Hydraulic capacity extension of networks through the water savings and investment analysis approach

This study evaluates the water use efficiency (WUE) implementing under two approaches: i) reduction of water losses and the installation of low-consumption plumbing fixtures, and ii) Water savings analysis including, network Additional capacity, Reduction in per capita water consumption and the Inve...

Full description

Autores:
Márquez, Juan D.
García-León, Andrés
Peña, Luis E.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2025
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/6055
Acceso en línea:
https://doi.org/10.1080/23789689.2025.2470505
https://hdl.handle.net/20.500.12313/6055
https://www.tandfonline.com/doi/full/10.1080/23789689.2025.2470505?af=R
Palabra clave:
Capacidad hidráulica
Hidraulica de redes - Capacidad - Análisis de inversiones
Ahorro de agua
analytical hierarchy process
hydraulic capacity extension of networks
water consumption reduction
water distribution network
Water use efficiency
Rights
closedAccess
License
© 2025 Informa UK Limited, trading as Taylor & Francis Group.
id UNIBAGUE2_c521d675170e2ff16da3d0c0a07f3db9
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/6055
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Hydraulic capacity extension of networks through the water savings and investment analysis approach
title Hydraulic capacity extension of networks through the water savings and investment analysis approach
spellingShingle Hydraulic capacity extension of networks through the water savings and investment analysis approach
Capacidad hidráulica
Hidraulica de redes - Capacidad - Análisis de inversiones
Ahorro de agua
analytical hierarchy process
hydraulic capacity extension of networks
water consumption reduction
water distribution network
Water use efficiency
title_short Hydraulic capacity extension of networks through the water savings and investment analysis approach
title_full Hydraulic capacity extension of networks through the water savings and investment analysis approach
title_fullStr Hydraulic capacity extension of networks through the water savings and investment analysis approach
title_full_unstemmed Hydraulic capacity extension of networks through the water savings and investment analysis approach
title_sort Hydraulic capacity extension of networks through the water savings and investment analysis approach
dc.creator.fl_str_mv Márquez, Juan D.
García-León, Andrés
Peña, Luis E.
dc.contributor.author.none.fl_str_mv Márquez, Juan D.
García-León, Andrés
Peña, Luis E.
dc.subject.armarc.none.fl_str_mv Capacidad hidráulica
Hidraulica de redes - Capacidad - Análisis de inversiones
Ahorro de agua
topic Capacidad hidráulica
Hidraulica de redes - Capacidad - Análisis de inversiones
Ahorro de agua
analytical hierarchy process
hydraulic capacity extension of networks
water consumption reduction
water distribution network
Water use efficiency
dc.subject.proposal.eng.fl_str_mv analytical hierarchy process
hydraulic capacity extension of networks
water consumption reduction
water distribution network
Water use efficiency
description This study evaluates the water use efficiency (WUE) implementing under two approaches: i) reduction of water losses and the installation of low-consumption plumbing fixtures, and ii) Water savings analysis including, network Additional capacity, Reduction in per capita water consumption and the Investment (WARI). Hydraulic modeling was performed in the water distribution network of the campus of Universidad de Ibagué using EPANETv2.2, which supplies 5,172 people through 3,499.7 m of pipes during an analysis period of 48 months. The selection process for water-saving plumbing fixtures was carried out using the Analytical Hierarchy Process approach. The results indicate that WUE contributes to reducing water consumption by up to 47.8% and achieving a hydraulic capacity extension of the network of up to 67.0%, which is equivalent to extending pipes life cycle by up to 20 more years. WARI analysis is useful for water resource planners in decision-making processes within an economic and environmental sustainability framework.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-11-28T21:55:26Z
dc.date.available.none.fl_str_mv 2025-11-28T21:55:26Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Márquez, J. D., García-León, A., & Peña, L. E. (2025). Hydraulic capacity extension of networks through the water savings and investment analysis approach. Sustainable and Resilient Infrastructure, 1–17. https://doi.org/10.1080/23789689.2025.2470505
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1080/23789689.2025.2470505
dc.identifier.eissn.none.fl_str_mv 23789697
dc.identifier.issn.none.fl_str_mv 23789689
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/6055
dc.identifier.url.none.fl_str_mv https://www.tandfonline.com/doi/full/10.1080/23789689.2025.2470505?af=R
identifier_str_mv Márquez, J. D., García-León, A., & Peña, L. E. (2025). Hydraulic capacity extension of networks through the water savings and investment analysis approach. Sustainable and Resilient Infrastructure, 1–17. https://doi.org/10.1080/23789689.2025.2470505
23789697
23789689
url https://doi.org/10.1080/23789689.2025.2470505
https://hdl.handle.net/20.500.12313/6055
https://www.tandfonline.com/doi/full/10.1080/23789689.2025.2470505?af=R
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Sustainable and Resilient Infrastructure
