In vitro and in silico analysis of galanthine from Zephyranthes carinata as an inhibitor of acetylcholinesterase
Zephyranthes carinata Herb., a specie of the Amaryllidoideae subfamily, has been reported to have inhibitory activity against acetylcholinesterase. However, scientific evidence related to their bioactive alkaloids has been lacking. Thus, this study describes the isolation of the alkaloids of this pl...
- Autores:
-
Sierra, Karina
De Andrade, Jean Paulo
Angel Villalba, Javier R
Osorio, Edison
Yañéz, Osvaldo
Guaita Martínez, José Manuel
Oleas, Nora H.
García-Beltrán, Olimpo
De S. Borges, Warley
Bastida, Jaume
Osorio, Edison
Cortes, Natalie
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5488
- Acceso en línea:
- https://www.sciencedirect.com/science/article/pii/S075333222200405X
- Palabra clave:
- Alcaloides de Amaryllidaceae Galantina
Acetylcholinesterase inhibition
Amaryllidaceae alkaloids
Galanthine; Molecular docking
Molecular dynamics
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
| id |
UNIBAGUE2_de5915112db2ab9a9ecd7350539c5f6e |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5488 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
In vitro and in silico analysis of galanthine from Zephyranthes carinata as an inhibitor of acetylcholinesterase |
| title |
In vitro and in silico analysis of galanthine from Zephyranthes carinata as an inhibitor of acetylcholinesterase |
| spellingShingle |
In vitro and in silico analysis of galanthine from Zephyranthes carinata as an inhibitor of acetylcholinesterase Alcaloides de Amaryllidaceae Galantina Acetylcholinesterase inhibition Amaryllidaceae alkaloids Galanthine; Molecular docking Molecular dynamics |
| title_short |
In vitro and in silico analysis of galanthine from Zephyranthes carinata as an inhibitor of acetylcholinesterase |
| title_full |
In vitro and in silico analysis of galanthine from Zephyranthes carinata as an inhibitor of acetylcholinesterase |
| title_fullStr |
In vitro and in silico analysis of galanthine from Zephyranthes carinata as an inhibitor of acetylcholinesterase |
| title_full_unstemmed |
In vitro and in silico analysis of galanthine from Zephyranthes carinata as an inhibitor of acetylcholinesterase |
| title_sort |
In vitro and in silico analysis of galanthine from Zephyranthes carinata as an inhibitor of acetylcholinesterase |
| dc.creator.fl_str_mv |
Sierra, Karina De Andrade, Jean Paulo Angel Villalba, Javier R Osorio, Edison Yañéz, Osvaldo Guaita Martínez, José Manuel Oleas, Nora H. García-Beltrán, Olimpo De S. Borges, Warley Bastida, Jaume Osorio, Edison Cortes, Natalie |
| dc.contributor.author.none.fl_str_mv |
Sierra, Karina De Andrade, Jean Paulo Angel Villalba, Javier R Osorio, Edison Yañéz, Osvaldo Guaita Martínez, José Manuel Oleas, Nora H. García-Beltrán, Olimpo De S. Borges, Warley Bastida, Jaume Osorio, Edison Cortes, Natalie |
| dc.subject.armarc.none.fl_str_mv |
Alcaloides de Amaryllidaceae Galantina |
| topic |
Alcaloides de Amaryllidaceae Galantina Acetylcholinesterase inhibition Amaryllidaceae alkaloids Galanthine; Molecular docking Molecular dynamics |
| dc.subject.proposal.eng.fl_str_mv |
Acetylcholinesterase inhibition Amaryllidaceae alkaloids Galanthine; Molecular docking Molecular dynamics |
| description |
Zephyranthes carinata Herb., a specie of the Amaryllidoideae subfamily, has been reported to have inhibitory activity against acetylcholinesterase. However, scientific evidence related to their bioactive alkaloids has been lacking. Thus, this study describes the isolation of the alkaloids of this plant, and their inhibition of the enzymes acetylcholinesterase (eeAChE) and butyrylcholinesterase (eqBuChE), being galanthine the main component. Additionally, haemanthamine, hamayne, lycoramine, lycorine, tazettine, trisphaeridine and vittatine/crinine were also isolated. The results showed that galanthine has significant activity at low micromolar concentrations for eeAChE (IC50 = 1.96 μg/mL). The in-silico study allowed to establish at a molecular level the high affinity and the way galanthine interacts with the active site of the TcAChE enzyme, information that corroborates the result of the experimental IC50. However, according to molecular dynamics (MD) analysis, it is also suggested that galanthine presents a different inhibition mode that the one observed for galanthamine, by presenting interaction with peripheral anionic binding site of the enzyme, which prevents the entrance and exit of molecules from the active site. Thus, in vitro screening assays plus rapid computer development play an essential role in the search for new cholinesterase inhibitors by identifying unknown bio-interactions between bioactive compounds and biological targets. © 2022 The Authors |
| publishDate |
2022 |
| dc.date.issued.none.fl_str_mv |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2025-08-15T20:00:39Z |
| dc.date.available.none.fl_str_mv |
2025-08-15T20:00:39Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
