Hydraulic capacity extension of networks through the water savings and investment analysis approach
This study evaluates the water use efficiency (WUE) implementing under two approaches: i) reduction of water losses and the installation of low-consumption plumbing fixtures, and ii) Water savings analysis including, network Additional capacity, Reduction in per capita water consumption and the Inve...
- Autores:
-
Márquez, Juan D.
García-León, Andrés
Peña, Luis E.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/6055
- Acceso en línea:
- https://doi.org/10.1080/23789689.2025.2470505
https://hdl.handle.net/20.500.12313/6055
https://www.tandfonline.com/doi/full/10.1080/23789689.2025.2470505?af=R
- Palabra clave:
- Capacidad hidráulica
Hidraulica de redes - Capacidad - Análisis de inversiones
Ahorro de agua
analytical hierarchy process
hydraulic capacity extension of networks
water consumption reduction
water distribution network
Water use efficiency
- Rights
- closedAccess
- License
- © 2025 Informa UK Limited, trading as Taylor & Francis Group.
| id |
UNIBAGUE2_c521d675170e2ff16da3d0c0a07f3db9 |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/6055 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Hydraulic capacity extension of networks through the water savings and investment analysis approach |
| title |
Hydraulic capacity extension of networks through the water savings and investment analysis approach |
| spellingShingle |
Hydraulic capacity extension of networks through the water savings and investment analysis approach Capacidad hidráulica Hidraulica de redes - Capacidad - Análisis de inversiones Ahorro de agua analytical hierarchy process hydraulic capacity extension of networks water consumption reduction water distribution network Water use efficiency |
| title_short |
Hydraulic capacity extension of networks through the water savings and investment analysis approach |
| title_full |
Hydraulic capacity extension of networks through the water savings and investment analysis approach |
| title_fullStr |
Hydraulic capacity extension of networks through the water savings and investment analysis approach |
| title_full_unstemmed |
Hydraulic capacity extension of networks through the water savings and investment analysis approach |
| title_sort |
Hydraulic capacity extension of networks through the water savings and investment analysis approach |
| dc.creator.fl_str_mv |
Márquez, Juan D. García-León, Andrés Peña, Luis E. |
| dc.contributor.author.none.fl_str_mv |
Márquez, Juan D. García-León, Andrés Peña, Luis E. |
| dc.subject.armarc.none.fl_str_mv |
Capacidad hidráulica Hidraulica de redes - Capacidad - Análisis de inversiones Ahorro de agua |
| topic |
Capacidad hidráulica Hidraulica de redes - Capacidad - Análisis de inversiones Ahorro de agua analytical hierarchy process hydraulic capacity extension of networks water consumption reduction water distribution network Water use efficiency |
| dc.subject.proposal.eng.fl_str_mv |
analytical hierarchy process hydraulic capacity extension of networks water consumption reduction water distribution network Water use efficiency |
| description |
This study evaluates the water use efficiency (WUE) implementing under two approaches: i) reduction of water losses and the installation of low-consumption plumbing fixtures, and ii) Water savings analysis including, network Additional capacity, Reduction in per capita water consumption and the Investment (WARI). Hydraulic modeling was performed in the water distribution network of the campus of Universidad de Ibagué using EPANETv2.2, which supplies 5,172 people through 3,499.7 m of pipes during an analysis period of 48 months. The selection process for water-saving plumbing fixtures was carried out using the Analytical Hierarchy Process approach. The results indicate that WUE contributes to reducing water consumption by up to 47.8% and achieving a hydraulic capacity extension of the network of up to 67.0%, which is equivalent to extending pipes life cycle by up to 20 more years. WARI analysis is useful for water resource planners in decision-making processes within an economic and environmental sustainability framework. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-28T21:55:26Z |
| dc.date.available.none.fl_str_mv |
2025-11-28T21:55:26Z |
| dc.date.issued.none.fl_str_mv |
2025 |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
Márquez, J. D., García-León, A., & Peña, L. E. (2025). Hydraulic capacity extension of networks through the water savings and investment analysis approach. Sustainable and Resilient Infrastructure, 1–17. https://doi.org/10.1080/23789689.2025.2470505 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1080/23789689.2025.2470505 |
| dc.identifier.eissn.none.fl_str_mv |
23789697 |
| dc.identifier.issn.none.fl_str_mv |
23789689 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/6055 |
| dc.identifier.url.none.fl_str_mv |
https://www.tandfonline.com/doi/full/10.1080/23789689.2025.2470505?af=R |
| identifier_str_mv |
Márquez, J. D., García-León, A., & Peña, L. E. (2025). Hydraulic capacity extension of networks through the water savings and investment analysis approach. Sustainable and Resilient Infrastructure, 1–17. https://doi.org/10.1080/23789689.2025.2470505 23789697 23789689 |
| url |
