A neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuit

Experience shapes the brain as neural circuits can be modified by neural stimulation or the lack of it. The molecular mechanisms underlying structural circuit plasticity and how plasticity modifies behaviour are poorly understood. Subjective experience requires dopamine, a neuromodulator that assign...

Full description

Autores:
Jun Sun
Francisca Rojo-Cortes
Suzana Ulian-Benitez
Manuel G Forero
Guiyi Li
Deepanshu ND Singh
Xiaocui Wang
Sebastian Cachero
Marta Moreira
Dean Kavanagh
Gregory SXE Jefferis
Vincent Croset
Alicia Hidalgo
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/6049
Acceso en línea:
https://elifesciences.org/articles/102222
https://hdl.handle.net/20.500.12313/6049
Palabra clave:
Neurotrofina
Función cerebral
Comportamiento cerebral
Rights
openAccess
License
Copyright Sun et al. T
id UNIBAGUE2_e215eaa8bfce2bfb35f8db9ce8cd40f0
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/6049
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv A neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuit
title A neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuit
spellingShingle A neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuit
Neurotrofina
Función cerebral
Comportamiento cerebral
title_short A neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuit
title_full A neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuit
title_fullStr A neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuit
title_full_unstemmed A neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuit
title_sort A neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuit
dc.creator.fl_str_mv Jun Sun
Francisca Rojo-Cortes
Suzana Ulian-Benitez
Manuel G Forero
Guiyi Li
Deepanshu ND Singh
Xiaocui Wang
Sebastian Cachero
Marta Moreira
Dean Kavanagh
Gregory SXE Jefferis
Vincent Croset
Alicia Hidalgo
dc.contributor.author.none.fl_str_mv Jun Sun
Francisca Rojo-Cortes
Suzana Ulian-Benitez
Manuel G Forero
Guiyi Li
Deepanshu ND Singh
Xiaocui Wang
Sebastian Cachero
Marta Moreira
Dean Kavanagh
Gregory SXE Jefferis
Vincent Croset
Alicia Hidalgo
dc.subject.armarc.none.fl_str_mv Neurotrofina
Función cerebral
Comportamiento cerebral
topic Neurotrofina
Función cerebral
Comportamiento cerebral
description Experience shapes the brain as neural circuits can be modified by neural stimulation or the lack of it. The molecular mechanisms underlying structural circuit plasticity and how plasticity modifies behaviour are poorly understood. Subjective experience requires dopamine, a neuromodulator that assigns a value to stimuli, and it also controls behaviour, including locomotion, learning, and memory. In Drosophila, Toll receptors are ideally placed to translate experience into structural brain change. Toll-6 is expressed in dopaminergic neurons (DANs), raising the intriguing possibility that Toll-6 could regulate structural plasticity in dopaminergic circuits. Drosophila neurotrophin-2 (DNT-2) is the ligand for Toll-6 and Kek-6, but whether it is required for circuit structural plasticity was unknown. Here, we show that DNT-2-expressing neurons connect with DANs, and they modulate each other. Loss of function for DNT-2 or its receptors Toll-6 and kinase-less Trk-like kek-6 caused DAN and synapse loss, impaired dendrite growth and connectivity, decreased synaptic sites, and caused locomotion deficits. In contrast, overexpressed DNT-2 increased DAN cell number, dendrite complexity, and promoted synaptogenesis. Neuronal activity modified DNT-2, increased synaptogenesis in DNT-2-positive neurons and DANs, and over-expression of DNT-2 did too. Altering the levels of DNT-2 or Toll-6 also modified dopamine-dependent behaviours, including locomotion and long-term memory. To conclude, a feedback loop involving dopamine and DNT-2 highlighted the circuits engaged, and DNT-2 with Toll-6 and Kek-6 induced structural plasticity in this circuit modifying brain function and behaviour.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-11-27T16:31:55Z
dc.date.available.none.fl_str_mv 2025-11-27T16:31:55Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Sun, J., Rojo-Cortes, F., Ulian-Benitez, S., Forero, M., Li, G., Singh, D., Wang., X., Cachero. S., Moreira, M., Kavanagh, D., Jefferis, G., Croset, V. y Hidalgo, A. (2024). A neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuit. elife. https://elifesciences.org/articles/102222
dc.identifier.doi.none.fl_str_mv https://elifesciences.org/articles/102222
dc.identifier.eissn.none.fl_str_mv 2050084X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/6049
dc.identifier.url.none.fl_str_mv https://elifesciences.org/articles/102222
identifier_str_mv Sun, J., Rojo-Cortes, F., Ulian-Benitez, S., Forero, M., Li, G., Singh, D., Wang., X., Cachero. S., Moreira, M., Kavanagh, D., Jefferis, G., Croset, V. y Hidalgo, A. (2024). A neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuit. elife. https://elifesciences.org/articles/102222
2050084X
url https://elifesciences.org/articles/102222
https://hdl.handle.net/20.500.12313/6049
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Elife
dc.relation.references.none.fl_str_mv Adel M, Griffith LC. 2021. The role of dopamine in associative learning in Drosophila: An updated unified model. Neuroscience Bulletin 37:831–852. DOI: https://doi.org/10.1007/s12264-021-00665-0, PMID: 33779893
Adhikarla SV, Jha NK, Goswami VK, Sharma A, Bhardwaj A, Dey A, Villa C, Kumar Y, Jha SK. 2021. TLR-mediated signal transduction and neurodegenerative disorders. Brain Sciences 11:11. DOI: https://doi.org/10.3390/ brainsci11111373, PMID: 34827372
Anthoney N, Foldi I, Hidalgo A. 2018. Toll and Toll-like receptor signalling in development. Development 145:dev156018. DOI: https://doi.org/10.1242/dev.156018, PMID: 29695493
Arikkath J. 2012. Molecular mechanisms of dendrite morphogenesis. Frontiers in Cellular Neuroscience 6:61. DOI: https://doi.org/10.3389/fncel.2012.00061, PMID: 23293584
Arnot CJ, Gay NJ, Gangloff M. 2010. Molecular mechanism that induces activation of Spätzle, the ligand for the Drosophila Toll receptor. The Journal of Biological Chemistry 285:19502–19509. DOI: https://doi.org/10.1074/ jbc.M109.098186, PMID: 20378549
Aso Y, Herb A, Ogueta M, Siwanowicz I, Templier T, Friedrich AB, Ito K, Scholz H, Tanimoto H. 2012. Three dopamine pathways induce aversive odor memories with different stability. PLOS Genetics 8:e1002768. DOI: https://doi.org/10.1371/journal.pgen.1002768
Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo T-TB, Dionne H, Abbott LF, Axel R, Tanimoto H, Rubin GM. 2014a. The neuronal architecture of the mushroom body provides a logic for associative learning. eLife 3:e04577. DOI: https://doi.org/10.7554/eLife.04577, PMID: 25535793
Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K, Belliart-Guérin G, Plaçais P-Y, Robie AA, Yamagata N, Schnaitmann C, Rowell WJ, Johnston RM, Ngo T-TB, Chen N, Korff W, Nitabach MN, Heberlein U, Preat T, Branson KM, Tanimoto H, et al. 2014b. Mushroom body output neurons encode valence and guide memorybased action selection in Drosophila. eLife 3:e04580. DOI: https://doi.org/10.7554/eLife.04580, PMID: 25535794
Baltruschat L, Prisco L, Ranft P, Lauritzen JS, Fiala A, Bock DD, Tavosanis G. 2021. Circuit reorganization in the Drosophila mushroom body calyx accompanies memory consolidation. Cell Reports 34:108871. DOI: https:// doi.org/10.1016/j.celrep.2021.108871, PMID: 33730583
Barth M, Heisenberg M. 1997. Vision affects mushroom bodies and central complex in Drosophila melanogaster. Learning & Memory 4:219–229. DOI: https://doi.org/10.1101/lm.4.2.219, PMID: 10456065
Barth M, Hirsch HV, Meinertzhagen IA, Heisenberg M. 1997. Experience-dependent developmental plasticity in the optic lobe of Drosophila melanogaster. The Journal of Neuroscience 17:1493–1504. DOI: https://doi.org/ 10.1523/JNEUROSCI.17-04-01493.1997, PMID: 9006990
Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ. 2006. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868. DOI: https://doi.org/10.1126/science.1120972, PMID: 16469931
Bharmauria V, Ouelhazi A, Lussiez R, Molotchnikoff S. 2022. Adaptation-induced plasticity in the sensory cortex. Journal of Neurophysiology 128:946–962. DOI: https://doi.org/10.1152/jn.00114.2022, PMID: 36130163
Blöchl A, Sirrenberg C. 1996. Neurotrophins stimulate the release of dopamine from rat mesencephalic neurons via Trk and p75Lntr receptors. The Journal of Biological Chemistry 271:21100–21107. DOI: https://doi.org/10. 1074/jbc.271.35.21100, PMID: 8702878
Bolus H, Crocker K, Boekhoff-Falk G, Chtarbanova S. 2020. Modeling neurodegenerative disorders in Drosophila melanogaster International Journal of Molecular Sciences 21:3055. DOI: https://doi.org/10.3390/ ijms21093055, PMID: 32357532
Boto T, Louis T, Jindachomthong K, Jalink K, Tomchik SM. 2014. Dopaminergic modulation of cAMP drives nonlinear plasticity across the Drosophila mushroom body lobes. Current Biology 24:822–831. DOI: https://doi. org/10.1016/j.cub.2014.03.021, PMID: 24684937
Boto T, Stahl A, Tomchik SM. 2020. Cellular and circuit mechanisms of olfactory associative learning in Drosophila Journal of Neurogenetics 34:36–46. DOI: https://doi.org/10.1080/01677063.2020.1715971, PMID: 32043414
Bushey D, Tononi G, Cirelli C. 2011. Sleep and synaptic homeostasis: structural evidence in Drosophila. Science 332:1576–1581. DOI: https://doi.org/10.1126/science.1202839, PMID: 21700878
Cachero S, Gkantia M, Bates AS, Frechter S, Blackie L, McCarthy A, Sutcliffe B, Strano A, Aso Y, Jefferis GSXE. 2020. BAcTrace, a tool for retrograde tracing of neuronal circuits in Drosophila. Nature Methods 17:1254– 1261. DOI: https://doi.org/10.1038/s41592-020-00989-1, PMID: 33139893
Carim-Todd L, Bath KG, Fulgenzi G, Yanpallewar S, Jing D, Barrick CA, Becker J, Buckley H, Dorsey SG, Lee FS, Tessarollo L. 2009. Endogenous truncated TrkB.T1 receptor regulates neuronal complexity and TrkB kinase receptor function in vivo. The Journal of Neuroscience 29:678–685. DOI: https://doi.org/10.1523/JNEUROSCI. 5060-08.2009, PMID: 19158294
Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, Biojone C, Cannarozzo C, Sahu MP, Kaurinkoski K, Brunello CA, Steinzeig A, Winkel F, Patil S, Vestring S, Serchov T, Diniz CRAF, Laukkanen L, Cardon I, Antila H, et al. 2021. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 184:1299–1313.. DOI: https://doi.org/10.1016/j.cell.2021.01.034, PMID: 33606976
Castrén E, Monteggia LM. 2021. Brain-derived neurotrophic factor signaling in depression and antidepressant action. Biological Psychiatry 90:128–136. DOI: https://doi.org/10.1016/j.biopsych.2021.05.008, PMID: 34053675
Chan RF, Turecki G, Shabalin AA, Guintivano J, Zhao M, Xie LY, van Grootheest G, Kaminsky ZA, Dean B, Penninx BWJH, Aberg KA, van den Oord EJCG. 2020. Cell type-specific methylome-wide association studies implicate neurotrophin and innate immune signaling in major depressive disorder. Biological Psychiatry 87:431–442. DOI: https://doi.org/10.1016/j.biopsych.2019.10.014, PMID: 31889537
Chen CC, Wu JK, Lin HW, Pai TP, Fu TF, Wu CL, Tully T, Chiang AS. 2012. Visualizing long-term memory formation in two neurons of the Drosophila brain . Science 335:678–685. DOI: https://doi.org/10.1126/science.1212735
Chen CY, Shih YC, Hung YF, Hsueh YP. 2019. Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors. Journal of Biomedical Science 26:90. DOI: https://doi.org/10.1186/s12929- 019-0584-z, PMID: 31684953
Chen CC, Brumberg JC. 2021. Sensory experience as a regulator of structural plasticity in the developing whisker-to-barrel system. Frontiers in Cellular Neuroscience 15:770453. DOI: https://doi.org/10.3389/fncel. 2021.770453, PMID: 35002626
Cheng L-K, Chiu Y-H, Lin Y-C, Li W-C, Hong T-Y, Yang C-J, Shih C-H, Yeh T-C, Tseng W-YI, Yu H-Y, Hsieh J-C, Chen L-F. 2023. Long-term musical training induces white matter plasticity in emotion and language networks. Human Brain Mapping 44:5–17. DOI: https://doi.org/10.1002/hbm.26054, PMID: 36005832
Çoban B, Poppinga H, Rachad EY, Geurten B, Vasmer D, Rodriguez Jimenez FJ, Gadgil Y, Deimel SH, Alyagor I, Schuldiner O, Grunwald Kadow IC, Riemensperger TD, Widmann A, Fiala A. 2024. The caloric value of food intake structurally adjusts a neuronal mushroom body circuit mediating olfactory learning in Drosophila Learning & Memory 31:a053997. DOI: https://doi.org/10.1101/lm.053997.124, PMID: 38862177
Costa M, Manton JD, Ostrovsky AD, Prohaska S, Jefferis GSXE. 2016. NBLAST: rapid, sensitive comparison of neuronal structure and construction of neuron family databases. Neuron 91:293–311. DOI: https://doi.org/10. 1016/j.neuron.2016.06.012, PMID: 27373836
Cotman CW, Berchtold NC. 2002. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences 25:295–301. DOI: https://doi.org/10.1016/s0166-2236(02)02143-4, PMID: 12086747
Croset V, Treiber CD, Waddell S. 2018. Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. eLife 7:e34550. DOI: https://doi.org/10.7554/eLife.34550, PMID: 29671739
Davie K, Janssens J, Koldere D, De Waegeneer M, Pech U, Kreft Ł, Aibar S, Makhzami S, Christiaens V, Bravo González-Blas C, Poovathingal S, Hulselmans G, Spanier KI, Moerman T, Vanspauwen B, Geurs S, Voet T, Lammertyn J, Thienpont B, Liu S, et al. 2018. A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain. Cell 174:982–998. DOI: https://doi.org/10.1016/j.cell.2018.05.057, PMID: 29909982
DeLotto Y, DeLotto R. 1998. Proteolytic processing of the Drosophila Spätzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mechanisms of Development 72:141–148. DOI: https:// doi.org/10.1016/s0925-4773(98)00024-0, PMID: 9533958
Deng B, Li Q, Liu X, Cao Y, Li B, Qian Y, Xu R, Mao R, Zhou E, Zhang W, Huang J, Rao Y. 2019. Chemoconnectomics: Mapping Chemical Transmission in Drosophila. Neuron 101:876–893. DOI: https://doi. org/10.1016/j.neuron.2019.01.045, PMID: 30799021
Devaud JM, Acebes A, Ferrús A. 2001. Odor exposure causes central adaptation and morphological changes in selected olfactory glomeruli in Drosophila. The Journal of Neuroscience 21:6274–6282. DOI: https://doi.org/ 10.1523/JNEUROSCI.21-16-06274.2001, PMID: 11487650
Duhart JM, Herrero A, de la Cruz G, Ispizua JI, Pírez N, Ceriani MF. 2020. Circadian structural plasticity drives remodeling of E cell output. Current Biology 30:5040–5048.. DOI: https://doi.org/10.1016/j.cub.2020.09.057, PMID: 33065014
Ernst C, Deleva V, Deng X, Sequeira A, Pomarenski A, Klempan T, Ernst N, Quirion R, Gratton A, Szyf M, Turecki G. 2009. Alternative splicing, methylation state, and expression profile of tropomyosin-related kinase B in the frontal cortex of suicide completers. Archives of General Psychiatry 66:22–32. DOI: https://doi.org/10. 1001/archpsyc.66.1.22, PMID: 19124685
Eyjolfsdottir E, Branson S, Burgos-Artizzu XP, Hoopfer ED, Schor J, Anderson DJ, Perona P. 2014. Detecting Social Actions of Fruit Flies. Cham: Springer International Publishing.
Feany MB, Bender WW. 2000. A Drosophila model of Parkinson’s disease. Nature 404:394–398. DOI: https://doi. org/10.1038/35006074, PMID: 10746727
Feldman DE, Brecht M. 2005. Map plasticity in somatosensory cortex. Science 310:810–815. DOI: https://doi. org/10.1126/science.1115807
Fenner BM. 2012. Truncated TrkB: beyond a dominant negative receptor. Cytokine & Growth Factor Reviews 23:15–24. DOI: https://doi.org/10.1016/j.cytogfr.2012.01.002, PMID: 22341689
Fernández MP, Berni J, Ceriani MF. 2008. Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLOS Biology 6:e69. DOI: https://doi.org/10.1371/journal.pbio.0060069, PMID: 18366255
Ferrer I, Marin C, Rey MJ, Ribalta T, Goutan E, Blanco R, Tolosa E, Marti E. 1999. BDNF and full-length and truncated TrkB expression in Alzheimer disease. Journal of Neuropathology and Experimental Neurology 58:729–739 PMID: 10411343
Figueroa-Hall LK, Paulus MP, Savitz J. 2020. Toll-like receptor signaling in depression. Psychoneuroendocrinology 121:104843. DOI: https://doi.org/10.1016/j.psyneuen.2020.104843, PMID: 32911436
Foldi I, Anthoney N, Harrison N, Gangloff M, Verstak B, Nallasivan MP, AlAhmed S, Zhu B, Phizacklea M, Losada-Perez M, Moreira M, Gay NJ, Hidalgo A. 2017. Three-tier regulation of cell number plasticity by neurotrophins and Tolls in Drosophila The Journal of Cell Biology 216:1421–1438. DOI: https://doi.org/10. 1083/jcb.201607098, PMID: 28373203
Forero MG, Pennack JA, Learte AR, Hidalgo A. 2009. DeadEasy caspase: automatic counting of apoptotic cells in Drosophila. PLOS ONE 4:e5441. DOI: https://doi.org/10.1371/journal.pone.0005441, PMID: 19415123
Forero MG, Learte AR, Cartwright S, Hidalgo A. 2010a. DeadEasy Mito-Glia: automatic counting of mitotic cells and glial cells in Drosophila. PLOS ONE 5:e10557. DOI: https://doi.org/10.1371/journal.pone.0010557, PMID: 20479944
Forero MG, Pennack JA, Hidalgo A. 2010b. DeadEasy neurons: automatic counting of HB9 neuronal nuclei in Drosophila. Cytometry. Part A 77:371–378. DOI: https://doi.org/10.1002/cyto.a.20877, PMID: 20162534
Forero MG, Kato K, Hidalgo A. 2012. Automatic cell counting in vivo in the larval nervous system of Drosophila. Journal of Microscopy 246:202–212. DOI: https://doi.org/10.1111/j.1365-2818.2012.03608.x, PMID: 22429405
Forrest MP, Parnell E, Penzes P. 2018. Dendritic structural plasticity and neuropsychiatric disease. Nature Reviews. Neuroscience 19:215–234. DOI: https://doi.org/10.1038/nrn.2018.16, PMID: 29545546
Fryer RH, Kaplan DR, Feinstein SC, Radeke MJ, Grayson DR, Kromer LF. 1996. Developmental and mature expression of full-length and truncated TrkB receptors in the rat forebrain. The Journal of Comparative Neurology 374:21–40. DOI: https://doi.org/10.1002/(SICI)1096-9861(19961007) 374:1<21::AID-CNE2>3.0.CO;2-P, PMID: 8891944
Fuentes-Medel Y, Logan MA, Ashley J, Ataman B, Budnik V, Freeman MR. 2009. Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris. PLOS Biology 7:e1000184. DOI: https://doi.org/10.1371/journal.pbio.1000184, PMID: 19707574
Gage FH. 2019. Adult neurogenesis in mammals. Science 364:827–828. DOI: https://doi.org/10.1126/science. aav6885, PMID: 31147506
Garrett ME, Qin XJ, Mehta D, Dennis MF, Marx CE, Grant GA, VA Mid-Atlantic MIRECC Workgroup, PTSD Initiative, Injury and Traumatic Stress (INTRuST) Clinical Consortium, Psychiatric Genomics Consortium PTSD Group, Stein MB, Kimbrel NA, Beckham JC, Hauser MA, Ashley-Koch AE. 2021. Gene expression analysis in three posttraumatic stress disorder cohorts implicates inflammation and innate immunity pathways and uncovers shared genetic risk with major depressive disorder. Frontiers in Neuroscience 15:678548. DOI: https://doi.org/10.3389/fnins.2021.678548, PMID: 34393704
Gay NJ, Gangloff M. 2007. Structure and function of Toll receptors and their ligands. Annual Review of Biochemistry 76:141–165. DOI: https://doi.org/10.1146/annurev.biochem.76.060305.151318, PMID: 17362201
Górska-Andrzejak J, Keller A, Raabe T, Kilianek L, Pyza E. 2005. Structural daily rhythms in GFP-labelled neurons in the visual system of Drosophila melanogaster. Photochemical & Photobiological Sciences 4:721–726. DOI: https://doi.org/10.1039/b417023g, PMID: 16121283
Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Sokoloff P. 2001. BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 411:86–89. DOI: https://doi.org/10.1038/35075076, PMID: 11333982
Guven-Ozkan T, Davis RL. 2014. Functional neuroanatomy of Drosophila olfactory memory formation. Learning & Memory 21:519–526. DOI: https://doi.org/10.1101/lm.034363.114, PMID: 25225297
Hadjieconomou D, Rotkopf S, Alexandre C, Bell DM, Dickson BJ, Salecker I. 2011. Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nature Methods 8:260–266. DOI: https:// doi.org/10.1038/nmeth.1567, PMID: 21297619
Harrison NJ, Connolly E, Gascón Gubieda A, Yang Z, Altenhein B, Losada Perez M, Moreira M, Sun J, Hidalgo A. 2021. Regenerative neurogenic response from glia requires insulin-driven neuron-glia communication. eLife 10:e58756. DOI: https://doi.org/10.7554/eLife.58756, PMID: 33527895
