Determinación de la selectividad y sensibilidad de sensores químicos por iones de cobre

Este trabajo de grado tuvo como propósito estudiar la interacción entre un sensor químico derivado de cumarina y diversos iones metálicos utilizando métodos espectrofotométricos y espectrofluorescentes, como respuesta a la necesidad de aplicar métodos versátiles y de bajos costos de operación para e...

Full description

Autores:
Rubén Alejandro, Vivas Gaspar
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
spa
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5779
Acceso en línea:
https://hdl.handle.net/20.500.12313/5779
Palabra clave:
Sensores químicos por iones de cobre - Selectividad y sensibilidad de sensores químicos
Determinación de sensores químicos por iones de cobre
Sensores químicos
Cumarinas
Iones de cobre
Chemical sensors
Coumarins
Copper ions
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UNIBAGUE2_d12cfe00f297f76765521b240539622d
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5779
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.spa.fl_str_mv Determinación de la selectividad y sensibilidad de sensores químicos por iones de cobre
title Determinación de la selectividad y sensibilidad de sensores químicos por iones de cobre
spellingShingle Determinación de la selectividad y sensibilidad de sensores químicos por iones de cobre
Sensores químicos por iones de cobre - Selectividad y sensibilidad de sensores químicos
Determinación de sensores químicos por iones de cobre
Sensores químicos
Cumarinas
Iones de cobre
Chemical sensors
Coumarins
Copper ions
title_short Determinación de la selectividad y sensibilidad de sensores químicos por iones de cobre
title_full Determinación de la selectividad y sensibilidad de sensores químicos por iones de cobre
title_fullStr Determinación de la selectividad y sensibilidad de sensores químicos por iones de cobre
title_full_unstemmed Determinación de la selectividad y sensibilidad de sensores químicos por iones de cobre
title_sort Determinación de la selectividad y sensibilidad de sensores químicos por iones de cobre
dc.creator.fl_str_mv Rubén Alejandro, Vivas Gaspar
dc.contributor.advisor.none.fl_str_mv García Beltrán, Olimpo José
Nagles Vidal, Edgar Orlando [co-director ]
dc.contributor.author.none.fl_str_mv Rubén Alejandro, Vivas Gaspar
dc.subject.armarc.none.fl_str_mv Sensores químicos por iones de cobre - Selectividad y sensibilidad de sensores químicos
Determinación de sensores químicos por iones de cobre
topic Sensores químicos por iones de cobre - Selectividad y sensibilidad de sensores químicos
Determinación de sensores químicos por iones de cobre
Sensores químicos
Cumarinas
Iones de cobre
Chemical sensors
Coumarins
Copper ions
dc.subject.proposal.spa.fl_str_mv Sensores químicos
Cumarinas
Iones de cobre
dc.subject.proposal.eng.fl_str_mv Chemical sensors
Coumarins
Copper ions
description Este trabajo de grado tuvo como propósito estudiar la interacción entre un sensor químico derivado de cumarina y diversos iones metálicos utilizando métodos espectrofotométricos y espectrofluorescentes, como respuesta a la necesidad de aplicar métodos versátiles y de bajos costos de operación para el reconocimiento de iones de cobre en medio acuoso. Los resultados del laboratorio demuestran una interacción selectiva y sensible de la molécula N con los iones cuprosos (Cu+) y cúpricos (Cu2+) sobre los otros iones metálicos evaluados, generando un desplazamiento batocrómico y la aparición de un punto isosbéstico indicando la formación de una nueva especie. Por lo anterior, se considera que el quimiosensor podría ser aplicado a nivel ambiental y biológico que permita monitorear de manera selectiva y a bajas concentraciones la presencia de iones Cu+ y Cu2+ en solución acuosa.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2025-10-15T13:58:15Z
dc.date.available.none.fl_str_mv 2025-10-15T13:58:15Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.none.fl_str_mv Rubén Alejandro, V. G. (2020). Determinación de la selectividad y sensibilidad de sensores químicos por iones de cobre. [Trabajo de grado, Universidad de Ibagué]. https://hdl.handle.net/20.500.12313/5779
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5779
identifier_str_mv Rubén Alejandro, V. G. (2020). Determinación de la selectividad y sensibilidad de sensores químicos por iones de cobre. [Trabajo de grado, Universidad de Ibagué]. https://hdl.handle.net/20.500.12313/5779
url https://hdl.handle.net/20.500.12313/5779
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv ABOLLINO, Ornella, et al. Determination of mercury by anodic stripping voltammetry with a gold nanoparticle‐modified glassy carbon electrode. En: Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2008, vol. 20, no 1, p. 75-83.
AFSHAN, Sehar, et al. Effect of different heavy metal pollution on fish. En: Research journal of chemical and environmental sciences, 2014, vol. 2, no 1, p. 74-79.
AHUJA, S. Overview: Sustaining Water, the World's Most Crucial Resource. En: Chemistry and Water. Elsevier, 2017. p. 1-22.
ALEGRET, Salvador; DEL VALLE, Manel; MERKOÇI, Arben. Sensores electroquímicos: introducción a los quimiosensores y biosensores: curso teórico- práctico. Univ. Autónoma de Barcelona, 2004.
ALI, Hazrat; KHAN, Ezzat. What are heavy metals. Long-standing controversy over the scientific use of the term ‘heavy metals’–proposal of a comprehensive definition. En: Toxicological & Environmental Chemistry, 2018, vol. 100, no 1, p. 6-19.