Sierra, K., de Andrade, J., R. Tallini, L., Osorio, E., Yañéz, O., Osorio, M., Oleas, N., García-Beltrán, O., de S. Borges, W., Bastida, J., Osorio, E y Osorio, E. (2022). In vitro and in silico analysis of galanthine from Zephyranthes carinata as an inhibitor of acetylcholinesterase. Biomedicine and Pharmacotherap, 150. DOI: 10.1016/j.biopha.2022.113016 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.biopha.2022.113016 |
| dc.identifier.eissn.none.fl_str_mv |
19506007 |
| dc.identifier.issn.none.fl_str_mv |
07533322 |
| dc.identifier.uri.none.fl_str_mv |
|
| dc.identifier.url.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S075333222200405X |
| identifier_str_mv |
Sierra, K., de Andrade, J., R. Tallini, L., Osorio, E., Yañéz, O., Osorio, M., Oleas, N., García-Beltrán, O., de S. Borges, W., Bastida, J., Osorio, E y Osorio, E. (2022). In vitro and in silico analysis of galanthine from Zephyranthes carinata as an inhibitor of acetylcholinesterase. Biomedicine and Pharmacotherap, 150. DOI: 10.1016/j.biopha.2022.113016 10.1016/j.biopha.2022.113016 19506007 07533322 |
| url |
https://www.sciencedirect.com/science/article/pii/S075333222200405X |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationstartpage.none.fl_str_mv |
113016 |
| dc.relation.citationvolume.none.fl_str_mv |
150 |
| dc.relation.ispartofjournal.none.fl_str_mv |
Biomedicine and Pharmacotherapy |
| dc.relation.references.none.fl_str_mv |
World Health Organization (WHO), The top 10 causes of death, (2018). https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed July 24, 2020). A. Association 2019 Alzheimer’s disease facts and figures Alzheimer’s Dement, 15 (2019), pp. 321-387, 10.1016/j.jalz.2019.01.010 A.A.D.T. Abeysinghe, R.D.U.S. Deshapriya, C. Udawatte Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions Life Sci., 256 (2020), Article 117996, 10.1016/j.lfs.2020.117996 Ł.J. Walczak-Nowicka, M. Herbet Acetylcholinesterase inhibitors in the treatment of neurodegenerative diseases and the role of acetylcholinesterase in their pathogenesis 2021, Vol. 22, Page 9290 Int. J. Mol. Sci., 22 (2021), p. 9290, 10.3390/IJMS22179290 R. Hussain, H. Zubair, S. Pursell, M. Shahab Neurodegenerative diseases: regenerative mechanisms and novel therapeutic approaches Brain Sci., 8 (2018), p. 177, 10.3390/BRAINSCI8090177 G. Pepeu, C. Grossi, F. Casamenti The brain cholinergic system in neurodegenerative diseases Annu. Res. Rev. Biol., 6 (2015), pp. 1-19, 10.9734/ARRB/2015/14623 G. Marucci, M. Buccioni, D.D. Ben, C. Lambertucci, R. Volpini, F. Amenta Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease Neuropharmacology (2020), Article 108352, 10.1016/j.neuropharm.2020.108352 M.L. Campanari, M.S. García-Ayllón, O. Belbin, J. Galcerán, A. Lleó, J. Sáez-Valero Acetylcholinesterase modulates presenilin-1 levels and γ-secretase activity J. Alzheimers Dis., 41 (2014), pp. 911-924, 10.3233/JAD-140426 R.M. Lane, S.G. Potkin, A. Enz Targeting acetylcholinesterase and butyrylcholinesterase in dementia Int. J. Neuropsychopharmacol., 9 (2006), pp. 101-124, 10.1017/S1461145705005833 D.D. Li, Y.H. Zhang, W. Zhang, P. Zhao Meta-analysis of randomized controlled trials on the efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease Front. Neurosci., 13 (2019), p. 472, 10.3389/FNINS.2019.00472/BIBTEX J. Massoulié, J. Sussman, S. Bon, I. Silman Chapter 15: structure and functions of acetylcholinesterase and butyrylcholinesterase Prog. Brain Res., 98 (1993), pp. 139-146, 10.1016/S0079-6123(08)62391-2 P.G. Layer Nonclassical roles of cholinesterases in the embryonic brain and possible links to Alzheimer disease Alzheimer Dis. Assoc. Disord., 2 (1995), pp. 29-36, 10.1097/00002093-199501002-00006 A. Dori, J. Cohen, W.F. Silverman, Y. Pollack, H. Soreq Functional manipulations of acetylcholinesterase splice variants highlight alternative splicing contributions to murine neocortical development D. Grisaru, M. Pick, C. Perry, E.H. Sklan, R. Almog, I. Goldberg, E. Naparstek, J.B. Lessing, H. Soreq, V. Deutsch Hydrolytic and nonenzymatic functions of acetylcholinesterase comodulate hemopoietic stress responses J. Immunol., 176 (2006), pp. 27-35, 10.4049/JIMMUNOL.176.1.27 J. Massoulié The origin of the molecular diversity and functional anchoring of cholinesterases Neurosignals, 11 (2002), pp. 130-143, 10.1159/000065054 D. Kaufer, A. Friedman, S. Seidman, H. Soreq Acute stress facilitates long-lasting changes in cholinergic gene expression Nature, 393 (1998), pp. 373-377, 10.1038/30741 M. Pera, A. Martínez-Otero, L. Colombo, M. Salmona, D. Ruiz-Molina, A. Badia, M.V. Clos Acetylcholinesterase as an amyloid enhancing factor in PrP82-146 aggregation process Mol. Cell. Neurosci., 40 (2009), pp. 217-224, 10.1016/J.MCN.2008.10.008 L. Jean, S. Brimijoin, D.J. Vaux In vivo localization of human acetylcholinesterase-derived species in a β-sheet conformation at the core of senile plaques in Alzheimer’s disease J. Biol. Chem., 294 (2019), p. 6253, 10.1074/JBC.RA118.006230 H. Akrami, B.F. Mirjalili, M. Khoobi, H. Nadri, A. Moradi, A. Sakhteman, S. Emami, A. Foroumadi, A. Shafiee Indolinone-based