Diseño de un sistema de realidad aumentada para utilizar en protocolos de rehabilitación en pacientes con enfermedades reumatológicas de la mano mediante el dispositivo MYO
Este documento presenta el desarrollo de un sistema de rehabilitación de la mano basado en realidad aumentada, utilizando el brazalete Myo como interfaz de adquisición de señales electromiográficas (EMG) y de movimiento (IMU). El objetivo consiste en mejorar la adherencia del paciente, optimizar el...
- Autores:
-
Gomez Naffah, Juan Camilo
Garcia Ruiz, Laura Paola
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5376
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/5376
- Palabra clave:
- Electromiografía
Enfermedades reumatológicas - Rehabilitación
Dispositivo MYO
Brazalete Myo
Electromiografía
Rehabilitación
Realidad Aumentada
Unity
Terapia Digital
Evaluación Cuantitativa
Myo Armband
Electromyography
Rehabilitation
Augmented Reality
Digital Therapy
Quantitative Evaluation
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
| id |
UNIBAGUE2_ccb2323343a2ab5bb26e8fb5f825d78d |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5376 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Diseño de un sistema de realidad aumentada para utilizar en protocolos de rehabilitación en pacientes con enfermedades reumatológicas de la mano mediante el dispositivo MYO |
| title |
Diseño de un sistema de realidad aumentada para utilizar en protocolos de rehabilitación en pacientes con enfermedades reumatológicas de la mano mediante el dispositivo MYO |
| spellingShingle |
Diseño de un sistema de realidad aumentada para utilizar en protocolos de rehabilitación en pacientes con enfermedades reumatológicas de la mano mediante el dispositivo MYO Electromiografía Enfermedades reumatológicas - Rehabilitación Dispositivo MYO Brazalete Myo Electromiografía Rehabilitación Realidad Aumentada Unity Terapia Digital Evaluación Cuantitativa Myo Armband Electromyography Rehabilitation Augmented Reality Digital Therapy Quantitative Evaluation |
| title_short |
Diseño de un sistema de realidad aumentada para utilizar en protocolos de rehabilitación en pacientes con enfermedades reumatológicas de la mano mediante el dispositivo MYO |
| title_full |
Diseño de un sistema de realidad aumentada para utilizar en protocolos de rehabilitación en pacientes con enfermedades reumatológicas de la mano mediante el dispositivo MYO |
| title_fullStr |
Diseño de un sistema de realidad aumentada para utilizar en protocolos de rehabilitación en pacientes con enfermedades reumatológicas de la mano mediante el dispositivo MYO |
| title_full_unstemmed |
Diseño de un sistema de realidad aumentada para utilizar en protocolos de rehabilitación en pacientes con enfermedades reumatológicas de la mano mediante el dispositivo MYO |
| title_sort |
Diseño de un sistema de realidad aumentada para utilizar en protocolos de rehabilitación en pacientes con enfermedades reumatológicas de la mano mediante el dispositivo MYO |
| dc.creator.fl_str_mv |
Gomez Naffah, Juan Camilo Garcia Ruiz, Laura Paola |
| dc.contributor.advisor.none.fl_str_mv |
Gallo Sánchez, Luisa Fernanda |
| dc.contributor.author.none.fl_str_mv |
Gomez Naffah, Juan Camilo Garcia Ruiz, Laura Paola |
| dc.contributor.jury.none.fl_str_mv |
Gutiérrez G., Rodolfo José |
| dc.contributor.researchgroup.none.fl_str_mv |
Semillero GIEM (Grupo de Investigación en Ingeniería Electrónica y Mecatrónica) |
| dc.subject.armarc.none.fl_str_mv |
Electromiografía Enfermedades reumatológicas - Rehabilitación Dispositivo MYO |
| topic |
Electromiografía Enfermedades reumatológicas - Rehabilitación Dispositivo MYO Brazalete Myo Electromiografía Rehabilitación Realidad Aumentada Unity Terapia Digital Evaluación Cuantitativa Myo Armband Electromyography Rehabilitation Augmented Reality Digital Therapy Quantitative Evaluation |
| dc.subject.proposal.spa.fl_str_mv |
Brazalete Myo Electromiografía Rehabilitación Realidad Aumentada Unity Terapia Digital Evaluación Cuantitativa |
| dc.subject.proposal.eng.fl_str_mv |
Myo Armband Electromyography Rehabilitation Augmented Reality Digital Therapy Quantitative Evaluation |
| description |
Este documento presenta el desarrollo de un sistema de rehabilitación de la mano basado en realidad aumentada, utilizando el brazalete Myo como interfaz de adquisición de señales electromiográficas (EMG) y de movimiento (IMU). El objetivo consiste en mejorar la adherencia del paciente, optimizar el seguimiento clínico y facilitar la personalización de la terapia, gracias a la retroalimentación visual inmediata y a la capacidad de registrar la evolución funcional del usuario. Para ello, se emplea un entorno virtual en Unity que permite observar la actividad muscular y la precisión de cada movimiento en tiempo real, generando datos cuantificables sobre la fuerza y la movilidad de la mano. Con esta información, el terapeuta puede tomar decisiones clínicas sólidas y adaptar el tratamiento de manera personalizada.. Este enfoque permite al terapeuta tomar decisiones clínicas más fundamentadas y adaptar el tratamiento según las necesidades de cada paciente, impulsando una rehabilitación más interactiva, asequible y trazable que favorece la recuperación funcional de la mano. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-07-25T20:29:19Z |
| dc.date.available.none.fl_str_mv |
2025-07-25T20:29:19Z |
| dc.date.issued.none.fl_str_mv |
2025 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
| format |
http://purl.org/coar/resource_type/c_7a1f |
| status_str |
acceptedVersion |
| dc.identifier.citation.none.fl_str_mv |
Gómez Naffah, J. C., & García Ruiz, L. P. (2025). Diseño de un sistema de realidad aumentada para utilizar en protocolos de rehabilitación en pacientes con enfermedades reumatológicas de la mano mediante el dispositivo MYO [Trabajo de grado. Universidad de Ibagué]. https://hdl.handle.net/20.500.12313/5376 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/5376 |
| identifier_str_mv |
Gómez Naffah, J. C., & García Ruiz, L. P. (2025). Diseño de un sistema de realidad aumentada para utilizar en protocolos de rehabilitación en pacientes con enfermedades reumatológicas de la mano mediante el dispositivo MYO [Trabajo de grado. Universidad de Ibagué]. https://hdl.handle.net/20.500.12313/5376 |
| url |
https://hdl.handle.net/20.500.12313/5376 |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.none.fl_str_mv |
