Spotting Leaders in Organizations with Graph Convolutional Networks, Explainable Artificial Intelligence, and Automated Machine Learning

Over the past few decades, the study of leadership theory has expanded across various disciplines, delving into the intricacies of human behavior and defining the roles of individuals within organizations. Its primary objective is to identify leaders who play significant roles in the communication f...

Full description

Autores:
Xie, Yunbo
Meisel, Jose D.
Meisel, Carlos A.
Betancourt, Juan Jose
Yan, Jianqi
Bugiolacchi, Roberto
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5911
Acceso en línea:
https://doi.org/10.3390/ app14209461
https://hdl.handle.net/20.500.12313/5911
https://www.mdpi.com/2076-3417/14/20/9461
Palabra clave:
Redes Convolucionales de Grafos
Inteligencia Artificial Explicable
Aprendizaje Automático Automatizado
Artificial intelligence
Contrastive Learning
Economic and social effects
Federated learning
Graph embeddings
Rights
openAccess
License
© 2024 by the authors.
id UNIBAGUE2_d8b41200d8f75d99795b667d8e20ac33
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5911
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Spotting Leaders in Organizations with Graph Convolutional Networks, Explainable Artificial Intelligence, and Automated Machine Learning
title Spotting Leaders in Organizations with Graph Convolutional Networks, Explainable Artificial Intelligence, and Automated Machine Learning
spellingShingle Spotting Leaders in Organizations with Graph Convolutional Networks, Explainable Artificial Intelligence, and Automated Machine Learning
Redes Convolucionales de Grafos
Inteligencia Artificial Explicable
Aprendizaje Automático Automatizado
Artificial intelligence
Contrastive Learning
Economic and social effects
Federated learning
Graph embeddings
title_short Spotting Leaders in Organizations with Graph Convolutional Networks, Explainable Artificial Intelligence, and Automated Machine Learning
title_full Spotting Leaders in Organizations with Graph Convolutional Networks, Explainable Artificial Intelligence, and Automated Machine Learning
title_fullStr Spotting Leaders in Organizations with Graph Convolutional Networks, Explainable Artificial Intelligence, and Automated Machine Learning
title_full_unstemmed Spotting Leaders in Organizations with Graph Convolutional Networks, Explainable Artificial Intelligence, and Automated Machine Learning
title_sort Spotting Leaders in Organizations with Graph Convolutional Networks, Explainable Artificial Intelligence, and Automated Machine Learning
dc.creator.fl_str_mv Xie, Yunbo
Meisel, Jose D.
Meisel, Carlos A.
Betancourt, Juan Jose
Yan, Jianqi
Bugiolacchi, Roberto
dc.contributor.author.none.fl_str_mv Xie, Yunbo
Meisel, Jose D.
Meisel, Carlos A.
Betancourt, Juan Jose
Yan, Jianqi
Bugiolacchi, Roberto
dc.subject.armarc.none.fl_str_mv Redes Convolucionales de Grafos
Inteligencia Artificial Explicable
Aprendizaje Automático Automatizado
topic Redes Convolucionales de Grafos
Inteligencia Artificial Explicable
Aprendizaje Automático Automatizado
Artificial intelligence
Contrastive Learning
Economic and social effects
Federated learning
Graph embeddings
dc.subject.proposal.eng.fl_str_mv Artificial intelligence
Contrastive Learning
Economic and social effects
Federated learning
Graph embeddings
description Over the past few decades, the study of leadership theory has expanded across various disciplines, delving into the intricacies of human behavior and defining the roles of individuals within organizations. Its primary objective is to identify leaders who play significant roles in the communication flow. In addition, behavioral theory posits that leaders can be distinguished based on their daily conduct, while social network analysis provides valuable insights into behavioral patterns. Our study investigates five and six types of social networks frequently observed in different organizations. This study is conducted using datasets we collected from an IT company and public datasets collected from a manufacturing company for the thorough evaluation of prediction performance. We leverage PageRank and effective word embedding techniques to obtain novel features. State-of-the-art performance is obtained using various statistical machine learning methods, graph convolutional networks (GCN), automated machine learning (AutoML), and explainable artificial intelligence (XAI). More specifically, our approach can achieve state-of-the-art performance with an accuracy close to (Formula presented.) for leaders identification with data from projects of different types. This investigation contributes to the establishment of sustainable leadership practices by aiding organizations in retaining their leadership talent.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-10
dc.date.accessioned.none.fl_str_mv 2025-11-06T19:45:11Z
dc.date.available.none.fl_str_mv 2025-11-06T19:45:11Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Xie, Y.; Meisel, J.D.; Meisel, C.A.; Betancourt, J.J.; Yan, J.; Bugiolacchi, R. Spotting Leaders in Organizations with Graph Convolutional Networks, Explainable Artificial Intelligence, and Automated Machine Learning. Appl. Sci. 2024, 14, 9461. https://doi.org/10.3390/ app14209461
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/ app14209461
dc.identifier.issn.none.fl_str_mv 20763417
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5911
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/2076-3417/14/20/9461
identifier_str_mv Xie, Y.; Meisel, J.D.; Meisel, C.A.; Betancourt, J.J.; Yan, J.; Bugiolacchi, R. Spotting Leaders in Organizations with Graph Convolutional Networks, Explainable Artificial Intelligence, and Automated Machine Learning. Appl. Sci. 2024, 14, 9461. https://doi.org/10.3390/ app14209461
20763417
url https://doi.org/10.3390/ app14209461
https://hdl.handle.net/20.500.12313/5911
https://www.mdpi.com/2076-3417/14/20/9461
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationissue.none.fl_str_mv 20
dc.relation.citationvolume.none.fl_str_mv 14
dc.relation.ispartofjournal.none.fl_str_mv Applied Sciences
dc.relation.references.none.fl_str_mv Dinh, J.E.; Lord, R.G.; Gardner, W.L.; Meuser, J.D.; Liden, R.C.; Hu, J. Leadership theory and research in the new millennium: Current theoretical trends and changing perspectives. Leadersh. Q. 2014, 25, 36–62
Montalván, S.E.S.; Aguirre, I.P.V.; Sánchez, J.P.P.; Condolo, C.R.Q. Teorías de liderazgo contemporáneo: Análisis de la dinámica relacional. Oikos Rev. Esc. Adm. Econ. 2014, 18, 41–61
Retamozo, M. La teoría política del populismo: Usos y controversias en América Latina en la perspectiva posfundacional. Latinoam. Rev. Estud. Latinoam. 2017, 125–151.