acetylcholinesterase inhibitors: synthesis, biological activity and molecular modeling Eur. J. Med. Chem., 84 (2014), pp. 375-381, 10.1016/J.EJMECH.2014.01.017 P. Sharma, P. Srivastava, A. Seth, P.N. Tripathi, A.G. Banerjee, S.K. Shrivastava Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies Prog. Neurobiol., 174 (2019), pp. 53-89, 10.1016/J.PNEUROBIO.2018.12.006 S. Berkov, L. Georgieva, V. Kondakova, A. Atanassov, F. Viladomat, J. Bastida, C. Codina Plant sources of galanthamine: phytochemical and biotechnological aspects Biotechnol. Biotechnol. Equip., 23 (2009), pp. 1170-1176, 10.1080/13102818.2009.10817633 M. Heinrich Chapter 4 – galanthamine from galanthus and other amaryllidaceae – chemistry and biology based on traditional use Alkaloids Chem. Biol. (2010), pp. 157-165, 10.1016/S1099-4831(10)06804-5 S. Berkov, J. Bastida, F. Viladomat, C. Codina Analysis of galanthamine‐type alkaloids by capillary gas chromatography–mass spectrometry in plants Phytochem. Anal., 19 (2008), pp. 285-293, 10.1002/pca.1028 M.N. Akram, R. Verpoorte, B. Pomahačová Methods for the analysis of galanthamine and its extraction from laboratory to industrial scale South Afr. J. Bot., 136 (2021), pp. 51-64, 10.1016/j.sajb.2020.08.004 F. Alzate, M. Lesmes, N. Cortés, S. Varela, E. Osorio Sinopsis de la familia Amaryllidaceae en Colombia Biota Colomb., 20 (2019), pp. 2-20, 10.21068/c2019.v20n01a01 G. Zhan, J. Zhou, J. Liu, J. Huang, H. Zhang, R. Liu, G. Yao Acetylcholinesterase inhibitory alkaloids from the whole plants of zephyranthes carinata J. Nat. Prod., 80 (2017), pp. 2462-2471, 10.1021/acs.jnatprod.7b00301 Cortés Sierra, Borges Tallini, Bastida Andrade, Amaryllidaceae Durango Alkaloids from zephyrantes carinata and their evaluation as cholinesterases (AChE and BChE) inhibitors Proceedings, 22 (2019), p. 66, 10.3390/proceedings2019022066 N. Cortes, R.A. Posada-Duque, R. Alvarez, F. Alzate, S. Berkov, G.P. Cardona-Gómez, E. Osorio Neuroprotective activity and acetylcholinesterase inhibition of five Amaryllidaceae species:a comparative study Life Sci., 122 (2015), pp. 42-50, 10.1016/j.lfs.2014.12.011 N. Cortes, R. Alvarez, E.H. Osorio, F. Alzate, S. Berkov, E. Osorio Alkaloid metabolite profiles by GC/MS and acetylcholinesterase inhibitory activities with binding-mode predictions of five Amaryllidaceae plants J. Pharm. Biomed. Anal., 102 (2015), pp. 222-228, 10.1016/j.jpba.2014.09.022 N. Cortes, A.M. Sabogal-Guaqueta, G.P. Cardona-Gomez, E. Osorio Neuroprotection and improvement of the histopathological and behavioral impairments in a murine Alzheimer’s model treated with Zephyranthes carinata alkaloids Biomed. Pharmacother., 110 (2019), pp. 482-492, 10.1016/J.BIOPHA.2018.12.013 N. Cortes, K. Sierra, F. Alzate, E.H. Osorio, E. Osorio Alkaloids of amaryllidaceae as inhibitors of cholinesterases (AChEs and BChEs): an integrated bioguided study Phytochem. Anal., 29 (2018), pp. 217-227, 10.1002/pca.2736 N. Cortes, C. Castañeda, E.H. Osorio, G.P. Cardona-Gomez, E. Osorio Amaryllidaceae alkaloids as agents with protective effects against oxidative neural cell injury Life Sci., 203 (2018), pp. 54-65, 10.1016/j.lfs.2018.04.026 G.L. Ellman, K.D. Courtney, V. Andres, R.M. Feather-Stone A new and rapid colorimetric determination of acetylcholinesterase activity Biochem. Pharm., 7 (1961), pp. 88-95 〈http://www.ncbi.nlm.nih.gov/pubmed/13726518〉 accessed November 7, 2013 C. Adamo, V. Barone Toward reliable density functional methods without adjustable parameters: The PBE0 model J. Chem. Phys., 110 (1999), pp. 6158-6170, 10.1063/1.478522 R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions J. Chem. Phys., 72 (1980), pp. 650-654, 10.1063/1.438955 D.J.F.M.J. and, G.W. Frisch, H.B. Trucks, G.E. Schlegel, M.A. Scuseria, J.R. Robb, G. Cheeseman, V. Scalmani, G.A. Barone, H. Petersson, X. Nakatsuji, M. Li, A. Caricato, J. Marenich, B.G. Bloino, R. Janesko, B. Gomperts, H.P. Mennucci, J.V. Ort Hratchian Gaussian 09 Revision E. 01, Gaussian (2016) H.M. Greenblatt, G. Kryger, T. Lewis, I. Silman, J.L. Sussman Structure of acetylcholinesterase complexed with (−)-galanthamine at 2.3 Å resolution FEBS Lett., 463 (1999), pp. 321-326, 10.1016/S0014-5793(99)01637-3 G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility J. Comput. Chem., 30 (2009), pp. 2785-2791, 10.1002/jcc.21256 G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function J. Comput. Chem., 19 (1998), pp. 1639-1662, 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B E. Neria, S. Fischer, M. Karplus Simulation of activation free energies in molecular systems J. Chem. Phys., 105 (1996), pp. 1902-1921, 10.1063/1.472061 J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case Development and testing of a general amber force field J. Comput. Chem., 25 (2004), pp. 1157-1174, 10.1002/jcc.20035 G.A. ÖzpInar, W. Peukert, T. Clark An improved generalized AMBER force field (GAFF) for urea J. Mol. Model., 16 (2010), pp. 1427-1440, 10.1007/s00894-010-0650-7 R. Salomon-Ferrer, D.A. Case, R.C. Walker An overview of the Amber biomolecular simulation package Wiley