dc.relation.references.none.fl_str_mv Ahmed, W., Alazazmeh, A., & Asif, M. (2023). Energy and water saving potential in commercial buildings: A retrofit case study. Sustainability (Switzerland), 15(1), 518. https://doi.org/10.3390/su15010518
Alghamdi, A., Haider, H., Hewage, K., & Sadiq, R. (2019). Inter-university sustainability benchmarking for Canadian higher education institutions: Water, energy, and carbon flows for technical-level decision-making. Sustainability (Switzerland), 11(9). https://doi.org/10.3390/su11092599
Alshuwaikhat, H. M., & Abubakar, I. (2008). An integrated approach to achieving campus sustainability: Assessment of the current campus environmental management practices. Journal of Cleaner Production, 16(16), 1777–1785. https://doi.org/10.1016/j.jclepro.2007.12.002
Ananda, J. (2019). Determinants of real water losses in the Australian drinking water sector. Urban Water Journal, 16(8), 575–583. https://doi.org/10.1080/1573062X.2019.1700288
Berger, M., Söchtig, M., Weis, C., & Finkbeiner, M. (2017). Amount of water needed to save 1 m3 of water: Life cycle assessment of a flow regulator. Applied Water Science, 7, 1399–1407. https://doi.org/10.1007/s13201-015-0328-5
Berhanu, B. M., Blackhurst, M., Kirisits, M. J., Jamarillo, P., & Carlson, D. (2017). Feasibility of water efficiency and reuse technologies as demand-side strategies for urban water management. Journal of Industrial Ecology, 21(2), 320–331. https://doi.org/10.1111/jiec.12430
Bhakar, V., Sihag, N., Gieschen, R., Andrew, S., Herrmann, C., & Sangwan, K. S. (2015). Environmental impact analysis of a water supply system: Study of an Indian university campus. Procedia CIRP, 29, 468–473. https://doi.org/10.1016/j.procir.2015.02.061
Bonnet, J. F., Devel, C., Faucher, P., & Roturier, J. (2002). Analysis of electricity and water end-uses in university campuses: Case-study of the university of Bordeaux in the framework of the ecocampus European collaboration. Journal of Cleaner Production, 10(1), 13–24. https://doi.org/10.1016/S0959-6526(01)00018-X
Chipako, T. L., & Randall, D. G. (2019). Urinals for water savings and nutrient recovery: A feasibility study. Water SA, 45(2), 266–277. https://doi.org/10.4314/wsa.v45i2.14
Cobacho, R., Arregui, F., Soriano, J., & Cabrera, E. (2015). Including leakage in network models: An application to calibrate leak valves in EPANET. Journal of Water Supply: Research and Technology-Aqua, 64(2), 130–138. https://doi.org/10.2166/AQUA.2014.197
Cureau, R. J., & Ghisi, E. (2019). Reduction of potable water consumption and sewage generation on a city scale: A case study in Brazil. Water (Switzerland), 11(11), 2351. https://doi.org/10.3390/w11112351
Daloğlu Çetinkaya, I., Yazar, M., Kılınç, S., & Güven, B. (2022). Urban climate resilience and water insecurity: Future scenarios of water supply and demand in Istanbul. Urban Water Journal, 20(10), 1336–1347. https://doi.org/10.1080/1573062X.2022.2066548
Da Silva, S. F., Britto, V., Azevedo, C., & Kiperstok, A. (2014). Rational consumption of water in administrative public buildings: The experience of the Bahia administrative center, Brazil. Water (Switzerland), 6(9), 2552–2574. https://doi.org/10.3390/w6092552
Davis, M. J. M., Gutiérrez, M. L., & Serrano, J. (2016). Know your people: Social research and water recycling system design with communities in the amazon. Procedia Engineering, 145, 1258–1266. https://doi.org/10.1016/J.PROENG.2016.04.162
Dixit, M. K. (2019). Life cycle recurrent embodied energy calculation of buildings: A review. Journal of Cleaner Production, 209, 731–754. https://doi.org/10.1016/j.jclepro.2018.10.230
Echeverri, M. J. (2017). Manizales’ water distribution system -aguas de Manizales S.A. E S P Procedia Engineering, 186, 36–43. https://doi.org/10.1016/j.proeng.2017.03.205
Fidar, A. M., Memon, F. A., & Butler, D. (2016). Performance evaluation of conventional and water saving taps. Science of the Total Environment, 541, 815–824. https://doi.org/10.1016/j.scitotenv.2015.08.024
Filion, Y. R., MacLean, H. L., & Karney, B. W. (2004). Life-cycle energy analysis of a water distribution system. Journal of Infrastructure Systems, 10(3), 120–130. https://doi.org/10.1061/(ASCE)1076-0342,(2004)10:3(119)
Fontanazza, C. M., Notaro, V., Puleo, V., & Freni, G. (2014). The apparent losses due to metering errors: A proactive approach to predict losses and schedule maintenance. Urban Water Journal, 12(3), 229–239. https://doi.org/10.1080/1573062X.2014.882363
Freitas, L. L. G., Henning, E., Kalbusch, A., Konrath, A. C., & Walter, O. M. F. C. (2019). Analysis of water consumption in toilets employing Shewhart, EWMA, and Shewhart-ewma combined control charts. Journal of Cleaner Production, 233, 1146–1157. https://doi.org/10.1016/j.jclepro.2019.06.114
Ge, L., Hu, Z., Chen, P., Shi, L., Yang, Q., & Liao, J. (2014). Research on overflow monitoring mechanism based on downhole microflow detection. Mathematical Problems in Engineering, 2014(1), 676290. https://doi.org/10.1155/2014/676290
Giwa, A., & Dindi, A. (2017). An investigation of the feasibility of proposed solutions for water sustainability and security in water-stressed environment. Journal of Cleaner Production, 165, 721–733. https://doi.org/10.1016/j.jclepro.2017.07.120
Gnoatto, E. L., Kalbusch, A., & Henning, E. (2019). Evaluation of the environmental and economic impacts on the life cycle of different solutions for toilet flush systems. Sustainability (Switzerland), 11(17). https://doi.org/10.3390/su11174742
Gonçalves, F., Kalbusch, A., & Henning, E. (2018). Correlation between water consumption and the operating conditions of plumbing fixtures in public buildings. Water Supply, 18(6), 1915–1925. https://doi.org/10.2166/ws.2018.013