Almeida, L. O., Oliveira, C., & Pinto, J. S. (2017). Myo armband for muscle activity recognition: A systematic review. Biomedical Signal Processing and Control, 38, 356–370. Atkins, D. J., Heard, D. C. Y., & Donovan, W. H. (2016). Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. Journal of Prosthetics and Orthotics, 8(1), 2–11. Ayuso, J. (2018). Wearable de Medida de Rendimiento en Running [Tesis de grado, Universitat Politècnica de València]. Bertelsen, A., Mikkelsen, L., Juhl, C., et al. (2020). Objective assessment of rehabilitation outcomes in hand therapy: A systematic review. Journal of Hand Therapy, 33(4), 511–522. Bialocerkowski, A., Grimmer, K., & Bain, G. (2005). A systematic review of the effectiveness of conservative interventions for osteoarthritis of the elbow. Clinical Rehabilitation, 19(7), 690–700. Biddiss, E. A., & Chau, T. T. (2007). Upper-limb prosthetics: Critical factors in device abandonment. American Journal of Physical Medicine & Rehabilitation, 86(12), 977–987. Bielefeld, T., & Neumann, D. A. (2013). The unstable metacarpophalangeal joint in rheumatoid arthritis: A biomechanical perspective. The Journal of Hand Surgery, 38(8), 1605–1611. Bohannon, R. W. (2010). Measurement of gait speed in older adults: A review. Topics in Geriatric Rehabilitation, 26(2), 76–88. Celik, O., O’Malley, M. K., Boake, C., Levin, H. S., & Reistetter, T. A. (2020). A portable hand rehabilitation device with real-time EMG-based biofeedback. Journal of NeuroEngineering and Rehabilitation, 17(1), 14–25. Chang, Y. J., Kim, H. W., Yoo, J., & Ryu, S. (2020). Augmented reality-based rehabilitation for patients with hand impairments: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28, 1316–1330. Cramer, S. C., Dodakian, L., Le, V., McKenzie, A., See, J., Augsburger, R., ... & Shah, P. (2019). Efficacy of home-based telerehabilitation vs in-clinic therapy for patients with stroke: A randomized clinical trial. JAMA Neurology, 76(9), 1079–1087. Declaración de Helsinki. (2013). Asociación Médica Mundial. JAMA, 310(20), 2191–2194. Denton, C. P., & Khanna, D. (2017). Systemic sclerosis. The Lancet, 390(10103), 1685–1699. Desmond, D. M., & MacLachlan, M. (2002). Psychosocial perspectives on upper limb prosthetics. Journal of Prosthetics and Orthotics, 14(1), 19–24. Diao, E., Shao, F., & Wang, J. (2013). Ulnar nerve entrapment at the elbow: Current concepts. Hand Clinics, 29(4), 521–530. Dobkin, B. H. (2004). Strategies for stroke rehabilitation. The Lancet Neurology, 3(9), 528–536. El Español. (2021). Uso de realidad virtual en rehabilitación física. El Español. https://s1.eestatic.com/2021/08/04/invertia/disruptores-innovadores/innovadores/empresas/601704543_199079873_1706x960.jpg. FDA. (2020). Guidance for the Regulation of Software as a Medical Device (SaMD). U.S. Food & Drug Administration. FDA. (2022). Cybersecurity in Medical Devices: Quality System Considerations and Content of Premarket Submissions. U.S. Food & Drug Administration. Felson, D. T. (2013). Osteoarthritis: new insights. Part 1: the disease and its risk factors. Annals of Internal Medicine, 133(8), 635–646. Flor, H., Nikolajsen, L., & Jensen, T. S. (2006). Phantom limb pain: A case of maladaptive CNS plasticity? Nature Reviews Neuroscience, 7(11), 873–881. Fusetti, C., Meyer, H., Borisch, N., Stern, R., Santa, D. D., & Papaloïzos, M. (2002). Complications of scaphoid fractures. The Journal of Hand Surgery, 27(6), 937–942. Garcia-Elías, M. (2015). The treatment of scaphoid fractures in athletes. Hand Clinics, 26(1), 97–109. Gómez-Martinho González, I. (2017). Desarrollo de una Prótesis para Desarticulado de Muñeca Controlada mediante EMG [Tesis de grado, Universidad Politécnica de Madrid]. Gordon, C., Amissah-Arthur, M. B., Gayed, M., Brown, S., Bruce, I. N., D’Cruz, D., ... & Khamashta, M. (2017). The British Society for Rheumatology guideline for the management of systemic lupus erythematosus in adults. Rheumatology, 57(1), e1–e45. Griffin, M., Hindocha, S., Jordan, D., Saleh, M., & Khan, W. (2016). An overview of the management of flexor tendon injuries. The Open Orthopaedics Journal, 6(1), 28–35. Guerra, R. O., Farias Neto, J. P., Souza, W. B., & Guerra, R. S. (2019). Virtual reality therapy for upper limb rehabilitation in stroke patients: A systematic review. Journal of NeuroEngineering and Rehabilitation, 16(1), 15–26. Hanson, A. J. (2006). Visualizing quaternions. Morgan Kaufmann. HIPAA. (1996). Health Insurance Portability and Accountability Act. U.S. Department of Health & Human Services. HL7 International. (2021). Health Level 7 Standards. Hoffmann, U., Vesin, J. M., Ebrahimi, T., & Diserens, K. (2018). Electromyography-based control of hand prostheses: A review. Journal of NeuroEngineering and Rehabilitation, 15(1), 73. Housman, S. J., Scott, K. M., & Reinkensmeyer, D. J. (2009). A randomized controlled trial of task-oriented arm training after stroke: The ARMin study. Neurorehabilitation and Neural Repair, 23(6), 569–578. Ibarra-Fuentes, J. A., et al. (2024). Control de Mano Robótica Usando Señales Electromiográficas Superficiales. Revista de Tecnología y Salud, 1(1), 45–56. IEEE 11073. Standards for Interoperability of Medical Devices. ISO 11073. Health informatics — Medical device communication. ISO 13485:2016. Medical devices — Quality management systems — Requirements for regulatory purposes. ISO 14971:2019. Medical devices — Application of risk management to medical devices. ISO 60601-1. Medical electrical equipment — General requirements for basic safety and essential performance. ISO/IEC 27001. Information security management systems — Requirements. Jiang, Y., Li, Y., Zou, X., & Liu, H. (2012). Biomechanical evaluation of transradial prosthetic hand control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(5), 632–640. Krakauer, J. W., Carmichael, S. T., Corbett, D., & Wittenberg, G. F. (2017). Getting neurorehabilitation right: What can be learned from animal models? Neurorehabilitation and Neural Repair, 31(6), 606–620. Krebs, H. I., Palazzolo, J. J., Dipietro, L., Ferraro, M., Krol, J., & Hogan, N. (2003). Rehabilitation robotics: Performance-based progressive robot-assisted therapy. Autonomous Robots, 15(1), 7–20. Kuo, T. T., Lu, C. H., Hsu, B. B., & Chang, C. W. (2016). Electromyographic and sonographic assessment in patients with carpal tunnel syndrome: A correlation study. Clinical Neurophysiology, 127(1), 164–169. Laver, K., George, S., Ratcliffe, J., & Crotty, M. (2015). Virtual reality stroke rehabilitation–Hype or hope? Australian Occupational Therapy Journal, 62(1), 6–8. Lifeder. (s.f.). Músculos del antebrazo (brazo derecho). Lifeder. https://i.pinimg.com/736x/06/75/a3/0675a327961bf97c29a014c249471515.jpg. Lundström, E., Eberhardt, K., & Svensson, B. (2017). Functional impairment in rheumatoid arthritis patients with wrist involvement: a cross-sectional study. Scandinavian Journal of Rheumatology, 46(4), 277–283. MedicalExpo. (s.f.). Exoesqueleto de mano para rehabilitación. MedicalExpo. https://img.medicalexpo.es/images_me/photo-g/77946-10771281.jpg. Merlo, A., Campanini, I., & Knaflitz, M. (2018). Surface