https://doi.org/10.1080/23789689.2025.2470505 https://hdl.handle.net/20.500.12313/6055 https://www.tandfonline.com/doi/full/10.1080/23789689.2025.2470505?af=R |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournal.none.fl_str_mv |
Sustainable and Resilient Infrastructure |
| dc.relation.references.none.fl_str_mv |
Ahmed, W., Alazazmeh, A., & Asif, M. (2023). Energy and water saving potential in commercial buildings: A retrofit case study. Sustainability (Switzerland), 15(1), 518. https://doi.org/10.3390/su15010518 Alghamdi, A., Haider, H., Hewage, K., & Sadiq, R. (2019). Inter-university sustainability benchmarking for Canadian higher education institutions: Water, energy, and carbon flows for technical-level decision-making. Sustainability (Switzerland), 11(9). https://doi.org/10.3390/su11092599 Alshuwaikhat, H. M., & Abubakar, I. (2008). An integrated approach to achieving campus sustainability: Assessment of the current campus environmental management practices. Journal of Cleaner Production, 16(16), 1777–1785. https://doi.org/10.1016/j.jclepro.2007.12.002 Ananda, J. (2019). Determinants of real water losses in the Australian drinking water sector. Urban Water Journal, 16(8), 575–583. https://doi.org/10.1080/1573062X.2019.1700288 Berger, M., Söchtig, M., Weis, C., & Finkbeiner, M. (2017). Amount of water needed to save 1 m3 of water: Life cycle assessment of a flow regulator. Applied Water Science, 7, 1399–1407. https://doi.org/10.1007/s13201-015-0328-5 Berhanu, B. M., Blackhurst, M., Kirisits, M. J., Jamarillo, P., & Carlson, D. (2017). Feasibility of water efficiency and reuse technologies as demand-side strategies for urban water management. Journal of Industrial Ecology, 21(2), 320–331. https://doi.org/10.1111/jiec.12430 Bhakar, V., Sihag, N., Gieschen, R., Andrew, S., Herrmann, C., & Sangwan, K. S. (2015). Environmental impact analysis of a water supply system: Study of an Indian university campus. Procedia CIRP, 29, 468–473. https://doi.org/10.1016/j.procir.2015.02.061 Bonnet, J. F., Devel, C., Faucher, P., & Roturier, J. (2002). Analysis of electricity and water end-uses in university campuses: Case-study of the university of Bordeaux in the framework of the ecocampus European collaboration. Journal of Cleaner Production, 10(1), 13–24. https://doi.org/10.1016/S0959-6526(01)00018-X Chipako, T. L., & Randall, D. G. (2019). Urinals for water savings and nutrient recovery: A feasibility study. Water SA, 45(2), 266–277. https://doi.org/10.4314/wsa.v45i2.14 Cobacho, R., Arregui, F., Soriano, J., & Cabrera, E. (2015). Including leakage in network models: An application to calibrate leak valves in EPANET. Journal of Water Supply: Research and Technology-Aqua, 64(2), 130–138. https://doi.org/10.2166/AQUA.2014.197 Cureau, R. J., & Ghisi, E. (2019). Reduction of potable water consumption and sewage generation on a city scale: A case study in Brazil. Water (Switzerland), 11(11), 2351. https://doi.org/10.3390/w11112351 Daloğlu Çetinkaya, I., Yazar, M., Kılınç, S., & Güven, B. (2022). Urban climate resilience and water insecurity: Future scenarios of water supply and demand in Istanbul. Urban Water Journal, 20(10), 1336–1347. https://doi.org/10.1080/1573062X.2022.2066548 Da Silva, S. F., Britto, V., Azevedo, C., & Kiperstok, A. (2014). Rational consumption of water in administrative public buildings: The experience of the Bahia administrative center, Brazil. Water (Switzerland), 6(9), 2552–2574. https://doi.org/10.3390/w6092552 Davis, M. J. M., Gutiérrez, M. L., & Serrano, J. (2016). Know your people: Social research and water recycling system design with communities in the amazon. Procedia Engineering, 145, 1258–1266. https://doi.org/10.1016/J.PROENG.2016.04.162 Dixit, M. K. (2019). Life cycle recurrent embodied energy calculation of buildings: A review. Journal of Cleaner Production, 209, 731–754. https://doi.org/10.1016/j.jclepro.2018.10.230 Echeverri, M. J. (2017). Manizales’ water distribution system -aguas de Manizales S.A. E S P Procedia Engineering, 186, 36–43. https://doi.org/10.1016/j.proeng.2017.03.205 Fidar, A. M., Memon, F. A., & Butler, D. (2016). Performance evaluation of conventional and water saving taps. Science of the Total Environment, 541, 815–824. https://doi.org/10.1016/j.scitotenv.2015.08.024 Filion, Y. R., MacLean, H. L., & Karney, B. W. (2004). Life-cycle energy analysis of a water distribution system. Journal of Infrastructure Systems, 10(3), 120–130. https://doi.org/10.1061/(ASCE)1076-0342,(2004)10:3(119) Fontanazza, C. M., Notaro, V., Puleo, V., & Freni, G. (2014). The apparent losses due to metering errors: A proactive approach to predict losses and schedule maintenance. Urban Water Journal, 12(3), 229–239. https://doi.org/10.1080/1573062X.2014.882363 Freitas, L. L. G., Henning, E., Kalbusch, A., Konrath, A. C., & Walter, O. M. F. C. (2019). Analysis of water consumption in toilets employing Shewhart, EWMA, and Shewhart-ewma combined control charts. Journal of Cleaner Production, 233, 1146–1157. https://doi.org/10.1016/j.jclepro.2019.06.114 Ge, L., Hu, Z., Chen, P., Shi, L., Yang, Q., & Liao, J. (2014). Research on overflow monitoring mechanism based on downhole microflow detection. Mathematical Problems in Engineering, 2014(1), 676290. https://doi.org/10.1155/2014/676290 Giwa, A., & Dindi, A. (2017). An investigation