Hearn MG, Ren Y, McBride EW, Reveillaud I, Beinborn M, Kopin AS. 2002. A Drosophila dopamine 2-like receptor: Molecular characterization and identification of multiple alternatively spliced variants. PNAS 99:14554–14559. DOI: https://doi.org/10.1073/pnas.202498299, PMID: 12391323
Heisenberg M, Heusipp M, Wanke C. 1995. Structural plasticity in the Drosophila brain. The Journal of Neuroscience 15:1951–1960. DOI: https://doi.org/10.1523/JNEUROSCI.15-03-01951.1995, PMID: 7891144
Heisenberg M. 2003. Mushroom body memoir: from maps to models. Nature Reviews. Neuroscience 4:266–275. DOI: https://doi.org/10.1038/nrn1074, PMID: 12671643
Hepburn L, Prajsnar TK, Klapholz C, Moreno P, Loynes CA, Ogryzko NV, Brown K, Schiebler M, Hegyi K, Antrobus R, Hammond KL, Connolly J, Ochoa B, Bryant C, Otto M, Surewaard B, Seneviratne SL, Grogono DM, Cachat J, Ny T, et al. 2014. Innate immunity. A spaetzle-like role for nerve growth factor β in vertebrate immunity to Staphylococcus aureus. Science 346:641–646. DOI: https://doi.org/10.1126/science.1258705, PMID: 25359976
Hoffmann A, Funkner A, Neumann P, Juhnke S, Walther M, Schierhorn A, Weininger U, Balbach J, Reuter G, Stubbs MT. 2008a. Biophysical characterization of refolded Drosophila Spätzle, a cystine knot protein, reveals distinct properties of three isoforms. The Journal of Biological Chemistry 283:32598–32609. DOI: https://doi. org/10.1074/jbc.M801815200, PMID: 18790733
Hoffmann A, Neumann P, Schierhorn A, Stubbs MT. 2008b. Crystallization of Spätzle, a cystine-knot protein involved in embryonic development and innate immunity in Drosophila melanogaster. Acta Crystallographica 64:707–710. DOI: https://doi.org/10.1107/S1744309108018812, PMID: 18678937
Holtmaat A, Svoboda K. 2009. Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Reviews. Neuroscience 10:647–658. DOI: https://doi.org/10.1038/nrn2699, PMID: 19693029
Horch HW, Katz LC. 2002. BDNF release from single cells elicits local dendritic growth in nearby neurons. Nature Neuroscience 5:1177–1184. DOI: https://doi.org/10.1038/nn927, PMID: 12368805
Hu X, Yagi Y, Tanji T, Zhou S, Ip YT. 2004. Multimerization and interaction of toll and spätzle in Drosophila. PNAS 101:9369–9374. DOI: https://doi.org/10.1073/pnas.0307062101, PMID: 15197269
Huang C, Luo J, Woo SJ, Roitman LA, Li J, Pieribone VA, Kannan M, Vasan G, Schnitzer MJ. 2024. Dopaminemediated interactions between short- and long-term memory dynamics. Nature 634:1141–1149. DOI: https:// doi.org/10.1038/s41586-024-07819-w, PMID: 39038490
Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM. 1991. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350:230–232. DOI: https://doi.org/10.1038/ 350230a0, PMID: 2005978
Jenks KR, Tsimring K, Ip JPK, Zepeda JC, Sur M. 2021. Heterosynaptic plasticity and the experience-dependent refinement of developing neuronal circuits. Frontiers in Neural Circuits 15:803401. DOI: https://doi.org/10. 3389/fncir.2021.803401, PMID: 34949992
Kato K, Forero MG, Fenton JC, Hidalgo A. 2011. The glial regenerative response to central nervous system injury is enabled by pros-notch and pros-NFκB feedback. PLOS Biology 9:e1001133. DOI: https://doi.org/10. 1371/journal.pbio.1001133, PMID: 21912512
Krashes MJ, Waddell S. 2008. Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila. The Journal of Neuroscience 28:3103–3113. DOI: https://doi.org/10.1523/JNEUROSCI.5333-07.2008, PMID: 18354013
Krashes MJ, Waddell S. 2011. Drosophila appetitive olfactory conditioning. Cold Spring Harbor Protocols 2011:pdb.prot5609. DOI: https://doi.org/10.1101/pdb.prot5609, PMID: 21536767
Kremer MC, Christiansen F, Leiss F, Paehler M, Knapek S, Andlauer TFM, Förstner F, Kloppenburg P, Sigrist SJ, Tavosanis G. 2010. Structural long-term changes at mushroom body input synapses. Current Biology 20:1938– 1944. DOI: https://doi.org/10.1016/j.cub.2010.09.060, PMID: 20951043
Krishnan V, Nestler EJ. 2008. The molecular neurobiology of depression. Nature 455:894–902. DOI: https://doi. org/10.1038/nature07455, PMID: 18923511
Kuner R, Flor H. 2016. Structural plasticity and reorganisation in chronic pain. Nature Reviews. Neuroscience 18:20–30. DOI: https://doi.org/10.1038/nrn.2016.162, PMID: 27974843
Lee JLC, Everitt BJ, Thomas KL. 2004. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304:839–843. DOI: https://doi.org/10.1126/science.1095760, PMID: 15073322
Leemhuis E, De Gennaro L, Pazzaglia AM. 2019. Disconnected body representation: neuroplasticity following spinal cord injury. Journal of Clinical Medicine 8:12. DOI: https://doi.org/10.3390/jcm8122144, PMID: 31817187
Levi-Montalcini R, Skaper SD, Dal Toso R, Petrelli L, Leon A. 1996. Nerve growth factor: from neurotrophin to neurokine. Trends in Neurosciences 19:514–520. DOI: https://doi.org/10.1016/S0166-2236(96)10058-8, PMID: 8931279
Lewis M, Arnot CJ, Beeston H, McCoy A, Ashcroft AE, Gay NJ, Gangloff M. 2013. Cytokine Spatzle binds to the Drosophila immunoreceptor Toll with a neurotrophin-like specificity and couples receptor activation. PNAS 110:20461–20466. DOI: https://doi.org/10.1073/pnas.1317002110, PMID: 24282309
Li G, Forero MG, Wentzell JS, Durmus I, Wolf R, Anthoney NC, Parker M, Jiang R, Hasenauer J, Strausfeld NJ, Heisenberg M, Hidalgo A. 2020. A Toll-receptor map underlies structural brain plasticity. eLife 9:e52743. DOI: https://doi.org/10.7554/eLife.52743, PMID: 32066523
Li G, Hidalgo A. 2021. The toll route to structural brain plasticity. Frontiers in Physiology 12:679766. DOI: https:// doi.org/10.3389/fphys.2021.679766, PMID: 34290618
Linneweber GA, Andriatsilavo M, Dutta SB, Bengochea M, Hellbruegge L, Liu G, Ejsmont RK, Straw AD, Wernet M, Hiesinger PR, Hassan BA. 2020. A neurodevelopmental origin of behavioral individuality in the Drosophila visual system. Science 367:1112–1119. DOI: https://doi.org/10.1126/science.aaw7182, PMID: 32139539
Liu C, Plaçais P-Y, Yamagata N, Pfeiffer BD, Aso Y, Friedrich AB, Siwanowicz I, Rubin GM, Preat T, Tanimoto H. 2012. A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature 488:512–516. DOI: https://doi.org/10.1038/nature11304, PMID: 22810589
Losada-Perez M, Harrison N, Hidalgo A. 2016. Molecular mechanism of central nervous system repair by the Drosophila NG2 homologue kon-tiki. The Journal of Cell Biology 214:587–601. DOI: https://doi.org/10.1083/ jcb.201603054, PMID: 27551055
Lu B, Pang PT, Woo NH. 2005. The yin and yang of neurotrophin action. Nature Reviews. Neuroscience 6:603– 614. DOI: https://doi.org/10.1038/nrn1726, PMID: 16062169
Lu B, Nagappan G, Guan X, Nathan PJ, Wren P. 2013. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nature Reviews. Neuroscience 14:401–416. DOI: https://doi.org/10. 1038/nrn3505, PMID: 23674053
Ma Y, Li J, Chiu I, Wang Y, Sloane JA, Lü J, Kosaras B, Sidman RL, Volpe JJ, Vartanian T. 2006. Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. The Journal of Cell Biology 175:209–215. DOI: https://doi.org/10.1083/jcb.200606016, PMID: 17060494
MacLaren CM, Evans TA, Alvarado D, Duffy JB. 2004. Comparative analysis of the Kekkon molecules, related members of the LIG superfamily. Development Genes and Evolution 214:360–366. DOI: https://doi.org/10. 1007/s00427-004-0414-4, PMID: 15179511
Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD. 2000. Navigationrelated structural change in the hippocampi of taxi drivers. PNAS 97:4398–4403. DOI: https://doi.org/10.1073/ pnas.070039597, PMID: 10716738
Mandai K, Guo T, St Hillaire C, Meabon JS, Kanning KC, Bothwell M, Ginty DD. 2009. LIG family receptor tyrosine kinase-associated proteins modulate growth factor signals during neural development. Neuron 63:614–627. DOI: https://doi.org/10.1016/j.neuron.2009.07.031, PMID: 19755105
Martinowich K, Manji H, Lu B. 2007. New insights into BDNF function in depression and anxiety. Nature Neuroscience 10:1089–1093. DOI: https://doi.org/10.1038/nn1971, PMID: 17726474
Mayseless O, Berns DS, Yu XM, Riemensperger T, Fiala A, Schuldiner O. 2018. Developmental coordination during olfactory circuit remodeling in Drosophila. Neuron 99:1204–1215.. DOI: https://doi.org/10.1016/j. neuron.2018.07.050, PMID: 30146303
McIlroy G, Foldi I, Aurikko J, Wentzell JS, Lim MA, Fenton JC, Gay NJ, Hidalgo A. 2013. Toll-6 and Toll-7 function as neurotrophin receptors in the Drosophila melanogaster CNS. Nature Neuroscience 16:1248–1256. DOI: https://doi.org/10.1038/nn.3474, PMID: 23892553
McLaughlin CN, Nechipurenko IV, Liu N, Broihier HT. 2016. A Toll receptor-FoxO pathway represses Pavarotti/ MKLP1 to promote microtubule dynamics in motoneurons. The Journal of Cell Biology 214:459–474. DOI: https://doi.org/10.1083/jcb.201601014, PMID: 27502486
McLaughlin CN, Perry-Richardson JJ, Coutinho-Budd JC, Broihier HT. 2019. Dying neurons utilize innate immune signaling to prime glia for phagocytosis during development. Developmental Cell 48:506–522.. DOI: https:// doi.org/10.1016/j.devcel.2018.12.019, PMID: 30745142
Mehta D, Voisey J, Bruenig D, Harvey W, Morris CP, Lawford B, Young RM. 2018. Transcriptome analysis reveals novel genes and immune networks dysregulated in veterans with PTSD. Brain, Behavior, and Immunity 74:133–142. DOI: https://doi.org/10.1016/j.bbi.2018.08.014, PMID: 30189241
Meyer SN, Amoyel M, Bergantiños C, de la Cova C, Schertel C, Basler K, Johnston LA. 2014. An ancient defense system eliminates unfit cells from developing tissues during cell competition. Science 346:1258236. DOI: https://doi.org/10.1126/science.1258236, PMID: 25477468
Minichiello L. 2009. TrkB signalling pathways in LTP and learning. Nature Reviews. Neuroscience 10:850–860. DOI: https://doi.org/10.1038/nrn2738, PMID: 19927149
Nern A, Pfeiffer BD, Rubin GM. 2015. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. PNAS 112:E2967–E2976. DOI: https://doi.org/10.1073/ pnas.1506763112, PMID: 25964354
Neve KA, Seamans JK, Trantham-Davidson H. 2004. Dopamine receptor signaling. Journal of Receptor and Signal Transduction Research 24:165–205. DOI: https://doi.org/10.1081/rrs-200029981, PMID: 15521361
