Noise estimation of a local energy image

Phase congruency is a relatively unknown and powerful image processing technique for segmentation, which has been used in image processing. However, a limitation of this technique is its sensitivity to noise. Therefore, to prevent that noise affects segmentation results, it is necessary a good estim...

Full description

Autores:
Cifuentes, Tatiana Hernández
Aroca, Yorladys Martínez
Jamioy, Carlos Antonio Jacanamejoy
Vargas, Manuel Guillermo Forero Send mail to Vargas M.G.F.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5828
Acceso en línea:
https://doi.org/10.15446/recolma.v57n2.115855
https://hdl.handle.net/20.500.12313/5828
http://revistas.unal.edu.co/index.php/recolma/article/view/115855
Palabra clave:
Computational methods
Image processing
Point estimation
Rights
openAccess
License
© 2023 Universidad Nacional de Colombia. All rights reserved.
id UNIBAGUE2_c8a8ef39d2947c2771009efa278c3404
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5828
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Noise estimation of a local energy image
dc.title.translated.none.fl_str_mv Estimación del modelo de ruido de una imagen de energía local utilizando la distribución Weibull
title Noise estimation of a local energy image
spellingShingle Noise estimation of a local energy image
Computational methods
Image processing
Point estimation
title_short Noise estimation of a local energy image
title_full Noise estimation of a local energy image
title_fullStr Noise estimation of a local energy image
title_full_unstemmed Noise estimation of a local energy image
title_sort Noise estimation of a local energy image
dc.creator.fl_str_mv Cifuentes, Tatiana Hernández
Aroca, Yorladys Martínez
Jamioy, Carlos Antonio Jacanamejoy
Vargas, Manuel Guillermo Forero Send mail to Vargas M.G.F.
dc.contributor.author.none.fl_str_mv Cifuentes, Tatiana Hernández
Aroca, Yorladys Martínez
Jamioy, Carlos Antonio Jacanamejoy
Vargas, Manuel Guillermo Forero Send mail to Vargas M.G.F.
dc.subject.proposal.eng.fl_str_mv Computational methods
Image processing
Point estimation
topic Computational methods
Image processing
Point estimation
description Phase congruency is a relatively unknown and powerful image processing technique for segmentation, which has been used in image processing. However, a limitation of this technique is its sensitivity to noise. Therefore, to prevent that noise affects segmentation results, it is necessary a good estimation of its level, considering that in phase congruency, this estimation is based on the local energy image. Consequently, to improve the results of this technique, it is essential to perform a good detection of the noise threshold. In this work, we introduce an efficient method to estimate parameters of a Weibull distribution which is used to modelate the noise of energy image in phase congruency.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2025-10-24T14:27:35Z
dc.date.available.none.fl_str_mv 2025-10-24T14:27:35Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Hernandez Cifuentes, T., Martinez Aroca, Y., Jacanamejoy Jamioy, C. A. & Forero Vargas, M. G. (2024). Estimación del modelo de ruido de una imagen de energía local utilizando la distribución Weibull. Revista Colombiana de Matemáticas, 57(2), 207–219. https://doi.org/10.15446/recolma.v57n2.115855
dc.identifier.doi.none.fl_str_mv https://doi.org/10.15446/recolma.v57n2.115855
dc.identifier.eissn.none.fl_str_mv 23574100
dc.identifier.issn.none.fl_str_mv 00347426
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5828
dc.identifier.url.none.fl_str_mv http://revistas.unal.edu.co/index.php/recolma/article/view/115855
identifier_str_mv Hernandez Cifuentes, T., Martinez Aroca, Y., Jacanamejoy Jamioy, C. A. & Forero Vargas, M. G. (2024). Estimación del modelo de ruido de una imagen de energía local utilizando la distribución Weibull. Revista Colombiana de Matemáticas, 57(2), 207–219. https://doi.org/10.15446/recolma.v57n2.115855
23574100
00347426
url https://doi.org/10.15446/recolma.v57n2.115855
https://hdl.handle.net/20.500.12313/5828
http://revistas.unal.edu.co/index.php/recolma/article/view/115855
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 219
dc.relation.citationissue.none.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 207
dc.relation.citationvolume.none.fl_str_mv 57
dc.relation.ispartofjournal.none.fl_str_mv Revista Colombiana de Matematicas
dc.relation.references.none.fl_str_mv I.E. Abdou and W.K. Pratt,Quantitative design and evaluation of enhan-cement/thresholding edge detectors, Proceedings of the IEEE67(1979),no. 5, 753–763.