of the feasibility of proposed solutions for water sustainability and security in water-stressed environment. Journal of Cleaner Production, 165, 721–733. https://doi.org/10.1016/j.jclepro.2017.07.120 Gnoatto, E. L., Kalbusch, A., & Henning, E. (2019). Evaluation of the environmental and economic impacts on the life cycle of different solutions for toilet flush systems. Sustainability (Switzerland), 11(17). https://doi.org/10.3390/su11174742 Gonçalves, F., Kalbusch, A., & Henning, E. (2018). Correlation between water consumption and the operating conditions of plumbing fixtures in public buildings. Water Supply, 18(6), 1915–1925. https://doi.org/10.2166/ws.2018.013 Gonçalves, J. M., Muga, A. P., Horst, M. G., & Pereira, L. S. (2011). Furrow irrigation design with multicriteria analysis. Biosystems Engineering, 109(4), 266–275. https://doi.org/10.1016/j.biosystemseng.2011.04.007 Grecksch, K. (2018). Scenarios for resilient drought and water scarcity management in England and Wales. International Journal of River Basin Management, 17(2), 219–227. https://doi.org/10.1080/15715124.2018.1461106 Horsburgh, J. S., Leonardo, M. E., Abdallah, A. M., & Rosenberg, D. E. (2017). Measuring water use, conservation, and differences by gender using an inexpensive, high frequency metering system. Environmental Modelling and Software, 96, 83–94. https://doi.org/10.1016/j.envsoft.2017.06.035 Hossain, S., Hewa, G. A., Chow, C. W. K., & Cook, D. (2021). Modelling and incorporating the variable demand patterns to the calibration of water distribution system hydraulic Model. Water (Switzerland), 13(20), 2890. https://doi.org/10.3390/W13202890 Hovany, L. (2012). Error in water meter measuring due to shorter flow and consumption shorter than the time the meter was calibrated. Water Supply System Analysis - Selected Topics, 2012(December), 22. https://doi.org/10.5772/51046 Ibrahim, K., Tariq, S., Bakhtawar, B., & Zayed, T. (2021). Application of fiber optics in water distribution networks for leak detection and localization: A mixed methodology-based review. H2Open Journal, 4(1), 244–261. https://doi.org/10.2166/H2OJ.2021.102 Jacque, H., Mozafari, B., Dereli, R. K., & Cotterill, S. (2024). Implications of water conservation measures on urban water cycle: A review. Sustainable Production and Consumption, 50, 571–586. https://doi.org/10.1016/j.spc.2024.08.026 Jeong, H., Broesicke, O. A., Drew, B., Li, D., & Crittenden, J. C. (2016). Life cycle assessment of low impact development technologies combined with conventional centralized water systems for the city of Atlanta, Georgia. Frontiers of Environmental Science and Engineering, 10(6), 1–13. https://doi.org/10.1007/s11783-016-0851-0 Juszkiewicz, J. (2020). Trends in community college enrollment and completion data, issue 6. American Association of Community Colleges. Kalbusch, A., & Ghisi, E. (2016). Comparative life-cycle assessment of ordinary and water-saving taps. Journal of Cleaner Production, 112, 4585–4593. https://doi.org/10.1016/j.jclepro.2015.06.075 Mabrok, M. A., Saad, A., Ahmed, T., & Alsayab, H. (2022). Modeling and simulations of water network distribution to assess water quality: Kuwait as a case study. Alexandria Engineering Journal, 61(12), 11859–11877. https://doi.org/10.1016/j.aej.2022.05.038 Makki, A. A., Stewart, R. A., Panuwatwanich, K., & Beal, C. (2013). Revealing the determinants of shower water end use consumption: Enabling better targeted urban water conservation strategies. Journal of Cleaner Production, 60, 129–146. https://doi.org/10.1016/j.jclepro.2011.08.007 Marinho, M., Gonçalves, M. D. S., & Kiperstok, A. (2014). Water conservation as a tool to support sustainable practices in a Brazilian public university. Journal of Cleaner Production, 62, 98–106. https://doi.org/10.1016/j.jclepro.2013.06.053 Mashford, J., De Silva, D., Burn, S., & Marney, D. (2012). LEAK DETECTION in SIMULATED WATER PIPE NETWORKS USING SVM. Applied Artificial Intelligence, 26(5), 429–444. https://doi.org/10.1080/08839514.2012.670974 Masserini, L., Giulia, R., & Lorenzo, C. (2018). Investigating attitudes towards water savings, price increases, and willingness to pay among Italian university students. Water Resources Management, 32(12), 4123–4138. https://doi.org/10.1007/s11269-018-2049-7 Meireles, I., & Sousa, V. (2020). Assessing water, energy and emissions reduction from water conservation measures in buildings: A methodological approach. Environmental Science and Pollution Research, 27(5), 4612–4629. https://doi.org/10.1007/s11356-019-06377-3 Meireles, I., Sousa, V., Adeyeye, K., & Silva-Afonso, A. (2018). User preferences and water use savings owing to washbasin taps retrofit: A case study of the DECivil building of the university of aveiro. Environmental Science and Pollution Research, 25(20), 19217–19227. https://doi.org/10.1007/s11356-017-8897-5 Meirelles Lima, G., Brentan, B. M., & Luvizotto, E. (2018). Optimal design of water supply networks using an energy recovery approach. Renewable Energy, 117, 404–413. https://doi.org/10.1016/j.renene.2017.10.080 Muranho, J., Ferreira, A., Sousa, J., Gomes, A., & Sá Marques, A. (2014). Technical performance evaluation of water distribution networks based on EPANET. Procedia Engineering, 70, 1201–1210. https://doi.org/10.1016/J.PROENG.2014.02.133 