ALI, Hazrat; KHAN, Ezzat; ILAHI, Ikram. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of chemistry, 2019, vol. 2019.
ALONSO, Marta López, et al. Interactions between toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements in the tissues of cattle from NW Spain. En: Biometals, 2004, vol. 17, no 4, p. 389-397.
ALONSO-MAGDALENA, Paloma, et al. Toxic Effects of Common Environmental Pollutants in Pancreatic β-Cells and the Onset of Diabetes Mellitus. 2019.
ALEGRET, Salvador; DEL VALLE, Manel; MERKOÇI, Arben. Sensores electroquímicos: introducción a los quimiosensores y biosensores: curso teórico- práctico. Univ. Autónoma de Barcelona, 2004.
ALEV, Onder. Chapter 3 – Anticancer activity of natural coumarins for biological targets. En: Studies in Natural Products Chemistry. Elsevier. 2020, vol. 54, p. 85- 109.
AMUNDSEN, Per-Arne, et al. Heavy metal contamination in freshwater fish from the border region between Norway and Russia. En: Science of the Total Environment, 1997, vol. 201, no 3, p. 211-224.
ARSLAN, Fatma Nur, et al. Fluorescence “Turn On–Off” Sensing of Copper (II) Ions Utilizing Coumarin–Based Chemosensor: Experimental Study, Theoretical Calculation, Mineral and Drinking Water Analysis. En: Journal of Fluorescence, 2020, p. 317-327.
AUTHMAN, Mohammad MN, et al. Use of fish as bio-indicator of the effects of heavy metals pollution. En: Journal of Aquaculture Research & Development, 2015, vol. 6, no 4, p. 1-13.
BULATOVIC, Srdjan M. 12 – Flotation of Copper Sulfide Ores. En: Handbook of Flotation Reagents. Elsevier, 2007. p. 235-293.
BULEDI, Jamil Ahmed, et al. A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. En: Environmental Science and Pollution Research, 2020, p. 1-9.
CACAJ, et al. (2019). Circulation of the Heavy Metals in Nature, Concentration of Chemical Elements in Daily Food, Chemical Effects on Human Health and Environment. En: International Journal of Ecosystems & Ecology Sciences, 9(4), 627–634.
CÁCERES DÁVILA Rosa Gabriela. Síntesis de un derivado de Rodamina B y su aplicación para la detección de Al3+ y CN- en soluciones acuosa. Tesis de maestría. Arequipa - Perú, Universidad Católica de Santa María, Escuela de post grado, 2016. 13 p.
COLOMBIA. EL MINISTERIO DE SALUD Y PROTECCIÓN SOCIAL. Resolución 3803 (22, agosto, 2016). Por el cual se establecen las Recomendaciones de Ingesta de Energía y Nutrientes- RIEN para la población colombiana y se dictan otras disposiciones [en línea]. Santa Fe de Bogotá D.C.: Ministerio de Salud. 2016. 26 p. En: https://www.minsalud.gov.co/Normatividad_Nuevo/Resoluci%C3%B3n%203803% 20de%202016.pdf
CHANG, Hui-Qin, et al. A highly sensitive on-off fluorescent chemosensor for Cu2+ based on coumarin. En: Journal of Luminescence, 2017, vol. 182, p. 268-273.
CHANG, Raymond. Química. Séptima Edición. Editorial McGraw-Hill. ISBN 0–07– 365601-1. p. 882. Impreso en Bogotá, Colombia, 2002.
CHEN, Fengjuan, et al. A coumarin-derived fluorescent chemosensor for selectively detecting Cu2+: Synthesis, DFT calculations and cell imaging applications. En: Talanta, 2014, vol. 124, p. 139-145.
CHEN, Chia-Shang, et al. Post-column detection of cadmium chelators by high- performance liquid chromatography using 5, 10, 15, 20-tetraphenyl-21H, 23H- porphinetetrasulfonic acid. En: Journal of Chromatography B, 2020, vol. 1141, p. 122025.
CHRISTOPOULOS, THEODORE K.; DIAMANDIS, ELEFTHERIOS P. Fluorescence immunoassays. En: Immunoassay. Academic Press, 1996. p. 309-335.
DAI, Juan, et al. Toxicity, gut microbiota and metabolome effects after copper exposure during early life in SD rats. En: Toxicology, 2020, vol. 433, p. 152395.
DEEMS, Justin C., et al. Strategies for a fluorescent sensor with receptor and fluorophore designed for the recognition of heavy metal ions. En: Inorganica Chimica Acta, 2020, vol. 499, p. 119181.
DEMIRAK, Ahmet, et al. Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. En: Chemosphere, 2006, vol. 63, no 9, p. 1451-1458.
DUTTA, Sriparna; SHARMA, R. K. Sustainable Magnetically Retrievable Nanoadsorbents for Selective Removal of Heavy Metal Ions From Different Charged Wastewaters. En: Separation Science and Technology. Academic Press, 2019. p. 371-416.
EFSA PANEL ON DIETETIC PRODUCTS, NUTRITION AND ALLERGIES (NDA). Scientific opinion on dietary reference values for copper. En: EFSA Journal, 2015, vol. 13, no 10, p. 8-9.