I Ben Ayed, Nacera Hennane, and Amar Mitiche,Unsupervised variationalimage segmentation/classification using a weibull observation model, IEEETransactions on Image Processing15(2006), no. 11, 3431–3439.
J Constante, A Cuesta, and D Jij ́on,Fitting methods of two-parameterweibull of wind series and electric-wind potential estimation m ́etodos deajuste de weibull de dos par ́ametros en series de viento y estimaci ́on delpotencial eolo-el ́ectrico, Arenal1(2021), no. 78,889, 78–889.
Lee R Dice,Measures of the amount of ecologic association between species,Ecology26(1945), no. 3, 297–302.
Manuel G. Forero and Carlos A. Jacanamejoy,Unified mathematical for-mulation of monogenic phase congruency, Mathematics9(2021), no. 23,3080
M Ganji, H Bevrani, N Hami Golzar, and S Zabihi,The weibull-rayleighdistribution, some properties, and applications., Journal of MathematicalSciences218(2016), no. 3.
Jan-Mark Geusebroek and Arnold WM Smeulders,Fragmentation in thevision of scenes, null, IEEE, 2003, p. 130.
Jan-Mark Geusebroek, Arnold WM Smeulders, et al.,A physical expla-nation for natural image statistics, Proceedings of the 2nd InternationalWorkshop on Texture Analysis and Synthesis (Texture 2002), Heriot-WattUniversity, 2002, pp. 47–52.
Carlos Jacanamejoy, Nohora Meneses-Casas, and Manuel G Forero,Imagefeature detection based on phase congruency by monogenic filters with newnoise estimation, Iberian Conference on Pattern Recognition and ImageAnalysis, Springer, 2019, pp. 577–588.
Carlos A. Jacanamejoy and Manuel G. Forero,A note on the phase con-gruence method in image analysis, Iberoamerican Congress on PatternRecognition, Springer, 2018, pp. 384–391
Peter Kovesi,Image features from phase congruency, Videre: Journal ofcomputer vision research1(1999), no. 3, 1–26.
___________,Matlab and octave functions for computer vision and image pro-cessing,Available at http://www.peterkovesi.com/matlabfns/#phasecong,2013
Max Mignotte, Christophe Collet, Patrick Perez, and Patrick Bouthemy,Sonar image segmentation using an unsupervised hierarchical mrf model,IEEE transactions on image processing9(2000), no. 7, 1216–1231
Douglas C Montgomery and George C Runger,Applied statistics and pro-bability for engineers, John Wiley & Sons, 2010
M Concetta Morrone and Robyn A Owens,Feature detection from localenergy, Pattern recognition letters6(1987), no. 5, 303–313
Lord Rayleigh,Xii. on the resultant of a large number of vibrations of thesame pitch and of arbitrary phase, The London, Edinburgh, and DublinPhilosophical Magazine and Journal of Science10(1880), no. 60, 73–78
H Steven Scholte, Sennay Ghebreab, Lourens Waldorp, Arnold WMSmeulders, and Victor AF Lamme,Brain responses strongly correlate withweibull image statistics when processing natural images, Journal of Vision9(2009), no. 4, 29–29
Heidi M Sosik and Robert J Olson,Automated taxonomic classificationof phytoplankton sampled with imaging-in-flow cytometry, Limnology andOceanography: Methods5(2007), no. 6, 204–216.