Otaki, Y., Otaki, M., & Aramaki, T. (2018). Potential of efficient toilets in Hanoi Vietnam. Water Practice and Technology, 13(3), 621–628. https://doi.org/10.2166/WPT.2018.078 Paluszczyszyn, D., Skworcow, P., & Ulanicki, B. (2013). Online simplification of water distribution network models for optimal scheduling. Journal of Hydroinformatics, 15(3), 652–665. https://doi.org/10.2166/hydro.2013.029 Peña, L. E., Zapata, M. A., & Barrios, M. (2019). Analytic hierarchy process approach for the selection of stream-gauging sites. Hydrological Sciences Journal, 64(14), 1783–1792. https://doi.org/10.1080/02626667.2019.1672874 Pordal, A., Noshadi, M., & Masoudi, M. H. (2023). Analysis of drinking water distribution network using EPANET Model (case study: Part of shiraz water distribution network). Iranian Journal of Science and Technology - Transactions of Civil Engineering, 47(3), 1791–1799. https://doi.org/10.1007/s40996-022-00973-z View Proença, L. C., & Ghisi, E. (2013). Assessment of potable water savings in office buildings considering embodied energy. Water Resources Management, 27(2), 581–599. https://doi.org/10.1007/s11269-012-0203-1 Puust, R., Kapelan, Z., Savic, D. A., & Koppel, T. (2010). A review of methods for leakage management in pipe networks. Urban Water Journal, 7(1), 25–45. https://doi.org/10.1080/15730621003610878 Ramesh Sakthivel, S., Azizurrahaman, M., Ganesh Prabhu, V., & Chariar, V. M. (2016). Performance evaluation of a low-cost odour trap installed in waterless urinals. Journal of Water, Sanitation and Hygiene for Development, 6(2), 252–258. https://doi.org/10.2166/WASHDEV.2016.151 Roccaro, P., Falciglia, P. P., & Vagliasindi, F. G. A. (2011). Effectiveness of water saving devices and educational programs in urban buildings. Water Science and Technology, 63(7), 1357–1365. https://doi.org/10.2166/wst.2011.190 Rodrigues, F., Silva-Afonso, A., Pinto, A., Macedo, J., Santos, A. S., & Pimentel-Rodrigues, C. (2020). Increasing water and energy efficiency in university buildings: A case study. Environmental Science and Pollution Research, 27(5), 4571–4581. https://doi.org/10.1007/s11356-019-04990-w Rossman, L. A., Woo, H., Tryby, M., Shang, F., Janke, R., & Haxton, T. (2020). EPANET 2.2 user manual. EPA/600/R-20/133, 2020. U.S. Environmental Protection Agency. https://epanet22.readthedocs.io/_/downloads/en/latest/pdf/(open in a new window) Saaty, T. L. (2013). The modern science of multicriteria decision making and its practical applications: The AHP/ANP approach. Operations Research, 61(5), 1101–1118. https://doi.org/10.1287/OPRE.2013.1197 Sægrov, S., Melo Baptista, J. F., Conroy, P., Herz, R. K., Legauffre, P., Moss, G., Oddevald, J. E., Rajani, B., & Schiatti, M. (1999). Rehabilitation of water networks: Survey of research needs and on-going efforts. Urban Water, 1(1), 15–22. https://doi.org/10.1016/s1462-0758(99)00002-3 Sharu, E. H., & Ab Razak, M. S. (2020). Hydraulic performance and modelling of pressurized drip irrigation system. Water (Switzerland), 12(8), 2295. https://doi.org/10.3390/w12082295 Shimizu, Y. (2013). The life cycle CO2 (LCCO2) evaluation of retrofits for water-saving fittings. Water (Switzerland), 5(2), 629–637. https://doi.org/10.3390/w5020629 Soares, A. E. P., Silva, J. K. D., Nunes, L. G. C. F., Rios Ribeiro, M. M., & Silva, S. R. D. (2021). Water conservation potential within higher education institutions: Lessons from a Brazilian university. Urban Water Journal, 20(10), 1429–1437. https://doi.org/10.1080/1573062X.2021.2013903 Soltanjalili, M., Bozorg-Haddad, O., & Mariño, M. A. (2011). Effect of breakage level one in design of water distribution networks. Water Resources Management, 25(1), 311–337. https://doi.org/10.1007/s11269-010-9701-1 Sousa, V., Silva, C. M., & Meireles, I. (2019). Performance of water efficiency measures in commercial buildings. Resources, Conservation and Recycling, 143, 251–259. https://doi.org/10.1016/j.resconrec.2019.01.013 Sun, H., Wang, S., & Hao, X. (2017). An improved analytic hierarchy process method for the evaluation of agricultural water management in irrigation districts of north China. Agricultural Water Management, 179, 324–337. https://doi.org/10.1016/J.AGWAT.2016.08.002 Sunela, M. I., & Puust, R. (2015). Modeling water supply system control system algorithms. Procedia Engineering, 119(1), 734–743. https://doi.org/10.1016/j.proeng.2015.08.927 Tam, V., & Brohier, A. (2013). Lifecycle benefits of domestic water-efficient fittings and products. In K. Adeyeye (Ed.), Water efficiency in buildings. https://doi.org/10.1002/9781118456613.ch13 Torrijos, V., Soto, M., & Calvo Dopico, D. (2020). SOSTAUGA project: Reduction of water consumption and evaluation of potential uses for endogenous resources. International Journal of Sustainability in Higher Education, 21(7), 1391–1411. https://doi.org/10.1108/IJSHE-02-2020-0057 United Nations. (2018). The 2030 agenda and the sustainable development goals: An opportunity for Latin America and the Caribbean (LC/G.2681-P/Rev.3). United Nations. Van Arsdel, J. H. (2017). Consider your leak detection options. Opflow, 43(4), 10–14. https://doi.org/10.5991/OPF.2017.43.0021 Velazquez, L., Munguia, N., & Ojeda, M. (2013). Optimizing water use in the university of sonora, Mexico. Journal of Cleaner Production, 46, 83–88. https://doi.org/10.1016/j.jclepro.2012.09.005 Willis, R. M., Stewart, R. A., Panuwatwanich, K., Williams, P. R., & Hollingsworth, A. L. (2011). Quantifying the influence of environmental and water conservation attitudes on household end use water consumption. Journal of Environmental Management, 92(8), 1996–2009. https://doi.org/10.1016/j.jenvman.2011.03.023 Yagoub, M. M., AlSumaiti, T. S., Ebrahim, L., Ahmed, Y., & Abdulla, R. (2019). Pattern of water Use at the United Arab Emirates university. Water (Switzerland), 11(12), 2652. https://doi.org/10.3390/w1112265 Yousefian, R., & Duchesne, S. (2021). Modeling the mixing phenomenon in water distribution networks: A state-of-the-art review. Journal of Water Resources Planning and Management, 148(2), 03121002. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001513 |
