Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies

Isocyanide-based multicomponent reactions turn out to be interesting synthetic strategies, with highly valued advantages such as atomic economy, selectivity, among others. Furthermore, Isocyanide-based multicomponent reactions have been shown to generate a wide range of products with significant bio...

Full description

Autores:
Camargo-Ayala, Lorena
Polo-Cuadrado, Efraín
Osorio, Edison
Soto-Delgado, Jorge
Duarte, Yorley
Prent-Peñaloza, Luis
Gutiérrez, Margarita
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5501
Acceso en línea:
https://hdl.handle.net/20.500.12313/5501
Palabra clave:
Alzheimer
Alzheimer - Inhibidores de butirilcolinesterasa
Alzheimer's disease
Butyrylcholinesterase inhibitors
IMCR
Rights
openAccess
License
© 2022 Elsevier B.V. All rights reserved.
id UNIBAGUE2_d8449c510e8a3e54a2c9548f4c26ec3f
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5501
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies
title Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies
spellingShingle Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies
Alzheimer
Alzheimer - Inhibidores de butirilcolinesterasa
Alzheimer's disease
Butyrylcholinesterase inhibitors
IMCR
title_short Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies
title_full Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies
title_fullStr Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies
title_full_unstemmed Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies
title_sort Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies
dc.creator.fl_str_mv Camargo-Ayala, Lorena
Polo-Cuadrado, Efraín
Osorio, Edison
Soto-Delgado, Jorge
Duarte, Yorley
Prent-Peñaloza, Luis
Gutiérrez, Margarita
dc.contributor.author.none.fl_str_mv Camargo-Ayala, Lorena
Polo-Cuadrado, Efraín
Osorio, Edison
Soto-Delgado, Jorge
Duarte, Yorley
Prent-Peñaloza, Luis
Gutiérrez, Margarita
dc.subject.armarc.none.fl_str_mv Alzheimer
Alzheimer - Inhibidores de butirilcolinesterasa
topic Alzheimer
Alzheimer - Inhibidores de butirilcolinesterasa
Alzheimer's disease
Butyrylcholinesterase inhibitors
IMCR
dc.subject.proposal.eng.fl_str_mv Alzheimer's disease
Butyrylcholinesterase inhibitors
IMCR
description Isocyanide-based multicomponent reactions turn out to be interesting synthetic strategies, with highly valued advantages such as atomic economy, selectivity, among others. Furthermore, Isocyanide-based multicomponent reactions have been shown to generate a wide range of products with significant biological activity. Recently, it has been described that the compounds of the Isocyanide-based multicomponent reactions product could be inhibitors of cholinesterase enzymes, acetylcholinesterase, and butyrylcholinesterase. cholinesterase enzymes have aroused great interest as pharmacological targets in the treatment of Alzheimer’s disease, which is a disease that affects millions of people in the world, and its effects become disabling for those who suffer from it since it mainly has consequences on memory and cognitive ability. In this work, using Isocyanide-based multicomponent reactions, we report a series of five new compounds, their characterization, and their potential inhibitory biological activity on acetylcholinesterase and butyrylcholinesterase by spectrophotometric analysis. Our studies revealed that the compounds have moderate inhibitory activities against acetylcholinesterase and butyrylcholinesterase. Interestingly, compounds 7a and 7e showed a higher affinity for butyrylcholinesterase. Particularly compound 7a proved to be the compound with the best activity of this series with an IC50 of 25.91 μM for butyrylcholinesterase, more than 62.22 times selective for butyrylcholinesterase than for acetylcholinesterase. The study of molecular docking and molecular dynamics revealed that the hydrophobic character