S Venkatesh and R Owens,An energy feature detection scheme, ICIP’89:IEEE International Conference on Image Processing: conference procee-dings, 5-8 September 1989, Singapore, IEEE, 1989
Tjalling J Ypma,Historical development of the newton–raphson method,SIAM review37(1995), no. 4, 531–551
dc.rights.eng.fl_str_mv © 2023 Universidad Nacional de Colombia. All rights reserved.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv © 2023 Universidad Nacional de Colombia. All rights reserved.
http://purl.org/coar/access_right/c_abf2
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Colombia
dc.publisher.place.none.fl_str_mv Colombia
publisher.none.fl_str_mv Universidad Nacional de Colombia
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/f5330cbe-f644-4d8f-b3d9-e94659486f4e/download
https://repositorio.unibague.edu.co/bitstreams/c4bb7397-679c-4952-81e5-2f6b93e6fb28/download
https://repositorio.unibague.edu.co/bitstreams/c5ee5511-5ca7-4f1c-96dc-23910e263244/download
https://repositorio.unibague.edu.co/bitstreams/9c8e4327-e0cb-463d-a98c-6fc4c58b4f52/download
bitstream.checksum.fl_str_mv e1c06d85ae7b8b032bef47e42e4c08f9
4b8d5c90aaa3f6c5cc3b8953817ef271
2fa3e590786b9c0f3ceba1b9656b7ac3
a35059660c40635d8e00a6a5ecd0c0ee
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059965465198592
spelling Cifuentes, Tatiana Hernándezb2fd0734-6fd1-48d1-8307-f92c6dcea64e-1Aroca, Yorladys Martínez86341488-88f0-41e3-926b-b3a0129af6b8-1Jamioy, Carlos Antonio Jacanamejoyd8cfe5c3-6eee-4671-a21e-d87f8bfedc3b-1Vargas, Manuel Guillermo Forero Send mail to Vargas M.G.F.cca461a2-8260-4c27-9dd6-ea04182c537e-12025-10-24T14:27:35Z2025-10-24T14:27:35Z2023Phase congruency is a relatively unknown and powerful image processing technique for segmentation, which has been used in image processing. However, a limitation of this technique is its sensitivity to noise. Therefore, to prevent that noise affects segmentation results, it is necessary a good estimation of its level, considering that in phase congruency, this estimation is based on the local energy image. Consequently, to improve the results of this technique, it is essential to perform a good detection of the noise threshold. In this work, we introduce an efficient method to estimate parameters of a Weibull distribution which is used to modelate the noise of energy image in phase congruency.application/pdfHernandez Cifuentes, T., Martinez Aroca, Y., Jacanamejoy Jamioy, C. A. & Forero Vargas, M. G. (2024). Estimación del modelo de ruido de una imagen de energía local utilizando la distribución Weibull. Revista Colombiana de Matemáticas, 57(2), 207–219. https://doi.org/10.15446/recolma.v57n2.115855https://doi.org/10.15446/recolma.v57n2.1158552357410000347426https://hdl.handle.net/20.500.12313/5828http://revistas.unal.edu.co/index.php/recolma/article/view/115855engUniversidad Nacional de ColombiaColombia219220757Revista Colombiana de MatematicasI.E. Abdou and W.K. Pratt,Quantitative design and evaluation of enhan-cement/thresholding edge detectors, Proceedings of the IEEE67(1979),no. 5, 753–763.I Ben Ayed, Nacera Hennane, and Amar Mitiche,Unsupervised variationalimage segmentation/classification using a weibull observation model, IEEETransactions on Image Processing15(2006), no. 11, 3431–3439.J Constante, A Cuesta, and D Jij ́on,Fitting methods of two-parameterweibull of wind series and electric-wind potential estimation m ́etodos deajuste de weibull de dos par ́ametros en series de viento y estimaci ́on delpotencial eolo-el ́ectrico, Arenal1(2021), no. 78,889, 78–889.Lee R Dice,Measures of the amount of ecologic association between species,Ecology26(1945), no. 3, 297–302.Manuel G. Forero and Carlos A. Jacanamejoy,Unified mathematical for-mulation of monogenic phase