| dc.rights.none.fl_str_mv |
© 2025 Informa UK Limited, trading as Taylor & Francis Group. |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
| rights_invalid_str_mv |
© 2025 Informa UK Limited, trading as Taylor & Francis Group. http://purl.org/coar/access_right/c_14cb |
| eu_rights_str_mv |
closedAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Taylor and Francis Ltd. |
| dc.publisher.place.none.fl_str_mv |
Estados Unidos |
| publisher.none.fl_str_mv |
Taylor and Francis Ltd. |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/6fcd219e-31d3-45b3-a3c1-a8da030c85d6/download https://repositorio.unibague.edu.co/bitstreams/e737c964-5198-4cd0-affd-98ee6e21408c/download https://repositorio.unibague.edu.co/bitstreams/c0731d4e-c0dd-43f0-ab22-e39a9f68b2b3/download https://repositorio.unibague.edu.co/bitstreams/1731cfcc-eb14-4cc5-b999-2457aa6786d8/download |
| bitstream.checksum.fl_str_mv |
2fa3e590786b9c0f3ceba1b9656b7ac3 c7871408e3bfe1a933bfa48f9c875044 13deec929dd679eaeaa6f8b461fc1241 35a5b3ed1b2b49f15b48d4bc9032fd6a |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059965677010944 |
| spelling |
Márquez, Juan D.b7c17026-501d-44f2-90b2-ec281120c2d7-1García-León, Andrés176135f4-027f-4df5-9b85-1692ae966389-1Peña, Luis E.b8e15f98-c09b-4a85-8025-9a9d1e43b712-12025-11-28T21:55:26Z2025-11-28T21:55:26Z2025This study evaluates the water use efficiency (WUE) implementing under two approaches: i) reduction of water losses and the installation of low-consumption plumbing fixtures, and ii) Water savings analysis including, network Additional capacity, Reduction in per capita water consumption and the Investment (WARI). Hydraulic modeling was performed in the water distribution network of the campus of Universidad de Ibagué using EPANETv2.2, which supplies 5,172 people through 3,499.7 m of pipes during an analysis period of 48 months. The selection process for water-saving plumbing fixtures was carried out using the Analytical Hierarchy Process approach. The results indicate that WUE contributes to reducing water consumption by up to 47.8% and achieving a hydraulic capacity extension of the network of up to 67.0%, which is equivalent to extending pipes life cycle by up to 20 more years. WARI analysis is useful for water resource planners in decision-making processes within an economic and environmental sustainability framework.application/pdfMárquez, J. D., García-León, A., & Peña, L. E. (2025). Hydraulic capacity extension of networks through the water savings and investment analysis approach. Sustainable and Resilient Infrastructure, 1–17. https://doi.org/10.1080/23789689.2025.2470505https://doi.org/10.1080/23789689.2025.24705052378969723789689https://hdl.handle.net/20.500.12313/6055https://www.tandfonline.com/doi/full/10.1080/23789689.2025.2470505?af=RengTaylor and Francis Ltd.Estados UnidosSustainable and Resilient InfrastructureAhmed, W., Alazazmeh, A., & Asif, M. (2023). Energy and water saving potential in commercial buildings: A retrofit case study. Sustainability (Switzerland), 15(1), 518. https://doi.org/10.3390/su15010518Alghamdi, A., Haider, H., Hewage, K., & Sadiq, R. (2019). Inter-university sustainability benchmarking for Canadian higher education institutions: Water, energy, and carbon flows for technical-level decision-making. Sustainability (Switzerland), 11(9). https://doi.org/10.3390/su11092599Alshuwaikhat, H. M., & Abubakar, I. (2008). An integrated approach to achieving campus sustainability: Assessment of the current campus environmental management practices. Journal of Cleaner Production, 16(16), 1777–1785. https://doi.org/10.1016/j.jclepro.2007.12.002Ananda, J. (2019). Determinants of real water losses in the Australian drinking water sector. Urban Water Journal, 16(8), 575–583. https://doi.org/10.1080/1573062X.2019.1700288Berger, M., Söchtig, M., Weis, C., & Finkbeiner, M. (2017). Amount of water needed to save 1 m3 of water: Life cycle assessment of a flow regulator. Applied Water Science, 7, 1399–1407. https://doi.org/10.1007/s13201-015-0328-5Berhanu, B. M., Blackhurst, M., Kirisits, M. J., Jamarillo, P., & Carlson, D. (2017). Feasibility of water efficiency and reuse technologies as demand-side strategies for urban water management. Journal of Industrial Ecology, 21(2), 320–331. https://doi.org/10.1111/jiec.12430Bhakar, V., Sihag, N., Gieschen, R., Andrew, S., Herrmann, C., & Sangwan, K. S. (2015). Environmental impact analysis of a water supply system: Study of an Indian university campus. Procedia CIRP, 29, 