of these compounds favors the interaction with BChE. The favored interactions for compounds 7a and 7e are with the hydrophobic residues Trp82, Trp231, Val288, Phe329, Thr120. In addition, the molecular electrostatic potential and pharmacokinetic predictions also showed that compounds 7a and 7e have free energy values close to galantamine in the complex with butyrylcholinesterase, among others. These analyzes will allow us in the future to establish some structural modifications that would enable, on this basis, to obtain compounds with better activity against cholinesterase enzymes.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-09-15
dc.date.accessioned.none.fl_str_mv 2025-08-20T21:11:56Z
dc.date.available.none.fl_str_mv 2025-08-20T21:11:56Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Camargo-Ayala, L., Polo-Cuadrado, E., Osorio, E., Soto-Delgado, J., Duarte, Prent-Peñaloza, L y Gutiérrez, M. (2022). Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies. Journal of Molecular Structure, 1264, 133307. DOI: 10.1016/j.molstruc.2022.133307
dc.identifier.doi.none.fl_str_mv 10.1016/j.molstruc.2022.133307
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5501
identifier_str_mv Camargo-Ayala, L., Polo-Cuadrado, E., Osorio, E., Soto-Delgado, J., Duarte, Prent-Peñaloza, L y Gutiérrez, M. (2022). Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies. Journal of Molecular Structure, 1264, 133307. DOI: 10.1016/j.molstruc.2022.133307
10.1016/j.molstruc.2022.133307
url https://hdl.handle.net/20.500.12313/5501
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationstartpage.none.fl_str_mv 133307
dc.relation.citationvolume.none.fl_str_mv 1264
dc.relation.ispartofjournal.none.fl_str_mv Journal of Molecular Structure
dc.relation.references.none.fl_str_mv I. Ugi, A. Dömling, W. Hörl, Multicomponent reactions in organic chemistry, Endeavour 18 (1994) 115–122, doi:10.1016/S0160-9327(05)80086- 9.
E. Ruijter, R. Orru, Multicomponent reactions in drug discovery and medicinal chemistry, Drug Discov. Today Technol. 29 (2018) 1–2, doi:10.1016/j.ddtec.2018. 11.002.
A. Shaabani, R. Mohammadian, R. Afshari, S.E. Hooshmand, M.T. Nazeri, S. Javanbakht, The status of isocyanide-based multi-component reactions in Iran (2010–2018), Mol. Divers. 252 (25) (2020) 1145–1210 2020, doi:10.1007/ S11030-020-10049-7.
I. Ugi, R. Meyr, I Isonitrile, Darstellung von isonitrilen aus monosubstituierten formamiden durch wasserabspaltung, Chem. Ber. 93 (1960) 239–248, doi:10. 1002/cber.19600930136.
I. Ugi, R. Meyr, Neue Darstellungsmethode für Isonitrile, Angew. Chem. 70 (1958) 702–703, doi:10.1002/ange.19580702213.
B. Banerjee, Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles, Ultrason. Sonochem. 35 (2017) 15–35, doi:10.1016/j.ultsonch.2016.10.010.
A. Dömling∗, Recent developments in isocyanide based multicomponent reactions in applied chemistry†, Chem. Rev. 106 (2005) 17–89, doi:10.1021/ CR0505728.
I. Pachón-Angona, H. Martin, S. Chhor, M.J. Oset-Gasque, B. Refouvelet, J. Marco-Contelles, L. Ismaili, Synthesis of new ferulic/lipoic/comenic acidmelatonin hybrids as antioxidants and Nrf2 activators via Ugi reaction, Future Med. Chem. 11 (2019) 3097–3108, doi:10.4155/fmc-2019-0191.
M. Ingold, L. Colella, P. Hernández, C. Batthyány, D. Tejedor, A. Puerta, F. GarcíaTellado, J.M. Padrón, W. Porcal, G.V. López, A focused library of no-donor compounds with potent antiproliferative activity based on green multicomponent reactions, ChemMedChem 14 (2019) 1669–1683, doi:10.1002/cmdc. 201900385
E. Avilés, J. Prudhomme, K.G. Le Roch, S.G. Franzblau, K. Chandrasena, A.M.S. Mayer, A.D. Rodríguez, Synthesis and preliminary biological evaluation of a small library of hybrid compounds based on Ugi isocyanide multicomponent reactions with a marine natural product scaffold, Bioorganic Med. Chem. Lett. 25 (2015) 5339–5343, doi:10.1016/j.bmcl.2015.09.033.