electromyography for the assessment of neuromuscular function. Journal of Electromyography and Kinesiology, 44, 1–10. Merians, A. S., Poizner, H., Boian, R., Burdea, G., & Adamovich, S. (2009). Sensorimotor training in a virtual reality environment: Does it improve functional recovery poststroke? Neurorehabilitation and Neural Repair, 20(2), 252–267. Miossec, P. (2017). Rheumatoid arthritis: still a chronic disease. The Lancet, 389(10086), 1–2. Napier, J. R. (1956). The prehensile movements of the human hand. The Journal of Bone and Joint Surgery. British Volume, 38(4), 902–913. Ortiz-Catalán, M., Brånemark, R., Håkansson, B., & Delbeke, J. (2014). On the viability of implantable electrodes for the natural control of artificial limbs. Science Translational Medicine, 6(257), 257ra138. Patel, R., & Shahane, A. (2014). The impact of Sjögren’s syndrome on daily living and steps towards patient-centered management. Clinical Rheumatology, 33(4), 495–496. Pérez, M. (2021). Sistema de Ayuda a la Rehabilitación de Personas con Problemas Motores mediante Realidad Aumentada [Tesis de grado, Universidad de Castilla-La Mancha]. Peterson, J. J., & Manske, P. R. (2015). Hand injuries: their assessment and rehabilitation. Orthopedic Clinics of North America, 36(3), 367–381. Reglamento General de Protección de Datos (GDPR). (2016). Parlamento Europeo Salarian, A., Burkhard, P. R., Aminian, K., et al. (2007). A novel approach for quantitative assessment of upper-limb movements. IEEE Transactions on Biomedical Engineering, 54(10), 1925–1933. Saposnik, G., Levin, M., & Virtual Reality in Stroke Rehabilitation Investigators. (2010). Virtual reality in stroke rehabilitation: A meta-analysis and implications for clinicians. Stroke, 42(5), 1380–1386. Scott, D. L., Wolfe, F., & Huizinga, T. W. (2010). Rheumatoid arthritis. The Lancet, 376(9746), 1094–1108. Shoemake, K. (1985). Animating rotation with quaternion curves. ACM SIGGRAPH Computer Graphics, 19(3), 245–254. Smolen, J. S., Aletaha, D., & McInnes, I. B. (2016). Rheumatoid arthritis. The Lancet, 388(10055), 2023–2038. Valdazo, A. (s.f.). Inflamación de los tendones de la mano y muñeca. Dra. Valdazo. https://doctoravaldazo.com/wp-content/uploads/2022/06/tendones.jpg Van der Kooij, H., & Van Asseldonk, E. H. F. (2019). Rehabilitation technology: Assisted versus augmented feedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(5), 829–837. Van Peppen, R. P. S., Kwakkel, G., Wood-Dauphinee, S., Hendriks, H. J. M., Van der Wees, P. J., & Dekker, J. (2004). The impact of physical therapy on functional outcomes after stroke. Stroke, 35(4), 1024–1030. Welch, G., & Bishop, G. (1995). An introduction to the Kalman filter. Department of Computer Science, University of North Carolina at Chapel Hill. World Health Organization. (2019). Musculoskeletal conditions. En WHO Global Report on Rehabilitation (pp. 32–45). World Health Organization (WHO). (2021). Ethics and governance of artificial intelligence for health. World Medical Association. (2013). Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053 Yang, X., Zhou, P., Li, G., & Wang, Y. (2014). Wearable sensor-based rehabilitation systems: A review. IEEE Sensors Journal, 14(5), 1621–1631. Denton, C. P., & Khanna, D. (2017). Systemic sclerosis. The Lancet, 390(10103), 1685–1699. Diao, E., Vance, R., & Ring, D. (2013). Current concepts in the management of peripheral nerve injuries. Journal of Bone and Joint Surgery, 95(1), 1–8. Felson, D. T. (2013). Osteoarthritis as a disease of mechanics. Osteoarthritis and Cartilage, 21(1), 10–15. Fusetti, C., Meyer, H., Borisch, N., Stern, R., Santa, D. D., & Papaloïzos, M. (2002). Complications of scaphoid fractures. Journal of Trauma, 52(2), 324–328. Garcia-Elías, M. (2015). Wrist injuries: treatment options. Hand Clinics, 31(3), 357–367. Gordon, C., Amissah-Arthur, M. B., Gayed, M., Brown, S., Bruce, I. N., & D’Cruz, D. (2017). The British Society for Rheumatology guideline for the management of systemic lupus erythematosus in adults. Rheumatology, 57(1), e1–e45. Griffin, M., Hindocha, S., Jordan, D., Saleh, M., & Khan, W. (2016). Tendon injuries of the hand: a review of the literature. The Open Orthopaedics Journal, 6(1), 101–106. Guerra, L. A., Soto-Rey, D., & Pérez, C. J. (2019). AR-based systems for upper limb rehabilitation in amputee patients: A case study. Journal of Rehabilitation Research and Development, 56(3), 321–332. Kuo, L. C., Chang, J. H., Lin, C. F., Hsu, H. Y., & Ho, K. Y. (2016). Carpal tunnel syndrome and its treatment using neuromuscular rehabilitation. Clinical Biomechanics, 31, 45–52. Kozin, S. H. (2005). Upper extremity fractures in children. The Journal of Bone and Joint Surgery, 87(5), 1019–1030. Lallemand, D., Adam, C., Moutet, F., & Bégué, T. (2016). Rehabilitation of hand and wrist injuries. EMC - Kinésithérapie - Médecine Physique - Réadaptation, 43(2), 1–11. Lundström, E., Nordenskiöld, U., & Lundgren-Lindquist, B. (2017). Functional limitations in patients with rheumatoid arthritis: A descriptive study. Scandinavian Journal of Rheumatology, 38(5), 338–343. Miller, G. (2012). Fractures and dislocations of the hand. The Orthopedic Clinics of North America, 43(4), 541–553. Ortiz-Catalán, M., Håkansson, B., & Brånemark, R. (2014). Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(4), 756–764. Scott, D. L., Wolfe, F., & Huizinga, T. W. (2010). Rheumatoid arthritis. The Lancet, 376(9746), 1094–1108 Zhang, Y., Jordan, J. M., & Hunter, D. J. (2010). Osteoarthritis. The Lancet, 374(9704), 1745–1759. Al-Timemy, A. H., Geng, Y., Du, M., & Qi, L. (2023). Hand gesture recognition using Myo armband for assistive rehabilitation tasks. Biomedical Signal Processing and Control, 82, 104487. https://doi.org/10.1016/j.bspc.2023.104487 Avila-Mireles, E. J., Rivas-Medina, C. C., et al. (2023). Use of wearable systems in upper limb rehabilitation: A review. Sensors, 23(2), 565. https://doi.org/10.3390/s23020565 Cisnal, A., et al. (2023). Interaction with a hand rehabilitation exoskeleton in EMG-driven bilateral therapy: Influence of visual biofeedback. Sensors, 23(4), 2048. https://doi.org/10.3390/s23042048 Fang, C., Li, Y., Zhang, D., & Liu, Y. (2024). Augmented reality in physical rehabilitation: A systematic review and meta-analysis. Journal of NeuroEngineering and Rehabilitation, 21(1), 12. Gordon, C., et al. (2017). Guidelines for the management of systemic lupus erythematosus in adults. Rheumatology, 57(1), e1–e45. Guerra, L. A., et al. (2019). Implementation of Myo armband in hand rehabilitation. Journal of Rehabilitation Research and Development, 56(2), 123–130. Jafri, M. A., et al. (2023). Effectiveness of augmented reality therapy