ESCUDERO BALLESTEROS, Luis Alfonso. Principios de fluorescencia [en línea]. Trabajo fin de grado. Madrid. Universidad Complutense. Facultad de Farmacia. 2018. 3 p. En: http://147.96.70.122/Web/TFG/TFG/Memoria/LUIS%20ALFONSO%20ESCUDER O%20BALLESTEROS.pdf.
GARCÍA-BELTRÁN, Olimpo, et al. Design and synthesis of a new coumarin-based ‘turn-on’ fluorescent probe selective for Cu+ 2. En: Tetrahedron Letters, 2012, vol. 53, no 39, p. 5280-5283. GANDHI, S.M; SARKAR, B.C. Chapter 2 – Mineral Deposits: Types and Associations. En: Essentials of Mineral Exploration and Evaluation. Elsevier, 2016. p. 23-52.
GOERING, P. L.; LIU, J. Hepatotoxicity of Copper, Iron, Cadmium, and Arsenic. 2018, vol. 2, p. 575-596.
GHODSI, M. Ziarani; RAZIEH, Moradi; NEGAR, Lashgari; HENDRIK, G. Kruger. Chapter 7 – Coumarin Dyes. En: Metal-Free Synthetic Organic Dyes. 2018. p. 117- 125.
HAZRA, Subhenjit, et al. A novel tryptamine-appended rhodamine-based chemosensor for selective detection of Hg 2+ present in aqueous medium and its biological applications. En: Analytical and bioanalytical chemistry, 2019, vol. 411, no 6, p. 1143-1157.
HOUSE, E. James. Chapter 9 – Acid-base chemistry. En: Inorganic Chemistry (Third Edition), 2020, p. 323-367.
JIAO, Yang, et al. Fluorescent sensing of fluoride in cellular system. En: Theranostics, 2015, vol. 5, no 2, p. 173.
KARUNASAGAR, D.; ARUNACHALAM, J.; GANGADHARAN, S. Development of a ‘collect and punch cold vapour inductively coupled plasma mass spectrometric method for the direct determination of mercury at nanograms per litre levels. En: Journal of Analytical Atomic Spectrometry, 1998, vol. 13, no 7, p. 679-682.
LATORRE, Mauricio; TRONCOSO, Rodrigo; UAUY, Ricardo. Biological Aspects of Copper. En: Clinical and Translational Perspectives on Wilson Disease. Academic Press, 2019. p. 25-31.
LORINCZ, Matthew T. Wilson disease and related copper disorders. En: Handbook of clinical neurology. Elsevier, 2018. p. 279-292.
MA, Jingjin, et al. A new coumarin-derived fluorescent sensor with red-emission for Zn2+ in aqueous solution. En: Sensors and Actuators B: Chemical, 2014, vol. 197, p. 364-369.
MARRUGO-NEGRETE, José; PINEDO-HERNÁNDEZ, José; DÍEZ, Sergi. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. En: Environmental research, 2017, vol. 154, p. 380-388.
MARTIN, Sabine; GRISWOLD, Wendy. Human health effects of heavy metals. En: Environmental Science and Technology briefs for citizens, 2009, vol. 15, p. 1-6.
MERGU, Naveen; KIM, Myeongjin; SON, Young-A. A coumarin-derived Cu2+- fluorescent chemosensor and its direct application in aqueous media. En: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, vol. 188, p. 571-580.
MOUSSA, Nicole. El desarrollo de la minería del cobre en la segunda mitad del siglo XX. CEPAL, 1999.
MYERS, Donna N. Innovations in Monitoring With Water-Quality Sensors With Case Studies on Floods, Hurricanes, and Harmful Algal Blooms. En: Separation Science and Technology. Academic Press, 2019. p. 219-283.
NAGAJYOTI, P. C; LEE, K. D; SREEKANTH, T. V. M. Heavy metals, occurrence and toxicity for plants: a review. En: Environmental chemistry letters, 2010, vol. 8, no 3, p. 199-216.
NI, Hanzhi, et al. High selectivity and reversibility/reusability red emitting fluorescent probe for copper ions detection and imaging in living cells. En: Journal of Luminescence, 2019, vol. 206, p. 125-131.
OGUNFOWOKAN, A. O., et al. Determination of Heavy Metals in Urine of Patients and Tissue of Corpses by Atomic Absorption Spectroscopy. En: Chemistry Africa, 2019, vol. 2, no 4, p. 699-712.
PANG, Bing-jie, et al. A highly selective and sensitive coumarin derived fluorescent probe for detecting Hg2+ in 100% aqueous solutions. En: Journal of Luminescence, 2019, vol. 205, p. 446-450.
PALACIOS-TORRES, Yuber; JESUS, D.; OLIVERO-VERBEL, Jesus. Trace elements in sediments and fish from Atrato River: an ecosystem with legal rights impacted by gold mining at the Colombian Pacific. En: Environmental Pollution, 2020, vol. 256, p. 113290.
PERALTA-VIDEA, Jose R., et al. The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. En: The international journal of biochemistry & cell biology, 2009, vol. 41, no 8-9, p. 1665-1677.
PETTY, M. C. Applications of organized molecular films to electronic and opto- electronic devices. En: Studies in Interface Science. Elsevier, 2002. p. 317-367.
PRODI, Luca, et al. Luminescent chemosensors for transition metal ions. En: Coordination Chemistry Reviews, 2000, vol. 205, no 1, p. 59-83.