L. Prent-Peñaloza, A.F. De La Torre, J.L. Velázquez-Libera, M. Gutiérrez, J. Caballero, Synthesis of DiN-substituted glycyl-phenylalanine derivatives by using Ugi four component reaction and their potential as acetylcholinesterase inhibitors, Molecules (2019) 24, doi:10.3390/molecules24010189.
N. Cankarová, ˇ V. Krchnák, ˇ Isocyanide multicomponent reactions on solid phase: state of the art and future application, Int. J. Mol. Sci. 21 (2020) 1–48, doi:10.3390/IJMS21239160.
R. Munir, M. Zia-ur-Rehman, S. Murtaza, S. Zaib, N. Javid, S.J. Awan, K. Iftikhar, M.M. Athar, I. Khan, Microwave-assisted synthesis of (piperidin1-yl)quinolin-3-yl)methylene)hydrazinecarbothioamides as potent inhibitors of cholinesterases: a biochemical and in silico approach, Molecules 26 (2021) 656, doi:10.3390/molecules26030656.
Z. Breijyeh, R. Karaman, Comprehensive review on alzheimer’s disease: causes and treatment, Molecules (2020) 25, doi:10.3390/MOLECULES25245789.
D. Munoz-Torrero, Acetylcholinesterase inhibitors as disease-modifying therapies for alzheimers disease, Curr. Med. Chem. 15 (2008) 2433–2455, doi:10. 2174/092986708785909067.
R.T. Bartus, R.L. Dean, B. Beer, A.S. Lippa, The cholinergic hypothesis of geriatric memory dysfunction, Science (80-.) 217 (1982) 408–417, doi:10.1126/science. 7046051.
T. Zhao, K.M. Ding, L. Zhang, X.M. Cheng, C.H. Wang, Z.T. Wang, Acetylcholinesterase and butyrylcholinesterase inhibitory activities of β -carboline and quinoline alkaloids derivatives from the plants of genus peganum, J. Chem. (2013) 2013, doi:10.1155/2013/717232.
N.H. Greig, T. Utsuki, Q. Yu, X. Zhu, H.W. Holloway, T. Perry, B. Lee, D.K. Ingram, D.K. Lahiri, A New Therapeutic Target in Alzheimer’s Disease Treatment: attention to Butyrylcholinesterase, Curr. Med. Res. Opin 17 (2001) 159–165, doi:10.1185/0300799039117057.
Q. Li, H. Yang, Y. Chen, H. Sun, Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer’s disease, Eur. J. Med. Chem. 132 (2017) 294–309, doi:10.1016/j.ejmech.2017.03.062.
N.H. Greig, T. Utsuki, D.K. Ingram, Y. Wang, G. Pepeu, C. Scali, Q.S. Yu, J. Mamczarz, H.W. Holloway, T. Giordano, D. Chen, K. Furukawa, K. Sambamurti, A. Brossi, D.K. Lahiri, Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 17213–17218, doi:10.1073/pnas. 0508575102.
P. Brandão, Ó. López, L. Leitzbach, H. Stark, J.G. Fernández-Bolaños, A.J. Burke, M. Pineiro, Ugi reaction synthesis of oxindole–lactam hybrids as selective butyrylcholinesterase inhibitors, ACS Med. Chem. Lett. (2021), doi:10.1021/ ACSMEDCHEMLETT.1C00344.
M. Pineiro, Ugi reacD. E. Shaw Research, New York, NY, Release 2021-2:, Desmond Molecular Dynamics SystemMaestro-Desmond Interoperability Tools 2021, Schrödinger, New York, NY, 2021.
T. Tubiana, J.C. Carvaillo, Y. Boulard, S. Bressanelli, TTClust: a versatile molecular simulation trajectory clustering program with graphical summaries, J. Chem. Inf. Model. 58 (2018) 2178–2182, doi:10.1021/ACS.JCIM.8B00512/SUPPL_ FILE/CI8B00512_SI_001.PDF.