Conger, J.A.; Kanungo, R.N. Toward a behavioral theory of charismatic leadership in organizational settings. Acad. Manag. Rev. 1987, 12, 637–647.
Chica, C.A.P.; Álvarez, J.C.E.; Zurita, I.N.; Clerque, S.E.M. El Marketing como estrategia de posicionamiento en empresas de servicios. Dominio Cienc. 2019, 5, 784–802.
Quezada Torres, C.; Illesca Pretty, M.; Cabezas González, M. Percepción del liderazgo en las (os) enfermeras (os) de un hospital del sur de Chile. Cienc. Enferm. 2014, 20, 41–51.
Galvis-García, L.L.; Cárdenas-Triana, N.A. Gestión del talento humano en el sector público en Colombia. Apunt. Adm. (Univ. Fr. Paula Santander) 2016, 1, 20–28.
Zárate Torres, R.A.; Matviuk, S. Inteligencia emocional y prácticas de liderazgo en las organizaciones colombianas. Cuad. Adm. (Univ. Valle) 2012, 28, 91–104.
Pedraja-Rejas, L.; Rodríguez-Ponce, E.; Rodríguez-Ponce, J. Liderazgo y decisiones estratégicas: Una perspectiva integradora. Interciencia 2006, 31, 577–582.
Español, E.P.; Fons, V.S. El liderazgo empresarial femenino: Reflexiones y paradojas. TRABAJO Rev. Iberoam. Relac. Laborales 2006, 17, 169–186
Olaniyan, O.S.; Hystad, S.W. Employees’ psychological capital, job satisfaction, insecurity, and intentions to quit: The direct and indirect effects of authentic leadership. Rev. Psicol. Trab. Organ. 2016, 32, 163–171.
Molina, J.L.; Teves, L.; Jariego, I.M. El análisis de redes en Iberoamérica: Una agenda de investigación. Redes. Rev. Hisp. Anál. Redes Soc. 2004, 6, 1–15.
Meisel, C.A.; Meisel, J.D.; Bermeo-Andrade, H.; Carranza, L.; Zsifkovits, H. Social network analysis to understand the dynamics of global supply chains. Kybernetes 2023, 52, 2992–3021.
Matta, A. Aportes del análisis de redes sociales a la gestión de estrategias de cooperación empresarial. Redes. Rev. Hisp. Anál. Redes Soc. 2012, 23, 146–177.
Torres, C.E.T. Inteligencia colectiva: Enfoque para el análisis de redes. Estud. Gerenciales 2014, 30, 259–266.
Contreras, F.; Barbosa, D. Liderar Equipos de alto desempeño: Un gran reto para las organizaciones actuales. Univ. Empresa 2013, 15, 53–71.
Duran-Seguel, I.M.; Gallegos, M.E.; Cabezas, D.E. Estilos de liderazgo y su influencia en el clima laboral. Caso de estudio de una empresa exportadora de alimentos. Rev. Espac. 2019, 40, 3–17.
Cruz-Ortiz, V.; Salanova, M.; Martínez, I.M. Liderazgo transformacional: Investigación actual y retos futuros. Rev. Univ. Empresa 2013, 15, 13–32.
Hussain, D.A. Identifying leader or follower using a binary approach. In Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China, 17–19 March 2010; Volume 1, pp. 17–19.
Vergara, E. Caracterización de estilos de liderazgo mediante el análisis de redes sociales. J. Bus. 2014, 6, 30–42.
Shamaileh, N.; AlHamad, A.; Al-Qudah, M.; Mohammad, A.; Alhalalmeh, D.M.; Al-Azzam, M.; Alshurideh, M. The effect of e-HRM on organizational performance and talent management: A strategic evolution perspective. Int. J. Data Netw. Sci. 2022, 6, 1043–1048.
Knaub, A.V.; Henderson, C.; Fisher, K.Q. Finding the leaders: An examination of social network analysis and leadership identification in STEM education change. Int. J. Stem Educ. 2018, 5, 1–14.
Andrews, T.; Conaway, E.; Zhao, J.; Dolan, E. Colleagues as Change Agents: How Department Networks and Opinion Leaders Influence Teaching at a Single Research University. Cell Biol. Educ. 2016, 15, ar15.
Fabbri, T.; Mandreoli, F.; Martoglia, R.; Scapolan, A.C. Employee Attitudes and (Digital) Collaboration Data: A Preliminary Analysis in the HRM Field. In Proceedings of the 2019 28th International Conference on Computer Communication and Networks (ICCCN), Valencia, Spain, 29 July–1 August 2019; pp. 1–6
Buettner, R. A Framework for Recommender Systems in Online Social Network Recruiting: An Interdisciplinary Call to Arms. In Proceedings of the 2014 47th Hawaii International Conference on System Sciences, Waikoloa, HI, USA, 6–9 January 2014; pp. 1415–1424.