Gonçalves, J. M., Muga, A. P., Horst, M. G., & Pereira, L. S. (2011). Furrow irrigation design with multicriteria analysis. Biosystems Engineering, 109(4), 266–275. https://doi.org/10.1016/j.biosystemseng.2011.04.007
Grecksch, K. (2018). Scenarios for resilient drought and water scarcity management in England and Wales. International Journal of River Basin Management, 17(2), 219–227. https://doi.org/10.1080/15715124.2018.1461106
Horsburgh, J. S., Leonardo, M. E., Abdallah, A. M., & Rosenberg, D. E. (2017). Measuring water use, conservation, and differences by gender using an inexpensive, high frequency metering system. Environmental Modelling and Software, 96, 83–94. https://doi.org/10.1016/j.envsoft.2017.06.035
Hossain, S., Hewa, G. A., Chow, C. W. K., & Cook, D. (2021). Modelling and incorporating the variable demand patterns to the calibration of water distribution system hydraulic Model. Water (Switzerland), 13(20), 2890. https://doi.org/10.3390/W13202890
Hovany, L. (2012). Error in water meter measuring due to shorter flow and consumption shorter than the time the meter was calibrated. Water Supply System Analysis - Selected Topics, 2012(December), 22. https://doi.org/10.5772/51046
Ibrahim, K., Tariq, S., Bakhtawar, B., & Zayed, T. (2021). Application of fiber optics in water distribution networks for leak detection and localization: A mixed methodology-based review. H2Open Journal, 4(1), 244–261. https://doi.org/10.2166/H2OJ.2021.102
Jacque, H., Mozafari, B., Dereli, R. K., & Cotterill, S. (2024). Implications of water conservation measures on urban water cycle: A review. Sustainable Production and Consumption, 50, 571–586. https://doi.org/10.1016/j.spc.2024.08.026
Jeong, H., Broesicke, O. A., Drew, B., Li, D., & Crittenden, J. C. (2016). Life cycle assessment of low impact development technologies combined with conventional centralized water systems for the city of Atlanta, Georgia. Frontiers of Environmental Science and Engineering, 10(6), 1–13. https://doi.org/10.1007/s11783-016-0851-0
Juszkiewicz, J. (2020). Trends in community college enrollment and completion data, issue 6. American Association of Community Colleges.
Kalbusch, A., & Ghisi, E. (2016). Comparative life-cycle assessment of ordinary and water-saving taps. Journal of Cleaner Production, 112, 4585–4593. https://doi.org/10.1016/j.jclepro.2015.06.075
Mabrok, M. A., Saad, A., Ahmed, T., & Alsayab, H. (2022). Modeling and simulations of water network distribution to assess water quality: Kuwait as a case study. Alexandria Engineering Journal, 61(12), 11859–11877. https://doi.org/10.1016/j.aej.2022.05.038
Makki, A. A., Stewart, R. A., Panuwatwanich, K., & Beal, C. (2013). Revealing the determinants of shower water end use consumption: Enabling better targeted urban water conservation strategies. Journal of Cleaner Production, 60, 129–146. https://doi.org/10.1016/j.jclepro.2011.08.007
Marinho, M., Gonçalves, M. D. S., & Kiperstok, A. (2014). Water conservation as a tool to support sustainable practices in a Brazilian public university. Journal of Cleaner Production, 62, 98–106. https://doi.org/10.1016/j.jclepro.2013.06.053
Mashford, J., De Silva, D., Burn, S., & Marney, D. (2012). LEAK DETECTION in SIMULATED WATER PIPE NETWORKS USING SVM. Applied Artificial Intelligence, 26(5), 429–444. https://doi.org/10.1080/08839514.2012.670974
Masserini, L., Giulia, R., & Lorenzo, C. (2018). Investigating attitudes towards water savings, price increases, and willingness to pay among Italian university students. Water Resources Management, 32(12), 4123–4138. https://doi.org/10.1007/s11269-018-2049-7
Meireles, I., & Sousa, V. (2020). Assessing water, energy and emissions reduction from water conservation measures in buildings: A methodological approach. Environmental Science and Pollution Research, 27(5), 4612–4629. https://doi.org/10.1007/s11356-019-06377-3
Meireles, I., Sousa, V., Adeyeye, K., & Silva-Afonso, A. (2018). User preferences and water use savings owing to washbasin taps retrofit: A case study of the DECivil building of the university of aveiro. Environmental Science and Pollution Research, 25(20), 19217–19227. https://doi.org/10.1007/s11356-017-8897-5
Meirelles Lima, G., Brentan, B. M., & Luvizotto, E. (2018). Optimal design of water supply networks using an energy recovery approach. Renewable Energy, 117, 404–413. https://doi.org/10.1016/j.renene.2017.10.080
Muranho, J., Ferreira, A., Sousa, J., Gomes, A., & Sá Marques, A. (2014). Technical performance evaluation of water distribution networks based on EPANET. Procedia Engineering, 70, 1201–1210. https://doi.org/10.1016/J.PROENG.2014.02.133
Otaki, Y., Otaki, M., & Aramaki, T. (2018). Potential of efficient toilets in Hanoi Vietnam. Water Practice and Technology, 13(3), 621–628. https://doi.org/10.2166/WPT.2018.078
Paluszczyszyn, D., Skworcow, P., & Ulanicki, B. (2013). Online simplification of water distribution network models for optimal scheduling. Journal of Hydroinformatics, 15(3), 652–665. https://doi.org/10.2166/hydro.2013.029
Peña, L. E., Zapata, M. A., & Barrios, M. (2019). Analytic hierarchy process approach for the selection of stream-gauging sites. Hydrological Sciences Journal, 64(14), 1783–1792. https://doi.org/10.1080/02626667.2019.1672874
Pordal, A., Noshadi, M., & Masoudi, M. H. (2023). Analysis of drinking water distribution network using EPANET Model (case study: Part of shiraz water distribution network). Iranian Journal of Science and Technology - Transactions of Civil Engineering, 47(3), 1791–1799. https://doi.org/10.1007/s40996-022-00973-z View