H. Chermette, Chemical reactivity indexes in density functional theory, J. Comput. Chem. 20 (1999) 129–154, doi:10.1002/(SICI)1096-987X(19990115)20: 1 129::AID-JCC13 3.0.CO;2-A
A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017) 42717, doi:10.1038/srep42717.
G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol. 7 (1961) 88–95, doi:10.1016/0006-2952(61)90145-9.
H.M. Greenblatt, G. Kryger, T. Lewis, I. Silman, J.L. Sussman, Structure of acetylcholinesterase complexed with (−)-galanthamine at 2.3A˚ resolution, FEBS Lett 463 (1999) 321–326, doi:10.1016/S0014-5793(99)01637-3.
F. Nachon, E. Carletti, C. Ronco, M. Trovaslet, Y. Nicolet, L. Jean, P.Y. Renard, Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyryl-cholinesterase, Biochem. J. 453 (2013) 393–399, doi:10. 1042/BJ20130013.
A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648–5652, doi:10.1063/1.464913.
C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B. 37 (1988) 785– 789, doi:10.1103/PhysRevB.37.785.
R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys. 72 (1980) 650–654, doi:10.1063/1.438955
A.D. McLean, G.S. Chandler, Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18, J. Chem. Phys. 72 (1980) 5639–5648, doi:10.1063/1.438980.
G. Frisch, H. Trucks, G. Schlegel, M. Scuseria, J. Robb, J. Cheeseman, T. Montgomery, K. Vreven, J. Kudin, J. Burant, S. Millam, J. Iyengar, V. Tomasi, B. Barone, M. Mennucci, G. Cossi, N. Scalmani, G. Rega, H. Petersson, M. Nakatsuji, M. Hada, K. Ehara, R. Toyota, J. Fukuda, M. Hasegawa, T. Ishida, Y. Nakajima, O. Honda, H. Kitao, M. Nakai, X. Klene, J. Li, H. Knox, J. Hratchian, V. Cross, C. Bakken, J. Adamo, R. Jaramillo, R. Gomperts, O. Stratmann, A. Yazyev, R. Austin, C. Cammi, J. Pomelli, P. Ochterski, K. Ayala, G. Morokuma, P. Voth, J. Salvador, V. Dannenberg, S. Zakrzewski, A. Dapprich, M. Daniels, O. Strain, D. Farkas, A. Malick, K. Rabuck, J. Raghavachari, J. Foresman, Q. Ortiz, A. Cui, S. Baboul, J. Clifford, B. Cioslowski, G. Stefanov, A. Liu, P. Liashenko, I. Piskorz, R. Komaromi, D. Martin, T. Fox, A. Keith, C. Laham, A. Peng, M. Nanayakkara, P. Challacombe, B. Gill, W. Johnson, M. Chen, C. Wong, J. Gonzalez, Pople, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.
G.M. Morris, H. Ruth, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, Software news and updates AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009) 2785–2791, doi:10.1002/jcc.21256.
G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem. 19 (1998) 1639–1662, doi:10.1002/(SICI)1096-987X(19981115)19:14 1639::AID-JCC10 3.0.CO;2-B
W.L. DeLano, The PyMOL molecular graphics system, (2002). http://www. pymol.org
S. Salentin, S. Schreiber, V.J. Haupt, M.F. Adasme, M. Schroeder, PLIP: fully automated protein–ligand interaction profiler, Nucleic Acids Res. 43 (2015) W443– W447, doi:10.1093/NAR/GKV315.
M.P. Jacobson, D.L. Pincus, C.S. Rapp, T.J.F. Day, B. Honig, D.E. Shaw, R.A. Friesner, A hierarchical approach to all-atom protein loop prediction, Proteins Struct. Funct. Bioinforma. 55 (2004) 351–367, doi:10.1002/prot.10613.
dc.rights.eng.fl_str_mv © 2022 Elsevier B.V. All rights reserved.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv © 2022 Elsevier B.V. All rights reserved.