Ohira K, Homma KJ, Hirai H, Nakamura S, Hayashi M. 2006. TrkB-T1 regulates the RhoA signaling and actin cytoskeleton in glioma cells. Biochemical and Biophysical Research Communications 342:867–874. DOI: https://doi.org/10.1016/j.bbrc.2006.02.033
Ohira K, Hayashi M. 2009. A new aspect of the TrkB signaling pathway in neural plasticity. Current Neuropharmacology 7:276–285. DOI: https://doi.org/10.2174/157015909790031210, PMID: 20514207
Okun E, Griffioen K, Barak B, Roberts NJ, Castro K, Pita MA, Cheng A, Mughal MR, Wan R, Ashery U, Mattson MP. 2010. Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. PNAS 107:15625–15630. DOI: https://doi.org/10.1073/pnas.1005807107
Okun E, Griffioen KJ, Mattson MP. 2011. Toll-like receptor signaling in neural plasticity and disease. Trends in Neurosciences 34:269–281. DOI: https://doi.org/10.1016/j.tins.2011.02.005, PMID: 21419501
Paré AC, Vichas A, Fincher CT, Mirman Z, Farrell DL, Mainieri A, Zallen JA. 2014. A positional Toll receptor code directs convergent extension in Drosophila. Nature 515:523–527. DOI: https://doi.org/10.1038/nature13953
Park H, Poo M. 2013. Neurotrophin regulation of neural circuit development and function. Nature Reviews. Neuroscience 14:7–23. DOI: https://doi.org/10.1038/nrn3379, PMID: 23254191
Patel V, Patel AM, McArdle JJ. 2016. Synaptic abnormalities of mice lacking toll-like receptor (TLR)-9. Neuroscience 324:1–10. DOI: https://doi.org/10.1016/j.neuroscience.2016.03.001, PMID: 26955780
Pech U, Revelo NH, Seitz KJ, Rizzoli SO, Fiala A. 2015. Optical dissection of experience-dependent pre- and postsynaptic plasticity in the Drosophila brain. Cell Reports 10:2083–2095. DOI: https://doi.org/10.1016/j. celrep.2015.02.065, PMID: 25818295
Plaçais P-Y, Trannoy S, Isabel G, Aso Y, Siwanowicz I, Belliart-Guérin G, Vernier P, Birman S, Tanimoto H, Preat T. 2012. Slow oscillations in two pairs of dopaminergic neurons gate long-term memory formation in Drosophila. Nature Neuroscience 15:592–599. DOI: https://doi.org/10.1038/nn.3055, PMID: 22366756
Plaçais P-Y, de Tredern É, Scheunemann L, Trannoy S, Goguel V, Han K-A, Isabel G, Preat T. 2017. Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory. Nature Communications 8:15510. DOI: https://doi.org/10.1038/ncomms15510, PMID: 28580949
Poo MM. 2001. Neurotrophins as synaptic modulators. Nature Reviews. Neuroscience 2:24–32. DOI: https://doi. org/10.1038/35049004, PMID: 11253356
Riemensperger T, Isabel G, Coulom H, Neuser K, Seugnet L, Kume K, Iché-Torres M, Cassar M, Strauss R, Preat T, Hirsh J, Birman S. 2011. Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. PNAS 108:834–839. DOI: https://doi.org/10.1073/pnas.1010930108, PMID: 21187381
Riemensperger T, Issa A-R, Pech U, Coulom H, Nguyễn M-V, Cassar M, Jacquet M, Fiala A, Birman S. 2013. A single dopamine pathway underlies progressive locomotor deficits in A Drosophila model of Parkinson disease. Cell Reports 5:952–960. DOI: https://doi.org/10.1016/j.celrep.2013.10.032, PMID: 24239353
Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, Schwartz M. 2007. Toll-like receptors modulate adult hippocampal neurogenesis. Nature Cell Biology 9:1081–1088. DOI: https://doi.org/10.1038/ncb1629, PMID: 17704767
Sachse S, Rueckert E, Keller A, Okada R, Tanaka NK, Ito K, Vosshall LB. 2007. Activity-dependent plasticity in an olfactory circuit. Neuron 56:838–850. DOI: https://doi.org/10.1016/j.neuron.2007.10.035, PMID: 18054860
Sahu MP, Pazos-Boubeta Y, Pajanoja C, Rozov S, Panula P, Castrén E. 2019. Neurotrophin receptor Ntrk2b function in the maintenance of dopamine and serotonin neurons in zebrafish. Scientific Reports 9:2036. DOI: https://doi.org/10.1038/s41598-019-39347-3, PMID: 30765816
Shafer OT, Kim DJ, Dunbar-Yaffe R, Nikolaev VO, Lohse MJ, Taghert PH. 2008. Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron 58:223–237. DOI: https://doi.org/10.1016/j.neuron.2008.02.018, PMID: 18439407
Sharma A. 2012. Genome-wide expression analysis in epilepsy: a synthetic review. Current Topics in Medicinal Chemistry 12:1008–1032. DOI: https://doi.org/10.2174/156802612800229189, PMID: 22352865
Squillace S, Salvemini D. 2022. Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions. Trends in Pharmacological Sciences 43:726–739. DOI: https://doi.org/10.1016/j.tips.2022.05.004, PMID: 35753845
Stoilov P, Castren E, Stamm S. 2002. Analysis of the human TrkB gene genomic organization reveals novel TrkB isoforms, unusual gene length, and splicing mechanism. Biochemical and Biophysical Research Communications 290:1054–1065. DOI: https://doi.org/10.1006/bbrc.2001.6301, PMID: 11798182
Sugie A, Hakeda-Suzuki S, Suzuki E, Silies M, Shimozono M, Möhl C, Suzuki T, Tavosanis G. 2015. Molecular remodeling of the presynaptic active zone of Drosophila photoreceptors via activity-dependent feedback. Neuron 86:711–725. DOI: https://doi.org/10.1016/j.neuron.2015.03.046, PMID: 25892303
Sun J, Xu AQ, Giraud J, Poppinga H, Riemensperger T, Fiala A, Birman S. 2018. Neural control of startle-induced locomotion by the mushroom bodies and associated neurons in Drosophila Frontiers in Systems Neuroscience 12:6. DOI: https://doi.org/10.3389/fnsys.2018.00006, PMID: 29643770
Sur M, Rubenstein JLR. 2005. Patterning and plasticity of the cerebral cortex. Science 310:805–810. DOI: https:// doi.org/10.1126/science.1112070, PMID: 16272112
Sutcliffe B, Forero MG, Zhu B, Robinson IM, Hidalgo A. 2013. Neuron-type specific functions of DNT1, DNT2 and Spz at the Drosophila neuromuscular junction. PLOS ONE 8:e75902. DOI: https://doi.org/10.1371/journal. pone.0075902, PMID: 24124519
Talay M, Richman EB, Snell NJ, Hartmann GG, Fisher JD, Sorkaç A, Santoyo JF, Chou-Freed C, Nair N, Johnson M, Szymanski JR, Barnea G. 2017. Transsynaptic mapping of second-order taste neurons in flies by trans-Tango. Neuron 96:783–795.. DOI: https://doi.org/10.1016/j.neuron.2017.10.011, PMID: 29107518
Tamada M, Shi J, Bourdot KS, Supriyatno S, Palmquist KH, Gutierrez-Ruiz OL, Zallen JA. 2021. Toll receptors remodel epithelia by directing planar-polarized Src and PI3K activity. Developmental Cell 56:1589–1602. DOI: https://doi.org/10.1016/j.devcel.2021.04.012, PMID: 33932332
Tauszig S, Jouanguy E, Hoffmann JA, Imler JL. 2000. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. PNAS 97:10520–10525. DOI: https://doi.org/10.1073/pnas.180130797, PMID: 10973475
Technau GM. 1984. Fiber number in the mushroom bodies of adult Drosophila melanogaster depends on age, sex and experience. Journal of Neurogenetics 1:113–126. DOI: https://doi.org/10.3109/01677068409107077, PMID: 6085635
Tempel BL, Bonini N, Dawson DR, Quinn WG. 1983. Reward learning in normal and mutant Drosophila. PNAS 80:1482–1486. DOI: https://doi.org/10.1073/pnas.80.5.1482, PMID: 6572401
Tessarollo L, Yanpallewar S. 2022. TrkB truncated isoform receptors as transducers and determinants of BDNF functions. Frontiers in Neuroscience 16:847572. DOI: https://doi.org/10.3389/fnins.2022.847572, PMID: 35321093
Ulian-Benitez S, Bishop S, Foldi I, Wentzell J, Okenwa C, Forero MG, Zhu B, Moreira M, Phizacklea M, McIlroy G, Li G, Gay NJ, Hidalgo A. 2017. Kek-6: A truncated-Trk-like receptor for Drosophila neurotrophin 2 regulates structural synaptic plasticity. PLOS Genetics 13:e1006968. DOI: https://doi.org/10.1371/journal.pgen.1006968, PMID: 28846707
Vahid-Ansari F, Albert PR. 2021. Rewiring of the serotonin system in major depression. Frontiers in Psychiatry 12:802581. DOI: https://doi.org/10.3389/fpsyt.2021.802581, PMID: 34975594
Vaughen JP, Theisen E, Rivas-Serna IM, Berger AB, Kalakuntla P, Anreiter I, Mazurak VC, Rodriguez TP, Mast JD, Hartl T, Perlstein EO, Reimer RJ, Clandinin MT, Clandinin TR. 2022. Glial control of sphingolipid levels sculpts diurnal remodeling in a circadian circuit. Neuron 110:3186–3205.. DOI: https://doi.org/10.1016/j.neuron.2022. 07.016, PMID: 35961319
Waddell S. 2013. Reinforcement signalling in Drosophila; dopamine does it all after all. Current Opinion in Neurobiology 23:324–329. DOI: https://doi.org/10.1016/j.conb.2013.01.005, PMID: 23391527
Wang CS, Kavalali ET, Monteggia LM. 2022. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 185:62–76. DOI: https://doi.org/10.1016/j.cell.2021.12.003, PMID: 34963057
Ward A, Hong W, Favaloro V, Luo L. 2015. Toll receptors instruct axon and dendrite targeting and participate in synaptic partner matching in a Drosophila olfactory circuit. Neuron 85:1013–1028. DOI: https://doi.org/10. 1016/j.neuron.2015.02.003, PMID: 25741726
Weber ANR, Tauszig-Delamasure S, Hoffmann JA, Lelièvre E, Gascan H, Ray KP, Morse MA, Imler J-L, Gay NJ. 2003. Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling. Nature Immunology 4:794–800. DOI: https://doi.org/10.1038/ni955, PMID: 12872120
Wiesel TN. 1982. Postnatal development of the visual cortex and the influence of environment. Nature 299:583– 591. DOI: https://doi.org/10.1038/299583a0, PMID: 6811951
Wohleb ES, Franklin T, Iwata M, Duman RS. 2016. Integrating neuroimmune systems in the neurobiology of depression. Nature Reviews. Neuroscience 17:497–511. DOI: https://doi.org/10.1038/nrn.2016.69, PMID: 27277867
Woollett K, Maguire EA. 2011. Acquiring “the Knowledge” of London’s layout drives structural brain changes. Current Biology 21:2109–2114. DOI: https://doi.org/10.1016/j.cub.2011.11.018, PMID: 22169537
Yacoubian TA, Lo DC. 2000. Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nature Neuroscience 3:342–349. DOI: https://doi.org/10.1038/73911, PMID: 10725923
Yang T, Nie Z, Shu H, Kuang Y, Chen X, Cheng J, Yu S, Liu H. 2020. The Role of BDNF on Neural Plasticity in Depression. Frontiers in Cellular Neuroscience 14:82. DOI: https://doi.org/10.3389/fncel.2020.00082, PMID: 32351365
Zhang J, Tang T, Zhang R, Wen L, Deng X, Xu X, Yang W, Jin F, Cao Y, Lu Y, Yu XQ. 2024. Maintaining Toll signaling in Drosophila brain is required to sustain autophagy for dopamine neuron survival. iScience 27:108795. DOI: https://doi.org/10.1016/j.isci.2024.108795
Zhu B, Pennack JA, McQuilton P, Forero MG, Mizuguchi K, Sutcliffe B, Gu CJ, Fenton JC, Hidalgo A. 2008. Drosophila neurotrophins reveal a common mechanism for nervous system formation. PLOS Biology 6:e284. DOI: https://doi.org/10.1371/journal.pbio.0060284, PMID: 19018662