Proença, L. C., & Ghisi, E. (2013). Assessment of potable water savings in office buildings considering embodied energy. Water Resources Management, 27(2), 581–599. https://doi.org/10.1007/s11269-012-0203-1
Puust, R., Kapelan, Z., Savic, D. A., & Koppel, T. (2010). A review of methods for leakage management in pipe networks. Urban Water Journal, 7(1), 25–45. https://doi.org/10.1080/15730621003610878
Ramesh Sakthivel, S., Azizurrahaman, M., Ganesh Prabhu, V., & Chariar, V. M. (2016). Performance evaluation of a low-cost odour trap installed in waterless urinals. Journal of Water, Sanitation and Hygiene for Development, 6(2), 252–258. https://doi.org/10.2166/WASHDEV.2016.151
Roccaro, P., Falciglia, P. P., & Vagliasindi, F. G. A. (2011). Effectiveness of water saving devices and educational programs in urban buildings. Water Science and Technology, 63(7), 1357–1365. https://doi.org/10.2166/wst.2011.190
Rodrigues, F., Silva-Afonso, A., Pinto, A., Macedo, J., Santos, A. S., & Pimentel-Rodrigues, C. (2020). Increasing water and energy efficiency in university buildings: A case study. Environmental Science and Pollution Research, 27(5), 4571–4581. https://doi.org/10.1007/s11356-019-04990-w
Rossman, L. A., Woo, H., Tryby, M., Shang, F., Janke, R., & Haxton, T. (2020). EPANET 2.2 user manual. EPA/600/R-20/133, 2020. U.S. Environmental Protection Agency. https://epanet22.readthedocs.io/_/downloads/en/latest/pdf/(open in a new window)
Saaty, T. L. (2013). The modern science of multicriteria decision making and its practical applications: The AHP/ANP approach. Operations Research, 61(5), 1101–1118. https://doi.org/10.1287/OPRE.2013.1197
Sægrov, S., Melo Baptista, J. F., Conroy, P., Herz, R. K., Legauffre, P., Moss, G., Oddevald, J. E., Rajani, B., & Schiatti, M. (1999). Rehabilitation of water networks: Survey of research needs and on-going efforts. Urban Water, 1(1), 15–22. https://doi.org/10.1016/s1462-0758(99)00002-3
Sharu, E. H., & Ab Razak, M. S. (2020). Hydraulic performance and modelling of pressurized drip irrigation system. Water (Switzerland), 12(8), 2295. https://doi.org/10.3390/w12082295
Shimizu, Y. (2013). The life cycle CO2 (LCCO2) evaluation of retrofits for water-saving fittings. Water (Switzerland), 5(2), 629–637. https://doi.org/10.3390/w5020629
Soares, A. E. P., Silva, J. K. D., Nunes, L. G. C. F., Rios Ribeiro, M. M., & Silva, S. R. D. (2021). Water conservation potential within higher education institutions: Lessons from a Brazilian university. Urban Water Journal, 20(10), 1429–1437. https://doi.org/10.1080/1573062X.2021.2013903
Soltanjalili, M., Bozorg-Haddad, O., & Mariño, M. A. (2011). Effect of breakage level one in design of water distribution networks. Water Resources Management, 25(1), 311–337. https://doi.org/10.1007/s11269-010-9701-1
Sousa, V., Silva, C. M., & Meireles, I. (2019). Performance of water efficiency measures in commercial buildings. Resources, Conservation and Recycling, 143, 251–259. https://doi.org/10.1016/j.resconrec.2019.01.013
Sun, H., Wang, S., & Hao, X. (2017). An improved analytic hierarchy process method for the evaluation of agricultural water management in irrigation districts of north China. Agricultural Water Management, 179, 324–337. https://doi.org/10.1016/J.AGWAT.2016.08.002
Sunela, M. I., & Puust, R. (2015). Modeling water supply system control system algorithms. Procedia Engineering, 119(1), 734–743. https://doi.org/10.1016/j.proeng.2015.08.927
Tam, V., & Brohier, A. (2013). Lifecycle benefits of domestic water-efficient fittings and products. In K. Adeyeye (Ed.), Water efficiency in buildings. https://doi.org/10.1002/9781118456613.ch13
Torrijos, V., Soto, M., & Calvo Dopico, D. (2020). SOSTAUGA project: Reduction of water consumption and evaluation of potential uses for endogenous resources. International Journal of Sustainability in Higher Education, 21(7), 1391–1411. https://doi.org/10.1108/IJSHE-02-2020-0057
United Nations. (2018). The 2030 agenda and the sustainable development goals: An opportunity for Latin America and the Caribbean (LC/G.2681-P/Rev.3). United Nations.
Van Arsdel, J. H. (2017). Consider your leak detection options. Opflow, 43(4), 10–14. https://doi.org/10.5991/OPF.2017.43.0021
Velazquez, L., Munguia, N., & Ojeda, M. (2013). Optimizing water use in the university of sonora, Mexico. Journal of Cleaner Production, 46, 83–88. https://doi.org/10.1016/j.jclepro.2012.09.005
Willis, R. M., Stewart, R. A., Panuwatwanich, K., Williams, P. R., & Hollingsworth, A. L. (2011). Quantifying the influence of environmental and water conservation attitudes on household end use water consumption. Journal of Environmental Management, 92(8), 1996–2009. https://doi.org/10.1016/j.jenvman.2011.03.023
Yagoub, M. M., AlSumaiti, T. S., Ebrahim, L., Ahmed, Y., & Abdulla, R. (2019). Pattern of water Use at the United Arab Emirates university. Water (Switzerland), 11(12), 2652. https://doi.org/10.3390/w1112265
Yousefian, R., & Duchesne, S. (2021). Modeling the mixing phenomenon in water distribution networks: A state-of-the-art review. Journal of Water Resources Planning and Management, 148(2), 03121002. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001513
dc.rights.none.fl_str_mv © 2025 Informa UK Limited, trading as Taylor & Francis Group.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv © 2025 Informa UK Limited, trading as Taylor & Francis Group.