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.place.none.fl_str_mv Paises Bajos
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv https://sciencedirect.unibague.elogim.com/science/article/pii/S0022286022009632
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/fd3b4a3b-faa3-4dd0-8b87-b15eded364f4/download
https://repositorio.unibague.edu.co/bitstreams/6227e426-7163-45df-9579-532030cdcd2b/download
https://repositorio.unibague.edu.co/bitstreams/b892ec6d-4ab3-4d7c-85dc-365d4068ae27/download
https://repositorio.unibague.edu.co/bitstreams/9b65f10f-9c67-4455-b587-8074999457c3/download
bitstream.checksum.fl_str_mv cddbd4725d722b0572ce504473c7403e
49faf8d7e5d446d6a840e328e967699d
bd770f0774f4210ff8bb141c1ba77194
2fa3e590786b9c0f3ceba1b9656b7ac3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059965854220288
spelling Camargo-Ayala, Lorena41c900ab-b356-4c05-8594-1f10c2d6c414-1Polo-Cuadrado, Efraínf8016ac0-3f43-4599-89b2-3d8e129cb357-1Osorio, Edisone6d834e4-46ca-40f0-ab7c-630a35856901-1Soto-Delgado, Jorge70e6a31a-d113-49de-a9fd-df5b0278031c-1Duarte, Yorley6fcc279c-c6a8-44fc-81b7-5b806866caff-1Prent-Peñaloza, Luis75975bd9-cd4e-48b6-99cd-2cbb8f0b1dd9-1Gutiérrez, Margarita3d6c891b-b6e6-4157-b398-c6ef08538087-12025-08-20T21:11:56Z2025-08-20T21:11:56Z2022-09-15Isocyanide-based multicomponent reactions turn out to be interesting synthetic strategies, with highly valued advantages such as atomic economy, selectivity, among others. Furthermore, Isocyanide-based multicomponent reactions have been shown to generate a wide range of products with significant biological activity. Recently, it has been described that the compounds of the Isocyanide-based multicomponent reactions product could be inhibitors of cholinesterase enzymes, acetylcholinesterase, and butyrylcholinesterase. cholinesterase enzymes have aroused great interest as pharmacological targets in the treatment of Alzheimer’s disease, which is a disease that affects millions of people in the world, and its effects become disabling for those who suffer from it since it mainly has consequences on memory and cognitive ability. In this work, using Isocyanide-based multicomponent reactions, we report a series of five new compounds, their characterization, and their potential inhibitory biological activity on acetylcholinesterase and butyrylcholinesterase by spectrophotometric analysis. Our studies revealed that the compounds have moderate inhibitory activities against acetylcholinesterase and butyrylcholinesterase. Interestingly, compounds 7a and 7e showed a higher affinity for butyrylcholinesterase. Particularly compound 7a proved to be the compound with the best activity of this series with an IC50 of 25.91 μM for butyrylcholinesterase, more than 62.22 times selective for butyrylcholinesterase than for acetylcholinesterase. The study of molecular docking and molecular dynamics revealed that the hydrophobic character of these compounds favors the interaction with BChE. The favored interactions for compounds 7a and 7e are with the hydrophobic residues Trp82, Trp231, Val288, Phe329, Thr120. In addition, the molecular electrostatic potential and pharmacokinetic predictions also showed that compounds 7a and 7e have free energy values close to galantamine in the complex with butyrylcholinesterase, among others. These analyzes will allow us in the future to establish some structural modifications that would enable, on this basis, to obtain compounds with better activity against cholinesterase enzymes.application/pdfCamargo-Ayala, L., Polo-Cuadrado, E., Osorio, E., Soto-Delgado, J., Duarte, Prent-Peñaloza, L y Gutiérrez, M. (2022). Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies. Journal of Molecular Structure, 1264, 133307. DOI: 10.1016/j.molstruc.2022.13330710.1016/j.molstruc.2022.133307https://hdl.handle.net/20.500.12313/5501engElsevier B.V.Paises Bajos1333071264Journal of Molecular StructureI. Ugi, A. Dömling, W. Hörl, Multicomponent reactions in organic chemistry, Endeavour 18 (1994) 115–122, doi:10.1016/S0160-9327(05)80086- 9.E. Ruijter, R. Orru, Multicomponent reactions in drug discovery and medicinal chemistry, Drug Discov. Today Technol. 29 (2018) 1–2, doi:10.1016/j.ddtec.2018. 11.002.A. Shaabani, R. Mohammadian, R. Afshari, S.E. Hooshmand, M.T. Nazeri, S. Javanbakht, The status of isocyanide-based multi-component reactions in Iran (2010–2018), Mol. Divers. 252 (25) (2020) 1145–1210 2020, doi:10.1007/ S11030-020-10049-7.I. Ugi, R. Meyr, I Isonitrile, Darstellung von isonitrilen aus monosubstituierten formamiden durch wasserabspaltung, Chem. Ber. 93 (1960) 239–248, doi:10. 1002/cber.19600930136.I. Ugi, R. Meyr, Neue Darstellungsmethode für Isonitrile, Angew. Chem. 70 (1958) 702–703, doi:10.1002/ange.19580702213.B. Banerjee, Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles, Ultrason. Sonochem. 35 (2017) 15–35, doi:10.1016/j.ultsonch.2016.10.010.A. Dömling∗, Recent developments in isocyanide based multicomponent reactions in applied chemistry†, Chem. Rev. 106 (2005) 17–89, doi:10.1021/ CR0505728.I. Pachón-Angona, H. Martin, S. Chhor, M.J. Oset-Gasque, B. Refouvelet, J. Marco-Contelles, L. Ismaili, Synthesis of new ferulic/lipoic/comenic acidmelatonin hybrids as antioxidants and Nrf2 activators via Ugi reaction, Future Med. Chem. 11 (2019) 3097–3108, doi:10.4155/fmc-2019-0191.M. Ingold, L. Colella, P. Hernández, C. Batthyány, D. Tejedor, A. Puerta, F. GarcíaTellado, J.M. Padrón, W. Porcal, G.V. López, A focused library of no-donor compounds with potent antiproliferative activity based on green multicomponent reactions, ChemMedChem 14 (2019) 1669–1683, doi:10.1002/cmdc. 201900385E. Avilés, J. Prudhomme, K.G. Le Roch, S.G. Franzblau, K. Chandrasena, A.M.S. Mayer, A.D. Rodríguez, Synthesis and preliminary biological evaluation of a small library of hybrid compounds based on Ugi isocyanide multicomponent reactions with a marine natural product scaffold, Bioorganic Med. Chem. Lett. 25 (2015) 5339–5343, doi:10.1016/j.bmcl.2015.09.033.L. Prent-Peñaloza, A.F. De La Torre, J.L. Velázquez-Libera, M. Gutiérrez, J. Caballero, Synthesis of DiN-substituted glycyl-phenylalanine derivatives by using Ugi four component reaction and their potential as acetylcholinesterase inhibitors, Molecules (2019) 24, doi:10.3390/molecules24010189.N. Cankarová, ˇ V. Krchnák, ˇ Isocyanide multicomponent reactions on solid phase: state of the art and future application, Int. J. Mol. Sci. 21 (2020) 1–48, doi:10.3390/IJMS21239160.R. Munir, M. Zia-ur-Rehman, S. Murtaza, S. Zaib, N. Javid, S.J. Awan, K. Iftikhar, M.M. Athar, I. Khan, Microwave-assisted synthesis of (piperidin1-yl)quinolin-3-yl)methylene)hydrazinecarbothioamides as potent inhibitors of cholinesterases: a biochemical and in silico approach, Molecules 26 (2021) 656, doi:10.3390/molecules26030656.Z. Breijyeh, R. Karaman, Comprehensive review on alzheimer’s disease: causes and treatment, Molecules (2020) 25, doi:10.3390/MOLECULES25245789.D. Munoz-Torrero, Acetylcholinesterase inhibitors as disease-modifying therapies for alzheimers disease, Curr. Med. Chem. 15 (2008) 2433–2455, doi:10. 