Billah, S.M.; Gauch, S. Social network analysis for predicting emerging researchers. In Proceedings of the 2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), Lisbon, Portugal, 12–14 November 2015; Volume 1, pp. 27–35.
Rani, P.; Tayal, D.K.; Bhatia, M.P.S. Sociocentric SNA on Fuzzy Graph Social Network Model. Soft Comput. 2022, 27, 13201–13216.
Chan, J.Y.K.; Wang, Z.; Xie, Y.; Meisel, C.A.; Meisel, J.D.; Solano, P.; Murillo, H. Identifying Potential Managerial Personnel Using PageRank and Social Network Analysis: The Case Study of a European IT Company. Appl. Sci. 2021, 11, 6985.
Vergara, J.R.; Castillo, S.M.B. Factores que influyen en la competitividad: Un análisis empírico para las micro y pequeñas empresas del municipio de guaduas. Face Rev. Fac. Cienc. Econ. Empres. 2016, 16, 18–27.
Cross, R.L.; Parker, A. The Hidden Power of Social Networks: Understanding How Work Really Gets Done in Organizations; Harvard Business Press: Cambridge, MA, USA, 2004.
Wever, M.; Tornede, A.; Mohr, F.; Hüllermeier, E. AutoML for multi-label classification: Overview and empirical evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3037–3054.
Jin, Z.; Zhao, X.; Liu, Y. Heterogeneous graph network embedding for sentiment analysis on social media. Cogn. Comput. 2021, 13, 81–95.
Covert, I.; Lundberg, S.; Lee, S.I. Explaining by removing: A unified framework for model explanation. J. Mach. Learn. Res. 2021, 22, 1–90.
Schmitt, M. Automated machine learning: AI-driven decision making in business analytics. Intell. Syst. Appl. 2023, 18, 200188.
Reiser, P.; Neubert, M.; Eberhard, A.; Torresi, L.; Zhou, C.; Shao, C.; Metni, H.; van Hoesel, C.; Schopmans, H.; Sommer, T.; et al. Graph neural networks for materials science and chemistry. Commun. Mater. 2022, 3, 93.
Muzio, G.; O’Bray, L.; Borgwardt, K. Biological network analysis with deep learning. Briefin. Bioinform. 2021, 22, 1515–1530.
Cao, P.; Zhu, Z.; Wang, Z.; Zhu, Y.; Niu, Q. Applications of graph convolutional networks in computer vision. Neural Comput. Appl. 2022, 34, 13387–13405
Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should i trust you?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144.
Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774.
Chen, V.; Liao, Q.V.; Wortman Vaughan, J.; Bansal, G. Understanding the role of human intuition on reliance in human-AI decision-making with explanations. Proc. ACM Hum.-Comput. Interact. 2023, 7, 1–32.
Hogan, A.; Blomqvist, E.; Cochez, M.; d’Amato, C.; Melo, G.D.; Gutierrez, C.; Kirrane, S.; Gayo, J.E.L.; Navigli, R.; Neumaier, S.; et al. Knowledge graphs. ACM Comput. Surv. 2021, 54, 1–37.
Page, L. The PageRank Citation Ranking: Bringing Order to the Web. Technical Report. 1999. Available online: http://ilpubs.stanford.edu:8090/422/ (accessed on 16 June 2024).
Ding, Y.; Yan, E.; Frazho, A.; Caverlee, J. PageRank for ranking authors in co-citation networks. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 2229–2243.
Boldi, P.; Santini, M.; Vigna, S. PageRank as a function of the damping factor. In Proceedings of the 14th International Conference on World Wide Web, Chiba, Japan, 10–14 May 2005; pp. 557–566.
Rizkallah, S.; Atiya, A.F.; Shaheen, S.; Mahgoub, H.E. ArSphere: Arabic word vectors embedded in a polar sphere. Int. J. Speech Technol. 2023, 26, 95–111.
Wani, J.A.; Sharma, S.; Muzamil, M.; Ahmed, S.; Sharma, S.; Singh, S. Machine learning and deep learning based computational techniques in automatic agricultural diseases detection: Methodologies, applications, and challenges. Arch. Comput. Methods Eng. 2022, 29, 641–677.
Zhang, J.; Li, C.; Yin, Y.; Zhang, J.; Grzegorzek, M. Applications of artificial neural networks in microorganism image analysis: A comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual transformer. Artif. Intell. Rev. 2022, 56, 1013–1070.
Li, Z.; Tang, J.; Zhao, C.; Gao, F. Improved centrality measure based on the adapted PageRank algorithm for urban transportation multiplex networks. Chaos Solitons Fractals 2023, 167, 112998.
Zhang, S.; Tong, H.; Xu, J.; Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 2019, 6, 1–23.
Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv. (CSUR) 2017, 50, 1–45.
Vergara, J.R.; Estévez, P.A. A review of feature selection methods based on mutual information. Neural Comput. Appl. 2014, 24, 175–186.
Bennasar, M.; Hicks, Y.; Setchi, R. Feature selection using joint mutual information maximisation. Expert Syst. Appl. 2015, 42, 8520–8532.
Jeon, H.; Oh, S. Hybrid-Recursive Feature Elimination for Efficient Feature Selection. Appl. Sci. 2020, 10, 3211
Luo, S.; Leung, A.P.; Hui, C.Y.; Li, K.L. An investigation on the factors affecting machine learning classifications in gamma-ray astronomy. Mon. Not. R. Astron. Soc. 2020, 492, 5377–5390.
