1007/s00442-017-3995-0Lehner, P.N., 1996. Handbook of ethological methods, Vol. 2. Cambridge University Press. https://doi.org/10.5860/choice.34-4483 (In)Malli, H., Imboden, H., Kuhn-Nentwig, L., 1998. Quantifying the venom dose of the spider Cupiennius salei using monoclonal antibodies. Toxicon 36 (12). https://doi. org/10.1016/S0041-0101(98)00120-2.Malli, H., Kuhn-Nentwig, L., Imboden, H., Nentwig, W., 1999. Effects of size, motility and paralysation time of prey on the quantity of venom injected by the hunting spider Cupiennius salei. J. Exp. Biol. 202 (15), 2083–2089. MMich´ alek, O., Kuhn-Nentwig, L., Pek´ ar, S., 2019. High specific efficiency of venom of two prey-specialized spiders. Toxins 11 (12). https://doi.org/10.3390/toxins11120687.Michalko, R., Pekar, ´ S., Entling, M.H., 2019. An updated perspective on spiders as generalist predators in biological control. Oecologia 189 (1), 21–36. https://doi.org/ 10.1007/s00442-018-4313-1Morgenstern, D., King, G.F., 2013. The venom optimization hypothesis revisited. Toxicon 63 (1)), 120–128. https://doi.org/10.1016/j.toxicon.2012.11.022Morse, D.H., 1999. Location of successful strikes on prey by juvenile crab spiders Misumena vatia (Araneae, Thomisidae). J. Arachnol. 27 (1).Mougi, A., Kishida, O., 2009. Reciprocal phenotypic plasticity can lead to stable predator-prey interaction. J. Anim. Ecol. 78 (6), 1172–1181. https://doi.org/ 10.1111/j.1365-2656.2009.01600.x.Moulder, B.C., Reichle, D.E., 1972. Significance of spider predation in the energy dynamics of forest-floor arthropod communities. Ecol. Monogr. 42 (4), 473–498. MMukherjee, S., Heithaus, M.R., 2013. Dangerous prey and daring predators: a review. Biol. Rev. 88 (3), 550–563. https://doi.org/10.1111/brv.12014Norberg, R.A., 1977. An ecological theory on foraging time and energetics and choice of optimal food-searching method. J. Anim. Ecol. 46 (2), 511. https://doi.org/ 10.2307/3827.Nyffeler, M., Birkhofer, K., 2017. An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci. Nat. 104 (3–4), 30. https://doi.org/ 10.1007/s00114-017-1440-1Paz, N., 1988. Ecologia y aspectos del comportamiento en Linothele sp. (Araneae, Dipluridae). The. J. Arachnol. 16 (1), 5–22. https://doi.org/10.1093/besa/21.1.52Pek´ ar, S., Toft, S., 2014. Trophic specialisation in a predatory group: The case of preyspecialised spiders (Araneae). Biol. Rev. 90 (3), 744–761. https://doi.org/10.1111/ brv.12133Pek´ ar, S., Martiˇsova, ´ M., Bilde, T., 2011. Intersexual trophic niche partitioning in an anteating spider (Araneae: Zodariidae). PLoS ONE 6 (1), 1–7. https://doi.org/10.1371/ journal.pone.0014603.Platnick, N.I. (2020). Spiders of the world: a natural history. In Hilos Tensados (Issue)Pollard, S.D., 1986. Prey capture in Dysdera crocata (Araneae: Dysderidae), a longfanged spider. N. Z. J. Zool. 13 (1), 149–150. https://doi.org/10.1080/ 03014223.1986.10422656.Pollard, S.D., 1990. The feeding strategy of a crab spider, Diaea sp. indet. (Araneae: Thomisidae): post-capture decision rules. J. Zool. 222 (4) https://doi.org/10.1111/ j.1469-7998.1990.tb06017.xRez ˇ ´ aˇc, M., Pekar, ´ S., 2007. Evidence for woodlice-specialization in Dysdera spiders: Behavioural versus developmental approaches. Physiol. Entomol. 32 (4), 367–371. https://doi.org/10.1111/j.1365-3032.2007.00588.xSchendel, Rash, Jenner, Undheim, 2019. The diversity of venom: the importance of behavior and venom system morphology in understanding its ecology and evolution. Toxins 11 (11), 666. https://doi.org/10.3390/toxins11110666Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9 (7), 671–675. https://doi.org/10.1038/nmeth.2089Segovia, J.M.G., Del-claro, K., & Hirata, R. (2015). Delicate fangs, smart killing: the predation strategy of the recluse spider. 