dc.rights.none.fl_str_mv Copyright Sun et al. T
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv Copyright Sun et al. T
http://purl.org/coar/access_right/c_abf2
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv eLife Sciences Publications Ltd
dc.publisher.place.none.fl_str_mv Reino Unidos
publisher.none.fl_str_mv eLife Sciences Publications Ltd
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/36f64515-8c1c-453b-a57e-7a8998a29024/download
https://repositorio.unibague.edu.co/bitstreams/c84b4b17-ead8-4e7d-8711-1838b8817923/download
https://repositorio.unibague.edu.co/bitstreams/2d2acfd5-ee9b-4fac-bbd2-3542eec67f2f/download
https://repositorio.unibague.edu.co/bitstreams/5400a4cc-36b6-4867-9d89-c0adfd4392e0/download
bitstream.checksum.fl_str_mv 61224f3b24388802b811c6bfba7c85bc
2fa3e590786b9c0f3ceba1b9656b7ac3
c0b6b8296631b0279533375122da153b
4d5bd904f9ea28853b6ab707d718bcaa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059976360951808
spelling Jun Sun3e6d84c1-ea87-40a6-8033-66ee19b57476-1Francisca Rojo-Cortes285b117e-bf23-4d6c-af3a-13311f233161-1Suzana Ulian-Benitezddd8ccf8-d8ed-48c5-913f-687b0a63ba80-1Manuel G Foreroaecfbbae-fbc7-455c-943a-18289b95331a-1Guiyi Lia6e2cceb-60d0-476d-ae96-e34a12f668d6-1Deepanshu ND Singh05afa134-7a3d-4760-a0ba-71e5bc6e1c25-1Xiaocui Wang557e98c6-8173-418a-bfa8-993c7bd029fb-1Sebastian Cachero970e2912-54b7-429a-bdf7-47211efe7680-1Marta Moreira22fb79e8-e779-4643-9712-853521ef2f05-1Dean Kavanaghe0051d00-e460-4753-ae95-58b9c142c812-1Gregory SXE Jefferis07bf157c-c535-41a9-b388-b53fc16d8b4b-1Vincent Croset41785fde-4d78-4a06-a888-9057fd0a9656-1Alicia Hidalgod439e77d-91f0-4506-b11b-8910ed3a96a8-12025-11-27T16:31:55Z2025-11-27T16:31:55Z2024Experience shapes the brain as neural circuits can be modified by neural stimulation or the lack of it. The molecular mechanisms underlying structural circuit plasticity and how plasticity modifies behaviour are poorly understood. Subjective experience requires dopamine, a neuromodulator that assigns a value to stimuli, and it also controls behaviour, including locomotion, learning, and memory. In Drosophila, Toll receptors are ideally placed to translate experience into structural brain change. Toll-6 is expressed in dopaminergic neurons (DANs), raising the intriguing possibility that Toll-6 could regulate structural plasticity in dopaminergic circuits. Drosophila neurotrophin-2 (DNT-2) is the ligand for Toll-6 and Kek-6, but whether it is required for circuit structural plasticity was unknown. Here, we show that DNT-2-expressing neurons connect with DANs, and they modulate each other. Loss of function for DNT-2 or its receptors Toll-6 and kinase-less Trk-like kek-6 caused DAN and synapse loss, impaired dendrite growth and connectivity, decreased synaptic sites, and caused locomotion deficits. In contrast, overexpressed DNT-2 increased DAN cell number, dendrite complexity, and promoted synaptogenesis. Neuronal activity modified DNT-2, increased synaptogenesis in DNT-2-positive neurons and DANs, and over-expression of DNT-2 did too. Altering the levels of DNT-2 or Toll-6 also modified dopamine-dependent behaviours, including locomotion and long-term memory. To conclude, a feedback loop involving dopamine and DNT-2 highlighted the circuits engaged, and DNT-2 with Toll-6 and Kek-6 induced structural plasticity in this circuit modifying brain function and behaviour.application/pdfSun, J., Rojo-Cortes, F., Ulian-Benitez, S., Forero, M., Li, G., Singh, D., Wang., X., Cachero. S., Moreira, M., Kavanagh, D., Jefferis, G., Croset, V. y Hidalgo, A. (2024). A neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuit. elife. https://elifesciences.org/articles/102222https://elifesciences.org/articles/1022222050084Xhttps://hdl.handle.net/20.500.12313/6049https://elifesciences.org/articles/102222engeLife Sciences Publications LtdReino UnidosElifeAdel M, Griffith LC. 2021. The role of dopamine in associative learning in Drosophila: An updated unified model. Neuroscience Bulletin 37:831–852. DOI: https://doi.org/10.1007/s12264-021-00665-0, PMID: 33779893Adhikarla SV, Jha NK, Goswami VK, Sharma A, Bhardwaj A, Dey A, Villa C, Kumar Y, Jha SK. 2021. TLR-mediated signal transduction and neurodegenerative disorders. Brain Sciences 11:11. DOI: https://doi.org/10.3390/ brainsci11111373, PMID: 34827372Anthoney N, Foldi I, Hidalgo A. 2018. Toll and Toll-like receptor signalling in development. Development 145:dev156018. DOI: https://doi.org/10.1242/dev.156018, PMID: 29695493Arikkath J. 2012. Molecular mechanisms of dendrite morphogenesis. Frontiers in Cellular Neuroscience 6:61. DOI: https://doi.org/10.3389/fncel.2012.00061, PMID: 23293584Arnot CJ, Gay NJ, Gangloff M. 2010. Molecular mechanism that induces activation of Spätzle, the ligand for the Drosophila Toll receptor. The Journal of Biological Chemistry 285:19502–19509. DOI: https://doi.org/10.1074/ jbc.M109.098186, PMID: 20378549Aso Y, Herb A, Ogueta M, Siwanowicz I, Templier T, Friedrich AB, Ito K, Scholz H, Tanimoto H. 2012. Three dopamine pathways induce aversive odor memories with different stability. PLOS Genetics 8:e1002768. DOI: https://doi.org/10.1371/journal.pgen.1002768Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo T-TB, Dionne H, Abbott LF, Axel R, Tanimoto H, Rubin GM. 2014a. The neuronal architecture of the mushroom body provides a logic for associative learning. eLife 3:e04577. DOI: https://doi.org/10.7554/eLife.04577, PMID: 25535793Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K, Belliart-Guérin G, Plaçais P-Y, Robie AA, Yamagata N, Schnaitmann C, Rowell WJ, Johnston RM, Ngo T-TB, Chen N, Korff W, Nitabach MN, Heberlein U, Preat T, Branson KM, Tanimoto H, et al. 2014b. Mushroom body output neurons encode valence and guide memorybased action selection in Drosophila. eLife 3:e04580. DOI: https://doi.org/10.7554/eLife.04580, PMID: 25535794Baltruschat L, Prisco L, Ranft P, Lauritzen JS, Fiala A, Bock DD, Tavosanis G. 2021. Circuit reorganization in the Drosophila mushroom body calyx accompanies memory consolidation. Cell Reports 34:108871. DOI: https:// doi.org/10.1016/j.celrep.2021.108871, PMID: 33730583Barth M, Heisenberg M. 1997. Vision affects mushroom bodies and central complex in Drosophila melanogaster. Learning & Memory 4:219–229. DOI: https://doi.org/10.1101/lm.4.2.219, PMID: 10456065Barth M, Hirsch HV, Meinertzhagen IA, Heisenberg M. 1997. Experience-dependent developmental plasticity in the optic lobe of Drosophila melanogaster. The Journal of Neuroscience 17:1493–1504. DOI: https://doi.org/ 10.1523/JNEUROSCI.17-04-01493.1997, PMID: 9006990Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ. 2006. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868. DOI: https://doi.org/10.1126/science.1120972, PMID: 16469931Bharmauria V, Ouelhazi A, Lussiez R, Molotchnikoff S. 2022. Adaptation-induced plasticity in the sensory cortex. Journal of Neurophysiology 128:946–962. DOI: https://doi.org/10.1152/jn.00114.2022, PMID: 36130163Blöchl A, Sirrenberg C. 1996. Neurotrophins stimulate the release of dopamine from rat mesencephalic neurons via Trk and p75Lntr receptors. The Journal of Biological Chemistry 271:21100–21107. DOI: https://doi.org/10. 1074/jbc.271.35.21100, PMID: 8702878Bolus H, Crocker K, Boekhoff-Falk G, Chtarbanova S. 2020. Modeling neurodegenerative disorders in Drosophila melanogaster International Journal of Molecular Sciences 21:3055. DOI: https://doi.org/10.3390/ ijms21093055, PMID: 32357532Boto T, Louis T, Jindachomthong K, Jalink K, Tomchik SM. 2014. Dopaminergic modulation of cAMP drives nonlinear plasticity across the Drosophila mushroom body lobes. Current Biology 24:822–831. DOI: https://doi. org/10.1016/j.cub.2014.03.021, PMID: 24684937Boto T, Stahl A, Tomchik SM. 2020. Cellular and circuit mechanisms of olfactory associative learning in Drosophila Journal of Neurogenetics 34:36–46. DOI: https://doi.org/10.1080/01677063.2020.1715971, PMID: 32043414Bushey D, Tononi G, Cirelli C. 2011. Sleep and synaptic homeostasis: structural evidence in Drosophila. Science 332:1576–1581. DOI: https://doi.org/10.1126/science.1202839, PMID: 21700878Cachero S, Gkantia M, Bates AS, Frechter S, Blackie L, McCarthy A, Sutcliffe B, Strano A, Aso Y, Jefferis GSXE. 2020. BAcTrace, a tool for retrograde tracing of neuronal circuits in Drosophila. Nature Methods 17:1254– 1261. DOI: https://doi.org/10.1038/s41592-020-00989-1, PMID: 33139893Carim-Todd L, Bath KG, Fulgenzi G, Yanpallewar S, Jing D, Barrick CA, Becker J, Buckley H, Dorsey SG, Lee FS, Tessarollo L. 2009. Endogenous truncated TrkB.T1 receptor regulates neuronal complexity and TrkB kinase receptor function in vivo. The Journal of Neuroscience 29:678–685. DOI: https://doi.org/10.1523/JNEUROSCI. 5060-08.2009, PMID: 19158294Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, Biojone C, Cannarozzo C, Sahu MP, Kaurinkoski K, Brunello CA, Steinzeig A, Winkel F, Patil S, Vestring S, Serchov T, Diniz CRAF, Laukkanen L, Cardon I, Antila H, et al. 2021. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 184:1299–1313.. DOI: https://doi.org/10.1016/j.cell.2021.01.034, PMID: 33606976Castrén E, Monteggia LM. 2021. Brain-derived neurotrophic factor signaling in depression and antidepressant action. Biological Psychiatry 90:128–136. DOI: https://doi.org/10.1016/j.biopsych.2021.05.008, PMID: 34053675Chan RF, Turecki G, Shabalin AA, Guintivano J, Zhao M, Xie LY, van Grootheest G, Kaminsky ZA, Dean B, Penninx BWJH, Aberg KA, van den Oord EJCG. 2020. Cell type-specific methylome-wide association studies implicate neurotrophin and innate immune signaling in major depressive disorder. Biological Psychiatry 87:431–442. DOI: https://doi.org/10.1016/j.biopsych.2019.10.014, PMID: 31889537Chen CC, Wu JK, Lin HW, Pai TP, Fu TF, Wu CL, Tully T, Chiang AS. 2012. Visualizing long-term memory formation in two neurons of the Drosophila brain . Science 335:678–685. DOI: https://doi.org/10.1126/science.1212735Chen CY, Shih YC, Hung YF, Hsueh YP. 2019. Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors. Journal of Biomedical Science 26:90. DOI: https://doi.org/10.1186/s12929- 019-0584-z, PMID: 31684953Chen CC, Brumberg JC. 2021. Sensory experience as a regulator of structural plasticity in the developing whisker-to-barrel system. Frontiers in Cellular Neuroscience 15:770453. DOI: https://doi.org/10.3389/fncel. 2021.770453, PMID: 35002626Cheng L-K, Chiu Y-H, Lin Y-C, Li W-C, Hong T-Y, Yang C-J, Shih C-H, Yeh T-C, Tseng W-YI, Yu H-Y, Hsieh J-C, Chen L-F. 2023. Long-term musical training induces white matter plasticity in emotion and language networks. Human Brain Mapping 44:5–17. DOI: https://doi.org/10.1002/hbm.26054, PMID: 36005832Çoban B, Poppinga H, Rachad EY, Geurten B, Vasmer D, Rodriguez Jimenez FJ, Gadgil Y, Deimel SH, Alyagor I, Schuldiner O, Grunwald Kadow IC, Riemensperger TD, Widmann A, Fiala A. 2024. The caloric value of food intake structurally adjusts a neuronal mushroom body circuit mediating olfactory learning in Drosophila Learning & Memory 31:a053997. DOI: https://doi.org/10.1101/lm.053997.124, PMID: 38862177Costa M, Manton JD, Ostrovsky AD, Prohaska S, Jefferis GSXE. 2016. NBLAST: rapid, sensitive comparison of neuronal structure and construction of neuron family databases. Neuron 91:293–311. DOI: https://doi.org/10. 1016/j.neuron.2016.06.012, PMID: 27373836Cotman CW, Berchtold NC. 2002. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences 25:295–301. DOI: https://doi.org/10.1016/s0166-2236(02)02143-4, PMID: 12086747Croset V, Treiber CD, Waddell S. 2018. Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. eLife 7:e34550. DOI: https://doi.org/10.7554/eLife.34550, PMID: 29671739Davie K, Janssens J, Koldere D, De Waegeneer M, Pech U, Kreft Ł, Aibar S, Makhzami S, Christiaens V, Bravo González-Blas C, Poovathingal S, Hulselmans G, Spanier KI, Moerman T, Vanspauwen B, Geurs S, Voet T, Lammertyn J, Thienpont B, Liu S, et al. 2018. A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain. Cell 174:982–998. DOI: https://doi.org/10.1016/j.cell.2018.05.057, PMID: 29909982DeLotto Y, DeLotto R. 1998. Proteolytic processing of the Drosophila Spätzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mechanisms of Development 72:141–148. DOI: https:// doi.org/10.1016/s0925-4773(98)00024-0, PMID: 9533958Deng B, Li Q, Liu X, Cao Y, Li B, Qian Y, Xu R, Mao R, Zhou E, Zhang W, Huang J, Rao Y. 2019. Chemoconnectomics: Mapping Chemical Transmission in Drosophila. Neuron 101:876–893. DOI: https://doi. org/10.1016/j.neuron.2019.01.045, PMID: 30799021Devaud JM, Acebes A, Ferrús A. 2001. Odor exposure causes central adaptation and morphological changes in selected olfactory glomeruli in Drosophila. The Journal of Neuroscience 21:6274–6282. DOI: https://doi.org/ 10.1523/JNEUROSCI.21-16-06274.2001, PMID: 11487650Duhart JM, Herrero A, de la Cruz G, Ispizua JI, Pírez N, Ceriani MF. 2020. Circadian structural plasticity drives remodeling of E cell output. Current Biology 30:5040–5048.. DOI: https://doi.org/10.1016/j.cub.2020.09.057, PMID: 33065014Ernst C, Deleva V, Deng X, Sequeira A, Pomarenski A, Klempan T, Ernst N, Quirion R, Gratton A, Szyf M, Turecki G. 2009. Alternative splicing, methylation state, and expression profile of tropomyosin-related kinase B in the frontal cortex of suicide completers. Archives of General Psychiatry 66:22–32. DOI: https://doi.org/10. 1001/archpsyc.66.1.22, PMID: 19124685Eyjolfsdottir E, Branson S, Burgos-Artizzu XP, Hoopfer ED, Schor J, Anderson DJ, Perona P. 2014. Detecting Social Actions of Fruit Flies. Cham: Springer International Publishing.Feany MB, Bender WW. 2000. A Drosophila model of Parkinson’s disease. Nature 404:394–398. DOI: https://doi. org/10.1038/35006074, PMID: 10746727Feldman DE, Brecht M. 2005. Map plasticity in somatosensory cortex. Science 310:810–815. DOI: https://doi. org/10.1126/science.1115807Fenner BM. 2012. Truncated TrkB: beyond a dominant negative receptor. Cytokine & Growth Factor Reviews 23:15–24. DOI: https://doi.org/10.1016/j.cytogfr.2012.01.002, PMID: 22341689Fernández MP, Berni J, Ceriani MF. 2008. Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLOS Biology 6:e69. DOI: https://doi.org/10.1371/journal.pbio.0060069, PMID: 18366255Ferrer I, Marin C, Rey MJ, Ribalta T, Goutan E, Blanco R, Tolosa E, Marti E. 1999. BDNF and full-length and truncated TrkB expression in Alzheimer disease. Journal of Neuropathology and Experimental Neurology 58:729–739 PMID: 10411343Figueroa-Hall LK, Paulus MP, Savitz J. 2020. Toll-like receptor signaling in depression. Psychoneuroendocrinology 121:104843. DOI: https://doi.org/10.1016/j.psyneuen.2020.104843, PMID: 32911436Foldi I, Anthoney N, Harrison N, Gangloff M, Verstak B, Nallasivan MP, AlAhmed S, Zhu B, Phizacklea M, Losada-Perez M, Moreira M, Gay NJ, Hidalgo A. 2017. Three-tier regulation of cell number plasticity by neurotrophins and Tolls in Drosophila The Journal of Cell Biology 216:1421–1438. DOI: https://doi.org/10. 1083/jcb.201607098, PMID: 28373203Forero MG, Pennack JA, Learte AR, Hidalgo A. 2009. DeadEasy caspase: automatic counting of apoptotic cells in Drosophila. PLOS ONE 4:e5441. DOI: https://doi.org/10.1371/journal.pone.0005441, PMID: 19415123Forero MG, Learte AR, Cartwright S, Hidalgo A. 2010a. DeadEasy Mito-Glia: automatic counting of mitotic cells and glial cells in Drosophila. PLOS ONE 5:e10557. DOI: https://doi.org/10.1371/journal.pone.0010557, PMID: 20479944Forero MG, Pennack JA, Hidalgo A. 2010b. DeadEasy neurons: automatic counting of HB9 neuronal nuclei in Drosophila. Cytometry. Part A 77:371–378. DOI: https://doi.org/10.1002/cyto.a.20877, PMID: 20162534Forero MG, Kato K, Hidalgo A. 2012. Automatic cell counting in vivo in the larval nervous system of Drosophila. Journal of Microscopy 246:202–212. DOI: https://doi.org/10.1111/j.1365-2818.2012.03608.x, PMID: 22429405Forrest MP, Parnell E, Penzes P. 2018. Dendritic structural plasticity and neuropsychiatric disease. Nature Reviews. Neuroscience 19:215–234. DOI: https://doi.org/10.1038/nrn.2018.16, PMID: 29545546Fryer RH, Kaplan DR, Feinstein SC, Radeke MJ, Grayson DR, Kromer LF. 1996. Developmental and mature expression of full-length and truncated TrkB receptors in the rat forebrain. The Journal of Comparative Neurology 374:21–40. DOI: https://doi.org/10.1002/(SICI)1096-9861(19961007) 374:1<21::AID-CNE2>3.0.CO;2-P, PMID: 8891944Fuentes-Medel Y, Logan MA, Ashley J, Ataman B, Budnik V, Freeman MR. 2009. Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris. PLOS Biology 7:e1000184. DOI: https://doi.org/10.1371/journal.pbio.1000184, PMID: 19707574Gage FH. 2019. Adult neurogenesis in mammals. Science 364:827–828. DOI: https://doi.org/10.1126/science. aav6885, PMID: 31147506Garrett ME, Qin XJ, Mehta D, Dennis MF, Marx CE, Grant GA, VA Mid-Atlantic MIRECC Workgroup, PTSD Initiative, Injury and Traumatic Stress (INTRuST) Clinical Consortium, Psychiatric Genomics Consortium PTSD Group, Stein MB, Kimbrel NA, Beckham JC, Hauser MA, Ashley-Koch AE. 2021. Gene expression analysis in three posttraumatic stress disorder cohorts implicates inflammation and innate immunity pathways and uncovers shared genetic risk with major depressive disorder. Frontiers in Neuroscience 15:678548. DOI: https://doi.org/10.3389/fnins.2021.678548, PMID: 34393704Gay NJ, Gangloff M. 2007. Structure and function of Toll receptors and their ligands. Annual Review of Biochemistry 76:141–165. DOI: https://doi.org/10.1146/annurev.biochem.76.060305.151318, PMID: 17362201Górska-Andrzejak J, Keller A, Raabe T, Kilianek L, Pyza E. 2005. Structural daily rhythms in GFP-labelled neurons in the visual system of Drosophila melanogaster. Photochemical & Photobiological Sciences 4:721–726. DOI: https://doi.org/10.1039/b417023g, PMID: 16121283Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Sokoloff P. 2001. BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 411:86–89. DOI: https://doi.org/10.1038/35075076, PMID: 11333982Guven-Ozkan T, Davis RL. 2014. Functional neuroanatomy of Drosophila olfactory memory formation. Learning & Memory 21:519–526. DOI: https://doi.org/10.1101/lm.034363.114, PMID: 25225297Hadjieconomou D, Rotkopf S, Alexandre C, Bell DM, Dickson BJ, Salecker I. 2011. Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nature Methods 8:260–266. DOI: https:// doi.org/10.1038/nmeth.1567, PMID: 21297619Harrison NJ, Connolly E, Gascón Gubieda A, Yang Z, Altenhein B, Losada Perez M, Moreira M, Sun J, Hidalgo A. 2021. Regenerative neurogenic response from glia requires insulin-driven neuron-glia communication. eLife 10:e58756. DOI: https://doi.org/10.7554/eLife.58756, PMID: 33527895Hearn MG, Ren Y, McBride EW, Reveillaud I, Beinborn M, Kopin AS. 2002. A Drosophila dopamine 2-like receptor: Molecular characterization and identification of multiple alternatively spliced variants. PNAS 99:14554–14559. DOI: https://doi.org/10.1073/pnas.202498299, PMID: 12391323Heisenberg M, Heusipp M, Wanke C. 1995. Structural plasticity in the Drosophila brain. The Journal of Neuroscience 15:1951–1960. DOI: https://doi.org/10.1523/JNEUROSCI.15-03-01951.1995, PMID: 7891144Heisenberg M. 2003. Mushroom body memoir: from maps to models. Nature Reviews. Neuroscience 4:266–275. DOI: https://doi.org/10.1038/nrn1074, PMID: 12671643Hepburn L, Prajsnar TK, Klapholz C, Moreno P, Loynes CA, Ogryzko NV, Brown K, Schiebler M, Hegyi K, Antrobus R, Hammond KL, Connolly J, Ochoa B, Bryant C, Otto M, Surewaard B, Seneviratne SL, Grogono DM, Cachat J, Ny T, et al. 2014. Innate immunity. A spaetzle-like role for nerve growth factor β in vertebrate immunity to Staphylococcus aureus. Science 346:641–646. DOI: https://doi.org/10.1126/science.1258705, PMID: 25359976Hoffmann A, Funkner A, Neumann P, Juhnke S, Walther M, Schierhorn A, Weininger U, Balbach J, Reuter G, Stubbs MT. 2008a. Biophysical characterization of refolded Drosophila Spätzle, a cystine knot protein, reveals distinct properties of three isoforms. The Journal of Biological Chemistry 283:32598–32609. DOI: https://doi. org/10.1074/jbc.M801815200, PMID: 18790733Hoffmann A, Neumann P, Schierhorn A, Stubbs MT. 2008b. Crystallization of Spätzle, a cystine-knot protein involved in embryonic development and innate immunity in Drosophila melanogaster. Acta Crystallographica 64:707–710. DOI: https://doi.org/10.1107/S1744309108018812, PMID: 18678937Holtmaat A, Svoboda K. 2009. Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Reviews. Neuroscience 10:647–658. DOI: https://doi.org/10.1038/nrn2699, PMID: 19693029Horch HW, Katz LC. 2002. BDNF release from single cells elicits local dendritic growth in nearby neurons. Nature Neuroscience 5:1177–1184. DOI: https://doi.org/10.1038/nn927, PMID: 12368805Hu X, Yagi Y, Tanji T, Zhou S, Ip YT. 2004. Multimerization and interaction of toll and spätzle in Drosophila. PNAS 101:9369–9374. DOI: https://doi.org/10.1073/pnas.0307062101, PMID: 15197269Huang C, Luo J, Woo SJ, Roitman LA, Li J, Pieribone VA, Kannan M, Vasan G, Schnitzer MJ. 2024. Dopaminemediated interactions between short- and long-term memory dynamics. Nature 634:1141–1149. DOI: https:// doi.org/10.1038/s41586-024-07819-w, PMID: 39038490Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM. 1991. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350:230–232. DOI: https://doi.org/10.1038/ 350230a0, PMID: 2005978Jenks KR, Tsimring K, Ip JPK, Zepeda JC, Sur M. 2021. Heterosynaptic plasticity and the experience-dependent refinement of developing neuronal circuits. Frontiers in Neural Circuits 15:803401. DOI: https://doi.org/10. 3389/fncir.2021.803401, PMID: 34949992Kato K, Forero MG, Fenton JC, Hidalgo A. 2011. The glial regenerative response to central nervous system injury is enabled by pros-notch and pros-NFκB feedback. PLOS Biology 9:e1001133. DOI: https://doi.org/10. 1371/journal.pbio.1001133, PMID: 21912512Krashes MJ, Waddell S. 2008. Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila. The Journal of Neuroscience 28:3103–3113. DOI: https://doi.org/10.1523/JNEUROSCI.5333-07.2008, PMID: 18354013Krashes MJ, Waddell S. 2011. Drosophila appetitive olfactory conditioning. Cold Spring Harbor Protocols 2011:pdb.prot5609. DOI: https://doi.org/10.1101/pdb.prot5609, PMID: 21536767Kremer MC, Christiansen F, Leiss F, Paehler M, Knapek S, Andlauer TFM, Förstner F, Kloppenburg P, Sigrist SJ, Tavosanis G. 2010. Structural long-term changes at mushroom body input synapses. Current Biology 20:1938– 1944. DOI: https://doi.org/10.1016/j.cub.2010.09.060, PMID: 20951043Krishnan V, Nestler EJ. 2008. The molecular neurobiology of depression. Nature 455:894–902. DOI: https://doi. org/10.1038/nature07455, PMID: 18923511Kuner R, Flor H. 2016. Structural plasticity and reorganisation in chronic pain. Nature Reviews. Neuroscience 18:20–30. DOI: https://doi.org/10.1038/nrn.2016.162, PMID: 27974843Lee JLC, Everitt BJ, Thomas KL. 2004. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304:839–843. DOI: https://doi.org/10.1126/science.1095760, PMID: 15073322Leemhuis E, De Gennaro L, Pazzaglia AM. 2019. Disconnected body representation: neuroplasticity following spinal cord injury. Journal of Clinical Medicine 8:12. DOI: https://doi.org/10.3390/jcm8122144, PMID: 31817187Levi-Montalcini R, Skaper SD, Dal Toso R, Petrelli L, Leon A. 1996. Nerve growth factor: from neurotrophin to neurokine. Trends in Neurosciences 19:514–520. DOI: https://doi.org/10.1016/S0166-2236(96)10058-8, PMID: 8931279Lewis M, Arnot CJ, Beeston H, McCoy A, Ashcroft AE, Gay NJ, Gangloff M. 2013. Cytokine Spatzle binds to the Drosophila immunoreceptor Toll with a neurotrophin-like specificity and couples receptor activation. PNAS 110:20461–20466. DOI: https://doi.org/10.1073/pnas.1317002110, PMID: 24282309Li G, Forero MG, Wentzell JS, Durmus I, Wolf R, Anthoney NC, Parker M, Jiang R, Hasenauer J, Strausfeld NJ, Heisenberg M, Hidalgo A. 2020. A Toll-receptor map underlies structural brain plasticity. eLife 9:e52743. DOI: https://doi.org/10.7554/eLife.52743, PMID: 32066523Li G, Hidalgo A. 2021. The toll route to structural brain plasticity. Frontiers in Physiology 12:679766. DOI: https:// doi.org/10.3389/fphys.2021.679766, PMID: 34290618Linneweber GA, Andriatsilavo M, Dutta SB, Bengochea M, Hellbruegge L, Liu G, Ejsmont RK, Straw AD, Wernet M, Hiesinger PR, Hassan BA. 2020. A neurodevelopmental origin of behavioral individuality in the Drosophila visual system. Science 367:1112–1119. DOI: https://doi.org/10.1126/science.aaw7182, PMID: 32139539Liu C, Plaçais P-Y, Yamagata N, Pfeiffer BD, Aso Y, Friedrich AB, Siwanowicz I, Rubin GM, Preat T, Tanimoto H. 2012. A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature 488:512–516. DOI: https://doi.org/10.1038/nature11304, PMID: 22810589Losada-Perez M, Harrison N, Hidalgo A. 2016. Molecular mechanism of central nervous system repair by the Drosophila NG2 homologue kon-tiki. The Journal of Cell Biology 214:587–601. DOI: https://doi.org/10.1083/ jcb.201603054, PMID: 27551055Lu B, Pang PT, Woo NH. 2005. The yin and yang of neurotrophin action. Nature Reviews. Neuroscience 6:603– 614. DOI: https://doi.org/10.1038/nrn1726, PMID: 16062169Lu B, Nagappan G, Guan X, Nathan PJ, Wren P. 2013. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nature Reviews. Neuroscience 14:401–416. DOI: https://doi.org/10. 1038/nrn3505, PMID: 23674053Ma Y, Li J, Chiu I, Wang Y, Sloane JA, Lü J, Kosaras B, Sidman RL, Volpe JJ, Vartanian T. 2006. Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. The Journal of Cell Biology 175:209–215. DOI: https://doi.org/10.1083/jcb.200606016, PMID: 17060494MacLaren CM, Evans TA, Alvarado D, Duffy JB. 2004. Comparative analysis of the Kekkon molecules, related members of the LIG superfamily. Development Genes and Evolution 214:360–366. DOI: https://doi.org/10. 1007/s00427-004-0414-4, PMID: 15179511Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD. 2000. Navigationrelated structural change in the hippocampi of taxi drivers. PNAS 97:4398–4403. DOI: https://doi.org/10.1073/ pnas.070039597, PMID: 10716738Mandai K, Guo T, St Hillaire C, Meabon JS, Kanning KC, Bothwell M, Ginty DD. 2009. LIG family receptor tyrosine kinase-associated proteins modulate growth factor signals during neural development. Neuron 63:614–627. DOI: https://doi.org/10.1016/j.neuron.2009.07.031, PMID: 19755105Martinowich K, Manji H, Lu B. 2007. New insights into BDNF function in depression and anxiety. Nature Neuroscience 10:1089–1093. DOI: https://doi.org/10.1038/nn1971, PMID: 17726474Mayseless O, Berns DS, Yu XM, Riemensperger T, Fiala A, Schuldiner O. 2018. Developmental coordination during olfactory circuit remodeling in Drosophila. Neuron 99:1204–1215.. DOI: https://doi.org/10.1016/j. neuron.2018.07.050, PMID: 30146303McIlroy G, Foldi I, Aurikko J, Wentzell JS, Lim MA, Fenton JC, Gay NJ, Hidalgo A. 2013. Toll-6 and Toll-7 function as neurotrophin receptors in the Drosophila melanogaster CNS. Nature Neuroscience 16:1248–1256. DOI: https://doi.org/10.1038/nn.3474, PMID: 23892553McLaughlin CN, Nechipurenko IV, Liu N, Broihier HT. 2016. A Toll receptor-FoxO pathway represses Pavarotti/ MKLP1 to promote microtubule dynamics in motoneurons. The Journal of Cell Biology 214:459–474. DOI: https://doi.org/10.1083/jcb.201601014, PMID: 27502486McLaughlin CN, Perry-Richardson JJ, Coutinho-Budd JC, Broihier HT. 2019. Dying neurons utilize innate immune signaling to prime glia for phagocytosis during development. Developmental Cell 48:506–522.. DOI: https:// doi.org/10.1016/j.devcel.2018.12.019, PMID: 30745142Mehta D, Voisey J, Bruenig D, Harvey W, Morris CP, Lawford B, Young RM. 2018. Transcriptome analysis reveals novel genes and immune networks dysregulated in veterans with PTSD. Brain, Behavior, and Immunity 74:133–142. DOI: https://doi.org/10.1016/j.bbi.2018.08.014, PMID: 30189241Meyer SN, Amoyel M, Bergantiños C, de la Cova C, Schertel C, Basler K, Johnston LA. 2014. An ancient defense system eliminates unfit cells from developing tissues during cell competition. Science 346:1258236. DOI: https://doi.org/10.1126/science.1258236, PMID: 25477468Minichiello L. 2009. TrkB signalling pathways in LTP and learning. Nature Reviews. Neuroscience 10:850–860. DOI: https://doi.org/10.1038/nrn2738, PMID: 19927149Nern A, Pfeiffer BD, Rubin GM. 2015. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. PNAS 112:E2967–E2976. DOI: https://doi.org/10.1073/ pnas.1506763112, PMID: 25964354Neve KA, Seamans JK, Trantham-Davidson H. 2004. Dopamine receptor signaling. Journal of Receptor and Signal Transduction Research 24:165–205. DOI: https://doi.org/10.1081/rrs-200029981, PMID: 15521361Ohira K, Homma KJ, Hirai H, Nakamura S, Hayashi M. 2006. TrkB-T1 regulates the RhoA signaling and actin cytoskeleton in glioma cells. Biochemical and Biophysical Research Communications 342:867–874. DOI: https://doi.org/10.1016/j.bbrc.2006.02.033Ohira K, Hayashi M. 2009. A new aspect of the TrkB signaling pathway in neural plasticity. Current Neuropharmacology 7:276–285. DOI: https://doi.org/10.2174/157015909790031210, PMID: 20514207Okun E, Griffioen K, Barak B, Roberts NJ, Castro K, Pita MA, Cheng A, Mughal MR, Wan R, Ashery U, Mattson MP. 2010. Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. PNAS 107:15625–15630. DOI: https://doi.org/10.1073/pnas.1005807107Okun E, Griffioen KJ, Mattson MP. 2011. Toll-like receptor signaling in neural plasticity and disease. Trends in Neurosciences 34:269–281. DOI: https://doi.org/10.1016/j.tins.2011.02.005, PMID: 21419501Paré AC, Vichas A, Fincher CT, Mirman Z, Farrell DL, Mainieri A, Zallen JA. 2014. A positional Toll receptor code directs convergent extension in Drosophila. Nature 515:523–527. DOI: https://doi.org/10.1038/nature13953Park H, Poo M. 2013. Neurotrophin regulation of neural circuit development and function. Nature Reviews. Neuroscience 14:7–23. DOI: https://doi.org/10.1038/nrn3379, PMID: 23254191Patel V, Patel AM, McArdle JJ. 2016. Synaptic abnormalities of mice lacking toll-like receptor (TLR)-9. Neuroscience 324:1–10. DOI: https://doi.org/10.1016/j.neuroscience.2016.03.001, PMID: 26955780Pech U, Revelo NH, Seitz KJ, Rizzoli SO, Fiala A. 2015. Optical dissection of experience-dependent pre- and postsynaptic plasticity in the Drosophila brain. Cell Reports 10:2083–2095. DOI: https://doi.org/10.1016/j. celrep.2015.02.065, PMID: 25818295Plaçais P-Y, Trannoy S, Isabel G, Aso Y, Siwanowicz I, Belliart-Guérin G, Vernier P, Birman S, Tanimoto H, Preat T. 2012. Slow oscillations in two pairs of dopaminergic neurons gate long-term memory formation in Drosophila. Nature Neuroscience 15:592–599. DOI: https://doi.org/10.1038/nn.3055, PMID: 22366756Plaçais P-Y, de Tredern É, Scheunemann L, Trannoy S, Goguel V, Han K-A, Isabel G, Preat T. 2017. Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory. Nature Communications 8:15510. DOI: https://doi.org/10.1038/ncomms15510, PMID: 28580949Poo MM. 2001. Neurotrophins as synaptic modulators. Nature Reviews. Neuroscience 2:24–32. DOI: https://doi. org/10.1038/35049004, PMID: 11253356Riemensperger T, Isabel G, Coulom H, Neuser K, Seugnet L, Kume K, Iché-Torres M, Cassar M, Strauss R, Preat T, Hirsh J, Birman S. 2011. Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. PNAS 108:834–839. DOI: https://doi.org/10.1073/pnas.1010930108, PMID: 21187381Riemensperger T, Issa A-R, Pech U, Coulom H, Nguyễn M-V, Cassar M, Jacquet M, Fiala A, Birman S. 2013. A single dopamine pathway underlies progressive locomotor deficits in A Drosophila model of Parkinson disease. Cell Reports 5:952–960. DOI: https://doi.org/10.1016/j.celrep.2013.10.032, PMID: 24239353Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, Schwartz M. 2007. Toll-like receptors modulate adult hippocampal neurogenesis. Nature Cell Biology 9:1081–1088. DOI: https://doi.org/10.1038/ncb1629, PMID: 17704767Sachse S, Rueckert E, Keller A, Okada R, Tanaka NK, Ito K, Vosshall LB. 2007. Activity-dependent plasticity in an olfactory circuit. Neuron 56:838–850. DOI: https://doi.org/10.1016/j.neuron.2007.10.035, PMID: 18054860Sahu MP, Pazos-Boubeta Y, Pajanoja C, Rozov S, Panula P, Castrén E. 2019. Neurotrophin receptor Ntrk2b function in the maintenance of dopamine and serotonin neurons in zebrafish. Scientific Reports 9:2036. DOI: https://doi.org/10.1038/s41598-019-39347-3, PMID: 30765816Shafer OT, Kim DJ, Dunbar-Yaffe R, Nikolaev VO, Lohse MJ, Taghert PH. 2008. Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron 58:223–237. DOI: https://doi.org/10.1016/j.neuron.2008.02.018, PMID: 18439407Sharma A. 2012. Genome-wide expression analysis in epilepsy: a synthetic review. Current Topics in Medicinal Chemistry 12:1008–1032. DOI: https://doi.org/10.2174/156802612800229189, PMID: 22352865Squillace S, Salvemini D. 2022. Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions. Trends in Pharmacological Sciences 43:726–739. DOI: https://doi.org/10.1016/j.tips.2022.05.004, PMID: 35753845Stoilov P, Castren E, Stamm S. 2002. Analysis of the human TrkB gene genomic organization reveals novel TrkB isoforms, unusual gene length, and splicing mechanism. Biochemical and Biophysical Research Communications 290:1054–1065. DOI: https://doi.org/10.1006/bbrc.2001.6301, PMID: 11798182Sugie A, Hakeda-Suzuki S, Suzuki E, Silies M, Shimozono M, Möhl C, Suzuki T, Tavosanis G. 2015. Molecular remodeling of the presynaptic active zone of Drosophila photoreceptors via activity-dependent feedback. Neuron 86:711–725. DOI: https://doi.org/10.1016/j.neuron.2015.03.046, PMID: 25892303Sun J, Xu AQ, Giraud J, Poppinga H, Riemensperger T, Fiala A, Birman S. 2018. Neural control of startle-induced locomotion by the mushroom bodies and associated neurons in Drosophila Frontiers in Systems Neuroscience 12:6. DOI: https://doi.org/10.3389/fnsys.2018.00006, PMID: 29643770Sur M, Rubenstein JLR. 2005. Patterning and plasticity of the cerebral cortex. Science 310:805–810. DOI: https:// doi.org/10.1126/science.1112070, PMID: 16272112Sutcliffe B, Forero MG, Zhu B, Robinson IM, Hidalgo A. 2013. Neuron-type specific functions of DNT1, DNT2 and Spz at the Drosophila neuromuscular junction. PLOS ONE 8:e75902. DOI: https://doi.org/10.1371/journal. pone.0075902, PMID: 24124519Talay M, Richman EB, Snell NJ, Hartmann GG, Fisher JD, Sorkaç A, Santoyo JF, Chou-Freed C, Nair N, Johnson M, Szymanski JR, Barnea G. 2017. Transsynaptic mapping of second-order taste neurons in flies by trans-Tango. Neuron 96:783–795.. DOI: https://doi.org/10.1016/j.neuron.2017.10.011, PMID: 29107518Tamada M, Shi J, Bourdot KS, Supriyatno S, Palmquist KH, Gutierrez-Ruiz OL, Zallen JA. 2021. Toll receptors remodel epithelia by directing planar-polarized Src and PI3K activity. Developmental Cell 56:1589–1602. DOI: https://doi.org/10.1016/j.devcel.2021.04.012, PMID: 33932332Tauszig S, Jouanguy E, Hoffmann JA, Imler JL. 2000. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. PNAS 97:10520–10525. DOI: https://doi.org/10.1073/pnas.180130797, PMID: 10973475Technau GM. 1984. Fiber number in the mushroom bodies of adult Drosophila melanogaster depends on age, sex and experience. Journal of Neurogenetics 1:113–126. DOI: https://doi.org/10.3109/01677068409107077, PMID: 6085635Tempel BL, Bonini N, Dawson DR, Quinn WG. 1983. Reward learning in normal and mutant Drosophila. PNAS 80:1482–1486. DOI: https://doi.org/10.1073/pnas.80.5.1482, PMID: 6572401Tessarollo L, Yanpallewar S. 2022. TrkB truncated isoform receptors as transducers and determinants of BDNF functions. Frontiers in Neuroscience 16:847572. DOI: https://doi.org/10.3389/fnins.2022.847572, PMID: 35321093Ulian-Benitez S, Bishop S, Foldi I, Wentzell J, Okenwa C, Forero MG, Zhu B, Moreira M, Phizacklea M, McIlroy G, Li G, Gay NJ, Hidalgo A. 2017. Kek-6: A truncated-Trk-like receptor for Drosophila neurotrophin 2 regulates structural synaptic plasticity. PLOS Genetics 13:e1006968. DOI: https://doi.org/10.1371/journal.pgen.1006968, PMID: 28846707Vahid-Ansari F, Albert PR. 2021. Rewiring of the serotonin system in major depression. Frontiers in Psychiatry 12:802581. DOI: https://doi.org/10.3389/fpsyt.2021.802581, PMID: 34975594Vaughen JP, Theisen E, Rivas-Serna IM, Berger AB, Kalakuntla P, Anreiter I, Mazurak VC, Rodriguez TP, Mast JD, Hartl T, Perlstein EO, Reimer RJ, Clandinin MT, Clandinin TR. 2022. Glial control of sphingolipid levels sculpts diurnal remodeling in a circadian circuit. Neuron 110:3186–3205.. DOI: https://doi.org/10.1016/j.neuron.2022. 07.016, PMID: 35961319Waddell S. 2013. Reinforcement signalling in Drosophila; dopamine does it all after all. Current Opinion in Neurobiology 23:324–329. DOI: https://doi.org/10.1016/j.conb.2013.01.005, PMID: 23391527Wang CS, Kavalali ET, Monteggia LM. 2022. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 185:62–76. DOI: https://doi.org/10.1016/j.cell.2021.12.003, PMID: 34963057Ward A, Hong W, Favaloro V, Luo L. 2015. Toll receptors instruct axon and dendrite targeting and participate in synaptic partner matching in a Drosophila olfactory circuit. Neuron 85:1013–1028. DOI: https://doi.org/10. 1016/j.neuron.2015.02.003, PMID: 25741726Weber ANR, Tauszig-Delamasure S, Hoffmann JA, Lelièvre E, Gascan H, Ray KP, Morse MA, Imler J-L, Gay NJ. 2003. Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling. Nature Immunology 4:794–800. DOI: https://doi.org/10.1038/ni955, PMID: 12872120Wiesel TN. 1982. Postnatal development of the visual cortex and the influence of environment. Nature 299:583– 591. DOI: https://doi.org/10.1038/299583a0, PMID: 6811951Wohleb ES, Franklin T, Iwata M, Duman RS. 2016. Integrating neuroimmune systems in the neurobiology of depression. Nature Reviews. Neuroscience 17:497–511. DOI: https://doi.org/10.1038/nrn.2016.69, PMID: 27277867Woollett K, Maguire EA. 2011. Acquiring “the Knowledge” of London’s layout drives structural brain changes. Current Biology 21:2109–2114. DOI: https://doi.org/10.1016/j.cub.2011.11.018, PMID: 22169537Yacoubian TA, Lo DC. 2000. Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nature Neuroscience 3:342–349. DOI: https://doi.org/10.1038/73911, PMID: 10725923Yang T, Nie Z, Shu H, Kuang Y, Chen X, Cheng J, Yu S, Liu H. 2020. The Role of BDNF on Neural Plasticity in Depression. Frontiers in Cellular Neuroscience 14:82. DOI: https://doi.org/10.3389/fncel.2020.00082, PMID: 32351365Zhang J, Tang T, Zhang R, Wen L, Deng X, Xu X, Yang W, Jin F, Cao Y, Lu Y, Yu XQ. 2024. Maintaining Toll signaling in Drosophila brain is required to sustain autophagy for dopamine neuron survival. iScience 27:108795. DOI: https://doi.org/10.1016/j.isci.2024.108795Zhu B, Pennack JA, McQuilton P, Forero MG, Mizuguchi K, Sutcliffe B, Gu CJ, Fenton JC, Hidalgo A. 2008. Drosophila neurotrophins reveal a common mechanism for nervous system formation. PLOS Biology 6:e284. DOI: https://doi.org/10.1371/journal.pbio.0060284, PMID: 19018662Copyright Sun et al. Tinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/NeurotrofinaFunción cerebralComportamiento cerebralA neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuitArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationORIGINALelife-102222.pdfelife-102222.pdfapplication/pdf190043https://repositorio.unibague.edu.co/bitstreams/36f64515-8c1c-453b-a57e-7a8998a29024/download61224f3b24388802b811c6bfba7c85bcMD52LICENSEArtículo.txtArtículo.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/c84b4b17-ead8-4e7d-8711-1838b8817923/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51TEXTelife-102222.pdf.txtelife-102222.pdf.txtExtracted texttext/plain3871https://repositorio.unibague.edu.co/bitstreams/2d2acfd5-ee9b-4fac-bbd2-3542eec67f2f/downloadc0b6b8296631b0279533375122da153bMD53THUMBNAILelife-102222.pdf.jpgelife-102222.pdf.jpgIM Thumbnailimage/jpeg27507https://repositorio.unibague.edu.co/bitstreams/5400a4cc-36b6-4867-9d89-c0adfd4392e0/download4d5bd904f9ea28853b6ab707d718bcaaMD5420.500.12313/6049oai:repositorio.unibague.edu.co:20.500.12313/60492025-11-28 03:02:47.684https://creativecommons.org/licenses/by/4.0/Copyright Sun et al. Thttps://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=