2174/092986708785909067.R.T. Bartus, R.L. Dean, B. Beer, A.S. Lippa, The cholinergic hypothesis of geriatric memory dysfunction, Science (80-.) 217 (1982) 408–417, doi:10.1126/science. 7046051.T. Zhao, K.M. Ding, L. Zhang, X.M. Cheng, C.H. Wang, Z.T. Wang, Acetylcholinesterase and butyrylcholinesterase inhibitory activities of β -carboline and quinoline alkaloids derivatives from the plants of genus peganum, J. Chem. (2013) 2013, doi:10.1155/2013/717232.N.H. Greig, T. Utsuki, Q. Yu, X. Zhu, H.W. Holloway, T. Perry, B. Lee, D.K. Ingram, D.K. Lahiri, A New Therapeutic Target in Alzheimer’s Disease Treatment: attention to Butyrylcholinesterase, Curr. Med. Res. Opin 17 (2001) 159–165, doi:10.1185/0300799039117057.Q. Li, H. Yang, Y. Chen, H. Sun, Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer’s disease, Eur. J. Med. Chem. 132 (2017) 294–309, doi:10.1016/j.ejmech.2017.03.062.N.H. Greig, T. Utsuki, D.K. Ingram, Y. Wang, G. Pepeu, C. Scali, Q.S. Yu, J. Mamczarz, H.W. Holloway, T. Giordano, D. Chen, K. Furukawa, K. Sambamurti, A. Brossi, D.K. Lahiri, Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 17213–17218, doi:10.1073/pnas. 0508575102.P. Brandão, Ó. López, L. Leitzbach, H. Stark, J.G. Fernández-Bolaños, A.J. Burke, M. Pineiro, Ugi reaction synthesis of oxindole–lactam hybrids as selective butyrylcholinesterase inhibitors, ACS Med. Chem. Lett. (2021), doi:10.1021/ ACSMEDCHEMLETT.1C00344.M. Pineiro, Ugi reacD. E. Shaw Research, New York, NY, Release 2021-2:, Desmond Molecular Dynamics SystemMaestro-Desmond Interoperability Tools 2021, Schrödinger, New York, NY, 2021.T. Tubiana, J.C. Carvaillo, Y. Boulard, S. Bressanelli, TTClust: a versatile molecular simulation trajectory clustering program with graphical summaries, J. Chem. Inf. Model. 58 (2018) 2178–2182, doi:10.1021/ACS.JCIM.8B00512/SUPPL_ FILE/CI8B00512_SI_001.PDF.H. Chermette, Chemical reactivity indexes in density functional theory, J. Comput. Chem. 20 (1999) 129–154, doi:10.1002/(SICI)1096-987X(19990115)20: 1 129::AID-JCC13 3.0.CO;2-AA. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017) 42717, doi:10.1038/srep42717.G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol. 7 (1961) 88–95, doi:10.1016/0006-2952(61)90145-9.H.M. Greenblatt, G. Kryger, T. Lewis, I. Silman, J.L. Sussman, Structure of acetylcholinesterase complexed with (−)-galanthamine at 2.3A˚ resolution, FEBS Lett 463 (1999) 321–326, doi:10.1016/S0014-5793(99)01637-3.F. Nachon, E. Carletti, C. Ronco, M. Trovaslet, Y. Nicolet, L. Jean, P.Y. Renard, Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyryl-cholinesterase, Biochem. J. 453 (2013) 393–399, doi:10. 