Granitto, P.M.; Furlanello, C.; Biasioli, F.; Gasperi, F. Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemom. Intell. Lab. Syst. 2006, 83, 83–90.
Domínguez-Jiménez, J.A.; Campo-Landines, K.C.; Martínez-Santos, J.C.; Delahoz, E.J.; Contreras-Ortiz, S.H. A machine learning model for emotion recognition from physiological signals. Biomed. Signal Process. Control. 2020, 55, 101646.
Rtayli, N.; Enneya, N. Enhanced credit card fraud detection based on SVM-recursive feature elimination and hyper-parameters optimization. J. Inf. Secur. Appl. 2020, 55, 102596.
Belle, V.; Papantonis, I. Principles and Practice of Explainable Machine Learning. Front. Big Data 2021, 4, 688969.
Lipton, Z.C. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue 2018, 16, 31–57.
Doshi-Velez, F.; Kim, B. Towards A Rigorous Science of Interpretable Machine Learning. arXiv 2017, arXiv:1702.08608.
Mangalathu, S.; Hwang, S.H.; Jeon, J.S. Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach. Eng. Struct. 2020, 219, 110927
Lundberg, S.M.; Erion, G.G.; Lee, S.I. Consistent individualized feature attribution for tree ensembles. arXiv 2018, arXiv:1802.03888.
Duan, S.; Wang, D.; Ren, J.; Lyu, F.; Zhang, Y.; Wu, H.; Shen, X. Distributed artificial intelligence empowered by end-edge-cloud computing: A survey. IEEE Commun. Surv. Tutor. 2022, 25, 591–624.
He, X.; Zhao, K.; Chu, X. AutoML: A survey of the state-of-the-art. Knowl.-Based Syst. 2021, 212, 106622
He, X.; Zhao, K.; Chu, X. AutoML: A survey of the state-of-the-art. Knowl.-Based Syst. 2021, 212, 106622
Costache, R.; Tin, T.T.; Arabameri, A.; Crăciun, A.; Ajin, R.; Costache, I.; Islam, A.R.M.T.; Abba, S.; Sahana, M.; Avand, M.; et al. Flash-flood hazard using deep learning based on H2O R package and fuzzy-multicriteria decision-making analysis. J. Hydrol. 2022, 609, 127747.
Bhatti, U.A.; Tang, H.; Wu, G.; Marjan, S.; Hussain, A. Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence. Int. J. Intell. Syst. 2023, 2023, 8342104.
Blakely, D.; Lanchantin, J.; Qi, Y. Time and space complexity of graph convolutional networks. Preprint 2021, 31, 2021
Arenas, M.; Barceló, P.; Bertossi, L.; Monet, M. The tractability of SHAP-score-based explanations for classification over deterministic and decomposable boolean circuits. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 6670–6678.
Arenas, M.; Barceló, P.; Bertossi, L.; Monet, M. On the complexity of SHAP-score-based explanations: Tractability via knowledge compilation and non-approximability results. J. Mach. Learn. Res. 2023, 24, 1–58
Van den Broeck, G.; Lykov, A.; Schleich, M.; Suciu, D. On the tractability of SHAP explanations. J. Artif. Intell. Res. 2022, 74, 851–886.
Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008.
Borgatti, S.P. Identifying sets of key players in a social network. Comput. Math. Organ. Theory 2006, 12, 21–34.
Dragicevic, A.Z.; Sinclair-Desgagné, B. Sustainable network dynamics. Ecol. Model. 2013, 270, 43–53
Hofmans, J.; Dóci, E.; Solinger, O.N.; Choi, W.; Judge, T.A. Capturing the dynamics of leader–follower interactions: Stalemates and future theoretical progress. J. Organ. Behav. 2019, 40, 382–385.
Korban, M.; Li, X. Ddgcn: A dynamic directed graph convolutional network for action recognition. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XX 16. Springer: Berlin/Heidelberg, Germany, 2020; pp. 761–776.
Errica, F.; Podda, M.; Bacciu, D.; Micheli, A. A fair comparison of graph neural networks for graph classification. arXiv 2019, arXiv:1912.09893.
Xu, K. Exploring Properties and Limitations of Graph Neural Networks (GNNs) in Software Verification. 2021. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1614108&dswid=-6300 (accessed on 6 June 2024)
Ghojogh, B.; Crowley, M. The theory behind overfitting, cross validation, regularization, bagging, and boosting: Tutorial. arXiv 2019, arXiv:1905.12787.
Liu, S.; Zhang, J. Machine-learning-based prediction of regularization parameters for seismic inverse problems. Acta Geophys. 2021, 69, 809–820.
Le, N.; Männel, B.; Jarema, M.; Luong, T.T.; Bui, L.K.; Vy, H.Q.; Schuh, H. K-Fold Cross-Validation: An Effective Hyperparameter Tuning Technique in Machine Learning on GNSS Time Series for Movement Forecast. In Proceedings of the International Conference on Mediterranean Geosciences Union, Istanbul, Turkey, 25–28 November 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 377–382
LeDell, E.; Poirier, S. H2O automl: Scalable automatic machine learning. In Proceedings of the AutoML Workshop at ICML, Virtual, 17–18 July 2020; ICML: San Diego, CA, USA, 2020; Volume 2020
Ding, M.; Rabbani, T.; An, B.; Wang, E.; Huang, F. Sketch-GNN: Scalable graph neural networks with sublinear training complexity. Adv. Neural Inf. Process. Syst. 2022, 35, 2930–2943
Ayyalasomayajula, M.M.T.; Chintala, S.K.; Ayyalasomayajula, S. A Cost-Effective Analysis of Machine Learning Workloads in Public Clouds: Is AutoML Always Worth Using. Int. J. Comput. Sci. Trends Technol. 2019, 7, 107–115.