Interdiscip. Rev. Comput. Mol. Sci., 3 (2013), pp. 198-210, 10.1002/wcms.1121 D.J. Mermelstein, C. Lin, G. Nelson, R. Kretsch, J.A. McCammon, R.C. Walker Fast and flexible gpu accelerated binding free energy calculations within the amber molecular dynamics package J. Comput. Chem., 39 (2018), pp. 1354-1358, 10.1002/jcc.25187 W. Humphrey, A. Dalke, K. Schulten VMD: visual molecular dynamics J. Mol. Graph., 14 (1996), pp. 33-38, 10.1016/0263-7855(96)00018-5 J. M, G. Archontis, MM-GB(PB)SA Calculations of Protein-Ligand Binding Free Energies : Mol. Dyn. - Stud. Synth. Biol. Macromol., InTech 2012 doi: 10.5772/37107. L.F. Song, T.S. Lee, D.M. Chun-Zhu, K.M. York, Merz Validation of AMBER/GAFF for relative free energy calculations ChemRxiv (2019), 10.26434/chemrxiv.7653434.v1 A.W. Götz, M.J. Williamson, D. Xu, D. Poole, S. Le Grand, R.C. Walker Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. generalized born J. Chem. Theory Comput., 8 (2012), pp. 1542-1555, 10.1021/ct200909j H. Abroshan, H. Akbarzadeh, G.A. Parsafar Molecular dynamics simulation and MM-PBSA calculations of sickle cell hemoglobin in dimer form with Val, Trp, or Phe at the lateral contact J. Phys. Org. Chem., 23 (2010), pp. 866-877, 10.1002/poc.1679 J. Contreras-García, E.R. Johnson, S. Keinan, R. Chaudret, J.P. Piquemal, D.N. Beratan, W. Yang NCIPLOT: a program for plotting noncovalent interaction regions J. Chem. Theory Comput., 7 (2011), pp. 625-632, 10.1021/ct100641a E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen, W. Yang Revealing noncovalent interactions J. Am. Chem. Soc., 132 (2010), pp. 6498-6506, 10.1021/ja100936w S. Berkov, E. Osorio, F. Viladomat, J. Bastida Chemodiversity, chemotaxonomy and chemoecology of Amaryllidaceae alkaloids Alkaloids Chemistry and Biology, Academic Press Inc (2020), pp. 113-185, 10.1016/bs.alkal.2019.10.002 J. Bastida, R. Lavilla, F. Viladomat Chapter 3 chemical and biological aspects of narcissus alkaloids Alkaloids: Chem. Biol. (2006), pp. 87-179, 10.1016/S1099-4831(06)63003-4 F. Viladomat, C. Codina, J. Bastida, S. Mathee, W.E. Campbell Further alkaloids from Brunsvigia josephinae Phytochemistry, 40 (1995), pp. 961-965, 10.1016/0031-9422(95)00375-H F. Viladomat, J. Bastida, C. Codina, W.E. Campbell, S. Mathee Alkaloids from Boophane flava Phytochemistry, 40 (1995), pp. 307-311, 10.1016/0031-9422(95)00191-9 E. Kohelová, J. Maříková, J. Korábečný, D. Hulcová, T. Kučera, D. Jun, J. Chlebek, J. Jenčo, M. Šafratová, M. Hrabinová, A. Ritomská, M. Malaník, R. Peřinová, K. Breiterová, J. Kuneš, L. Nováková, L. Opletal, L. Cahlíková Alkaloids of Zephyranthes citrina (Amaryllidaceae) and their implication to Alzheimer’s disease: Isolation, structural elucidation and biological activity Bioorg. Chem., 107 (2021), Article 104567, 10.1016/j.bioorg.2020.104567 J. del, C. Rojas-Vera, A.A. Buitrago-Díaz, L.M. Possamai, L.F.S.M. Timmers, L.R. Tallini, J. Bastida Alkaloid profile and cholinesterase inhibition activity of five species of Amaryllidaceae family collected from Mérida state-Venezuela South Afr. J. Bot., 136 (2021), pp. 126-136, 10.1016/j.sajb.2020.03.001 K.D. Singh, B. S. B Phytochemistry and pharmacology of genus zephyranthes Med. Aromat. Plants, 04 (2015), pp. 1-8, 10.4172/2167-0412.1000212 B.S. Jensen, S.B. Christensen, A.K. Jäger, N. Rønsted, Amaryllidaceae alkaloids from the Australasian tribe Calostemmateae with acetylcholinesterase inhibitory activity, 2011. http://www.sciencedirect.com/science/article/pii/S030519781100024X (accessed November 6, 2013). D. Hulcová, J. Maříková, J. Korábečný, A. Hošťálková, D. Jun, J. Kuneš, J. Chlebek, L. Opletal, A. De Simone, L. Nováková, V. Andrisano, A. Růžička, L. Cahlíková Amaryllidaceae alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as potential drugs in treatment of Alzheimer’s disease Phytochemistry, 165 (2019), 10.1016/J.PHYTOCHEM.2019.112055 L.R. Tallini, J. Bastida, N. Cortes, E.H. Osorio, C. Theoduloz, G. Schmeda-Hirschmann Cholinesterase inhibition activity, alkaloid profiling and molecular docking of chilean rhodophiala (Amaryllidaceae) Molecules, 23 (2018), 10.3390/molecules23071532 M. Stavrianakou, R. Perez, C. Wu, M.S. Sachs, R. Aramayo, M. Harlow Draft de novo transcriptome assembly and proteome characterization of the electric lobe of Tetronarce californica: a molecular tool for the study of cholinergic neurotransmission in the electric organ BMC Genom., 18 (2017), p. 611, 10.1186/S12864-017-3890-4/TABLES/6 J. Lindstrom, J. Cooper, S. Tzartos Acetylcholine receptors from Torpedo and Electrophorus have similar subunit structures Biochemistry, 19 (2002), pp. 1454-1458, 10.1021/BI00548A029 I. Silman, J.L. Sussman Acetylcholinesterase: how is structure related to function? Chem. Biol. Interact., 175 (2008), pp. 3-10, 10.1016/j.cbi.2008.05.035 H. Dvir, I. Silman, M. Harel, T.L. Rosenberry, J.L. Sussman Acetylcholinesterase: from 3D structure to function Chem. Biol. Interact., 187 (2010), pp. 10-22, 10.1016/j.cbi.2010.01.042 C. Pilger, C. Bartolucci, D. Lamba, A. Tropsha, G. Fels Accurate prediction of the bound conformation