Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties

This work presents the formation of monoclinic γ-aminobutyric acid (GABA) crystals grown from an aqueous ethanol solution with the dimensions 4 ​× ​1 ​× ​0.6 ​mm3. The structural properties of the grown crystal were evaluated via X-ray diffraction analysis of the powder and single crystal, which con...

Full description

Autores:
Silva, José Barbosa
Torrente Rocha, Juan Jose
Niño Rodriguez, claudia patricia
de Paula, Valdir Ferreira
Guedes, Maria Izabel Florindo
e Silva, Bruno Poti
Valentini, Antoninho
Gonzalez Santos, Jeni Bianda
Freire, Valder Nogueira
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5539
Acceso en línea:
https://hdl.handle.net/20.500.12313/5539
https://www.sciencedirect.com/science/article/pii/S0022459623000683
Palabra clave:
Ácido γ-aminobutírico molecular y sus cristales - Propiedades estructurales
Ácido γ-aminobutírico molecular y sus cristales - Propiedades electrónica
DFT calculations
GABA polymorphs Crystals
Optical properties
Structural properties
γ-amino butyric acid (GABA) crystal
Rights
closedAccess
License
© 2023 Elsevier Inc.
id UNIBAGUE2_dd59e2c1aaa7ed3fd85c213599758612
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5539
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties
title Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties
spellingShingle Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties
Ácido γ-aminobutírico molecular y sus cristales - Propiedades estructurales
Ácido γ-aminobutírico molecular y sus cristales - Propiedades electrónica
DFT calculations
GABA polymorphs Crystals
Optical properties
Structural properties
γ-amino butyric acid (GABA) crystal
title_short Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties
title_full Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties
title_fullStr Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties
title_full_unstemmed Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties
title_sort Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties
dc.creator.fl_str_mv Silva, José Barbosa
Torrente Rocha, Juan Jose
Niño Rodriguez, claudia patricia
de Paula, Valdir Ferreira
Guedes, Maria Izabel Florindo
e Silva, Bruno Poti
Valentini, Antoninho
Gonzalez Santos, Jeni Bianda
Freire, Valder Nogueira
dc.contributor.author.none.fl_str_mv Silva, José Barbosa
Torrente Rocha, Juan Jose
Niño Rodriguez, claudia patricia
de Paula, Valdir Ferreira
Guedes, Maria Izabel Florindo
e Silva, Bruno Poti
Valentini, Antoninho
Gonzalez Santos, Jeni Bianda
Freire, Valder Nogueira
dc.subject.armarc.none.fl_str_mv Ácido γ-aminobutírico molecular y sus cristales - Propiedades estructurales
Ácido γ-aminobutírico molecular y sus cristales - Propiedades electrónica
topic Ácido γ-aminobutírico molecular y sus cristales - Propiedades estructurales
Ácido γ-aminobutírico molecular y sus cristales - Propiedades electrónica
DFT calculations
GABA polymorphs Crystals
Optical properties
Structural properties
γ-amino butyric acid (GABA) crystal
dc.subject.proposal.eng.fl_str_mv DFT calculations
GABA polymorphs Crystals
Optical properties
Structural properties
γ-amino butyric acid (GABA) crystal
description This work presents the formation of monoclinic γ-aminobutyric acid (GABA) crystals grown from an aqueous ethanol solution with the dimensions 4 ​× ​1 ​× ​0.6 ​mm3. The structural properties of the grown crystal were evaluated via X-ray diffraction analysis of the powder and single crystal, which confirmed a monoclinic crystal system with space group P21/c. Thermal stability and the melting point of the synthesized GABA crystal were investigated using TG-DSC measurements. We also characterized experimentally monoclinic and molecular GABA solvated in water, obtaining its optical absorption spectrum in the UV-VIS region. Time-dependent DFT calculations were performed for the GABA molecule in the neutral and zwitterion forms to understand their optical absorption features. Structural, electronic, and optical properties of four γ-aminobutyric acid (GABA) crystal polymorphs (monoclinic, tetragonal, hexagonal, and monohydrate) were achieved through DFT calculations employing a dispersion corrected exchange-correlation functional. Differences in the electronic and optical properties between polymorphs are discussed. We predict the GABA monoclinic crystal to be an indirect gap semiconductor with a gap value of 5.02 ​eV, in good agreement with our experimental measurements. Considering the other three polymorphs, their fundamental gap values range from 4.6 ​eV to 5.16 ​eV (being direct for all of them, except the monohydrate). The absorption spectra calculations reveal a significant optical anisotropy for all GABA crystals, with the highest optical absorption for the monoclinic structure in the 5–6 ​eV energy range.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-05