QU, Lijun, et al. A pyridoxal-based dual chemosensor for visual detection of copper ion and ratiometric fluorescent detection of zinc ion. En: Sensors and Actuators B: Chemical, 2014, vol. 191, p. 158-164.
RAHMAN, Zeeshanur; SINGH, Ved Pal. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb) on the total environment: an overview. En: Environmental monitoring and assessment, 2019, vol. 191, no 7, p. 419.
SINGH, Ranjana, et al. An excellent stable fluorescent probe: selective and sensitive detection of trace amounts of Hg+ 2 ions in natural source of water. En: Chemical Physics Letters, 2017, vol. 676, p. 39-45.
SKOOG, Douglas A.; HOLLER, F. James; CROUCH, Stanley R. Principles of instrumental analysis. En: Cengage learning, 2017.
TAN, Wenbin, et al. A novel coumarin-based fluorescence enhancement and colorimetric probe for Cu2+ via selective hydrolysis reaction. En: Journal of Photochemistry and Photobiology A: Chemistry, 2016, vol. 324, p. 81-86.
TJANDRA, Angie, et al. Chapter 1.2 – Optical sensors. En: Bioengineering Innovative Solutions for Cancer, Academic Press, 2020. p. 23-45.
TEJEDA-BENITEZ, Lesly, et al. Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia. En: Environmental Pollution, 2016, vol. 212, p. 238-250.
VAN LITH, Robert; AMEER, Guillermo A. Antioxidant Polymers as Biomaterial. En: Oxidative stress and biomaterials. Academic Press, 2016. p. 251-296.
VERMA, N.; KAUR, G. Trends on biosensing systems for heavy metal detection. En: Comprehensive Analytical Chemistry. Elsevier, 2016. p. 33-71.
VULPE, Christopher, et al. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper–transporting ATPase. En: Nature genetics, 1993, vol. 3, no 1, p. 7-13.
WANG, Binghe; ANSLYN, Eric V. (ed.). Chemosensors: principles, strategies, and applications. En: John Wiley & Sons, 2011. p. 5 – 42.
WANG, Wei, et al. Simple naphthalimide-based fluorescent sensor for highly sensitive and selective detection of Cd 2+ and Cu 2+ in aqueous solution and living cells. En: Dalton Transactions, 2013, vol. 42, no 5, p. 1827-1833.
WU, Haifeng, et al. Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography–mass spectrometry. En: Journal of Pharmaceutical and Biomedical Analysis, 2013, vol. 72, p. 267-291.
XU, Wen-Jun, et al. Coumarin-based ‘turn-off’fluorescent chemosensor with high selectivity for Cu2+ in aqueous solution. En: Journal of Molecular Structure, 2015, vol. 1091, p. 133-137.
YIN, Kun. A Fluorescent Biosensor for Copper Ion Detection. En: Design of Novel Biosensors for Optical Sensing and Their Applications in Environmental Analysis. Springer, Singapore, 2020. p. 13-24.
YIN, Junxia, et al. A highly selective and sensitive sugar–rhodamine “turn-on” fluorescent sensor for divalent copper ion detection in acetonitrile. En: Sensors and Actuators B: Chemical, 2013, vol. 177, p. 213-217.
YU, Yamin, et al. A novel highly selective ratiometric fluorescent probe with large emission shift for detecting mercury ions in living cells and zebrafish. En: Dyes and Pigments, 2020, vol. 177, p. 108290.
ZHANG, Weidong, et al. A method for determining glyphosate and its metabolite aminomethyl phosphonic acid by gas chromatography-flame photometric detection. En: Journal of Chromatography A, 2019, vol. 1589, p. 116-121.
ZHANG, Bibo, et al. A dual-response quinoline-based fluorescent sensor for the detection of Copper (II) and Iron (III) ions in aqueous medium. Sensors and Actuators B: Chemical, 2017, vol. 243, p. 765-774.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
dc.format.extent.none.fl_str_mv 53 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Ibagué
dc.publisher.faculty.none.fl_str_mv Ciencias Naturales y Matemáticas
dc.publisher.place.none.fl_str_mv Ibagué
dc.publisher.program.none.fl_str_mv Administración Ambiental
publisher.none.fl_str_mv Universidad de Ibagué
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/7e3218ad-0850-4ba7-95cd-899f468e9800/download
https://repositorio.unibague.edu.co/bitstreams/6d539ef3-2521-411f-aaec-94452d25d0bd/download
https://repositorio.unibague.edu.co/bitstreams/91424b91-7f89-42b3-b6e6-ec7ffeb9029e/download
https://repositorio.unibague.edu.co/bitstreams/a7a8e76d-6d65-4880-bc42-28be6a494ad8/download
https://repositorio.unibague.edu.co/bitstreams/7b0ec8c5-57d5-4d5f-bfd0-2175397f3508/download
https://repositorio.unibague.edu.co/bitstreams/288f89ed-1f26-4a3e-bd48-5ef40d31b6b1/download
https://repositorio.unibague.edu.co/bitstreams/170cace8-0156-454f-ab74-e653af8a1355/download
bitstream.checksum.fl_str_mv 2fa3e590786b9c0f3ceba1b9656b7ac3
95e93743d90aff22369209db43bc8fe1
6ff04d2d357ba5c1a9a746021a0ab736
84b2dced5c5fc5682c3263c541c3061d