congruency, Mathematics9(2021), no. 23,3080M Ganji, H Bevrani, N Hami Golzar, and S Zabihi,The weibull-rayleighdistribution, some properties, and applications., Journal of MathematicalSciences218(2016), no. 3.Jan-Mark Geusebroek and Arnold WM Smeulders,Fragmentation in thevision of scenes, null, IEEE, 2003, p. 130.Jan-Mark Geusebroek, Arnold WM Smeulders, et al.,A physical expla-nation for natural image statistics, Proceedings of the 2nd InternationalWorkshop on Texture Analysis and Synthesis (Texture 2002), Heriot-WattUniversity, 2002, pp. 47–52.Carlos Jacanamejoy, Nohora Meneses-Casas, and Manuel G Forero,Imagefeature detection based on phase congruency by monogenic filters with newnoise estimation, Iberian Conference on Pattern Recognition and ImageAnalysis, Springer, 2019, pp. 577–588.Carlos A. Jacanamejoy and Manuel G. Forero,A note on the phase con-gruence method in image analysis, Iberoamerican Congress on PatternRecognition, Springer, 2018, pp. 384–391Peter Kovesi,Image features from phase congruency, Videre: Journal ofcomputer vision research1(1999), no. 3, 1–26.___________,Matlab and octave functions for computer vision and image pro-cessing,Available at http://www.peterkovesi.com/matlabfns/#phasecong,2013Max Mignotte, Christophe Collet, Patrick Perez, and Patrick Bouthemy,Sonar image segmentation using an unsupervised hierarchical mrf model,IEEE transactions on image processing9(2000), no. 7, 1216–1231Douglas C Montgomery and George C Runger,Applied statistics and pro-bability for engineers, John Wiley & Sons, 2010M Concetta Morrone and Robyn A Owens,Feature detection from localenergy, Pattern recognition letters6(1987), no. 5, 303–313Lord Rayleigh,Xii. on the resultant of a large number of vibrations of thesame pitch and of arbitrary phase, The London, Edinburgh, and DublinPhilosophical Magazine and Journal of Science10(1880), no. 60, 73–78H Steven Scholte, Sennay Ghebreab, Lourens Waldorp, Arnold WMSmeulders, and Victor AF Lamme,Brain responses strongly correlate withweibull image statistics when processing natural images, Journal of Vision9(2009), no. 4, 29–29Heidi M Sosik and Robert J Olson,Automated taxonomic classificationof phytoplankton sampled with imaging-in-flow cytometry, Limnology andOceanography: Methods5(2007), no. 6, 204–216.S Venkatesh and R Owens,An energy feature detection scheme, ICIP’89:IEEE International Conference on Image Processing: conference procee-dings, 5-8 September 1989, Singapore, IEEE, 1989Tjalling J Ypma,Historical development of the newton–raphson method,SIAM review37(1995), no. 4, 531–551© 2023 Universidad Nacional de Colombia. All rights reserved.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/Computational methodsImage processingPoint estimationNoise estimation of a local energy imageEstimación del modelo de ruido de una imagen de energía local utilizando la distribución WeibullArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain2https://repositorio.unibague.edu.co/bitstreams/f5330cbe-f644-4d8f-b3d9-e94659486f4e/downloade1c06d85ae7b8b032bef47e42e4c08f9MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg15428https://repositorio.unibague.edu.co/bitstreams/c4bb7397-679c-4952-81e5-2f6b93e6fb28/download4b8d5c90aaa3f6c5cc3b8953817ef271MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/c5ee5511-5ca7-4f1c-96dc-23910e263244/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf195741https://repositorio.unibague.edu.co/bitstreams/9c8e4327-e0cb-463d-a98c-6fc4c58b4f52/downloada35059660c40635d8e00a6a5ecd0c0eeMD5220.500.12313/5828oai:repositorio.unibague.edu.co:20.500.12313/58282025-10-25 03:01:39.469https://creativecommons.org/licenses/by/4.0/© 2023 Universidad Nacional de Colombia. All rights reserved.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=