dc.date.accessioned.none.fl_str_mv 2025-08-25T16:35:46Z
dc.date.available.none.fl_str_mv 2025-08-25T16:35:46Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Silva, J., Echeverry, J., dos Santos, R., de Paula, V., Guedes, M., e Silva, B., Valentini, A., Caetano, E. y Freire, V. Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties. (2023). Journal of Solid State Chemistry, 321. DOI: 10.1016/j.jssc.2023.123900
dc.identifier.doi.none.fl_str_mv 10.1016/j.jssc.2023.123900
dc.identifier.eissn.none.fl_str_mv 1095726X
dc.identifier.issn.none.fl_str_mv 00224596
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5539
dc.identifier.url.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0022459623000683
identifier_str_mv Silva, J., Echeverry, J., dos Santos, R., de Paula, V., Guedes, M., e Silva, B., Valentini, A., Caetano, E. y Freire, V. Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties. (2023). Journal of Solid State Chemistry, 321. DOI: 10.1016/j.jssc.2023.123900
10.1016/j.jssc.2023.123900
1095726X
00224596
url https://hdl.handle.net/20.500.12313/5539
https://www.sciencedirect.com/science/article/pii/S0022459623000683
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationstartpage.none.fl_str_mv 123900
dc.relation.citationvolume.none.fl_str_mv 321
dc.relation.ispartofjournal.none.fl_str_mv Journal of Solid State Chemistry
dc.relation.references.none.fl_str_mv M.C. Gravielle Activation-induced regulation of GABAA receptors: is there a link with the molecular basis of benzodiazepine tolerance? Pharmacol. Res. (2016)
F.P.A. Fabbiani et al. High-pressure recrystallisation—a route to new polymorphs and solvates of acetamide and parabanic acid J. Cryst. Growth (2005)
N. Qiao et al. Pharmaceutical cocrystals: an overview Int. J. Pharm. (2011)
C.M. da Silva et al. Raman spectroscopy of γ-aminobutyric acid under high pressure Vib. Spectrosc. (2017)
Y. Du et al. Spectroscopic investigation on structure and PH dependent cocrystal formation between gamma-aminobutyric acid and benzoic acid Spectrochim. Acta Mol. Biomol. Spectrosc. (2018)
J.R. Cândido-Júnior et al. Monoclinic and orthorhombic cysteine crystals are small gap insulators Chem. Phys. Lett. (2011)
V.F. de Paula et al. Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals J. Solid State Chem. (2022)
J.G.G. da Silva Filho et al. A comparative density functional theory study of electronic structure and optical properties of gamma-aminobutyric acid and its cocrystals with oxalic and benzoic acid Chem. Phys. Lett. (2013)
S. Miertuš et al. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects Chem. Phys. (1981)
E.K.U. Gross et al. Time-dependent density-functional theory Adv. Quant. Chem. (1990)
O. Karalti et al. Correcting density functionals for dispersion interactions using pseudopotentials Chem. Phys. Lett. (2014)
B.G. Pfrommer et al. Relaxation of crystals with the quasi-Newton method J. Comput. Phys. (1997)
I. Mandal et al. Charge transfer transitions originating from charged amino acids account for 300-800 Nm UV-visible electronic absorption spectra in proteins Biophys. J. (2017)
G. Venkatesan et al. Optical and electrical properties of Glycine manganese chloride crystal Phys. B Condens. Matter (2017)
T.G. Smart et al. A half century of γ-aminobutyric acid Brain Neurosci Adv (2019)
G. Johnston GABAA receptor channel pharmacology Curr. Pharmaceut. Des. (2005)
M. Cozzolino et al. Precise 3D modulation of electro-optical parameters during neurotransmitter uncaging experiments with neurons in vitro Sci. Rep. (2020)
S. Blanco et al. Conformations of γ-aminobutyric acid (GABA): the role of the N→π∗ interaction Angew. Chem. Int. Ed. (2010)
K. Tanaka et al. Molecular conformations of γ-aminobutyric acid and γ-Amino-β-Hydroxybutyric acid in aqueous solution Bull. Chem. Soc. Jpn. (1978)
C. Cheng et al. Broadband terahertz recognizing conformational characteristics of a significant neurotransmitter γ-aminobutyric acid RSC Adv. (2019)