468–473. https://doi.org/10.1016/j.procir.2015.02.061Bonnet, J. F., Devel, C., Faucher, P., & Roturier, J. (2002). Analysis of electricity and water end-uses in university campuses: Case-study of the university of Bordeaux in the framework of the ecocampus European collaboration. Journal of Cleaner Production, 10(1), 13–24. https://doi.org/10.1016/S0959-6526(01)00018-XChipako, T. L., & Randall, D. G. (2019). Urinals for water savings and nutrient recovery: A feasibility study. Water SA, 45(2), 266–277. https://doi.org/10.4314/wsa.v45i2.14Cobacho, R., Arregui, F., Soriano, J., & Cabrera, E. (2015). Including leakage in network models: An application to calibrate leak valves in EPANET. Journal of Water Supply: Research and Technology-Aqua, 64(2), 130–138. https://doi.org/10.2166/AQUA.2014.197Cureau, R. J., & Ghisi, E. (2019). Reduction of potable water consumption and sewage generation on a city scale: A case study in Brazil. Water (Switzerland), 11(11), 2351. https://doi.org/10.3390/w11112351Daloğlu Çetinkaya, I., Yazar, M., Kılınç, S., & Güven, B. (2022). Urban climate resilience and water insecurity: Future scenarios of water supply and demand in Istanbul. Urban Water Journal, 20(10), 1336–1347. https://doi.org/10.1080/1573062X.2022.2066548Da Silva, S. F., Britto, V., Azevedo, C., & Kiperstok, A. (2014). Rational consumption of water in administrative public buildings: The experience of the Bahia administrative center, Brazil. Water (Switzerland), 6(9), 2552–2574. https://doi.org/10.3390/w6092552Davis, M. J. M., Gutiérrez, M. L., & Serrano, J. (2016). Know your people: Social research and water recycling system design with communities in the amazon. Procedia Engineering, 145, 1258–1266. https://doi.org/10.1016/J.PROENG.2016.04.162Dixit, M. K. (2019). Life cycle recurrent embodied energy calculation of buildings: A review. Journal of Cleaner Production, 209, 731–754. https://doi.org/10.1016/j.jclepro.2018.10.230Echeverri, M. J. (2017). Manizales’ water distribution system -aguas de Manizales S.A. E S P Procedia Engineering, 186, 36–43. https://doi.org/10.1016/j.proeng.2017.03.205Fidar, A. M., Memon, F. A., & Butler, D. (2016). Performance evaluation of conventional and water saving taps. Science of the Total Environment, 541, 815–824. https://doi.org/10.1016/j.scitotenv.2015.08.024Filion, Y. R., MacLean, H. L., & Karney, B. W. (2004). Life-cycle energy analysis of a water distribution system. Journal of Infrastructure Systems, 10(3), 120–130. https://doi.org/10.1061/(ASCE)1076-0342,(2004)10:3(119)Fontanazza, C. M., Notaro, V., Puleo, V., & Freni, G. (2014). The apparent losses due to metering errors: A proactive approach to predict losses and schedule maintenance. Urban Water Journal, 12(3), 229–239. https://doi.org/10.1080/1573062X.2014.882363Freitas, L. L. G., Henning, E., Kalbusch, A., Konrath, A. C., & Walter, O. M. F. C. (2019). Analysis of water consumption in toilets employing Shewhart, EWMA, and Shewhart-ewma combined control charts. Journal of Cleaner Production, 233, 1146–1157. https://doi.org/10.1016/j.jclepro.2019.06.114Ge, L., Hu, Z., Chen, P., Shi, L., Yang, Q., & Liao, J. (2014). Research on overflow monitoring mechanism based on downhole microflow detection. Mathematical Problems in Engineering, 2014(1), 676290. https://doi.org/10.1155/2014/676290Giwa, A., & Dindi, A. (2017). An investigation of the feasibility of proposed solutions for water sustainability and security in water-stressed environment. Journal of Cleaner Production, 165, 721–733. https://doi.org/10.1016/j.jclepro.2017.07.120Gnoatto, E. L., Kalbusch, A., & Henning, E. (2019). Evaluation of the environmental and economic impacts on the life cycle of different solutions for toilet flush systems. Sustainability (Switzerland), 11(17). https://doi.org/10.3390/su11174742Gonçalves, F., Kalbusch, A., & Henning, E. (2018). Correlation between water consumption and the operating conditions of plumbing fixtures in public buildings. Water Supply, 18(6), 1915–1925. https://doi.org/10.2166/ws.2018.013Gonçalves, J. M., Muga, A. P., Horst, M. G., & Pereira, L. S. (2011). Furrow irrigation design with multicriteria analysis. Biosystems Engineering, 109(4), 266–275. https://doi.org/10.1016/j.biosystemseng.2011.04.007Grecksch, K. (2018). Scenarios for resilient drought and water scarcity management in England and Wales. International Journal of River Basin Management, 17(2), 219–227. https://doi.org/10.1080/15715124.2018.1461106Horsburgh, J. S., Leonardo, M. E., Abdallah, A. M., & Rosenberg, D. E. (2017). Measuring water use, conservation, and differences by gender using an inexpensive, high frequency metering system. Environmental Modelling and Software, 96, 83–94. https://doi.org/10.1016/j.envsoft.2017.06.035Hossain, S., Hewa, G. A., Chow, C. W. K., & Cook, D. (2021). Modelling and incorporating the variable demand patterns to the calibration of water distribution system hydraulic Model. Water (Switzerland), 13(20), 2890. https://doi.org/10.3390/W13202890Hovany, L. (2012). Error in water meter measuring due to shorter flow and consumption shorter than the time the meter was calibrated. Water Supply System Analysis - Selected Topics, 2012(December), 22. https://doi.org/10.5772/51046Ibrahim, K., Tariq, S., Bakhtawar, B., & Zayed, T. (2021). Application of fiber optics in water distribution networks