of galanthamine in the active site of Torpedo californica acetylcholinesterase using molecular docking11Color Plates for this article are on pages 374–378 J. Mol. Graph. Model, 19 (2001), pp. 288-296 〈http://www.sciencedirect.com/science/article/pii/S1093326300000565〉 J. Correa-Basurto, M. Bello, M.C. Rosales-Hernández, M. Hernández-Rodríguez, I. Nicolás-Vázquez, A. Rojo-Domínguez, J.G. Trujillo-Ferrara, R. Miranda, C.A. Flores-Sandoval QSAR, docking, dynamic simulation and quantum mechanics studies to explore the recognition properties of cholinesterase binding sites Chem. Biol. Interact., 209 (2014), pp. 1-13, 10.1016/j.cbi.2013.12.001 I. Silman, J.L. Sussman Acetylcholinesterase: how is structure related to function? Chem. Biol. Interact., 175 (2008), pp. 3-10, 10.1016/J.CBI.2008.05.035 |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Masson S.R.L. |
| dc.publisher.place.none.fl_str_mv |
France |
| publisher.none.fl_str_mv |
Elsevier Masson S.R.L. |
| dc.source.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S075333222200405X |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/633a056d-1b75-4811-8244-2f40fcb2b79f/download https://repositorio.unibague.edu.co/bitstreams/78dad178-9614-4bff-84f8-806b555e7a70/download https://repositorio.unibague.edu.co/bitstreams/7970ac01-b5b5-413f-b916-8a601b0f817d/download https://repositorio.unibague.edu.co/bitstreams/6d3374af-a4ea-4955-b167-598e1afe584d/download |
| bitstream.checksum.fl_str_mv |
dbb5086e29a80cf4aeedb23313f40dd9 2f7a941f98c10c6ced5119fd94276b6f 2fa3e590786b9c0f3ceba1b9656b7ac3 eb01686f1376e5fab680b687ff331028 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059990691840000 |
| spelling |
Sierra, Karina0d72ff29-5bb7-4723-9a22-ae2f0cb6ecbd-1De Andrade, Jean Paulo4348cbf9-fe36-457c-8665-daf47d388a4b-1Angel Villalba, Javier R800083c9-9860-410a-8c45-03ba4825d091600Osorio, Edisone6d834e4-46ca-40f0-ab7c-630a35856901-1Yañéz, Osvaldo1e46de30-fe40-4d34-8d2d-6f1f3a94d019-1Guaita Martínez, José Manuelb1241368-59c4-4cf5-ab02-bc5bc39fab98600Oleas, Nora H.e2053042-c304-40be-b616-3c40f83c279c-1García-Beltrán, Olimpodfe2bbe7-81d5-415c-9be6-6469a5a40c75-1De S. Borges, Warley70b8ce74-e6b9-46e3-9a4b-1498f3638f55-1Bastida, Jaume00ea29d6-11a2-48bd-bc9e-2dd48a2bc06e-1Osorio, Edisone6d834e4-46ca-40f0-ab7c-630a35856901-1Cortes, Nataliece9c654f-72b9-4163-a73a-c1c71903ba7e-12025-08-15T20:00:39Z2025-08-15T20:00:39Z2022Zephyranthes carinata Herb., a specie of the Amaryllidoideae subfamily, has been reported to have inhibitory activity against acetylcholinesterase. However, scientific evidence related to their bioactive alkaloids has been lacking. Thus, this study describes the isolation of the alkaloids of this plant, and their inhibition of the enzymes acetylcholinesterase (eeAChE) and butyrylcholinesterase (eqBuChE), being galanthine the main component. Additionally, haemanthamine, hamayne, lycoramine, lycorine, tazettine, trisphaeridine and vittatine/crinine were also isolated. The results showed that galanthine has significant activity at low micromolar concentrations for eeAChE (IC50 = 1.96 μg/mL). The in-silico study allowed to establish at a molecular level the high affinity and the way galanthine interacts with the active site of the TcAChE enzyme, information that corroborates the result of the experimental IC50. However, according to molecular dynamics (MD) analysis, it is also suggested that galanthine presents a different inhibition mode that the one observed for galanthamine, by presenting interaction with peripheral anionic binding site of the enzyme, which prevents the entrance and exit of molecules from the active site. Thus, in vitro screening assays plus rapid computer development play an essential role in the search for new cholinesterase inhibitors by identifying unknown bio-interactions between bioactive compounds and biological targets. © 2022 The Authorsapplication/pdfSierra, K., de Andrade, J., R. Tallini, L., Osorio, E., Yañéz, O., Osorio, M., Oleas, N., García-Beltrán, O., de S. Borges, W., Bastida, J., Osorio, E y Osorio, E. (2022). In vitro and in silico analysis of galanthine from Zephyranthes carinata as an inhibitor of acetylcholinesterase. Biomedicine and Pharmacotherap, 150. DOI: 10.1016/j.biopha.2022.11301610.1016/j.biopha.2022.1130161950600707533322https://www.sciencedirect.com/science/article/pii/S075333222200405XengElsevier Masson S.R.L.France113016150Biomedicine and PharmacotherapyWorld Health Organization (WHO), The top 10 causes of death, (2018). https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed July 24, 2020).A. Association 2019 Alzheimer’s disease facts and figures Alzheimer’s Dement, 15 (2019), pp. 321-387, 10.1016/j.jalz.2019.01.010A.A.D.T. Abeysinghe, R.D.U.S. Deshapriya, C. Udawatte Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions Life Sci., 256 (2020), Article 117996, 10.1016/j.lfs.2020.117996Ł.J. Walczak-Nowicka, M. Herbet Acetylcholinesterase inhibitors in the treatment of neurodegenerative diseases and the role of acetylcholinesterase in their pathogenesis 2021, Vol. 