f64ac48d502dbcf62c5dc5cfdb03ee89
432db8a7b0635ffe467c3993476f458f
ee9656cea697c8da5e5827c92ef37821
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059985301110784
spelling García Beltrán, Olimpo José8bf50d06-cdd6-49c8-bf83-0d5a530ffcf7-1Nagles Vidal, Edgar Orlando [co-director ]bd9a7866-483a-4355-9fa2-61180d18f375-1Rubén Alejandro, Vivas Gaspar8a8390e4-f087-4bbf-8760-0b9766316849-12025-10-15T13:58:15Z2025-10-15T13:58:15Z2020Este trabajo de grado tuvo como propósito estudiar la interacción entre un sensor químico derivado de cumarina y diversos iones metálicos utilizando métodos espectrofotométricos y espectrofluorescentes, como respuesta a la necesidad de aplicar métodos versátiles y de bajos costos de operación para el reconocimiento de iones de cobre en medio acuoso. Los resultados del laboratorio demuestran una interacción selectiva y sensible de la molécula N con los iones cuprosos (Cu+) y cúpricos (Cu2+) sobre los otros iones metálicos evaluados, generando un desplazamiento batocrómico y la aparición de un punto isosbéstico indicando la formación de una nueva especie. Por lo anterior, se considera que el quimiosensor podría ser aplicado a nivel ambiental y biológico que permita monitorear de manera selectiva y a bajas concentraciones la presencia de iones Cu+ y Cu2+ en solución acuosa.The purpose of this degree work was to study the interaction between a chemical sensor derived from coumarin and various metal ions using spectrophotometric and spectrofluorescent methods, in response to the need to apply versatile methods and low operating costs for the recognition of copper ions in aqueous medium. The laboratory results demonstrate a selective and sensitive interaction of the N molecule with cuprous (Cu+) and cupric (Cu2+) ions on the other evaluated metal ions, generating a bathochromic shift and the appearance of an isosbestic point, indicating the formation of a new species. Therefore, it is considered that the chemosensor could be applied at an environmental and biological level that allows to selectively monitor and at low concentrations the presence of Cu+ and Cu2+ ions in aqueous solution.PregradoAdministrador AmbientalINTRODUCCIÓN.....10 1. PLANTEAMIENTO DEL PROBLEMA.....13 1.1 Descripción del problema.....13 1.2 Formulación del problema.....16 2. JUSTIFICACIÓN.....17 3. OBJETIVOS.....19 3.1 Objetivo General.....19 3.2 Objetivos Específicos.....19 4. MARCO DE REFERENCIA.....20 4.1 Marco Conceptual.....20 4.2 Marco Teórico.....21 4.3 Marco Legal.....30 5. METODOLOGÍA.....31 5.1 Zona de Estudio.....31 5.2 Compuesto 3-amino-7-(dietilamino)-2H-cromen-2-ona (N).....31 5.3 Constantes Fotofísicas.....31 5.3.1 Preparación de Soluciones.....32 5.3.2 Espectro de absorción de N (λex).....32 5.3.3 Espectro de emisión de N (λem).....32 5.3.4 Coeficiente de extinción molar (ε).....32 5.3.5 Estudio de selectividad en solución acuosa.....33 5.3.6 Estudio de sensibilidad en solución acuosa.....33 6. RECURSOS Y MATERIALES.....34 7. CRONOGRAMA.....35 8. RESULTADOS Y DISCUSIÓN.....36 9. CONCLUSIONES.....45 RECOMENDACIONES.....46 BIBLIOGRAFÍA.....4753 páginasapplication/pdfRubén Alejandro, V. G. (2020). Determinación de la selectividad y sensibilidad de sensores químicos por iones de cobre. [Trabajo de grado, Universidad de Ibagué]. https://hdl.handle.net/20.500.12313/5779https://hdl.handle.net/20.500.12313/5779spaUniversidad de IbaguéCiencias Naturales y MatemáticasIbaguéAdministración AmbientalABOLLINO, Ornella, et al. Determination of mercury by anodic stripping voltammetry with a gold nanoparticle‐modified glassy carbon electrode. En: Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2008, vol. 20, no 1, p. 75-83.AFSHAN, Sehar, et al. Effect of different heavy metal pollution on fish. En: Research journal of chemical and environmental sciences, 2014, vol. 2, no 1, p. 74-79.AHUJA, S. Overview: Sustaining Water, the World's Most Crucial Resource. En: Chemistry and Water. Elsevier, 2017. p. 1-22.ALEGRET, Salvador; DEL VALLE, Manel; MERKOÇI, Arben. Sensores electroquímicos: introducción a los quimiosensores y biosensores: curso teórico- práctico. Univ. Autónoma de Barcelona, 2004.ALI, Hazrat; KHAN, Ezzat. What are heavy metals. Long-standing controversy over the scientific use of the term ‘heavy metals’–proposal of a comprehensive definition. En: Toxicological & Environmental Chemistry, 2018, vol. 100, no 1, p. 6-19.ALI, Hazrat; KHAN, Ezzat; ILAHI, Ikram. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of chemistry, 2019, vol. 2019.ALONSO, Marta López, et al. Interactions between toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements in the tissues of cattle from NW Spain. En: Biometals, 2004, vol. 17, no 4, p. 389-397.ALONSO-MAGDALENA, Paloma, et al. Toxic Effects of Common Environmental Pollutants in Pancreatic β-Cells and the Onset of Diabetes Mellitus. 2019.ALEGRET, Salvador; DEL VALLE, Manel; MERKOÇI, Arben. Sensores electroquímicos: introducción a los quimiosensores y biosensores: curso teórico- práctico. Univ. Autónoma de Barcelona, 2004.ALEV, Onder. Chapter 3 – Anticancer activity of natural coumarins for biological targets. En: Studies in Natural Products Chemistry. Elsevier. 2020, vol. 54, p. 85- 109.AMUNDSEN, Per-Arne, et al. Heavy metal contamination in freshwater fish from the border region between Norway and Russia. En: Science of the Total Environment, 1997, vol. 201, no 3, p. 211-224.ARSLAN, Fatma Nur, et al. Fluorescence “Turn On–Off” Sensing of Copper (II) Ions Utilizing Coumarin–Based Chemosensor: Experimental Study, Theoretical Calculation, Mineral and Drinking Water Analysis. En: Journal of Fluorescence, 2020, p. 317-327.AUTHMAN, Mohammad MN, et al. Use of fish as bio-indicator of the effects of heavy metals pollution. En: Journal of Aquaculture Research & Development, 2015, vol. 6, no 4, p. 1-13.BULATOVIC, Srdjan M. 12 – Flotation of Copper Sulfide Ores. En: Handbook of Flotation Reagents. Elsevier, 2007. p. 235-293.BULEDI, Jamil Ahmed, et al. A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. En: Environmental Science and Pollution Research, 2020, p. 1-9.CACAJ, et al. (2019). Circulation of the Heavy Metals in Nature, Concentration of Chemical Elements in Daily Food, Chemical Effects on Human Health and Environment. En: International Journal of Ecosystems & Ecology Sciences, 9(4), 627–634.CÁCERES DÁVILA Rosa Gabriela. Síntesis de un derivado de Rodamina B y su aplicación para la detección de Al3+ y CN- en soluciones acuosa. Tesis de maestría. Arequipa - Perú, Universidad Católica de Santa María, Escuela de post grado, 2016. 13 p.COLOMBIA. EL MINISTERIO DE SALUD Y PROTECCIÓN SOCIAL. Resolución 3803 (22, agosto, 2016). Por el cual se establecen las Recomendaciones de Ingesta de Energía y Nutrientes- RIEN para la población colombiana y se dictan otras disposiciones [en línea]. Santa Fe de Bogotá D.C.: Ministerio de Salud. 2016. 26 p. En: https://www.minsalud.gov.co/Normatividad_Nuevo/Resoluci%C3%B3n%203803% 20de%202016.pdfCHANG, Hui-Qin, et al. A highly sensitive on-off fluorescent chemosensor for Cu2+ based on coumarin. En: Journal of Luminescence, 2017, vol. 182, p. 268-273.CHANG, Raymond. Química. Séptima Edición. Editorial McGraw-Hill. ISBN 0–07– 365601-1. p. 882. Impreso en Bogotá, Colombia, 2002.CHEN, Fengjuan, et al. A coumarin-derived fluorescent chemosensor for selectively detecting Cu2+: Synthesis, DFT calculations and cell imaging applications. En: Talanta, 2014, vol. 124, p. 139-145.CHEN, Chia-Shang, et al. Post-column detection of cadmium chelators by high- performance liquid chromatography using 5, 10, 15, 20-tetraphenyl-21H, 23H- porphinetetrasulfonic acid. En: Journal of Chromatography B, 2020, vol. 1141, p. 122025.CHRISTOPOULOS, THEODORE K.; DIAMANDIS, ELEFTHERIOS P. Fluorescence immunoassays. En: Immunoassay. Academic Press, 1996. p. 309-335.DAI, Juan, et al. Toxicity, gut microbiota and metabolome effects after copper exposure during early life in SD rats. En: Toxicology, 2020, vol. 433, p. 152395.DEEMS, Justin C., et al. Strategies for a fluorescent sensor with receptor and fluorophore designed for the recognition of heavy metal ions. En: Inorganica Chimica Acta, 2020, vol. 499, p. 119181.DEMIRAK, Ahmet, et al. Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. En: Chemosphere, 2006, vol. 63, no 9, p. 1451-1458.DUTTA, Sriparna; SHARMA, R. K. Sustainable Magnetically Retrievable Nanoadsorbents for Selective Removal of Heavy Metal Ions From Different Charged Wastewaters. En: Separation Science and Technology. Academic Press, 2019. p. 371-416.EFSA PANEL ON DIETETIC PRODUCTS, NUTRITION AND ALLERGIES (NDA). Scientific opinion on dietary reference values for copper. En: EFSA Journal, 2015, vol. 13, no 10, p. 8-9.ESCUDERO BALLESTEROS, Luis Alfonso. Principios de fluorescencia [en línea]. Trabajo fin de grado. Madrid. Universidad Complutense. Facultad de Farmacia. 2018. 3 p. En: http://147.96.70.122/Web/TFG/TFG/Memoria/LUIS%20ALFONSO%20ESCUDER O%20BALLESTEROS.pdf.GARCÍA-BELTRÁN, Olimpo, et al. Design and synthesis of a new coumarin-based ‘turn-on’ fluorescent probe selective for Cu+ 2. En: Tetrahedron Letters, 2012, vol. 53, no 39, p. 5280-5283. GANDHI, S.M; SARKAR, B.C. Chapter 2 – Mineral Deposits: Types and Associations. En: Essentials of Mineral Exploration and Evaluation. Elsevier, 2016. p. 23-52.GOERING, P. L.; LIU, J. Hepatotoxicity of Copper, Iron, Cadmium, and Arsenic. 