for leak detection and localization: A mixed methodology-based review. H2Open Journal, 4(1), 244–261. https://doi.org/10.2166/H2OJ.2021.102Jacque, H., Mozafari, B., Dereli, R. K., & Cotterill, S. (2024). Implications of water conservation measures on urban water cycle: A review. Sustainable Production and Consumption, 50, 571–586. https://doi.org/10.1016/j.spc.2024.08.026Jeong, H., Broesicke, O. A., Drew, B., Li, D., & Crittenden, J. C. (2016). Life cycle assessment of low impact development technologies combined with conventional centralized water systems for the city of Atlanta, Georgia. Frontiers of Environmental Science and Engineering, 10(6), 1–13. https://doi.org/10.1007/s11783-016-0851-0Juszkiewicz, J. (2020). Trends in community college enrollment and completion data, issue 6. American Association of Community Colleges.Kalbusch, A., & Ghisi, E. (2016). Comparative life-cycle assessment of ordinary and water-saving taps. Journal of Cleaner Production, 112, 4585–4593. https://doi.org/10.1016/j.jclepro.2015.06.075Mabrok, M. A., Saad, A., Ahmed, T., & Alsayab, H. (2022). Modeling and simulations of water network distribution to assess water quality: Kuwait as a case study. Alexandria Engineering Journal, 61(12), 11859–11877. https://doi.org/10.1016/j.aej.2022.05.038Makki, A. A., Stewart, R. A., Panuwatwanich, K., & Beal, C. (2013). Revealing the determinants of shower water end use consumption: Enabling better targeted urban water conservation strategies. Journal of Cleaner Production, 60, 129–146. https://doi.org/10.1016/j.jclepro.2011.08.007Marinho, M., Gonçalves, M. D. S., & Kiperstok, A. (2014). Water conservation as a tool to support sustainable practices in a Brazilian public university. Journal of Cleaner Production, 62, 98–106. https://doi.org/10.1016/j.jclepro.2013.06.053Mashford, J., De Silva, D., Burn, S., & Marney, D. (2012). LEAK DETECTION in SIMULATED WATER PIPE NETWORKS USING SVM. Applied Artificial Intelligence, 26(5), 429–444. https://doi.org/10.1080/08839514.2012.670974Masserini, L., Giulia, R., & Lorenzo, C. (2018). Investigating attitudes towards water savings, price increases, and willingness to pay among Italian university students. Water Resources Management, 32(12), 4123–4138. https://doi.org/10.1007/s11269-018-2049-7Meireles, I., & Sousa, V. (2020). Assessing water, energy and emissions reduction from water conservation measures in buildings: A methodological approach. Environmental Science and Pollution Research, 27(5), 4612–4629. https://doi.org/10.1007/s11356-019-06377-3Meireles, I., Sousa, V., Adeyeye, K., & Silva-Afonso, A. (2018). User preferences and water use savings owing to washbasin taps retrofit: A case study of the DECivil building of the university of aveiro. Environmental Science and Pollution Research, 25(20), 19217–19227. https://doi.org/10.1007/s11356-017-8897-5Meirelles Lima, G., Brentan, B. M., & Luvizotto, E. (2018). Optimal design of water supply networks using an energy recovery approach. Renewable Energy, 117, 404–413. https://doi.org/10.1016/j.renene.2017.10.080Muranho, J., Ferreira, A., Sousa, J., Gomes, A., & Sá Marques, A. (2014). Technical performance evaluation of water distribution networks based on EPANET. Procedia Engineering, 70, 1201–1210. https://doi.org/10.1016/J.PROENG.2014.02.133Otaki, Y., Otaki, M., & Aramaki, T. (2018). Potential of efficient toilets in Hanoi Vietnam. Water Practice and Technology, 13(3), 621–628. https://doi.org/10.2166/WPT.2018.078Paluszczyszyn, D., Skworcow, P., & Ulanicki, B. (2013). Online simplification of water distribution network models for optimal scheduling. Journal of Hydroinformatics, 15(3), 652–665. https://doi.org/10.2166/hydro.2013.029Peña, L. E., Zapata, M. A., & Barrios, M. (2019). Analytic hierarchy process approach for the selection of stream-gauging sites. Hydrological Sciences Journal, 64(14), 1783–1792. https://doi.org/10.1080/02626667.2019.1672874Pordal, A., Noshadi, M., & Masoudi, M. H. (2023). Analysis of drinking water distribution network using EPANET Model (case study: Part of shiraz water distribution network). Iranian Journal of Science and Technology - Transactions of Civil Engineering, 47(3), 1791–1799. https://doi.org/10.1007/s40996-022-00973-z ViewProença, L. C., & Ghisi, E. (2013). Assessment of potable water savings in office buildings considering embodied energy. Water Resources Management, 27(2), 581–599. https://doi.org/10.1007/s11269-012-0203-1Puust, R., Kapelan, Z., Savic, D. A., & Koppel, T. (2010). A review of methods for leakage management in pipe networks. Urban Water Journal, 7(1), 25–45. https://doi.org/10.1080/15730621003610878Ramesh Sakthivel, S., Azizurrahaman, M., Ganesh Prabhu, V., & Chariar, V. M. (2016). Performance evaluation of a low-cost odour trap installed in waterless urinals. Journal of Water, Sanitation and Hygiene for Development, 6(2), 252–258. https://doi.org/10.2166/WASHDEV.2016.151Roccaro, P., Falciglia, P. P., & Vagliasindi, F. G. A. (2011). Effectiveness of water saving devices and educational programs in urban buildings. Water Science and Technology, 63(7), 1357–1365. https://doi.org/10.2166/wst.2011.190Rodrigues, F., Silva-Afonso, A., Pinto, A., Macedo, J., Santos, A. S., & Pimentel-Rodrigues, C. (2020). Increasing water and energy efficiency in university buildings: A case