22, Page 9290 Int. J. Mol. Sci., 22 (2021), p. 9290, 10.3390/IJMS22179290R. Hussain, H. Zubair, S. Pursell, M. Shahab Neurodegenerative diseases: regenerative mechanisms and novel therapeutic approaches Brain Sci., 8 (2018), p. 177, 10.3390/BRAINSCI8090177G. Pepeu, C. Grossi, F. Casamenti The brain cholinergic system in neurodegenerative diseases Annu. Res. Rev. Biol., 6 (2015), pp. 1-19, 10.9734/ARRB/2015/14623G. Marucci, M. Buccioni, D.D. Ben, C. Lambertucci, R. Volpini, F. Amenta Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease Neuropharmacology (2020), Article 108352, 10.1016/j.neuropharm.2020.108352M.L. Campanari, M.S. García-Ayllón, O. Belbin, J. Galcerán, A. Lleó, J. Sáez-Valero Acetylcholinesterase modulates presenilin-1 levels and γ-secretase activity J. Alzheimers Dis., 41 (2014), pp. 911-924, 10.3233/JAD-140426R.M. Lane, S.G. Potkin, A. Enz Targeting acetylcholinesterase and butyrylcholinesterase in dementia Int. J. Neuropsychopharmacol., 9 (2006), pp. 101-124, 10.1017/S1461145705005833D.D. Li, Y.H. Zhang, W. Zhang, P. Zhao Meta-analysis of randomized controlled trials on the efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease Front. Neurosci., 13 (2019), p. 472, 10.3389/FNINS.2019.00472/BIBTEXJ. Massoulié, J. Sussman, S. Bon, I. Silman Chapter 15: structure and functions of acetylcholinesterase and butyrylcholinesterase Prog. Brain Res., 98 (1993), pp. 139-146, 10.1016/S0079-6123(08)62391-2P.G. Layer Nonclassical roles of cholinesterases in the embryonic brain and possible links to Alzheimer disease Alzheimer Dis. Assoc. Disord., 2 (1995), pp. 29-36, 10.1097/00002093-199501002-00006A. Dori, J. Cohen, W.F. Silverman, Y. Pollack, H. Soreq Functional manipulations of acetylcholinesterase splice variants highlight alternative splicing contributions to murine neocortical developmentD. Grisaru, M. Pick, C. Perry, E.H. Sklan, R. Almog, I. Goldberg, E. Naparstek, J.B. Lessing, H. Soreq, V. Deutsch Hydrolytic and nonenzymatic functions of acetylcholinesterase comodulate hemopoietic stress responses J. Immunol., 176 (2006), pp. 27-35, 10.4049/JIMMUNOL.176.1.27J. Massoulié The origin of the molecular diversity and functional anchoring of cholinesterases Neurosignals, 11 (2002), pp. 130-143, 10.1159/000065054D. Kaufer, A. Friedman, S. Seidman, H. Soreq Acute stress facilitates long-lasting changes in cholinergic gene expression Nature, 393 (1998), pp. 373-377, 10.1038/30741M. Pera, A. Martínez-Otero, L. Colombo, M. Salmona, D. Ruiz-Molina, A. Badia, M.V. Clos Acetylcholinesterase as an amyloid enhancing factor in PrP82-146 aggregation process Mol. Cell. Neurosci., 40 (2009), pp. 217-224, 10.1016/J.MCN.2008.10.008L. Jean, S. Brimijoin, D.J. Vaux In vivo localization of human acetylcholinesterase-derived species in a β-sheet conformation at the core of senile plaques in Alzheimer’s disease J. Biol. Chem., 294 (2019), p. 6253, 10.1074/JBC.RA118.006230H. Akrami, B.F. Mirjalili, M. Khoobi, H. Nadri, A. Moradi, A. Sakhteman, S. Emami, A. Foroumadi, A. Shafiee Indolinone-based acetylcholinesterase inhibitors: synthesis, biological activity and molecular modeling Eur. J. Med. Chem., 84 (2014), pp. 375-381, 10.1016/J.EJMECH.2014.01.017P. Sharma, P. Srivastava, A. Seth, P.N. Tripathi, A.G. Banerjee, S.K. Shrivastava Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies Prog. Neurobiol., 174 (2019), pp. 53-89, 10.1016/J.PNEUROBIO.2018.12.006S. Berkov, L. Georgieva, V. Kondakova, A. Atanassov, F. Viladomat, J. Bastida, C. Codina Plant sources of galanthamine: phytochemical and biotechnological aspects Biotechnol. Biotechnol. Equip., 23 (2009), pp. 1170-1176, 10.1080/13102818.2009.10817633M. Heinrich Chapter 4 – galanthamine from galanthus and other amaryllidaceae – chemistry and biology based on traditional use Alkaloids Chem. Biol. (2010), pp. 157-165, 10.1016/S1099-4831(10)06804-5S. Berkov, J. Bastida, F. Viladomat, C. Codina Analysis of galanthamine‐type alkaloids by capillary gas chromatography–mass spectrometry in plants Phytochem. Anal., 19 (2008), pp. 285-293, 10.1002/pca.1028M.N. Akram, R. Verpoorte, B. Pomahačová Methods for the analysis of galanthamine and its extraction from laboratory to industrial scale South Afr. J. Bot., 136 (2021), pp. 51-64, 10.1016/j.sajb.2020.08.004F. Alzate, M. Lesmes, N. Cortés, S. Varela, E. Osorio Sinopsis de la familia Amaryllidaceae en Colombia Biota Colomb., 20 (2019), pp. 2-20, 10.21068/c2019.v20n01a01G. Zhan, J. Zhou, J. Liu, J. Huang, H. Zhang, R. Liu, G. Yao Acetylcholinesterase inhibitory alkaloids from the whole plants of zephyranthes carinata J. Nat. Prod., 80 (2017), pp. 2462-2471, 10.1021/acs.jnatprod.7b00301Cortés Sierra, Borges Tallini, Bastida Andrade, Amaryllidaceae Durango Alkaloids from zephyrantes carinata and their evaluation as cholinesterases (AChE and BChE) inhibitors Proceedings, 22 (2019), p. 66, 10.3390/proceedings2019022066N. Cortes, R.A. Posada-Duque, R. Alvarez, F. Alzate, S. Berkov, G.P. Cardona-Gómez, E. Osorio Neuroprotective activity and acetylcholinesterase inhibition of five Amaryllidaceae species:a