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor and Francis Ltd.
dc.publisher.place.none.fl_str_mv Estados Unidos
publisher.none.fl_str_mv Taylor and Francis Ltd.
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/6fcd219e-31d3-45b3-a3c1-a8da030c85d6/download
https://repositorio.unibague.edu.co/bitstreams/e737c964-5198-4cd0-affd-98ee6e21408c/download
https://repositorio.unibague.edu.co/bitstreams/c0731d4e-c0dd-43f0-ab22-e39a9f68b2b3/download
https://repositorio.unibague.edu.co/bitstreams/1731cfcc-eb14-4cc5-b999-2457aa6786d8/download
bitstream.checksum.fl_str_mv 2fa3e590786b9c0f3ceba1b9656b7ac3
c7871408e3bfe1a933bfa48f9c875044
13deec929dd679eaeaa6f8b461fc1241
35a5b3ed1b2b49f15b48d4bc9032fd6a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059965677010944
spelling Márquez, Juan D.b7c17026-501d-44f2-90b2-ec281120c2d7-1García-León, Andrés176135f4-027f-4df5-9b85-1692ae966389-1Peña, Luis E.b8e15f98-c09b-4a85-8025-9a9d1e43b712-12025-11-28T21:55:26Z2025-11-28T21:55:26Z2025This study evaluates the water use efficiency (WUE) implementing under two approaches: i) reduction of water losses and the installation of low-consumption plumbing fixtures, and ii) Water savings analysis including, network Additional capacity, Reduction in per capita water consumption and the Investment (WARI). Hydraulic modeling was performed in the water distribution network of the campus of Universidad de Ibagué using EPANETv2.2, which supplies 5,172 people through 3,499.7 m of pipes during an analysis period of 48 months. The selection process for water-saving plumbing fixtures was carried out using the Analytical Hierarchy Process approach. The results indicate that WUE contributes to reducing water consumption by up to 47.8% and achieving a hydraulic capacity extension of the network of up to 67.0%, which is equivalent to extending pipes life cycle by up to 20 more years. WARI analysis is useful for water resource planners in decision-making processes within an economic and environmental sustainability framework.application/pdfMárquez, J. D., García-León, A., & Peña, L. E. (2025). Hydraulic capacity extension of networks through the water savings and investment analysis approach. Sustainable and Resilient Infrastructure, 1–17. https://doi.org/10.1080/23789689.2025.2470505https://doi.org/10.1080/23789689.2025.24705052378969723789689https://hdl.handle.net/20.500.12313/6055https://www.tandfonline.com/doi/full/10.1080/23789689.2025.2470505?af=RengTaylor and Francis Ltd.Estados UnidosSustainable and Resilient InfrastructureAhmed, W., Alazazmeh, A., & Asif, M. (2023). Energy and water saving potential in commercial buildings: A retrofit case study. Sustainability (Switzerland), 15(1), 518. https://doi.org/10.3390/su15010518Alghamdi, A., Haider, H., Hewage, K., & Sadiq, R. (2019). Inter-university sustainability benchmarking for Canadian higher education institutions: Water, energy, and carbon flows for technical-level decision-making. Sustainability (Switzerland), 11(9). https://doi.org/10.3390/su11092599Alshuwaikhat, H. M., & Abubakar, I. (2008). An integrated approach to achieving campus sustainability: Assessment of the current campus environmental management practices. Journal of Cleaner Production, 16(16), 1777–1785. https://doi.org/10.1016/j.jclepro.2007.12.002Ananda, J. (2019). Determinants of real water losses in the Australian drinking water sector. Urban Water Journal, 16(8), 575–583. https://doi.org/10.1080/1573062X.2019.1700288Berger, M., Söchtig, M., Weis, C., & Finkbeiner, M. (2017). Amount of water needed to save 1 m3 of water: Life cycle assessment of a flow regulator. Applied Water Science, 7, 1399–1407. https://doi.org/10.1007/s13201-015-0328-5Berhanu, B. M., Blackhurst, M., Kirisits, M. J., Jamarillo, P., & Carlson, D. (2017). Feasibility of water efficiency and reuse technologies as demand-side strategies for urban water management. Journal of Industrial Ecology, 21(2), 320–331. https://doi.org/10.1111/jiec.12430Bhakar, V., Sihag, N., Gieschen, R., Andrew, S., Herrmann, C., & Sangwan, K. S. (2015). Environmental impact analysis of a water supply system: Study of an Indian university campus. Procedia CIRP, 29, 468–473. https://doi.org/10.1016/j.procir.2015.02.061Bonnet, J. F., Devel, C., Faucher, P., & Roturier, J. (2002). Analysis of electricity and water end-uses in university campuses: Case-study of the university of Bordeaux in the framework of the ecocampus European collaboration. Journal of Cleaner Production, 10(1), 13–24. https://doi.org/10.1016/S0959-6526(01)00018-XChipako, T. L., & Randall, D. G. (2019). Urinals for water savings and nutrient recovery: A feasibility study. Water SA, 45(2), 266–277. https://doi.org/10.4314/wsa.v45i2.14Cobacho, R., Arregui, F., Soriano, J., & Cabrera, E. (2015). Including leakage in network models: An application to calibrate leak valves in EPANET. Journal of Water Supply: Research and Technology-Aqua, 64(2), 130–138. https://doi.org/10.2166/AQUA.2014.197Cureau, R. J., & Ghisi, E. (2019). Reduction of potable water consumption