Tsiakmaki, M.; Kostopoulos, G.; Kotsiantis, S.; Ragos, O. Implementing AutoML in educational data mining for prediction tasks. Appl. Sci. 2019, 10, 90.
Van de Ven, G.M.; Tuytelaars, T.; Tolias, A.S. Three types of incremental learning. Nat. Mach. Intell. 2022, 4, 1185–1197
Li, Z.; Hoiem, D. Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 2935–2947.
dc.rights.eng.fl_str_mv © 2024 by the authors.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv © 2024 by the authors.
http://purl.org/coar/access_right/c_abf2
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.place.none.fl_str_mv Suiza
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/1c0b51e3-5536-4344-95db-d43979e6a32d/download
https://repositorio.unibague.edu.co/bitstreams/43a0061d-e0aa-40f6-b7de-890aac22e773/download
https://repositorio.unibague.edu.co/bitstreams/a886cfcb-b720-4662-a457-d3d8573c6543/download
https://repositorio.unibague.edu.co/bitstreams/01887ac0-c081-4a73-a906-20b4e6aeff37/download
bitstream.checksum.fl_str_mv 7c8ae4e20c7a4dfea05f4ea364cdc1be
0e06868f48933e1a63b0a00ddd425a93
2fa3e590786b9c0f3ceba1b9656b7ac3
ba389a8f35732dbd55bee42509326669
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059990374121472
spelling Xie, Yunbocc2319ea-7ec8-4d7a-8062-cbe11a79b620-1Meisel, Jose D.fb6ee7e4-d71a-4ad0-ada1-224714cb0696-1Meisel, Carlos A.b8f9ef40-615f-4056-8ff6-ef9a58e64002-1Betancourt, Juan Josecd38a9d5-fe13-4776-b50f-3690cc2b386b-1Yan, Jianqif54a205c-64a4-4978-b5aa-d1c06a8aa21d-1Bugiolacchi, Roberto95058079-325c-4eef-97a0-fb54f31b5bc1-12025-11-06T19:45:11Z2025-11-06T19:45:11Z2024-10Over the past few decades, the study of leadership theory has expanded across various disciplines, delving into the intricacies of human behavior and defining the roles of individuals within organizations. Its primary objective is to identify leaders who play significant roles in the communication flow. In addition, behavioral theory posits that leaders can be distinguished based on their daily conduct, while social network analysis provides valuable insights into behavioral patterns. Our study investigates five and six types of social networks frequently observed in different organizations. This study is conducted using datasets we collected from an IT company and public datasets collected from a manufacturing company for the thorough evaluation of prediction performance. We leverage PageRank and effective word embedding techniques to obtain novel features. State-of-the-art performance is obtained using various statistical machine learning methods, graph convolutional networks (GCN), automated machine learning (AutoML), and explainable artificial intelligence (XAI). More specifically, our approach can achieve state-of-the-art performance with an accuracy close to (Formula presented.) for leaders identification with data from projects of different types. This investigation contributes to the establishment of sustainable leadership practices by aiding organizations in retaining their leadership talent.application/pdfXie, Y.; Meisel, J.D.; Meisel, C.A.; Betancourt, J.J.; Yan, J.; Bugiolacchi, R. Spotting Leaders in Organizations with Graph Convolutional Networks, Explainable Artificial Intelligence, and Automated Machine Learning. Appl. Sci. 2024, 14, 9461. https://doi.org/10.3390/ app14209461https://doi.org/10.3390/ app1420946120763417https://hdl.handle.net/20.500.12313/5911https://www.mdpi.com/2076-3417/14/20/9461engMultidisciplinary Digital Publishing Institute (MDPI)Suiza2014Applied SciencesDinh, J.E.; Lord, R.G.; Gardner, W.L.; Meuser, J.D.; Liden, R.C.; Hu, J. Leadership theory and research in the new millennium: Current theoretical trends and changing perspectives. Leadersh. Q. 2014, 25, 36–62Montalván, S.E.S.; Aguirre, I.P.V.; Sánchez, J.P.P.; Condolo, C.R.Q. Teorías de liderazgo contemporáneo: Análisis de la dinámica relacional. Oikos Rev. Esc. Adm. Econ. 2014, 18, 41–61Retamozo, M. La teoría política del populismo: Usos y controversias en América Latina en la perspectiva posfundacional. Latinoam. Rev. Estud. Latinoam. 2017, 125–151.Conger, J.A.; Kanungo, R.N. Toward a behavioral theory of charismatic leadership in organizational settings. Acad. Manag. Rev. 1987, 12, 637–647.Chica, C.A.P.; Álvarez, J.C.E.; Zurita, I.N.; Clerque, S.E.M. El Marketing como estrategia de posicionamiento en empresas de servicios. Dominio Cienc. 2019, 5, 784–802.Quezada Torres, C.; Illesca Pretty, M.; Cabezas González, M. Percepción del liderazgo en las (os) enfermeras (os) de un hospital del sur de Chile. Cienc. Enferm. 