2018, vol. 2, p. 575-596.GHODSI, M. Ziarani; RAZIEH, Moradi; NEGAR, Lashgari; HENDRIK, G. Kruger. Chapter 7 – Coumarin Dyes. En: Metal-Free Synthetic Organic Dyes. 2018. p. 117- 125.HAZRA, Subhenjit, et al. A novel tryptamine-appended rhodamine-based chemosensor for selective detection of Hg 2+ present in aqueous medium and its biological applications. En: Analytical and bioanalytical chemistry, 2019, vol. 411, no 6, p. 1143-1157.HOUSE, E. James. Chapter 9 – Acid-base chemistry. En: Inorganic Chemistry (Third Edition), 2020, p. 323-367.JIAO, Yang, et al. Fluorescent sensing of fluoride in cellular system. En: Theranostics, 2015, vol. 5, no 2, p. 173.KARUNASAGAR, D.; ARUNACHALAM, J.; GANGADHARAN, S. Development of a ‘collect and punch cold vapour inductively coupled plasma mass spectrometric method for the direct determination of mercury at nanograms per litre levels. En: Journal of Analytical Atomic Spectrometry, 1998, vol. 13, no 7, p. 679-682.LATORRE, Mauricio; TRONCOSO, Rodrigo; UAUY, Ricardo. Biological Aspects of Copper. En: Clinical and Translational Perspectives on Wilson Disease. Academic Press, 2019. p. 25-31.LORINCZ, Matthew T. Wilson disease and related copper disorders. En: Handbook of clinical neurology. Elsevier, 2018. p. 279-292.MA, Jingjin, et al. A new coumarin-derived fluorescent sensor with red-emission for Zn2+ in aqueous solution. En: Sensors and Actuators B: Chemical, 2014, vol. 197, p. 364-369.MARRUGO-NEGRETE, José; PINEDO-HERNÁNDEZ, José; DÍEZ, Sergi. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. En: Environmental research, 2017, vol. 154, p. 380-388.MARTIN, Sabine; GRISWOLD, Wendy. Human health effects of heavy metals. En: Environmental Science and Technology briefs for citizens, 2009, vol. 15, p. 1-6.MERGU, Naveen; KIM, Myeongjin; SON, Young-A. A coumarin-derived Cu2+- fluorescent chemosensor and its direct application in aqueous media. En: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, vol. 188, p. 571-580.MOUSSA, Nicole. El desarrollo de la minería del cobre en la segunda mitad del siglo XX. CEPAL, 1999.MYERS, Donna N. Innovations in Monitoring With Water-Quality Sensors With Case Studies on Floods, Hurricanes, and Harmful Algal Blooms. En: Separation Science and Technology. Academic Press, 2019. p. 219-283.NAGAJYOTI, P. C; LEE, K. D; SREEKANTH, T. V. M. Heavy metals, occurrence and toxicity for plants: a review. En: Environmental chemistry letters, 2010, vol. 8, no 3, p. 199-216.NI, Hanzhi, et al. High selectivity and reversibility/reusability red emitting fluorescent probe for copper ions detection and imaging in living cells. En: Journal of Luminescence, 2019, vol. 206, p. 125-131.OGUNFOWOKAN, A. O., et al. Determination of Heavy Metals in Urine of Patients and Tissue of Corpses by Atomic Absorption Spectroscopy. En: Chemistry Africa, 2019, vol. 2, no 4, p. 699-712.PANG, Bing-jie, et al. A highly selective and sensitive coumarin derived fluorescent probe for detecting Hg2+ in 100% aqueous solutions. En: Journal of Luminescence, 2019, vol. 205, p. 446-450.PALACIOS-TORRES, Yuber; JESUS, D.; OLIVERO-VERBEL, Jesus. Trace elements in sediments and fish from Atrato River: an ecosystem with legal rights impacted by gold mining at the Colombian Pacific. En: Environmental Pollution, 2020, vol. 256, p. 113290.PERALTA-VIDEA, Jose R., et al. The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. En: The international journal of biochemistry & cell biology, 2009, vol. 41, no 8-9, p. 1665-1677.PETTY, M. C. Applications of organized molecular films to electronic and opto- electronic devices. En: Studies in Interface Science. Elsevier, 2002. p. 317-367.PRODI, Luca, et al. Luminescent chemosensors for transition metal ions. En: Coordination Chemistry Reviews, 2000, vol. 205, no 1, p. 59-83.QU, Lijun, et al. A pyridoxal-based dual chemosensor for visual detection of copper ion and ratiometric fluorescent detection of zinc ion. En: Sensors and Actuators B: Chemical, 2014, vol. 191, p. 158-164.RAHMAN, Zeeshanur; SINGH, Ved Pal. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb) on the total environment: an overview. En: Environmental monitoring and assessment, 2019, vol. 191, no 7, p. 419.SINGH, Ranjana, et al. An excellent stable fluorescent probe: selective and sensitive detection of trace amounts of Hg+ 2 ions in natural source of water. En: Chemical Physics Letters, 2017, vol. 676, p. 39-45.SKOOG, Douglas A.; HOLLER, F. James; CROUCH, Stanley R. Principles of instrumental analysis. En: Cengage learning, 2017.TAN, Wenbin, et al. A novel coumarin-based fluorescence enhancement and colorimetric probe for Cu2+ via selective hydrolysis reaction. En: Journal of Photochemistry and Photobiology A: Chemistry, 2016, vol. 324, p. 81-86.TJANDRA, Angie, et al. Chapter 1.2 – Optical sensors. En: Bioengineering Innovative Solutions for Cancer, Academic Press, 2020. p. 23-45.TEJEDA-BENITEZ, Lesly, et al. Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia. En: Environmental Pollution, 2016, vol. 212, p. 238-250.VAN LITH, Robert; AMEER, Guillermo A. Antioxidant Polymers as Biomaterial. En: Oxidative stress and biomaterials. Academic Press, 2016. p. 251-296.VERMA, N.; KAUR, G. Trends on biosensing systems for heavy metal detection. En: Comprehensive Analytical Chemistry. Elsevier, 2016. p. 33-71.VULPE, Christopher, et al. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper–transporting ATPase. En: Nature genetics, 1993, vol. 3, no 1, p. 7-13.WANG, Binghe; ANSLYN, Eric V. (ed.). Chemosensors: principles, strategies, and applications. En: John Wiley & Sons, 2011. p. 5 – 42.WANG, Wei, et al. Simple naphthalimide-based fluorescent sensor for highly sensitive and selective detection of Cd 2+ and Cu 2+ in aqueous solution and living cells. En: Dalton Transactions, 2013, vol. 42, no 5, p. 1827-1833.WU, Haifeng, et al. Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography–mass spectrometry. En: Journal of Pharmaceutical and Biomedical Analysis, 2013, vol. 72, p. 267-291.XU, Wen-Jun, et al. Coumarin-based ‘turn-off’fluorescent chemosensor with high selectivity for Cu2+ in aqueous solution. En: Journal of Molecular Structure, 2015, vol. 1091, p. 133-137.YIN, Kun. A Fluorescent Biosensor for Copper Ion Detection. En: Design of Novel Biosensors for Optical Sensing and Their Applications in Environmental Analysis. Springer, Singapore, 2020. p. 13-24.YIN, Junxia, et al. A highly selective and sensitive sugar–rhodamine “turn-on” fluorescent sensor for divalent copper ion detection in acetonitrile. En: Sensors and Actuators B: Chemical, 2013, vol. 177, p. 213-217.YU, Yamin, et al. A novel highly selective ratiometric fluorescent probe with large emission shift for detecting mercury ions in living cells and zebrafish. En: Dyes and Pigments, 2020, vol. 177, p. 108290.ZHANG, Weidong, et al. A method for determining glyphosate and its metabolite aminomethyl phosphonic acid by gas chromatography-flame photometric detection. En: Journal of Chromatography A, 2019, vol. 1589, p. 116-121.ZHANG, Bibo, et al. A dual-response quinoline-based fluorescent sensor for the detection of Copper (II) and Iron (III) ions in aqueous medium. Sensors and Actuators B: Chemical, 2017, vol. 243, p. 765-774.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/Sensores químicos por iones de cobre - Selectividad y sensibilidad de sensores químicosDeterminación de sensores químicos por iones de cobreSensores químicosCumarinasIones de cobreChemical sensorsCoumarinsCopper ionsDeterminación de la selectividad y sensibilidad de sensores químicos por iones de cobreTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/7e3218ad-0850-4ba7-95cd-899f468e9800/download2fa3e590786b9c0f3ceba1b9656b7ac3MD53TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain94831https://repositorio.unibague.edu.co/bitstreams/6d539ef3-2521-411f-aaec-94452d25d0bd/download95e93743d90aff22369209db43bc8fe1MD54Formato de autorización.pdf.txtFormato de autorización.pdf.txtExtracted texttext/plain3743https://repositorio.unibague.edu.co/bitstreams/91424b91-7f89-42b3-b6e6-ec7ffeb9029e/download6ff04d2d357ba5c1a9a746021a0ab736MD56THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgIM Thumbnailimage/jpeg4623https://repositorio.unibague.edu.co/bitstreams/a7a8e76d-6d65-4880-bc42-28be6a494ad8/download84b2dced5c5fc5682c3263c541c3061dMD55Formato de autorización.pdf.jpgFormato de autorización.pdf.jpgIM Thumbnailimage/jpeg23160https://repositorio.unibague.edu.co/bitstreams/7b0ec8c5-57d5-4d5f-bfd0-2175397f3508/downloadf64ac48d502dbcf62c5dc5cfdb03ee89MD57ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf691927https://repositorio.unibague.edu.co/bitstreams/288f89ed-1f26-4a3e-bd48-5ef40d31b6b1/download432db8a7b0635ffe467c3993476f458fMD51Formato de autorización.pdfFormato de autorización.pdfapplication/pdf175534https://repositorio.unibague.edu.co/bitstreams/170cace8-0156-454f-ab74-e653af8a1355/downloadee9656cea697c8da5e5827c92ef37821MD5220.500.12313/5779oai:repositorio.unibague.edu.co:20.500.12313/57792025-11-28 09:40:23.211https://creativecommons.org/licenses/by-nc/4.0/https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=