and sewage generation on a city scale: A case study in Brazil. Water (Switzerland), 11(11), 2351. https://doi.org/10.3390/w11112351Daloğlu Çetinkaya, I., Yazar, M., Kılınç, S., & Güven, B. (2022). Urban climate resilience and water insecurity: Future scenarios of water supply and demand in Istanbul. Urban Water Journal, 20(10), 1336–1347. https://doi.org/10.1080/1573062X.2022.2066548Da Silva, S. F., Britto, V., Azevedo, C., & Kiperstok, A. (2014). Rational consumption of water in administrative public buildings: The experience of the Bahia administrative center, Brazil. Water (Switzerland), 6(9), 2552–2574. https://doi.org/10.3390/w6092552Davis, M. J. M., Gutiérrez, M. L., & Serrano, J. (2016). Know your people: Social research and water recycling system design with communities in the amazon. Procedia Engineering, 145, 1258–1266. https://doi.org/10.1016/J.PROENG.2016.04.162Dixit, M. K. (2019). Life cycle recurrent embodied energy calculation of buildings: A review. Journal of Cleaner Production, 209, 731–754. https://doi.org/10.1016/j.jclepro.2018.10.230Echeverri, M. J. (2017). Manizales’ water distribution system -aguas de Manizales S.A. E S P Procedia Engineering, 186, 36–43. https://doi.org/10.1016/j.proeng.2017.03.205Fidar, A. M., Memon, F. A., & Butler, D. (2016). Performance evaluation of conventional and water saving taps. Science of the Total Environment, 541, 815–824. https://doi.org/10.1016/j.scitotenv.2015.08.024Filion, Y. R., MacLean, H. L., & Karney, B. W. (2004). Life-cycle energy analysis of a water distribution system. Journal of Infrastructure Systems, 10(3), 120–130. https://doi.org/10.1061/(ASCE)1076-0342,(2004)10:3(119)Fontanazza, C. M., Notaro, V., Puleo, V., & Freni, G. (2014). The apparent losses due to metering errors: A proactive approach to predict losses and schedule maintenance. Urban Water Journal, 12(3), 229–239. https://doi.org/10.1080/1573062X.2014.882363Freitas, L. L. G., Henning, E., Kalbusch, A., Konrath, A. C., & Walter, O. M. F. C. (2019). Analysis of water consumption in toilets employing Shewhart, EWMA, and Shewhart-ewma combined control charts. Journal of Cleaner Production, 233, 1146–1157. https://doi.org/10.1016/j.jclepro.2019.06.114Ge, L., Hu, Z., Chen, P., Shi, L., Yang, Q., & Liao, J. (2014). Research on overflow monitoring mechanism based on downhole microflow detection. Mathematical Problems in Engineering, 2014(1), 676290. https://doi.org/10.1155/2014/676290Giwa, A., & Dindi, A. (2017). An investigation of the feasibility of proposed solutions for water sustainability and security in water-stressed environment. Journal of Cleaner Production, 165, 721–733. https://doi.org/10.1016/j.jclepro.2017.07.120Gnoatto, E. L., Kalbusch, A., & Henning, E. (2019). Evaluation of the environmental and economic impacts on the life cycle of different solutions for toilet flush systems. Sustainability (Switzerland), 11(17). https://doi.org/10.3390/su11174742Gonçalves, F., Kalbusch, A., & Henning, E. (2018). Correlation between water consumption and the operating conditions of plumbing fixtures in public buildings. Water Supply, 18(6), 1915–1925. https://doi.org/10.2166/ws.2018.013Gonçalves, J. M., Muga, A. P., Horst, M. G., & Pereira, L. S. (2011). Furrow irrigation design with multicriteria analysis. Biosystems Engineering, 109(4), 266–275. https://doi.org/10.1016/j.biosystemseng.2011.04.007Grecksch, K. (2018). Scenarios for resilient drought and water scarcity management in England and Wales. International Journal of River Basin Management, 17(2), 219–227. https://doi.org/10.1080/15715124.2018.1461106Horsburgh, J. S., Leonardo, M. E., Abdallah, A. M., & Rosenberg, D. E. (2017). Measuring water use, conservation, and differences by gender using an inexpensive, high frequency metering system. Environmental Modelling and Software, 96, 83–94. https://doi.org/10.1016/j.envsoft.2017.06.035Hossain, S., Hewa, G. A., Chow, C. W. K., & Cook, D. (2021). Modelling and incorporating the variable demand patterns to the calibration of water distribution system hydraulic Model. Water (Switzerland), 13(20), 2890. https://doi.org/10.3390/W13202890Hovany, L. (2012). Error in water meter measuring due to shorter flow and consumption shorter than the time the meter was calibrated. Water Supply System Analysis - Selected Topics, 2012(December), 22. https://doi.org/10.5772/51046Ibrahim, K., Tariq, S., Bakhtawar, B., & Zayed, T. (2021). Application of fiber optics in water distribution networks for leak detection and localization: A mixed methodology-based review. H2Open Journal, 4(1), 244–261. https://doi.org/10.2166/H2OJ.2021.102Jacque, H., Mozafari, B., Dereli, R. K., & Cotterill, S. (2024). Implications of water conservation measures on urban water cycle: A review. Sustainable Production and Consumption, 50, 571–586. https://doi.org/10.1016/j.spc.2024.08.026Jeong, H., Broesicke, O. A., Drew, B., Li, D., & Crittenden, J. C. (2016). Life cycle assessment of low impact development technologies combined with conventional centralized water systems