for upper limb function: A randomized controlled trial. Frontiers in Rehabilitation Sciences, 4, 876543. Napier, J. R. (1956). The prehensile movements of the human hand. The Journal of Bone and Joint Surgery. British Volume, 38-B(4), 902–913. Phinyomark, A., et al. (2018). EMG signal analysis for clinical rehabilitation: A review. Biomedical Signal Processing and Control, 44, 1–13. Cramer, S. C., Dodakian, L., et al. (2019). Remote supervision of home-based upper extremity therapy using a telerehabilitation system. Frontiers in Neurology, 10, 1157. https://doi.org/10.3389/fneur.2019.01157 Housman, S. J., Scott, K. M., & Reinkensmeyer, D. J. (2009). A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabilitation and Neural Repair, 23(5), 505–514. Holden, M. K. (2005). Virtual environments for motor rehabilitation: review. CyberPsychology & Behavior, 8(3), 187–211. Jack, K., McLean, S. M., & Moffett, J. K. (2010). Barriers to treatment adherence in physiotherapy outpatient clinics: A systematic review. Manual Therapy, 15(3), 220–228. https://doi.org/10.1016/j.math.2009.12.004 Lai, C. H., et al. (2022). Effects of augmented reality-based rehabilitation on pain, adherence and physical function in individuals with rheumatoid arthritis. Journal of Rehabilitation Research and Development, 59(2), 121–134. Laver, K., George, S., Thomas, S., Deutsch, J. E., & Crotty, M. (2015). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews, (2), CD008349. Laver, K., Ratcliffe, J., George, S., Burgess, L., & Crotty, M. (2013). Is the Nintendo Wii Fit really acceptable to older people?: a discrete choice experiment. BMC Geriatrics, 13, 61. https://doi.org/10.1186/1471-2318-13-61 Lutz, B. J. (2019). A theory-based approach to developing an adherence intervention. Rehabilitation Nursing, 44(6), 308–316. https://doi.org/10.1097/rnj.0000000000000173 Merlo, A., Campanini, I., & Ceseracciu, E. (2018). Objective assessment of muscle function during gait rehabilitation. Gait & Posture, 66, 194–200. Saposnik, G., Levin, M., & Stroke Outcome Research Canada (SORCan) Working Group. (2010). Virtual reality in stroke rehabilitation: A meta-analysis and implications for clinicians. Stroke, 41(1), e1–e6. Sluijs, E. M., Kok, G. J., & Van Der Zee, J. (1993). Correlates of exercise compliance in physical therapy. Physical Therapy, 73(11), 771–786. Van Peppen, R. P. S., et al. (2004). The impact of physical therapy on functional outcomes after stroke: what's the evidence? Clinical Rehabilitation, 18(8), 833–862. Bohannon, R. W. (2010). Perceived limitations associated with osteoarthritis and adherence to exercise. Journal of Geriatric Physical Therapy, 33(2), 81–86. Dobkin, B. H. (2004). Strategies for stroke rehabilitation. The Lancet Neurology, 3(9), 528–536. Fang, C., Li, Y., Zhang, D., & Liu, Y. (2024). Augmented reality in physical rehabilitation: A systematic review and meta-analysis. Journal of NeuroEngineering and Rehabilitation, 21(1), 12. Krakauer, J. W., Carmichael, S. T. (2017). Broken movement: The neurobiology of motor recovery after stroke. MIT Press. Krakauer, J. W., et al. (2017). Motor learning after stroke: A critical review. Progress in Brain Research, 234, 121–140. Krebs, H. I., Hogan, N., Aisen, M. L., & Volpe, B. T. (2003). Quantization of therapy using robotics and kinematic measures of motor recovery. Neurorehabilitation and Neural Repair, 17(3), 137–147. Kwakkel, G., Kollen, B. J., & Krebs, H. I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabilitation and Neural Repair, 22(2), 111–121. Laver, K., George, S., Thomas, S., Deutsch, J. E., & Crotty, M. (2015). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews, (2), CD008349. Merians, A. S., Jack, D., Boian, R., et al. (2009). Virtual reality–augmented rehabilitation for patients following stroke. Physical Therapy, 89(11), 1178–1187. Phinyomark, A., et al. (2018). EMG signal analysis for clinical applications: A review. Biomedical Signal Processing and Control, 44, 1–13. Schweighofer, N., et al. (2009). Computational modeling of neuromotor recovery after stroke. Neurorehabilitation and Neural Repair, 23(1), 29–36. Almeida, R., Guimaraes, J., Alves, J. A., & Martins, J. (2017). Myoelectric control of a hand orthosis for rehabilitation in patients with stroke. IEEE, 1–6. Shneiderman, B. (2016). Designing the user interface: Strategies for effective human-computer interaction (6th ed.). Pearson Education. Ministerio de Salud de Colombia. (1993). Resolución 8430 de 1993: Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud. Diario Oficial No. 41.148. Hernández Vargas, C. A. (2025, marzo 27). Carta de aval profesional sobre la aplicación tecnológica desarrollada en el proyecto de grado. Hospital Federico Lleras Acosta. Documento interno entregado al comité académico. Hernández Vargas, C. A. (2025). Informe técnico de validación funcional. Documento de respaldo institucional entregado por el fisioterapeuta. Universidad de Ibagué. Hernández Vargas, C. A. (2025). Validación funcional de la plataforma de rehabilitación basada en brazalete Myo y Unity 3D [Video]. Google Drive. |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ |
| dc.format.extent.none.fl_str_mv |
159 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Ibagué |
| dc.publisher.faculty.none.fl_str_mv |
Ingeniería |
| dc.publisher.place.none.fl_str_mv |
Ibagué |
| dc.publisher.program.none.fl_str_mv |
Ingeniería Electrónica |
| publisher.none.fl_str_mv |
Universidad de Ibagué |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/9052fe3a-9527-4e5b-b7cc-c44f78bba234/download https://repositorio.unibague.edu.co/bitstreams/cc461509-bbd1-4121-b1eb-330cd37da1e9/download https://repositorio.unibague.edu.co/bitstreams/39f29c9c-9a67-4c72-8350-8243ece79686/download https://repositorio.unibague.edu.co/bitstreams/62fd61dc-39db-4b62-b153-46d513133d49/download https://repositorio.unibague.edu.co/bitstreams/f695d368-d1f5-4873-8f28-4e5a05610f51/download https://repositorio.unibague.edu.co/bitstreams/aae94221-d453-4447-a6bd-832944a3f56c/download https://repositorio.unibague.edu.co/bitstreams/31e1448d-8654-4cb6-8676-7daf4da748bc/download https://repositorio.unibague.edu.co/bitstreams/f4d6233d-a7d3-4ef0-887c-094810e3ca65/download |
| bitstream.checksum.fl_str_mv |
fd0226ad303731aa6a0d51c96e7e43f9 abaf492d307d0eefdc0ee2cc5b4d08aa 5398fcc055399020f990ad005b895f9b 930ae97cbb11ef759e5b8325b4a78f0f 7335cf871ae0ed270c55fa3f4a96a42f 5232f0bdfd804d307031a92dd7c7ca55 16ef2c82ad9343fa0c7aad5ddb92ec75 2fa3e590786b9c0f3ceba1b9656b7ac3 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059974261702656 |
| spelling |