study. Environmental Science and Pollution Research, 27(5), 4571–4581. https://doi.org/10.1007/s11356-019-04990-wRossman, L. A., Woo, H., Tryby, M., Shang, F., Janke, R., & Haxton, T. (2020). EPANET 2.2 user manual. EPA/600/R-20/133, 2020. U.S. Environmental Protection Agency. https://epanet22.readthedocs.io/_/downloads/en/latest/pdf/(open in a new window)Saaty, T. L. (2013). The modern science of multicriteria decision making and its practical applications: The AHP/ANP approach. Operations Research, 61(5), 1101–1118. https://doi.org/10.1287/OPRE.2013.1197Sægrov, S., Melo Baptista, J. F., Conroy, P., Herz, R. K., Legauffre, P., Moss, G., Oddevald, J. E., Rajani, B., & Schiatti, M. (1999). Rehabilitation of water networks: Survey of research needs and on-going efforts. Urban Water, 1(1), 15–22. https://doi.org/10.1016/s1462-0758(99)00002-3Sharu, E. H., & Ab Razak, M. S. (2020). Hydraulic performance and modelling of pressurized drip irrigation system. Water (Switzerland), 12(8), 2295. https://doi.org/10.3390/w12082295Shimizu, Y. (2013). The life cycle CO2 (LCCO2) evaluation of retrofits for water-saving fittings. Water (Switzerland), 5(2), 629–637. https://doi.org/10.3390/w5020629Soares, A. E. P., Silva, J. K. D., Nunes, L. G. C. F., Rios Ribeiro, M. M., & Silva, S. R. D. (2021). Water conservation potential within higher education institutions: Lessons from a Brazilian university. Urban Water Journal, 20(10), 1429–1437. https://doi.org/10.1080/1573062X.2021.2013903Soltanjalili, M., Bozorg-Haddad, O., & Mariño, M. A. (2011). Effect of breakage level one in design of water distribution networks. Water Resources Management, 25(1), 311–337. https://doi.org/10.1007/s11269-010-9701-1Sousa, V., Silva, C. M., & Meireles, I. (2019). Performance of water efficiency measures in commercial buildings. Resources, Conservation and Recycling, 143, 251–259. https://doi.org/10.1016/j.resconrec.2019.01.013Sun, H., Wang, S., & Hao, X. (2017). An improved analytic hierarchy process method for the evaluation of agricultural water management in irrigation districts of north China. Agricultural Water Management, 179, 324–337. https://doi.org/10.1016/J.AGWAT.2016.08.002Sunela, M. I., & Puust, R. (2015). Modeling water supply system control system algorithms. Procedia Engineering, 119(1), 734–743. https://doi.org/10.1016/j.proeng.2015.08.927Tam, V., & Brohier, A. (2013). Lifecycle benefits of domestic water-efficient fittings and products. In K. Adeyeye (Ed.), Water efficiency in buildings. https://doi.org/10.1002/9781118456613.ch13Torrijos, V., Soto, M., & Calvo Dopico, D. (2020). SOSTAUGA project: Reduction of water consumption and evaluation of potential uses for endogenous resources. International Journal of Sustainability in Higher Education, 21(7), 1391–1411. https://doi.org/10.1108/IJSHE-02-2020-0057United Nations. (2018). The 2030 agenda and the sustainable development goals: An opportunity for Latin America and the Caribbean (LC/G.2681-P/Rev.3). United Nations.Van Arsdel, J. H. (2017). Consider your leak detection options. Opflow, 43(4), 10–14. https://doi.org/10.5991/OPF.2017.43.0021Velazquez, L., Munguia, N., & Ojeda, M. (2013). Optimizing water use in the university of sonora, Mexico. Journal of Cleaner Production, 46, 83–88. https://doi.org/10.1016/j.jclepro.2012.09.005Willis, R. M., Stewart, R. A., Panuwatwanich, K., Williams, P. R., & Hollingsworth, A. L. (2011). Quantifying the influence of environmental and water conservation attitudes on household end use water consumption. Journal of Environmental Management, 92(8), 1996–2009. https://doi.org/10.1016/j.jenvman.2011.03.023Yagoub, M. M., AlSumaiti, T. S., Ebrahim, L., Ahmed, Y., & Abdulla, R. (2019). Pattern of water Use at the United Arab Emirates university. Water (Switzerland), 11(12), 2652. https://doi.org/10.3390/w1112265Yousefian, R., & Duchesne, S. (2021). Modeling the mixing phenomenon in water distribution networks: A state-of-the-art review. Journal of Water Resources Planning and Management, 148(2), 03121002. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001513© 2025 Informa UK Limited, trading as Taylor & Francis Group.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCapacidad hidráulicaHidraulica de redes - Capacidad - Análisis de inversionesAhorro de aguaanalytical hierarchy processhydraulic capacity extension of networkswater consumption reductionwater distribution networkWater use efficiencyHydraulic capacity extension of networks through the water savings and investment analysis approachArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/6fcd219e-31d3-45b3-a3c1-a8da030c85d6/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf174617https://repositorio.unibague.edu.co/bitstreams/e737c964-5198-4cd0-affd-98ee6e21408c/downloadc7871408e3bfe1a933bfa48f9c875044MD52TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain5412https://repositorio.unibague.edu.co/bitstreams/c0731d4e-c0dd-43f0-ab22-e39a9f68b2b3/download13deec929dd679eaeaa6f8b461fc1241MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg24335https://repositorio.unibague.edu.co/bitstreams/1731cfcc-eb14-4cc5-b999-2457aa6786d8/download35a5b3ed1b2b49f15b48d4bc9032fd6aMD5420.500.12313/6055oai:repositorio.unibague.edu.co:20.500.12313/60552025-11-29 03:01:34.091https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