for the city of Atlanta, Georgia. Frontiers of Environmental Science and Engineering, 10(6), 1–13. https://doi.org/10.1007/s11783-016-0851-0Juszkiewicz, J. (2020). Trends in community college enrollment and completion data, issue 6. American Association of Community Colleges.Kalbusch, A., & Ghisi, E. (2016). Comparative life-cycle assessment of ordinary and water-saving taps. Journal of Cleaner Production, 112, 4585–4593. https://doi.org/10.1016/j.jclepro.2015.06.075Mabrok, M. A., Saad, A., Ahmed, T., & Alsayab, H. (2022). Modeling and simulations of water network distribution to assess water quality: Kuwait as a case study. Alexandria Engineering Journal, 61(12), 11859–11877. https://doi.org/10.1016/j.aej.2022.05.038Makki, A. A., Stewart, R. A., Panuwatwanich, K., & Beal, C. (2013). Revealing the determinants of shower water end use consumption: Enabling better targeted urban water conservation strategies. Journal of Cleaner Production, 60, 129–146. https://doi.org/10.1016/j.jclepro.2011.08.007Marinho, M., Gonçalves, M. D. S., & Kiperstok, A. (2014). Water conservation as a tool to support sustainable practices in a Brazilian public university. Journal of Cleaner Production, 62, 98–106. https://doi.org/10.1016/j.jclepro.2013.06.053Mashford, J., De Silva, D., Burn, S., & Marney, D. (2012). LEAK DETECTION in SIMULATED WATER PIPE NETWORKS USING SVM. Applied Artificial Intelligence, 26(5), 429–444. https://doi.org/10.1080/08839514.2012.670974Masserini, L., Giulia, R., & Lorenzo, C. (2018). Investigating attitudes towards water savings, price increases, and willingness to pay among Italian university students. Water Resources Management, 32(12), 4123–4138. https://doi.org/10.1007/s11269-018-2049-7Meireles, I., & Sousa, V. (2020). Assessing water, energy and emissions reduction from water conservation measures in buildings: A methodological approach. Environmental Science and Pollution Research, 27(5), 4612–4629. https://doi.org/10.1007/s11356-019-06377-3Meireles, I., Sousa, V., Adeyeye, K., & Silva-Afonso, A. (2018). User preferences and water use savings owing to washbasin taps retrofit: A case study of the DECivil building of the university of aveiro. Environmental Science and Pollution Research, 25(20), 19217–19227. https://doi.org/10.1007/s11356-017-8897-5Meirelles Lima, G., Brentan, B. M., & Luvizotto, E. (2018). Optimal design of water supply networks using an energy recovery approach. Renewable Energy, 117, 404–413. https://doi.org/10.1016/j.renene.2017.10.080Muranho, J., Ferreira, A., Sousa, J., Gomes, A., & Sá Marques, A. (2014). Technical performance evaluation of water distribution networks based on EPANET. Procedia Engineering, 70, 1201–1210. https://doi.org/10.1016/J.PROENG.2014.02.133Otaki, Y., Otaki, M., & Aramaki, T. (2018). Potential of efficient toilets in Hanoi Vietnam. Water Practice and Technology, 13(3), 621–628. https://doi.org/10.2166/WPT.2018.078Paluszczyszyn, D., Skworcow, P., & Ulanicki, B. (2013). Online simplification of water distribution network models for optimal scheduling. Journal of Hydroinformatics, 15(3), 652–665. https://doi.org/10.2166/hydro.2013.029Peña, L. E., Zapata, M. A., & Barrios, M. (2019). Analytic hierarchy process approach for the selection of stream-gauging sites. Hydrological Sciences Journal, 64(14), 1783–1792. https://doi.org/10.1080/02626667.2019.1672874Pordal, A., Noshadi, M., & Masoudi, M. H. (2023). Analysis of drinking water distribution network using EPANET Model (case study: Part of shiraz water distribution network). Iranian Journal of Science and Technology - Transactions of Civil Engineering, 47(3), 1791–1799. https://doi.org/10.1007/s40996-022-00973-z ViewProença, L. C., & Ghisi, E. (2013). Assessment of potable water savings in office buildings considering embodied energy. Water Resources Management, 27(2), 581–599. https://doi.org/10.1007/s11269-012-0203-1Puust, R., Kapelan, Z., Savic, D. A., & Koppel, T. (2010). A review of methods for leakage management in pipe networks. Urban Water Journal, 7(1), 25–45. https://doi.org/10.1080/15730621003610878Ramesh Sakthivel, S., Azizurrahaman, M., Ganesh Prabhu, V., & Chariar, V. M. (2016). Performance evaluation of a low-cost odour trap installed in waterless urinals. Journal of Water, Sanitation and Hygiene for Development, 6(2), 252–258. https://doi.org/10.2166/WASHDEV.2016.151Roccaro, P., Falciglia, P. P., & Vagliasindi, F. G. A. (2011). Effectiveness of water saving devices and educational programs in urban buildings. Water Science and Technology, 63(7), 1357–1365. https://doi.org/10.2166/wst.2011.190Rodrigues, F., Silva-Afonso, A., Pinto, A., Macedo, J., Santos, A. S., & Pimentel-Rodrigues, C. (2020). Increasing water and energy efficiency in university buildings: A case study. Environmental Science and Pollution Research, 27(5), 4571–4581. https://doi.org/10.1007/s11356-019-04990-wRossman, L. A., Woo, H., Tryby, M., Shang, F., Janke, R., & Haxton, T. (2020). EPANET 2.2 user manual. EPA/600/R-20/133, 2020. U.S. Environmental Protection