Gallo Sánchez, Luisa Fernandaf8602bef-503b-4e3b-870e-b3e05369185e600Gomez Naffah, Juan Camilo0d41e1d1-2a68-44e4-ba44-6f76b7cfb053-1Garcia Ruiz, Laura Paolacf15dd10-a423-4292-a792-5db58f0294b4-1Gutiérrez G., Rodolfo Joséc7049d6d-4b42-46b9-afee-80aed4ebea04600Semillero GIEM (Grupo de Investigación en Ingeniería Electrónica y Mecatrónica)2025-07-25T20:29:19Z2025-07-25T20:29:19Z2025Este documento presenta el desarrollo de un sistema de rehabilitación de la mano basado en realidad aumentada, utilizando el brazalete Myo como interfaz de adquisición de señales electromiográficas (EMG) y de movimiento (IMU). El objetivo consiste en mejorar la adherencia del paciente, optimizar el seguimiento clínico y facilitar la personalización de la terapia, gracias a la retroalimentación visual inmediata y a la capacidad de registrar la evolución funcional del usuario. Para ello, se emplea un entorno virtual en Unity que permite observar la actividad muscular y la precisión de cada movimiento en tiempo real, generando datos cuantificables sobre la fuerza y la movilidad de la mano. Con esta información, el terapeuta puede tomar decisiones clínicas sólidas y adaptar el tratamiento de manera personalizada.. Este enfoque permite al terapeuta tomar decisiones clínicas más fundamentadas y adaptar el tratamiento según las necesidades de cada paciente, impulsando una rehabilitación más interactiva, asequible y trazable que favorece la recuperación funcional de la mano.This document presents the development of an augmented reality-based hand rehabilitation system using the Myo armband as an interface for acquiring electromyographic (EMG) and movement (IMU) signals. The goal is to improve patient adherence, optimize clinical follow-up, and facilitate therapy customization through immediate visual feedback and the ability to record the user's functional progress. To achieve this, a virtual environment in Unity is used to observe muscle activity and the precision of each movement in real time, generating quantifiable data on hand strength and mobility. With this information, therapists can make more informed clinical decisions and tailor treatment to each patient's needs, promoting more interactive, affordable, and traceable rehabilitation that promotes functional recovery of the hand.PregradoIngeniero ElectrónicoIntroducción.....1 Capítulo 1. Panorama General y Antecedentes.....3 1.1 Antecedentes.....3 1.1.1 Enfermedades reumatológicas y lesiones traumáticas en la funcionalidad de la mano.....3 1.1.2 Innovadoras tecnologías utilizadas en la rehabilitación manual.....6 1.1.3 Proyectos previos en rehabilitación de la mano.....6 1.2 Planteamiento del problema y Justificación.....9 1.2.1 Definición del problema.....9 1.2.2 Impacto del problema.....10 1.2.4 Justificación.....12 1.3 Objetivos.....13 1.3.1 Objetivo general.....13 1.3.2 Objetivos específicos.....13 Capítulo 2. Marco Teórico.....14 2.1 Fundamentos y El Estado Del Arte.....14 2.2 Conceptos y Dispositivos.....15 2.2.1 Guía para la utilización de sensores EMG en rehabilitación.....15 2.2.2 Sensores de Medición Inercial (IMU) y Cuaterniones en Rehabilitación.....16 2.2.3 Realidad aumentada en la rehabilitación de la mano.....18 Procesamiento y representación de datos en Unity:.....18 2.2.4 Procesamiento de señales electromiográficas en rehabilitación.....19 2.2.5 Procesamiento de señales inerciales y análisis del movimiento en rehabilitación.....21 2.2.6 Modelado y Animación en Unity para la Rehabilitación.....23 Blending de Animaciones para una Transición Natural.....23 2.2.7 Interacción del Usuario con el Sistema de Rehabilitación en Unity.....24 Capítulo 3. Metodología.....25 3.1 Enfoque del Desarrollo del Sistema.....26 3.1.1 Tipo de Investigación y Metodología de Desarrollo.....27 3.2 Entorno de trabajo.....30 3.2.1 Software y Distribución utilizado.....32 3.2.2 Infraestructura de comunicación.....33 3.3 Procesamiento de la señal EMG34 Trabajo de grado, Ingeniería Electrónica, 2025..... 6 3.4 Diseño de interfaz y experiencia de usuario.....36 3.4.1 Creación del modelo 3D de la mano y animaciones.....36 3.4.2 Creación de la interfaz de usuario en Unity.....37 3.4.3 Implementación de retroalimentación en tiempo real.....38 3.5 Procesamiento y Evaluación de Datos de Rehabilitación.....39 3.5.1 Generación de Reportes y Seguimiento del Usuario.....39 3.6 Validación y Pruebas del Sistema.....40 Capítulo 4. Resultados y Análisis de Resultados.....43 4.1 Logros Alcanzados en el Desarrollo del Sistema.....43 4.1.1 Integración Exitosa del Brazalete Myo con Unity 3D.....43 4.1.2 Implementación del Sistema de Visualización en Tiempo Real.....43 4.1.3 Generación de Informes y Almacenamiento de Datos......44 4.2 Evaluación del Sistema y Pruebas Funcionales.....44 4.2.1 Evaluación de la Precisión de los Datos Capturados.....45 4.2.2 Validación del Conteo de Repeticiones y Rango de Movimiento.....45 4.2.3 Limitaciones Tecnológicas y Proyecciones a Futuro.....48 4.3 Ajustes Finales y Mejoras Implementadas.....49 Capítulo 5. Conclusiones y Recomendaciones.....51 5.1 Conclusiones Generales del Proyecto.....51 5.2 Imprevistos y Desafíos Técnicos en el Desarrollo del Proyecto.....53 5.3 Limitaciones del Sistema.....53 5.3.1 Limitaciones en la Captura y Procesamiento de Señales Biomédicas....53 5.3.2 Restricciones en la Interacción y Experiencia del Usuario.....54 5.3.3 Dependencia de Recursos Tecnológicos y Hardware Específico.....54 5.4 Trabajos Futuros y Expansión del Proyecto.....54 5.5 Conclusión General del Proyecto.....54 Referencias Bibliográficas.....57 Anexos.....67159 páginasapplication/pdfGómez Naffah, J. C., & García Ruiz, L. P. (2025). Diseño de un sistema de realidad aumentada para utilizar en protocolos de rehabilitación en pacientes con enfermedades reumatológicas de la mano mediante el dispositivo MYO [Trabajo de grado. Universidad de Ibagué]. https://hdl.handle.net/20.500.12313/5376https://hdl.handle.net/20.500.12313/5376spaUniversidad de IbaguéIngenieríaIbaguéIngeniería ElectrónicaAlmeida, L. O., Oliveira, C., & Pinto, J. S. (2017). Myo armband for muscle activity recognition: A systematic review. Biomedical Signal Processing and Control, 38, 356–370.Atkins, D. J., Heard, D. C. Y., & Donovan, W. H. (2016). Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. Journal of Prosthetics and Orthotics, 8(1), 2–11.Ayuso, J. (2018). Wearable de Medida de Rendimiento en Running [Tesis de grado, Universitat Politècnica de València].Bertelsen, A., Mikkelsen, L., Juhl, C., et al. (2020). Objective assessment of rehabilitation outcomes in hand therapy: A systematic review. Journal of Hand Therapy, 33(4), 511–522.Bialocerkowski, A., Grimmer, K., & Bain, G. (2005). A systematic review of the effectiveness of conservative interventions for osteoarthritis of the elbow. Clinical Rehabilitation, 19(7), 690–700.Biddiss, E. A., & Chau, T. T. (2007). Upper-limb prosthetics: Critical factors in device abandonment. American Journal of Physical Medicine & Rehabilitation, 86(12), 977–987.Bielefeld, T., & Neumann, D. A. (2013). The unstable metacarpophalangeal joint in rheumatoid arthritis: A biomechanical perspective. The Journal of Hand Surgery, 38(8), 1605–1611.Bohannon, R. W. (2010). Measurement of gait speed in older adults: A review. Topics in Geriatric Rehabilitation, 26(2), 76–88.Celik, O., O’Malley, M. K., Boake, C., Levin, H. S., & Reistetter, T. A. (2020). A portable hand rehabilitation device with real-time EMG-based biofeedback. Journal of NeuroEngineering and Rehabilitation, 17(1), 14–25.Chang, Y. J., Kim, H. W., Yoo, J., & Ryu, S. (2020). Augmented reality-based rehabilitation for patients with hand impairments: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28, 1316–1330.Cramer, S. C., Dodakian, L., Le, V., McKenzie, A., See, J., Augsburger, R., ... & Shah, P. (2019). Efficacy of home-based telerehabilitation vs in-clinic therapy for patients with stroke: A randomized clinical trial. JAMA Neurology, 76(9), 1079–1087.Declaración de Helsinki. (2013). Asociación Médica Mundial. JAMA, 310(20), 2191–2194.Denton, C. P., & Khanna, D. (2017). Systemic sclerosis. The Lancet, 390(10103), 1685–1699.Desmond, D. M., & MacLachlan, M. (2002). Psychosocial perspectives on upper limb prosthetics. Journal of Prosthetics and Orthotics, 14(1), 19–24.Diao, E., Shao, F., & Wang, J. (2013). Ulnar nerve entrapment at the elbow: Current concepts. Hand Clinics, 29(4), 521–530.Dobkin, B. H. (2004). Strategies for stroke rehabilitation. The Lancet Neurology, 3(9), 528–536.El Español. (2021). Uso de realidad virtual en rehabilitación física. El Español. https://s1.eestatic.com/2021/08/04/invertia/disruptores-innovadores/innovadores/empresas/601704543_199079873_1706x960.jpg.FDA. (2020). Guidance for the Regulation of Software as a Medical Device (SaMD). U.S. Food & Drug Administration.FDA. (2022). Cybersecurity in Medical Devices: Quality System Considerations and Content of Premarket Submissions. U.S. Food & Drug Administration.Felson, D. T. (2013). Osteoarthritis: new insights. Part 1: the disease and its risk factors. Annals of Internal Medicine, 133(8), 635–646.Flor, H., Nikolajsen, L., & Jensen, T. S. (2006). Phantom limb pain: A case of maladaptive CNS plasticity? Nature Reviews Neuroscience, 7(11), 873–881.Fusetti, C., Meyer, H., Borisch, N., Stern, R., Santa, D. D., & Papaloïzos, M. (2002). Complications of scaphoid fractures. The Journal of Hand Surgery, 27(6), 937–942.Garcia-Elías, M. (2015). The treatment of scaphoid fractures in athletes. Hand Clinics, 26(1), 97–109.Gómez-Martinho González, I. (2017). Desarrollo de una Prótesis para Desarticulado de Muñeca Controlada mediante EMG [Tesis de grado, Universidad Politécnica de Madrid].Gordon, C., Amissah-Arthur, M. B., Gayed, M., Brown, S., Bruce, I. N., D’Cruz, D., ... & Khamashta, M. (2017). The British Society for Rheumatology guideline for the management of systemic lupus erythematosus in adults. Rheumatology, 57(1), e1–e45.Griffin, M., Hindocha, S., Jordan, D., Saleh, M., & Khan, W. (2016). An overview of the management of flexor tendon injuries. The Open Orthopaedics Journal, 6(1), 28–35.Guerra, R. O., Farias Neto, J. P., Souza, W. B., & Guerra, R. S. (2019). Virtual reality therapy for upper limb rehabilitation in stroke patients: A systematic review. Journal of NeuroEngineering and Rehabilitation, 16(1), 15–26.Hanson, A. J. (2006). Visualizing quaternions. Morgan Kaufmann.HIPAA. (1996). Health Insurance Portability and Accountability Act. U.S. Department of Health & Human Services.HL7 International. (2021). Health Level 7 Standards.Hoffmann, U., Vesin, J. M., Ebrahimi, T., & Diserens, K. (2018). Electromyography-based control of hand prostheses: A review. Journal of NeuroEngineering and Rehabilitation, 15(1), 73.Housman, S. J., Scott, K. M., & Reinkensmeyer, D. J. (2009). A randomized controlled trial of task-oriented arm training after stroke: The ARMin study. Neurorehabilitation and Neural Repair, 23(6), 569–578.Ibarra-Fuentes, J. A., et al. (2024). Control de Mano Robótica Usando Señales Electromiográficas Superficiales. Revista de Tecnología y Salud, 1(1), 45–56.IEEE 11073. Standards for Interoperability of Medical Devices.ISO 11073. Health informatics — Medical device communication.ISO 13485:2016. Medical devices — Quality management systems — Requirements for regulatory purposes.ISO 14971:2019. Medical devices — Application of risk management to medical devices.ISO 60601-1. Medical electrical equipment — General requirements for basic safety and essential performance.ISO/IEC 27001. Information security management systems — Requirements.Jiang, Y., Li, Y., Zou, X., & Liu, H. (2012). Biomechanical evaluation of transradial prosthetic hand control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(5), 632–640.Krakauer, J. W., Carmichael, S. T., Corbett, D., & Wittenberg, G. F. (2017). Getting neurorehabilitation right: What can be learned from animal models? Neurorehabilitation and Neural Repair, 31(6), 606–620.Krebs, H. I., Palazzolo, J. J., Dipietro, L., Ferraro, M., Krol, J., & Hogan, N. (2003). Rehabilitation robotics: Performance-based progressive robot-assisted therapy. Autonomous Robots, 15(1), 7–20.Kuo, T. T., Lu, C. H., Hsu, B. B., & Chang, C. W. (2016). Electromyographic and sonographic assessment in patients with carpal tunnel syndrome: A correlation study. Clinical Neurophysiology, 127(1), 164–169.Laver, K., George, S., Ratcliffe, J., & Crotty, M. (2015). Virtual reality stroke rehabilitation–Hype or hope? Australian Occupational Therapy Journal, 62(1), 6–8.Lifeder. (s.f.). Músculos del antebrazo (brazo derecho). Lifeder. https://i.pinimg.com/736x/06/75/a3/0675a327961bf97c29a014c249471515.jpg.Lundström, E., Eberhardt, K., & Svensson, B. (2017). Functional impairment in rheumatoid arthritis patients with wrist involvement: a cross-sectional study. Scandinavian Journal of Rheumatology, 46(4), 277–283.MedicalExpo. (s.f.). Exoesqueleto de mano para rehabilitación. MedicalExpo. https://img.medicalexpo.es/images_me/photo-g/77946-10771281.jpg.Merlo, A., Campanini, I., & Knaflitz, M. (2018). Surface electromyography for the assessment of neuromuscular function. Journal of Electromyography and Kinesiology, 44, 1–10.Merians, A. S., Poizner, H., Boian, R., Burdea, G., & Adamovich, S. (2009). Sensorimotor training in a virtual reality environment: Does it improve functional recovery poststroke? Neurorehabilitation and Neural Repair, 20(2), 252–267.Miossec, P. (2017). Rheumatoid arthritis: still a chronic disease. The Lancet, 389(10086), 1–2.Napier, J. R. (1956). The prehensile movements of the human hand. The Journal