A.J. Dobson et al. γ-Aminobutyric acid: a novel tetragonal phase Acta Crystallogr. C (1996)
H.-P. Weber et al. The neutron structure of and thermal motion in γ-aminobutyric acid (GABA) at 122 K Acta Crystallogr. B (1983)
K. Tomita et al. Crystal and molecular structure of ω-amino acids, ω-amino sulfonic acids and their derivatives. IV. The crystal and molecular structure of γ-aminobutyric acid (GABA), a nervous inhibitory transmitter Bull. Chem. Soc. Jpn. (1973)
E.J.C. de Vries et al. A hexagonal solvate of the neurotransmitter γ-aminobutyric acid CrystEngComm (2011)
F.P.A. Fabbiani et al. Pharmaceutical hydrates under ambient conditions from high-pressure seeds: a case study of GABA monohydrate Chem. Commun. (2014)
E.G. Steward et al. The crystal structure of γ-aminobutyric acid hydrochloride: a refinement Acta Crystallogr. B (1973)
A.S. Sinha et al. Cocrystallization of nutraceuticals Cryst. Growth Des. (2015)
D.M. Suresh et al. Vibrational spectra of γ-aminobutyric acid
E.W.S. Caetano et al. Anhydrous proline crystals: structural optimization, optoelectronic properties, effective masses and Frenkel exciton energy J. Phys. Chem. Solid. (2018)
J.S. Rodríguez et al. Structural and optoelectronic properties of the α-, β-, and γ-Glycine polymorphs and the Glycine dihydrate crystal: a DFT study Cryst. Growth Des. (2019)
S.N. Costa et al. L-serine anhydrous crystals: structural, electronic, and optical properties by first-principles calculations, and optical absorption measurement Cryst. Growth Des. (2013)
F.F. Maia et al. Anhydrous crystals of DNA bases are wide gap semiconductors J. Chem. Phys. (2011)
A.M. Silva et al. Optical absorption and DFT calculations in L-aspartic acid anhydrous crystals: charge carrier effective masses point to semiconducting behavior Phys. Rev. B (2012)
M.B. da Silva et al. Improved description of the structural and optoelectronic properties of DNA/RNA nucleobase anhydrous crystals: experiment and dispersion-corrected density functional theory calculations Phys. Rev. B (2017)
E.W.S. Caetano et al. Molecular signature in the photoluminescence of alpha-Glycine, L-alanine and L-asparagine crystals: detection, ab initio calculations, and bio-sensor applications AIP Conf. Proc. (2005)
M.Z.S. Flores et al. Optical absorption and electronic band structure first-principles calculations of α-Glycine crystals Phys. Rev. B Condens. Matter (2008)
A.M. Silva et al. Assessing the role of water on the electronic structure and vibrational spectra of monohydrated L-aspartic acid crystals Cryst. Growth Des. (2013)
G. Zanatta et al. L-asparagine crystals with wide gap semiconductor features: optical absorption measurements and density functional theory computations J. Chem. Phys. (2014)
dc.rights.eng.fl_str_mv © 2023 Elsevier Inc.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv © 2023 Elsevier Inc.
http://purl.org/coar/access_right/c_14cb
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv closedAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc.
dc.publisher.place.none.fl_str_mv Estados Unidos
publisher.none.fl_str_mv Academic Press Inc.
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S0022459623000683
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/a8395408-d097-423c-a483-f2bbcf8d2940/download
https://repositorio.unibague.edu.co/bitstreams/54afedc4-8db9-465f-820a-d1291b849991/download
https://repositorio.unibague.edu.co/bitstreams/c999c83d-2bc7-44af-a8a2-e60a67e979be/download
https://repositorio.unibague.edu.co/bitstreams/d6dc9556-2e61-4ebf-9110-5958bb729704/download
bitstream.checksum.fl_str_mv 2fa3e590786b9c0f3ceba1b9656b7ac3
792c58076fd9399677b877402f2544b5
28ca5e0ecd056640fe4883c556dc774f
55e9dcd31e169621e039c164a5008618
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059978988683264