1042/BJ20130013.A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648–5652, doi:10.1063/1.464913.C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B. 37 (1988) 785– 789, doi:10.1103/PhysRevB.37.785.R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys. 72 (1980) 650–654, doi:10.1063/1.438955A.D. McLean, G.S. Chandler, Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18, J. Chem. Phys. 72 (1980) 5639–5648, doi:10.1063/1.438980.G. Frisch, H. Trucks, G. Schlegel, M. Scuseria, J. Robb, J. Cheeseman, T. Montgomery, K. Vreven, J. Kudin, J. Burant, S. Millam, J. Iyengar, V. Tomasi, B. Barone, M. Mennucci, G. Cossi, N. Scalmani, G. Rega, H. Petersson, M. Nakatsuji, M. Hada, K. Ehara, R. Toyota, J. Fukuda, M. Hasegawa, T. Ishida, Y. Nakajima, O. Honda, H. Kitao, M. Nakai, X. Klene, J. Li, H. Knox, J. Hratchian, V. Cross, C. Bakken, J. Adamo, R. Jaramillo, R. Gomperts, O. Stratmann, A. Yazyev, R. Austin, C. Cammi, J. Pomelli, P. Ochterski, K. Ayala, G. Morokuma, P. Voth, J. Salvador, V. Dannenberg, S. Zakrzewski, A. Dapprich, M. Daniels, O. Strain, D. Farkas, A. Malick, K. Rabuck, J. Raghavachari, J. Foresman, Q. Ortiz, A. Cui, S. Baboul, J. Clifford, B. Cioslowski, G. Stefanov, A. Liu, P. Liashenko, I. Piskorz, R. Komaromi, D. Martin, T. Fox, A. Keith, C. Laham, A. Peng, M. Nanayakkara, P. Challacombe, B. Gill, W. Johnson, M. Chen, C. Wong, J. Gonzalez, Pople, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.G.M. Morris, H. Ruth, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, Software news and updates AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009) 2785–2791, doi:10.1002/jcc.21256.G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem. 19 (1998) 1639–1662, doi:10.1002/(SICI)1096-987X(19981115)19:14 1639::AID-JCC10 3.0.CO;2-BW.L. DeLano, The PyMOL molecular graphics system, (2002). http://www. pymol.orgS. Salentin, S. Schreiber, V.J. Haupt, M.F. Adasme, M. Schroeder, PLIP: fully automated protein–ligand interaction profiler, Nucleic Acids Res. 43 (2015) W443– W447, doi:10.1093/NAR/GKV315.M.P. Jacobson, D.L. Pincus, C.S. Rapp, T.J.F. Day, B. Honig, D.E. Shaw, R.A. Friesner, A hierarchical approach to all-atom protein loop prediction, Proteins Struct. Funct. Bioinforma. 55 (2004) 351–367, doi:10.1002/prot.10613.© 2022 Elsevier B.V. All rights reserved.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://sciencedirect.unibague.elogim.com/science/article/pii/S0022286022009632AlzheimerAlzheimer - Inhibidores de butirilcolinesterasaAlzheimer's diseaseButyrylcholinesterase inhibitorsIMCRSynthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studiesArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationORIGINALArtículo.pdfArtículo.pdfapplication/pdf243307https://repositorio.unibague.edu.co/bitstreams/fd3b4a3b-faa3-4dd0-8b87-b15eded364f4/downloadcddbd4725d722b0572ce504473c7403eMD51TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain5348https://repositorio.unibague.edu.co/bitstreams/6227e426-7163-45df-9579-532030cdcd2b/download49faf8d7e5d446d6a840e328e967699dMD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg26659https://repositorio.unibague.edu.co/bitstreams/b892ec6d-4ab3-4d7c-85dc-365d4068ae27/downloadbd770f0774f4210ff8bb141c1ba77194MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/9b65f10f-9c67-4455-b587-8074999457c3/download2fa3e590786b9c0f3ceba1b9656b7ac3MD5220.500.12313/5501oai:repositorio.unibague.edu.co:20.500.12313/55012025-08-21 03:01:47.456https://creativecommons.org/licenses/by-nc/4.0/© 2022 Elsevier B.V. All rights reserved.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=