101.Sierra Ramírez, D., Guevara, G., Franco P´erez, L.M., Meijden, A., Gonz´ alez-Gomez, ´ J.C., Carlos Valenzuela-Rojas, J., Prada Quiroga, C.F., 2021. Deciphering the diet of a wandering spider ( Phoneutria boliviensis; Araneae: Ctenidae) by DNA metabarcoding of gut contents. , ece3.7320 Ecol. Evol.. https://doi.org/10.1002/ ece3.7320Simone, Y., Garcia, L.F., Lacava, M., van der Meijden, A., Viera, C., 2018. Predatory versatility in females of the scorpion Bothriurus bonariensis (Scorpiones: Bothriuridae): overcoming prey with different defensive mechanisms. J. Insect Behav. 31 (4), 402–415. https://doi.org/10.1007/s10905-018-9677-xTsai, Y.-Y., Pek´ ar, S., 2019. Prey acceptance and conditional foraging behavior in the cribellate-web spider Titanoeca quadriguttata (Araneae: Titanoecidae). J. Arachnol. 47 (2), 202. https://doi.org/10.1636/JoA-S-18-083.Valenzuela-Rojas, J.C., Gonzalez-G ´ omez, ´ J.C., Guevara, G., Franco, L.M., ReinosoFlorez, ´ G., García, L.F., 2020. Notes on the feeding habits of a wandering spider, Phoneutria boliviensis (Arachnida: Ctenidae). J. Arachnol. 48 (1), 43–48. https:// doi.org/10.1636/0161-8202-48.1.43Van Valen, L., 1973. A new evolutionary law. Evolut. Theory 1, 1–30Vermeij, G.J., 1982. Unsuccessful predation and evolution. Am. Nat. 120 (6), 701–720.Von May, R., Biggi, E., C´ ardenas, H., Isabel Diaz, M., Alarcon, ´ C., Herrera, V., SantaCruz, R., Tomasinelli, F., Westeen, E.P., S´ anchez-Paredes, C.M., Larson, J.G., Title, P. O., Grundler, M.R., Grundler, M.C., Rabosky, A.R.D., Rabosky, D.L., 2019. Ecological interactions between arthropods and small vertebrates in a lowland Amazon rainforest. Amphib. Reptile Conserv. 13 (1), 65–77. WWigger, E., Kuhn-Nentwig, L., Nentwig, W., 2002. The venom optimisation hypothesis: A spider injects large venom quantities only into difficult prey types. Toxicon 40 (6), 749–752. https://doi.org/10.1016/S0041-0101(01)00277-XWillemart, R.H., Lacava, M., 2017. Foraging strategies of cursorial and ambush spiders. Behaviour and Ecology of Spiders. Springer International Publishing, pp. 227–245. https://doi.org/10.1007/978-3-319-65717-2_9.Wilson, R.P., Shepard, E.L.C., Laich, A.G., Frere, E., Quintana, F., 2010. Pedalling downhill and freewheeling up; a penguin perspective on foraging. Aquat. Biol. 8 (3), 193–202. https://doi.org/10.3354/ab00230.Wolf, M., Weissing, F.J., 2012. Animal personalities: consequences for ecology and evolution. Trends Ecol. Evol. 27 (8), 452–461. https://doi.org/10.1016/j. tree.2012.05.001Wolff, J.O., Gorb, S.N., 2012. Comparative morphology of pretarsal scopulae in eleven spider families. Arthropod Struct. Dev. 41 (5), 419–433. https://doi.org/10.1016/j. asd.2012.04.004.Wolff, J.O., van der Meijden, A., Herberstein, M.E., 2017. Distinct spinning patterns gain differentiated loading tolerance of silk thread anchorages in spiders with different ecology. Proc. R. Soc. B: Biol. Sci. 284 (1859) https://doi.org/10.1098/ rspb.2017.1124.Yoshida, M., 1989. Predatory behavior of three japanese species of metleucauge (Araneae, Tetragnathidae). Source.: J. Arachnol. 17 (1), 15–25.Zeng, Y., Crews, S., 2018. Biomechanics of omnidirectional strikes in flat spiders. J. Exp. Biol. 221 (7) https://doi.org/10.1242/jeb.166512.© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCaptura de presasArañas errantes - MordeduraArañas errantes - EspeciesAnimalsPoisonousGryllidaePhoneutriaPredatory BehaviorSpecies SpecificitySpidersRapid prey manipulation and bite location preferences in three species of wandering spidersArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain4967https://repositorio.unibague.edu.co/bitstreams/d372b3d2-08d8-4cbc-88a5-a5262bcc8dce/download7c91823adabf7f7a9f32310e08b2d985MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg29464https://repositorio.unibague.edu.co/bitstreams/443eada5-6b64-49c4-9813-78a02eec2057/download5664e007b386f9f86f6be6e046ca736bMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/104ce2bf-1159-4619-bc62-ca99791db418/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf258663https://repositorio.unibague.edu.co/bitstreams/8803ecf8-371b-4454-b415-3ef3ce506347/downloadac72b28eee56198a0c380ccaf82f0077MD5220.500.12313/5913oai:repositorio.unibague.edu.co:20.500.12313/59132025-11-07 03:01:38.062https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