of Bone and Joint Surgery. British Volume, 38(4), 902–913.Ortiz-Catalán, M., Brånemark, R., Håkansson, B., & Delbeke, J. (2014). On the viability of implantable electrodes for the natural control of artificial limbs. Science Translational Medicine, 6(257), 257ra138.Patel, R., & Shahane, A. (2014). The impact of Sjögren’s syndrome on daily living and steps towards patient-centered management. Clinical Rheumatology, 33(4), 495–496.Pérez, M. (2021). Sistema de Ayuda a la Rehabilitación de Personas con Problemas Motores mediante Realidad Aumentada [Tesis de grado, Universidad de Castilla-La Mancha].Peterson, J. J., & Manske, P. R. (2015). Hand injuries: their assessment and rehabilitation. Orthopedic Clinics of North America, 36(3), 367–381.Reglamento General de Protección de Datos (GDPR). (2016). Parlamento EuropeoSalarian, A., Burkhard, P. R., Aminian, K., et al. (2007). A novel approach for quantitative assessment of upper-limb movements. IEEE Transactions on Biomedical Engineering, 54(10), 1925–1933.Saposnik, G., Levin, M., & Virtual Reality in Stroke Rehabilitation Investigators. (2010). Virtual reality in stroke rehabilitation: A meta-analysis and implications for clinicians. Stroke, 42(5), 1380–1386.Scott, D. L., Wolfe, F., & Huizinga, T. W. (2010). Rheumatoid arthritis. The Lancet, 376(9746), 1094–1108.Shoemake, K. (1985). Animating rotation with quaternion curves. ACM SIGGRAPH Computer Graphics, 19(3), 245–254.Smolen, J. S., Aletaha, D., & McInnes, I. B. (2016). Rheumatoid arthritis. The Lancet, 388(10055), 2023–2038.Valdazo, A. (s.f.). Inflamación de los tendones de la mano y muñeca. Dra. Valdazo. https://doctoravaldazo.com/wp-content/uploads/2022/06/tendones.jpgVan der Kooij, H., & Van Asseldonk, E. H. F. (2019). Rehabilitation technology: Assisted versus augmented feedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(5), 829–837.Van Peppen, R. P. S., Kwakkel, G., Wood-Dauphinee, S., Hendriks, H. J. M., Van der Wees, P. J., & Dekker, J. (2004). The impact of physical therapy on functional outcomes after stroke. Stroke, 35(4), 1024–1030.Welch, G., & Bishop, G. (1995). An introduction to the Kalman filter. Department of Computer Science, University of North Carolina at Chapel Hill.World Health Organization. (2019). Musculoskeletal conditions. En WHO Global Report on Rehabilitation (pp. 32–45).World Health Organization (WHO). (2021). Ethics and governance of artificial intelligence for health.World Medical Association. (2013). Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053Yang, X., Zhou, P., Li, G., & Wang, Y. (2014). Wearable sensor-based rehabilitation systems: A review. IEEE Sensors Journal, 14(5), 1621–1631.Denton, C. P., & Khanna, D. (2017). Systemic sclerosis. The Lancet, 390(10103), 1685–1699.Diao, E., Vance, R., & Ring, D. (2013). Current concepts in the management of peripheral nerve injuries. Journal of Bone and Joint Surgery, 95(1), 1–8.Felson, D. T. (2013). Osteoarthritis as a disease of mechanics. Osteoarthritis and Cartilage, 21(1), 10–15.Fusetti, C., Meyer, H., Borisch, N., Stern, R., Santa, D. D., & Papaloïzos, M. (2002). Complications of scaphoid fractures. Journal of Trauma, 52(2), 324–328.Garcia-Elías, M. (2015). Wrist injuries: treatment options. Hand Clinics, 31(3), 357–367.Gordon, C., Amissah-Arthur, M. B., Gayed, M., Brown, S., Bruce, I. N., & D’Cruz, D. (2017). The British Society for Rheumatology guideline for the management of systemic lupus erythematosus in adults. Rheumatology, 57(1), e1–e45.Griffin, M., Hindocha, S., Jordan, D., Saleh, M., & Khan, W. (2016). Tendon injuries of the hand: a review of the literature. The Open Orthopaedics Journal, 6(1), 101–106.Guerra, L. A., Soto-Rey, D., & Pérez, C. J. (2019). AR-based systems for upper limb rehabilitation in amputee patients: A case study. Journal of Rehabilitation Research and Development, 56(3), 321–332.Kuo, L. C., Chang, J. H., Lin, C. F., Hsu, H. Y., & Ho, K. Y. (2016). Carpal tunnel syndrome and its treatment using neuromuscular rehabilitation. Clinical Biomechanics, 31, 45–52.Kozin, S. H. (2005). Upper extremity fractures in children. The Journal of Bone and Joint Surgery, 87(5), 1019–1030.Lallemand, D., Adam, C., Moutet, F., & Bégué, T. (2016). Rehabilitation of hand and wrist injuries. EMC - Kinésithérapie - Médecine Physique - Réadaptation, 43(2), 1–11.Lundström, E., Nordenskiöld, U., & Lundgren-Lindquist, B. (2017). Functional limitations in patients with rheumatoid arthritis: A descriptive study. Scandinavian Journal of Rheumatology, 38(5), 338–343.Miller, G. (2012). Fractures and dislocations of the hand. The Orthopedic Clinics of North America, 43(4), 541–553.Ortiz-Catalán, M., Håkansson, B., & Brånemark, R. (2014). Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(4), 756–764.Scott, D. L., Wolfe, F., & Huizinga, T. W. (2010). Rheumatoid arthritis. The Lancet, 376(9746), 1094–1108Zhang, Y., Jordan, J. M., & Hunter, D. J. (2010). Osteoarthritis. The Lancet, 374(9704), 1745–1759.Al-Timemy, A. H., Geng, Y., Du, M., & Qi, L. (2023). Hand gesture recognition using Myo armband for assistive rehabilitation tasks. Biomedical Signal Processing and Control, 82, 104487. https://doi.org/10.1016/j.bspc.2023.104487Avila-Mireles, E. J., Rivas-Medina, C. C., et al. (2023). Use of wearable systems in upper limb rehabilitation: A review. Sensors, 23(2), 565. https://doi.org/10.3390/s23020565Cisnal, A., et al. (2023). Interaction with a hand rehabilitation exoskeleton in EMG-driven bilateral therapy: Influence of visual biofeedback. Sensors, 23(4), 2048. https://doi.org/10.3390/s23042048Fang, C., Li, Y., Zhang, D., & Liu, Y. (2024). Augmented reality in physical rehabilitation: A systematic review and meta-analysis. Journal of NeuroEngineering and Rehabilitation, 21(1), 12.Gordon, C., et al. (2017). Guidelines for the management of systemic lupus erythematosus in adults. Rheumatology, 57(1), e1–e45.Guerra, L. A., et al. (2019). Implementation of Myo armband in hand rehabilitation. Journal of Rehabilitation Research and Development, 56(2), 123–130.Jafri, M. A., et al. (2023). Effectiveness of augmented reality therapy for upper limb function: A randomized controlled trial. Frontiers in Rehabilitation Sciences, 4, 876543.Napier, J. R. (1956). The prehensile movements of the human hand. The Journal of Bone and Joint Surgery. British Volume, 38-B(4), 902–913.Phinyomark, A., et al. (2018). EMG signal analysis for clinical rehabilitation: A review. Biomedical Signal Processing and Control, 44, 1–13.Cramer, S. C., Dodakian, L., et al. (2019). Remote supervision of home-based upper extremity therapy using a telerehabilitation system. Frontiers in Neurology, 10, 1157. https://doi.org/10.3389/fneur.2019.01157Housman, S. J., Scott, K. M., & Reinkensmeyer, D. J. (2009). A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabilitation and Neural Repair, 23(5), 505–514.Holden, M. K. (2005). Virtual environments for motor rehabilitation: review. CyberPsychology & Behavior, 8(3), 187–211.Jack, K., McLean, S. M., & Moffett, J. K. (2010). Barriers to treatment adherence in physiotherapy outpatient clinics: A systematic review. Manual Therapy, 15(3), 220–228. https://doi.org/10.1016/j.math.2009.12.004Lai, C. H., et al. (2022). Effects of augmented reality-based rehabilitation on pain, adherence and physical function in individuals with rheumatoid arthritis. Journal of Rehabilitation Research and Development, 59(2), 121–134.Laver, K., George, S., Thomas, S., Deutsch, J. E., & Crotty, M. (2015). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews, (2), CD008349.Laver, K., Ratcliffe, J., George, S., Burgess, L., & Crotty, M. (2013). Is the Nintendo Wii Fit really acceptable to older people?: a discrete choice experiment. BMC Geriatrics, 13, 61. https://doi.org/10.1186/1471-2318-13-61Lutz, B. J. (2019). A theory-based approach to developing an adherence intervention. Rehabilitation Nursing, 44(6), 308–316. https://doi.org/10.1097/rnj.0000000000000173Merlo, A., Campanini, I., & Ceseracciu, E. (2018). Objective assessment of muscle function during gait rehabilitation. Gait & Posture, 66, 194–200.Saposnik, G., Levin, M., & Stroke Outcome Research Canada (SORCan) Working Group. (2010). Virtual reality in stroke rehabilitation: A meta-analysis and implications for clinicians. Stroke, 41(1), e1–e6.Sluijs, E. M., Kok, G. J., & Van Der Zee, J. (1993). Correlates of exercise compliance in physical therapy. Physical Therapy, 73(11), 771–786.Van Peppen, R. P. S., et al. (2004). The impact of physical therapy on functional outcomes after stroke: what's the evidence? Clinical Rehabilitation, 18(8), 833–862.Bohannon, R. W. (2010). Perceived limitations associated with osteoarthritis and adherence to exercise. Journal of Geriatric Physical Therapy, 33(2), 81–86.Dobkin, B. H. (2004). Strategies for stroke rehabilitation. The Lancet Neurology, 3(9), 528–536.Fang, C., Li, Y., Zhang, D., & Liu, Y. (2024). Augmented reality in physical rehabilitation: A systematic review and meta-analysis. Journal of NeuroEngineering and Rehabilitation, 21(1), 12.Krakauer, J. W., Carmichael, S. T. (2017). Broken movement: The neurobiology of motor recovery after stroke. MIT Press.Krakauer, J. W., et al. (2017). Motor learning after stroke: A critical review. Progress in Brain Research, 234, 121–140.Krebs, H. I., Hogan, N., Aisen, M. L., & Volpe, B. T. (2003). Quantization of therapy using robotics and kinematic measures of motor recovery. Neurorehabilitation and Neural Repair, 17(3), 137–147.Kwakkel, G., Kollen, B. J., & Krebs, H. I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabilitation and Neural Repair, 22(2), 111–121.Laver, K., George, S., Thomas, S., Deutsch, J. E., & Crotty, M. (2015). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews, (2), CD008349.Merians, A. S., Jack, D., Boian, R., et al. (2009). Virtual reality–augmented rehabilitation for patients following stroke. Physical Therapy, 89(11), 1178–1187.Phinyomark, A., et al. (2018). EMG signal analysis for clinical applications: A review. Biomedical Signal Processing and Control, 44, 1–13.Schweighofer, N., et al. (2009). Computational modeling of neuromotor recovery after stroke. Neurorehabilitation and Neural Repair, 23(1), 29–36.Almeida, R., Guimaraes, J., Alves, J. A., & Martins, J. (2017). Myoelectric control of a hand orthosis for rehabilitation in patients with stroke. IEEE, 1–6.Shneiderman, B. (2016). Designing the user interface: Strategies for effective human-computer interaction (6th ed.). Pearson Education.Ministerio de Salud de Colombia. (1993). Resolución 8430 de 1993: Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud. Diario Oficial No. 41.148.Hernández Vargas, C. A. (2025, marzo 27). Carta de aval profesional sobre la aplicación tecnológica desarrollada en el proyecto de grado. Hospital Federico Lleras Acosta. Documento interno entregado al comité académico.Hernández Vargas, C. A. (2025). Informe técnico de validación funcional. Documento de respaldo institucional entregado por el fisioterapeuta. Universidad de Ibagué.Hernández Vargas, C. A. (2025). Validación funcional de la plataforma de rehabilitación basada en brazalete Myo y Unity 3D [Video]. Google Drive.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/ElectromiografíaEnfermedades reumatológicas - RehabilitaciónDispositivo MYOBrazalete MyoElectromiografíaRehabilitaciónRealidad AumentadaUnityTerapia DigitalEvaluación CuantitativaMyo ArmbandElectromyographyRehabilitationAugmented RealityDigital TherapyQuantitative EvaluationDiseño de un sistema de realidad aumentada para utilizar en protocolos de rehabilitación en pacientes con enfermedades reumatológicas de la mano mediante el dispositivo MYOTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionPublicationTEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain101921https://repositorio.unibague.edu.co/bitstreams/9052fe3a-9527-4e5b-b7cc-c44f78bba234/downloadfd0226ad303731aa6a0d51c96e7e43f9MD59Formato de autorización.pdf.txtFormato de autorización.pdf.txtExtracted texttext/plain4235https://repositorio.unibague.edu.co/bitstreams/cc461509-bbd1-4121-b1eb-330cd37da1e9/downloadabaf492d307d0eefdc0ee2cc5b4d08aaMD511THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgIM Thumbnailimage/jpeg10083https://repositorio.unibague.edu.co/bitstreams/39f29c9c-9a67-4c72-8350-8243ece79686/download5398fcc055399020f990ad005b895f9bMD510Formato de autorización.pdf.jpgFormato de autorización.pdf.jpgIM Thumbnailimage/jpeg24560https://repositorio.unibague.edu.co/bitstreams/62fd61dc-39db-4b62-b153-46d513133d49/download930ae97cbb11ef759e5b8325b4a78f0fMD512ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf11509573https://repositorio.unibague.edu.co/bitstreams/f695d368-d1f5-4873-8f28-4e5a05610f51/download7335cf871ae0ed270c55fa3f4a96a42fMD51Anexos.zipAnexos.zipapplication/zip3601079https://repositorio.unibague.edu.co/bitstreams/aae94221-d453-4447-a6bd-832944a3f56c/download5232f0bdfd804d307031a92dd7c7ca55MD52Formato de autorización.pdfFormato de autorización.pdfapplication/pdf183981https://repositorio.unibague.edu.co/bitstreams/31e1448d-8654-4cb6-8676-7daf4da748bc/download16ef2c82ad9343fa0c7aad5ddb92ec75MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/f4d6233d-a7d3-4ef0-887c-094810e3ca65/download2fa3e590786b9c0f3ceba1b9656b7ac3MD5420.500.12313/5376oai:repositorio.unibague.edu.co:20.500.12313/53762025-08-13 01:09:22.085https://creativecommons.org/licenses/by-nc/4.0/https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