Agency. https://epanet22.readthedocs.io/_/downloads/en/latest/pdf/(open in a new window)Saaty, T. L. (2013). The modern science of multicriteria decision making and its practical applications: The AHP/ANP approach. Operations Research, 61(5), 1101–1118. https://doi.org/10.1287/OPRE.2013.1197Sægrov, S., Melo Baptista, J. F., Conroy, P., Herz, R. K., Legauffre, P., Moss, G., Oddevald, J. E., Rajani, B., & Schiatti, M. (1999). Rehabilitation of water networks: Survey of research needs and on-going efforts. Urban Water, 1(1), 15–22. https://doi.org/10.1016/s1462-0758(99)00002-3Sharu, E. H., & Ab Razak, M. S. (2020). Hydraulic performance and modelling of pressurized drip irrigation system. Water (Switzerland), 12(8), 2295. https://doi.org/10.3390/w12082295Shimizu, Y. (2013). The life cycle CO2 (LCCO2) evaluation of retrofits for water-saving fittings. Water (Switzerland), 5(2), 629–637. https://doi.org/10.3390/w5020629Soares, A. E. P., Silva, J. K. D., Nunes, L. G. C. F., Rios Ribeiro, M. M., & Silva, S. R. D. (2021). Water conservation potential within higher education institutions: Lessons from a Brazilian university. Urban Water Journal, 20(10), 1429–1437. https://doi.org/10.1080/1573062X.2021.2013903Soltanjalili, M., Bozorg-Haddad, O., & Mariño, M. A. (2011). Effect of breakage level one in design of water distribution networks. Water Resources Management, 25(1), 311–337. https://doi.org/10.1007/s11269-010-9701-1Sousa, V., Silva, C. M., & Meireles, I. (2019). Performance of water efficiency measures in commercial buildings. Resources, Conservation and Recycling, 143, 251–259. https://doi.org/10.1016/j.resconrec.2019.01.013Sun, H., Wang, S., & Hao, X. (2017). An improved analytic hierarchy process method for the evaluation of agricultural water management in irrigation districts of north China. Agricultural Water Management, 179, 324–337. https://doi.org/10.1016/J.AGWAT.2016.08.002Sunela, M. I., & Puust, R. (2015). Modeling water supply system control system algorithms. Procedia Engineering, 119(1), 734–743. https://doi.org/10.1016/j.proeng.2015.08.927Tam, V., & Brohier, A. (2013). Lifecycle benefits of domestic water-efficient fittings and products. In K. Adeyeye (Ed.), Water efficiency in buildings. https://doi.org/10.1002/9781118456613.ch13Torrijos, V., Soto, M., & Calvo Dopico, D. (2020). SOSTAUGA project: Reduction of water consumption and evaluation of potential uses for endogenous resources. International Journal of Sustainability in Higher Education, 21(7), 1391–1411. https://doi.org/10.1108/IJSHE-02-2020-0057United Nations. (2018). The 2030 agenda and the sustainable development goals: An opportunity for Latin America and the Caribbean (LC/G.2681-P/Rev.3). United Nations.Van Arsdel, J. H. (2017). Consider your leak detection options. Opflow, 43(4), 10–14. https://doi.org/10.5991/OPF.2017.43.0021Velazquez, L., Munguia, N., & Ojeda, M. (2013). Optimizing water use in the university of sonora, Mexico. Journal of Cleaner Production, 46, 83–88. https://doi.org/10.1016/j.jclepro.2012.09.005Willis, R. M., Stewart, R. A., Panuwatwanich, K., Williams, P. R., & Hollingsworth, A. L. (2011). Quantifying the influence of environmental and water conservation attitudes on household end use water consumption. Journal of Environmental Management, 92(8), 1996–2009. https://doi.org/10.1016/j.jenvman.2011.03.023Yagoub, M. M., AlSumaiti, T. S., Ebrahim, L., Ahmed, Y., & Abdulla, R. (2019). Pattern of water Use at the United Arab Emirates university. Water (Switzerland), 11(12), 2652. https://doi.org/10.3390/w1112265Yousefian, R., & Duchesne, S. (2021). Modeling the mixing phenomenon in water distribution networks: A state-of-the-art review. Journal of Water Resources Planning and Management, 148(2), 03121002. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001513© 2025 Informa UK Limited, trading as Taylor & Francis Group.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCapacidad hidráulicaHidraulica de redes - Capacidad - Análisis de inversionesAhorro de aguaanalytical hierarchy processhydraulic capacity extension of networkswater consumption reductionwater distribution networkWater use efficiencyHydraulic capacity extension of networks through the water savings and investment analysis approachArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/6fcd219e-31d3-45b3-a3c1-a8da030c85d6/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf174617https://repositorio.unibague.edu.co/bitstreams/e737c964-5198-4cd0-affd-98ee6e21408c/downloadc7871408e3bfe1a933bfa48f9c875044MD52TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain5412https://repositorio.unibague.edu.co/bitstreams/c0731d4e-c0dd-43f0-ab22-e39a9f68b2b3/download13deec929dd679eaeaa6f8b461fc1241MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg24335https://repositorio.unibague.edu.co/bitstreams/1731cfcc-eb14-4cc5-b999-2457aa6786d8/download35a5b3ed1b2b49f15b48d4bc9032fd6aMD5420.500.12313/6055oai:repositorio.unibague.edu.co:20.500.12313/60552025-11-29 03:01:34.091https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=