2014, 20, 41–51.Galvis-García, L.L.; Cárdenas-Triana, N.A. Gestión del talento humano en el sector público en Colombia. Apunt. Adm. (Univ. Fr. Paula Santander) 2016, 1, 20–28.Zárate Torres, R.A.; Matviuk, S. Inteligencia emocional y prácticas de liderazgo en las organizaciones colombianas. Cuad. Adm. (Univ. Valle) 2012, 28, 91–104.Pedraja-Rejas, L.; Rodríguez-Ponce, E.; Rodríguez-Ponce, J. Liderazgo y decisiones estratégicas: Una perspectiva integradora. Interciencia 2006, 31, 577–582.Español, E.P.; Fons, V.S. El liderazgo empresarial femenino: Reflexiones y paradojas. TRABAJO Rev. Iberoam. Relac. Laborales 2006, 17, 169–186Olaniyan, O.S.; Hystad, S.W. Employees’ psychological capital, job satisfaction, insecurity, and intentions to quit: The direct and indirect effects of authentic leadership. Rev. Psicol. Trab. Organ. 2016, 32, 163–171.Molina, J.L.; Teves, L.; Jariego, I.M. El análisis de redes en Iberoamérica: Una agenda de investigación. Redes. Rev. Hisp. Anál. Redes Soc. 2004, 6, 1–15.Meisel, C.A.; Meisel, J.D.; Bermeo-Andrade, H.; Carranza, L.; Zsifkovits, H. Social network analysis to understand the dynamics of global supply chains. Kybernetes 2023, 52, 2992–3021.Matta, A. Aportes del análisis de redes sociales a la gestión de estrategias de cooperación empresarial. Redes. Rev. Hisp. Anál. Redes Soc. 2012, 23, 146–177.Torres, C.E.T. Inteligencia colectiva: Enfoque para el análisis de redes. Estud. Gerenciales 2014, 30, 259–266.Contreras, F.; Barbosa, D. Liderar Equipos de alto desempeño: Un gran reto para las organizaciones actuales. Univ. Empresa 2013, 15, 53–71.Duran-Seguel, I.M.; Gallegos, M.E.; Cabezas, D.E. Estilos de liderazgo y su influencia en el clima laboral. Caso de estudio de una empresa exportadora de alimentos. Rev. Espac. 2019, 40, 3–17.Cruz-Ortiz, V.; Salanova, M.; Martínez, I.M. Liderazgo transformacional: Investigación actual y retos futuros. Rev. Univ. Empresa 2013, 15, 13–32.Hussain, D.A. Identifying leader or follower using a binary approach. In Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China, 17–19 March 2010; Volume 1, pp. 17–19.Vergara, E. Caracterización de estilos de liderazgo mediante el análisis de redes sociales. J. Bus. 2014, 6, 30–42.Shamaileh, N.; AlHamad, A.; Al-Qudah, M.; Mohammad, A.; Alhalalmeh, D.M.; Al-Azzam, M.; Alshurideh, M. The effect of e-HRM on organizational performance and talent management: A strategic evolution perspective. Int. J. Data Netw. Sci. 2022, 6, 1043–1048.Knaub, A.V.; Henderson, C.; Fisher, K.Q. Finding the leaders: An examination of social network analysis and leadership identification in STEM education change. Int. J. Stem Educ. 2018, 5, 1–14.Andrews, T.; Conaway, E.; Zhao, J.; Dolan, E. Colleagues as Change Agents: How Department Networks and Opinion Leaders Influence Teaching at a Single Research University. Cell Biol. Educ. 2016, 15, ar15.Fabbri, T.; Mandreoli, F.; Martoglia, R.; Scapolan, A.C. Employee Attitudes and (Digital) Collaboration Data: A Preliminary Analysis in the HRM Field. In Proceedings of the 2019 28th International Conference on Computer Communication and Networks (ICCCN), Valencia, Spain, 29 July–1 August 2019; pp. 1–6Buettner, R. A Framework for Recommender Systems in Online Social Network Recruiting: An Interdisciplinary Call to Arms. In Proceedings of the 2014 47th Hawaii International Conference on System Sciences, Waikoloa, HI, USA, 6–9 January 2014; pp. 1415–1424.Billah, S.M.; Gauch, S. Social network analysis for predicting emerging researchers. In Proceedings of the 2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), Lisbon, Portugal, 12–14 November 2015; Volume 1, pp. 27–35.Rani, P.; Tayal, D.K.; Bhatia, M.P.S. Sociocentric SNA on Fuzzy Graph Social Network Model. Soft Comput. 2022, 27, 13201–13216.Chan, J.Y.K.; Wang, Z.; Xie, Y.; Meisel, C.A.; Meisel, J.D.; Solano, P.; Murillo, H. Identifying Potential Managerial Personnel Using PageRank and Social Network Analysis: The Case Study of a European IT Company. Appl. Sci. 2021, 11, 6985.Vergara, J.R.; Castillo, S.M.B. Factores que influyen en la competitividad: Un análisis empírico para las micro y pequeñas empresas del municipio de guaduas. Face Rev. Fac. Cienc. Econ. Empres. 2016, 16, 18–27.Cross, R.L.; Parker, A. The Hidden Power of Social Networks: Understanding How Work Really Gets Done in Organizations; Harvard Business Press: Cambridge, MA, USA, 2004.Wever, M.; Tornede, A.; Mohr, F.; Hüllermeier, E. AutoML for multi-label classification: Overview and empirical evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3037–3054.Jin, Z.; Zhao, X.; Liu, Y. Heterogeneous graph network embedding for sentiment analysis on social media. Cogn. Comput. 2021, 13, 81–95.Covert, I.; Lundberg, S.; Lee, S.I. Explaining by removing: A unified framework for model explanation. J. Mach. Learn. Res. 2021, 22, 1–90.Schmitt, M. Automated machine learning: AI-driven decision making in business analytics. Intell. Syst. Appl. 2023, 18, 200188.Reiser, P.; Neubert, M.; Eberhard, A.; Torresi, L.; Zhou, C.; Shao, C.; Metni, H.; van Hoesel, C.; Schopmans, H.; Sommer, T.; et al. Graph neural networks for materials science and chemistry. Commun. Mater. 