comparative study Life Sci., 122 (2015), pp. 42-50, 10.1016/j.lfs.2014.12.011N. Cortes, R. Alvarez, E.H. Osorio, F. Alzate, S. Berkov, E. Osorio Alkaloid metabolite profiles by GC/MS and acetylcholinesterase inhibitory activities with binding-mode predictions of five Amaryllidaceae plants J. Pharm. Biomed. Anal., 102 (2015), pp. 222-228, 10.1016/j.jpba.2014.09.022N. Cortes, A.M. Sabogal-Guaqueta, G.P. Cardona-Gomez, E. Osorio Neuroprotection and improvement of the histopathological and behavioral impairments in a murine Alzheimer’s model treated with Zephyranthes carinata alkaloids Biomed. Pharmacother., 110 (2019), pp. 482-492, 10.1016/J.BIOPHA.2018.12.013N. Cortes, K. Sierra, F. Alzate, E.H. Osorio, E. Osorio Alkaloids of amaryllidaceae as inhibitors of cholinesterases (AChEs and BChEs): an integrated bioguided study Phytochem. Anal., 29 (2018), pp. 217-227, 10.1002/pca.2736N. Cortes, C. Castañeda, E.H. Osorio, G.P. Cardona-Gomez, E. Osorio Amaryllidaceae alkaloids as agents with protective effects against oxidative neural cell injury Life Sci., 203 (2018), pp. 54-65, 10.1016/j.lfs.2018.04.026G.L. Ellman, K.D. Courtney, V. Andres, R.M. Feather-Stone A new and rapid colorimetric determination of acetylcholinesterase activity Biochem. Pharm., 7 (1961), pp. 88-95 〈http://www.ncbi.nlm.nih.gov/pubmed/13726518〉 accessed November 7, 2013C. Adamo, V. Barone Toward reliable density functional methods without adjustable parameters: The PBE0 model J. Chem. Phys., 110 (1999), pp. 6158-6170, 10.1063/1.478522R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions J. Chem. Phys., 72 (1980), pp. 650-654, 10.1063/1.438955D.J.F.M.J. and, G.W. Frisch, H.B. Trucks, G.E. Schlegel, M.A. Scuseria, J.R. Robb, G. Cheeseman, V. Scalmani, G.A. Barone, H. Petersson, X. Nakatsuji, M. Li, A. Caricato, J. Marenich, B.G. Bloino, R. Janesko, B. Gomperts, H.P. Mennucci, J.V. Ort Hratchian Gaussian 09 Revision E. 01, Gaussian (2016)H.M. Greenblatt, G. Kryger, T. Lewis, I. Silman, J.L. Sussman Structure of acetylcholinesterase complexed with (−)-galanthamine at 2.3 Å resolution FEBS Lett., 463 (1999), pp. 321-326, 10.1016/S0014-5793(99)01637-3G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility J. Comput. Chem., 30 (2009), pp. 2785-2791, 10.1002/jcc.21256G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function J. Comput. Chem., 19 (1998), pp. 1639-1662, 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-BE. Neria, S. Fischer, M. Karplus Simulation of activation free energies in molecular systems J. Chem. Phys., 105 (1996), pp. 1902-1921, 10.1063/1.472061J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case Development and testing of a general amber force field J. Comput. Chem., 25 (2004), pp. 1157-1174, 10.1002/jcc.20035G.A. ÖzpInar, W. Peukert, T. Clark An improved generalized AMBER force field (GAFF) for urea J. Mol. Model., 16 (2010), pp. 1427-1440, 10.1007/s00894-010-0650-7R. Salomon-Ferrer, D.A. Case, R.C. Walker An overview of the Amber biomolecular simulation package Wiley Interdiscip. Rev. Comput. Mol. Sci., 3 (2013), pp. 198-210, 10.1002/wcms.1121D.J. Mermelstein, C. Lin, G. Nelson, R. Kretsch, J.A. McCammon, R.C. Walker Fast and flexible gpu accelerated binding free energy calculations within the amber molecular dynamics package J. Comput. Chem., 39 (2018), pp. 1354-1358, 10.1002/jcc.25187W. Humphrey, A. Dalke, K. Schulten VMD: visual molecular dynamics J. Mol. Graph., 14 (1996), pp. 33-38, 10.1016/0263-7855(96)00018-5J. M, G. Archontis, MM-GB(PB)SA Calculations of Protein-Ligand Binding Free Energies : Mol. Dyn. - Stud. Synth. Biol. Macromol., InTech 2012 doi: 10.5772/37107.L.F. Song, T.S. Lee, D.M. Chun-Zhu, K.M. York, Merz Validation of AMBER/GAFF for relative free energy calculations ChemRxiv (2019), 10.26434/chemrxiv.7653434.v1A.W. Götz, M.J. Williamson, D. Xu, D. Poole, S. Le Grand, R.C. Walker Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. generalized born J. Chem. Theory Comput., 8 (2012), pp. 1542-1555, 10.1021/ct200909jH. Abroshan, H. Akbarzadeh, G.A. Parsafar Molecular dynamics simulation and MM-PBSA calculations of sickle cell hemoglobin in dimer form with Val, Trp, or Phe at the lateral contact J. Phys. Org. Chem., 23 (2010), pp. 866-877, 10.1002/poc.1679J. Contreras-García, E.R. Johnson, S. Keinan, R. Chaudret, J.P. Piquemal, D.N. Beratan, W. Yang NCIPLOT: a program for plotting noncovalent interaction regions J. Chem. Theory Comput., 7 (2011), pp. 625-632, 10.1021/ct100641aE.