spelling Silva, José Barbosa1186c35e-7dd9-4893-b2e1-375817264c0a-1Torrente Rocha, Juan Josef495c010-d77d-4bef-bfc7-bb59287717d7600Niño Rodriguez, claudia patriciaf9e590b0-625f-409a-9898-754ce67144bf600de Paula, Valdir Ferreira5f0d5253-12a3-4b02-8390-9956f1681580-1Guedes, Maria Izabel Florindoe018e616-a1a9-4f25-8e52-437bbac96177-1e Silva, Bruno Poti354d758e-42c8-4da1-93b2-d465ff94b97e-1Valentini, Antoninho439fda90-ff24-4a06-968a-cfd843f55cf3-1Gonzalez Santos, Jeni Bianda705c74b2-d4f5-462a-9935-eb4be7d7bce4600Freire, Valder Nogueira71347990-b65a-45e1-be9b-b8e0372b1ab5-12025-08-25T16:35:46Z2025-08-25T16:35:46Z2023-05This work presents the formation of monoclinic γ-aminobutyric acid (GABA) crystals grown from an aqueous ethanol solution with the dimensions 4 ​× ​1 ​× ​0.6 ​mm3. The structural properties of the grown crystal were evaluated via X-ray diffraction analysis of the powder and single crystal, which confirmed a monoclinic crystal system with space group P21/c. Thermal stability and the melting point of the synthesized GABA crystal were investigated using TG-DSC measurements. We also characterized experimentally monoclinic and molecular GABA solvated in water, obtaining its optical absorption spectrum in the UV-VIS region. Time-dependent DFT calculations were performed for the GABA molecule in the neutral and zwitterion forms to understand their optical absorption features. Structural, electronic, and optical properties of four γ-aminobutyric acid (GABA) crystal polymorphs (monoclinic, tetragonal, hexagonal, and monohydrate) were achieved through DFT calculations employing a dispersion corrected exchange-correlation functional. Differences in the electronic and optical properties between polymorphs are discussed. We predict the GABA monoclinic crystal to be an indirect gap semiconductor with a gap value of 5.02 ​eV, in good agreement with our experimental measurements. Considering the other three polymorphs, their fundamental gap values range from 4.6 ​eV to 5.16 ​eV (being direct for all of them, except the monohydrate). The absorption spectra calculations reveal a significant optical anisotropy for all GABA crystals, with the highest optical absorption for the monoclinic structure in the 5–6 ​eV energy range.application/pdfSilva, J., Echeverry, J., dos Santos, R., de Paula, V., Guedes, M., e Silva, B., Valentini, A., Caetano, E. y Freire, V. Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties. (2023). Journal of Solid State Chemistry, 321. DOI: 10.1016/j.jssc.2023.12390010.1016/j.jssc.2023.1239001095726X00224596https://hdl.handle.net/20.500.12313/5539https://www.sciencedirect.com/science/article/pii/S0022459623000683engAcademic Press Inc.Estados Unidos123900321Journal of Solid State ChemistryM.C. Gravielle Activation-induced regulation of GABAA receptors: is there a link with the molecular basis of benzodiazepine tolerance? Pharmacol. Res. (2016)F.P.A. Fabbiani et al. High-pressure recrystallisation—a route to new polymorphs and solvates of acetamide and parabanic acid J. Cryst. Growth (2005)N. Qiao et al. Pharmaceutical cocrystals: an overview Int. J. Pharm. (2011)C.M. da Silva et al. Raman spectroscopy of γ-aminobutyric acid under high pressure Vib. Spectrosc. (2017)Y. Du et al. Spectroscopic investigation on structure and PH dependent cocrystal formation between gamma-aminobutyric acid and benzoic acid Spectrochim. Acta Mol. Biomol. Spectrosc. (2018)J.R. Cândido-Júnior et al. Monoclinic and orthorhombic cysteine crystals are small gap insulators Chem. Phys. Lett. (2011)V.F. de Paula et al. Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals J. Solid State Chem. (2022)J.G.G. da Silva Filho et al. A comparative density functional theory study of electronic structure and optical properties of gamma-aminobutyric acid and its cocrystals with oxalic and benzoic acid Chem. Phys. Lett. (2013)S. Miertuš et al. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects Chem. Phys. (1981)E.K.U. Gross et al. Time-dependent density-functional theory Adv. Quant. Chem. (1990)O. Karalti et al. Correcting density functionals for dispersion interactions using pseudopotentials Chem. Phys. Lett. (2014)B.G. Pfrommer et al. Relaxation of crystals with the quasi-Newton method J. Comput. Phys. (1997)I. Mandal et al. Charge transfer transitions originating from charged amino acids account for 300-800 Nm UV-visible electronic absorption spectra in proteins Biophys. J. (2017)G. Venkatesan et al. Optical and electrical properties of Glycine manganese chloride crystal Phys. B Condens. Matter (2017)T.G. Smart et al. A half century of γ-aminobutyric acid Brain Neurosci Adv (2019)G. Johnston GABAA receptor channel pharmacology Curr. Pharmaceut. Des. (2005)M. Cozzolino et al. Precise 3D modulation of electro-optical parameters during neurotransmitter uncaging experiments with neurons in vitro Sci. Rep. (2020)S. Blanco et al. Conformations of γ-aminobutyric acid (GABA): the role of the N→π∗ interaction Angew. Chem. Int. Ed. (2010)K. Tanaka et al. Molecular conformations of γ-aminobutyric acid and γ-Amino-β-Hydroxybutyric acid in aqueous solution Bull. Chem. Soc. Jpn. (1978)C. Cheng et al. Broadband terahertz recognizing conformational characteristics of a significant neurotransmitter γ-aminobutyric acid RSC Adv. (2019)A.J. Dobson et al. γ-Aminobutyric acid: a novel tetragonal phase Acta Crystallogr. C (1996)H.