2022, 3, 93.Muzio, G.; O’Bray, L.; Borgwardt, K. Biological network analysis with deep learning. Briefin. Bioinform. 2021, 22, 1515–1530.Cao, P.; Zhu, Z.; Wang, Z.; Zhu, Y.; Niu, Q. Applications of graph convolutional networks in computer vision. Neural Comput. Appl. 2022, 34, 13387–13405Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should i trust you?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144.Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774.Chen, V.; Liao, Q.V.; Wortman Vaughan, J.; Bansal, G. Understanding the role of human intuition on reliance in human-AI decision-making with explanations. Proc. ACM Hum.-Comput. Interact. 2023, 7, 1–32.Hogan, A.; Blomqvist, E.; Cochez, M.; d’Amato, C.; Melo, G.D.; Gutierrez, C.; Kirrane, S.; Gayo, J.E.L.; Navigli, R.; Neumaier, S.; et al. Knowledge graphs. ACM Comput. Surv. 2021, 54, 1–37.Page, L. The PageRank Citation Ranking: Bringing Order to the Web. Technical Report. 1999. Available online: http://ilpubs.stanford.edu:8090/422/ (accessed on 16 June 2024).Ding, Y.; Yan, E.; Frazho, A.; Caverlee, J. PageRank for ranking authors in co-citation networks. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 2229–2243.Boldi, P.; Santini, M.; Vigna, S. PageRank as a function of the damping factor. In Proceedings of the 14th International Conference on World Wide Web, Chiba, Japan, 10–14 May 2005; pp. 557–566.Rizkallah, S.; Atiya, A.F.; Shaheen, S.; Mahgoub, H.E. ArSphere: Arabic word vectors embedded in a polar sphere. Int. J. Speech Technol. 2023, 26, 95–111.Wani, J.A.; Sharma, S.; Muzamil, M.; Ahmed, S.; Sharma, S.; Singh, S. Machine learning and deep learning based computational techniques in automatic agricultural diseases detection: Methodologies, applications, and challenges. Arch. Comput. Methods Eng. 2022, 29, 641–677.Zhang, J.; Li, C.; Yin, Y.; Zhang, J.; Grzegorzek, M. Applications of artificial neural networks in microorganism image analysis: A comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual transformer. Artif. Intell. Rev. 2022, 56, 1013–1070.Li, Z.; Tang, J.; Zhao, C.; Gao, F. Improved centrality measure based on the adapted PageRank algorithm for urban transportation multiplex networks. Chaos Solitons Fractals 2023, 167, 112998.Zhang, S.; Tong, H.; Xu, J.; Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 2019, 6, 1–23.Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv. (CSUR) 2017, 50, 1–45.Vergara, J.R.; Estévez, P.A. A review of feature selection methods based on mutual information. Neural Comput. Appl. 2014, 24, 175–186.Bennasar, M.; Hicks, Y.; Setchi, R. Feature selection using joint mutual information maximisation. Expert Syst. Appl. 2015, 42, 8520–8532.Jeon, H.; Oh, S. Hybrid-Recursive Feature Elimination for Efficient Feature Selection. Appl. Sci. 2020, 10, 3211Luo, S.; Leung, A.P.; Hui, C.Y.; Li, K.L. An investigation on the factors affecting machine learning classifications in gamma-ray astronomy. Mon. Not. R. Astron. Soc. 2020, 492, 5377–5390.Granitto, P.M.; Furlanello, C.; Biasioli, F.; Gasperi, F. Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemom. Intell. Lab. Syst. 2006, 83, 83–90.Domínguez-Jiménez, J.A.; Campo-Landines, K.C.; Martínez-Santos, J.C.; Delahoz, E.J.; Contreras-Ortiz, S.H. A machine learning model for emotion recognition from physiological signals. Biomed. Signal Process. Control. 2020, 55, 101646.Rtayli, N.; Enneya, N. Enhanced credit card fraud detection based on SVM-recursive feature elimination and hyper-parameters optimization. J. Inf. Secur. Appl. 2020, 55, 102596.Belle, V.; Papantonis, I. Principles and Practice of Explainable Machine Learning. Front. Big Data 2021, 4, 688969.Lipton, Z.C. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue 2018, 16, 31–57.Doshi-Velez, F.; Kim, B. Towards A Rigorous Science of Interpretable Machine Learning. arXiv 2017, arXiv:1702.08608.Mangalathu, S.; Hwang, S.H.; Jeon, J.S. Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach. Eng. Struct. 2020, 219, 110927Lundberg, S.M.; Erion, G.G.; Lee, S.I. Consistent individualized feature attribution for tree ensembles. arXiv 2018, arXiv:1802.03888.Duan, S.; Wang, D.; Ren, J.; Lyu, F.; Zhang, Y.; Wu, H.; Shen, X. Distributed artificial intelligence empowered by end-edge-cloud computing: A survey. IEEE Commun. Surv. Tutor. 2022, 25, 591–624.He, X.; Zhao, K.; Chu, X. AutoML: A survey of the state-of-the-art. Knowl.-Based Syst. 2021, 212, 106622He, X.; Zhao, K.; Chu, X. AutoML: A survey of the state-of-the-art. Knowl.-Based Syst. 2021, 212, 106622Costache, R.; Tin, T.T.; Arabameri, A.; Crăciun, A.; Ajin, R.; Costache, I.; Islam, A.R.M.T.; Abba, S.; Sahana, M.; Avand, M.; et al. Flash-flood hazard using deep learning based on H2O R package and fuzzy-multicriteria decision-making analysis. J. Hydrol. 2022, 609, 127747.Bhatti, U.A.; Tang, H.; Wu, G.; Marjan, S.; Hussain, A. Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence. Int. J. Intell. Syst. 2023, 2023, 8342104.Blakely, D.; Lanchantin, J.; Qi, Y. Time and space complexity of graph convolutional networks. Preprint 2021, 31, 2021Arenas, M.; Barceló, P.; Bertossi, L.; Monet, M. The tractability of SHAP-score-based explanations for classification over deterministic and decomposable boolean circuits. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 6670–6678.Arenas, M.; Barceló, P.; Bertossi, L.; Monet, M. On the complexity of SHAP-score-based explanations: Tractability via knowledge compilation and non-approximability results. J. Mach. Learn. Res. 2023, 24, 1–58Van den Broeck, G.; Lykov, A.; Schleich, M.; Suciu, D. On the tractability of SHAP explanations. J. Artif. Intell. Res. 2022, 74, 851–886.Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008.Borgatti, S.P. Identifying sets of key players in a social network. Comput. Math. Organ. Theory 2006, 12, 21–34.Dragicevic, A.Z.; Sinclair-Desgagné, B. Sustainable network dynamics. Ecol. Model. 2013, 270, 43–53Hofmans, J.; Dóci, E.; Solinger, O.N.; Choi, W.; Judge, T.A. Capturing the dynamics of leader–follower interactions: Stalemates and future theoretical progress. J. Organ. Behav. 2019, 40, 382–385.Korban, M.; Li, X. Ddgcn: A dynamic directed graph convolutional network for action recognition. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XX 16. Springer: Berlin/Heidelberg, Germany, 2020; pp. 761–776.Errica, F.; Podda, M.; Bacciu, D.; Micheli, A. A fair comparison of graph neural networks for graph classification. arXiv 2019, arXiv:1912.09893.Xu, K. Exploring Properties and Limitations of Graph Neural Networks (GNNs) in Software Verification. 2021. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1614108&dswid=-6300 (accessed on 6 June 2024)Ghojogh, B.; Crowley, M. The theory behind overfitting, cross validation, regularization, bagging, and boosting: Tutorial. arXiv 2019, arXiv:1905.12787.Liu, S.; Zhang, J. Machine-learning-based prediction of regularization parameters for seismic inverse problems. Acta Geophys. 2021, 69, 809–820.Le, N.; Männel, B.; Jarema, M.; Luong, T.T.; Bui, L.K.; Vy, H.Q.; Schuh, H. K-Fold Cross-Validation: An Effective Hyperparameter Tuning Technique in Machine Learning on GNSS Time Series for Movement Forecast. In Proceedings of the International Conference on Mediterranean Geosciences Union, Istanbul, Turkey, 25–28 November 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 377–382LeDell, E.; Poirier, S. H2O automl: Scalable automatic machine learning. In Proceedings of the AutoML Workshop at ICML, Virtual, 17–18 July 2020; ICML: San Diego, CA, USA, 2020; Volume 2020Ding, M.; Rabbani, T.; An, B.; Wang, E.; Huang, F. Sketch-GNN: Scalable graph neural networks with sublinear training complexity. Adv. Neural Inf. Process. Syst. 2022, 35, 2930–2943Ayyalasomayajula, M.M.T.; Chintala, S.K.; Ayyalasomayajula, S. A Cost-Effective Analysis of Machine Learning Workloads in Public Clouds: Is AutoML Always Worth Using. Int. J. Comput. Sci. Trends Technol. 2019, 7, 107–115.Tsiakmaki, M.; Kostopoulos, G.; Kotsiantis, S.; Ragos, O. Implementing AutoML in educational data mining for prediction tasks. Appl. Sci. 2019, 10, 90.Van de Ven, G.M.; Tuytelaars, T.; Tolias, A.S. Three types of incremental learning. Nat. Mach. Intell. 2022, 4, 1185–1197Li, Z.; Hoiem, D. Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 2935–2947.© 2024 by the authors.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/Redes Convolucionales de GrafosInteligencia Artificial ExplicableAprendizaje Automático AutomatizadoArtificial intelligenceContrastive LearningEconomic and social effectsFederated learningGraph embeddingsSpotting Leaders in Organizations with Graph Convolutional Networks, Explainable Artificial Intelligence, and Automated Machine LearningArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículos.pdf.txtArtículos.pdf.txtExtracted texttext/plain8137https://repositorio.unibague.edu.co/bitstreams/1c0b51e3-5536-4344-95db-d43979e6a32d/download7c8ae4e20c7a4dfea05f4ea364cdc1beMD53ORIGINALArtículos.pdfArtículos.pdfapplication/pdf166057https://repositorio.unibague.edu.co/bitstreams/43a0061d-e0aa-40f6-b7de-890aac22e773/download0e06868f48933e1a63b0a00ddd425a93MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/a886cfcb-b720-4662-a457-d3d8573c6543/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51THUMBNAILArtículos.pdf.jpgArtículos.pdf.jpgIM Thumbnailimage/jpeg22516https://repositorio.unibague.edu.co/bitstreams/01887ac0-c081-4a73-a906-20b4e6aeff37/downloadba389a8f35732dbd55bee42509326669MD5420.500.12313/5911oai:repositorio.unibague.edu.co:20.500.12313/59112025-11-07 03:03:25.982https://creativecommons.org/licenses/by/4.0/© 2024 by the authors.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=