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen, W. Yang Revealing noncovalent interactions J. Am. Chem. Soc., 132 (2010), pp. 6498-6506, 10.1021/ja100936wS. Berkov, E. Osorio, F. Viladomat, J. Bastida Chemodiversity, chemotaxonomy and chemoecology of Amaryllidaceae alkaloids Alkaloids Chemistry and Biology, Academic Press Inc (2020), pp. 113-185, 10.1016/bs.alkal.2019.10.002J. Bastida, R. Lavilla, F. Viladomat Chapter 3 chemical and biological aspects of narcissus alkaloids Alkaloids: Chem. Biol. (2006), pp. 87-179, 10.1016/S1099-4831(06)63003-4F. Viladomat, C. Codina, J. Bastida, S. Mathee, W.E. Campbell Further alkaloids from Brunsvigia josephinae Phytochemistry, 40 (1995), pp. 961-965, 10.1016/0031-9422(95)00375-HF. Viladomat, J. Bastida, C. Codina, W.E. Campbell, S. Mathee Alkaloids from Boophane flava Phytochemistry, 40 (1995), pp. 307-311, 10.1016/0031-9422(95)00191-9E. Kohelová, J. Maříková, J. Korábečný, D. Hulcová, T. Kučera, D. Jun, J. Chlebek, J. Jenčo, M. Šafratová, M. Hrabinová, A. Ritomská, M. Malaník, R. Peřinová, K. Breiterová, J. Kuneš, L. Nováková, L. Opletal, L. Cahlíková Alkaloids of Zephyranthes citrina (Amaryllidaceae) and their implication to Alzheimer’s disease: Isolation, structural elucidation and biological activity Bioorg. Chem., 107 (2021), Article 104567, 10.1016/j.bioorg.2020.104567J. del, C. Rojas-Vera, A.A. Buitrago-Díaz, L.M. Possamai, L.F.S.M. Timmers, L.R. Tallini, J. Bastida Alkaloid profile and cholinesterase inhibition activity of five species of Amaryllidaceae family collected from Mérida state-Venezuela South Afr. J. Bot., 136 (2021), pp. 126-136, 10.1016/j.sajb.2020.03.001K.D. Singh, B. S. B Phytochemistry and pharmacology of genus zephyranthes Med. Aromat. Plants, 04 (2015), pp. 1-8, 10.4172/2167-0412.1000212B.S. Jensen, S.B. Christensen, A.K. Jäger, N. Rønsted, Amaryllidaceae alkaloids from the Australasian tribe Calostemmateae with acetylcholinesterase inhibitory activity, 2011. http://www.sciencedirect.com/science/article/pii/S030519781100024X (accessed November 6, 2013).D. Hulcová, J. Maříková, J. Korábečný, A. Hošťálková, D. Jun, J. Kuneš, J. Chlebek, L. Opletal, A. De Simone, L. Nováková, V. Andrisano, A. Růžička, L. Cahlíková Amaryllidaceae alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as potential drugs in treatment of Alzheimer’s disease Phytochemistry, 165 (2019), 10.1016/J.PHYTOCHEM.2019.112055L.R. Tallini, J. Bastida, N. Cortes, E.H. Osorio, C. Theoduloz, G. Schmeda-Hirschmann Cholinesterase inhibition activity, alkaloid profiling and molecular docking of chilean rhodophiala (Amaryllidaceae) Molecules, 23 (2018), 10.3390/molecules23071532M. Stavrianakou, R. Perez, C. Wu, M.S. Sachs, R. Aramayo, M. Harlow Draft de novo transcriptome assembly and proteome characterization of the electric lobe of Tetronarce californica: a molecular tool for the study of cholinergic neurotransmission in the electric organ BMC Genom., 18 (2017), p. 611, 10.1186/S12864-017-3890-4/TABLES/6J. Lindstrom, J. Cooper, S. Tzartos Acetylcholine receptors from Torpedo and Electrophorus have similar subunit structures Biochemistry, 19 (2002), pp. 1454-1458, 10.1021/BI00548A029I. Silman, J.L. Sussman Acetylcholinesterase: how is structure related to function? Chem. Biol. Interact., 175 (2008), pp. 3-10, 10.1016/j.cbi.2008.05.035H. Dvir, I. Silman, M. Harel, T.L. Rosenberry, J.L. Sussman Acetylcholinesterase: from 3D structure to function Chem. Biol. Interact., 187 (2010), pp. 10-22, 10.1016/j.cbi.2010.01.042C. Pilger, C. Bartolucci, D. Lamba, A. Tropsha, G. Fels Accurate prediction of the bound conformation of galanthamine in the active site of Torpedo californica acetylcholinesterase using molecular docking11Color Plates for this article are on pages 374–378 J. Mol. Graph. Model, 19 (2001), pp. 288-296 〈http://www.sciencedirect.com/science/article/pii/S1093326300000565〉J. Correa-Basurto, M. Bello, M.C. Rosales-Hernández, M. Hernández-Rodríguez, I. Nicolás-Vázquez, A. Rojo-Domínguez, J.G. Trujillo-Ferrara, R. Miranda, C.A. Flores-Sandoval QSAR, docking, dynamic simulation and quantum mechanics studies to explore the recognition properties of cholinesterase binding sites Chem. Biol. Interact., 209 (2014), pp. 1-13, 10.1016/j.cbi.2013.12.001I. Silman, J.L. Sussman Acetylcholinesterase: how is structure related to function? Chem. Biol. Interact., 175 (2008), pp. 3-10, 10.1016/J.CBI.2008.05.035Copyright © 2025 Elsevier B.V., its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.sciencedirect.com/science/article/pii/S075333222200405XAlcaloides de Amaryllidaceae GalantinaAcetylcholinesterase inhibitionAmaryllidaceae alkaloidsGalanthine; Molecular dockingMolecular dynamicsIn vitro and in silico analysis of galanthine from Zephyranthes carinata as an inhibitor of acetylcholinesteraseArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain5043https://repositorio.unibague.edu.co/bitstreams/633a056d-1b75-4811-8244-2f40fcb2b79f/downloaddbb5086e29a80cf4aeedb23313f40dd9MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg28231https://repositorio.unibague.edu.co/bitstreams/78dad178-9614-4bff-84f8-806b555e7a70/download2f7a941f98c10c6ced5119fd94276b6fMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/7970ac01-b5b5-413f-b916-8a601b0f817d/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf271629https://repositorio.unibague.edu.co/bitstreams/6d3374af-a4ea-4955-b167-598e1afe584d/downloadeb01686f1376e5fab680b687ff331028MD5220.500.12313/5488oai:repositorio.unibague.edu.co:20.500.12313/54882025-09-12 10:56:01.128https://creativecommons.org/licenses/by-nc/4.0/Copyright © 2025 Elsevier B.V., its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