-P. Weber et al. The neutron structure of and thermal motion in γ-aminobutyric acid (GABA) at 122 K Acta Crystallogr. B (1983)K. Tomita et al. Crystal and molecular structure of ω-amino acids, ω-amino sulfonic acids and their derivatives. IV. The crystal and molecular structure of γ-aminobutyric acid (GABA), a nervous inhibitory transmitter Bull. Chem. Soc. Jpn. (1973)E.J.C. de Vries et al. A hexagonal solvate of the neurotransmitter γ-aminobutyric acid CrystEngComm (2011)F.P.A. Fabbiani et al. Pharmaceutical hydrates under ambient conditions from high-pressure seeds: a case study of GABA monohydrate Chem. Commun. (2014)E.G. Steward et al. The crystal structure of γ-aminobutyric acid hydrochloride: a refinement Acta Crystallogr. B (1973)A.S. Sinha et al. Cocrystallization of nutraceuticals Cryst. Growth Des. (2015)D.M. Suresh et al. Vibrational spectra of γ-aminobutyric acidE.W.S. Caetano et al. Anhydrous proline crystals: structural optimization, optoelectronic properties, effective masses and Frenkel exciton energy J. Phys. Chem. Solid. (2018)J.S. Rodríguez et al. Structural and optoelectronic properties of the α-, β-, and γ-Glycine polymorphs and the Glycine dihydrate crystal: a DFT study Cryst. Growth Des. (2019)S.N. Costa et al. L-serine anhydrous crystals: structural, electronic, and optical properties by first-principles calculations, and optical absorption measurement Cryst. Growth Des. (2013)F.F. Maia et al. Anhydrous crystals of DNA bases are wide gap semiconductors J. Chem. Phys. (2011)A.M. Silva et al. Optical absorption and DFT calculations in L-aspartic acid anhydrous crystals: charge carrier effective masses point to semiconducting behavior Phys. Rev. B (2012)M.B. da Silva et al. Improved description of the structural and optoelectronic properties of DNA/RNA nucleobase anhydrous crystals: experiment and dispersion-corrected density functional theory calculations Phys. Rev. B (2017)E.W.S. Caetano et al. Molecular signature in the photoluminescence of alpha-Glycine, L-alanine and L-asparagine crystals: detection, ab initio calculations, and bio-sensor applications AIP Conf. Proc. (2005)M.Z.S. Flores et al. Optical absorption and electronic band structure first-principles calculations of α-Glycine crystals Phys. Rev. B Condens. Matter (2008)A.M. Silva et al. Assessing the role of water on the electronic structure and vibrational spectra of monohydrated L-aspartic acid crystals Cryst. Growth Des. (2013)G. Zanatta et al. L-asparagine crystals with wide gap semiconductor features: optical absorption measurements and density functional theory computations J. Chem. Phys. (2014)© 2023 Elsevier Inc.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.sciencedirect.com/science/article/abs/pii/S0022459623000683Ácido γ-aminobutírico molecular y sus cristales - Propiedades estructuralesÁcido γ-aminobutírico molecular y sus cristales - Propiedades electrónicaDFT calculationsGABA polymorphs CrystalsOptical propertiesStructural propertiesγ-amino butyric acid (GABA) crystalMolecular γ-amino butyric acid and its crystals: Structural, electronic and optical propertiesArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/a8395408-d097-423c-a483-f2bbcf8d2940/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf132154https://repositorio.unibague.edu.co/bitstreams/54afedc4-8db9-465f-820a-d1291b849991/download792c58076fd9399677b877402f2544b5MD52TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain2372https://repositorio.unibague.edu.co/bitstreams/c999c83d-2bc7-44af-a8a2-e60a67e979be/download28ca5e0ecd056640fe4883c556dc774fMD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg21137https://repositorio.unibague.edu.co/bitstreams/d6dc9556-2e61-4ebf-9110-5958bb729704/download55e9dcd31e169621e039c164a5008618MD5420.500.12313/5539oai:repositorio.unibague.edu.co:20.500.12313/55392025-09-12 11:48:59.146https://creativecommons.org/licenses/by-nc/4.0/© 2023 Elsevier Inc.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=