Effects of short-term inhibition of Tetracyclines and Macrolides on specific methanogenic activity and swine biodegradability

Limited studies have examined kinetic models related to the impact of antibiotics on acetoclastic methanogenesis and swine wastewater biodegradability, which can be useful for improvement and correct operation of anaerobic systems. Many researchers have evaluated the inhibition on this main methane-...

Full description

Autores:
Delgadillo-Mirquez L.
Gonzalez-Tineo P
Serrano D
Durán U
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5502
Acceso en línea:
https://hdl.handle.net/20.500.12313/5502
Palabra clave:
Antibióticos para usos veterinarios
Metanogénesis acetoclástica
Concentración inhibitoria media
Aguas residuales de cerdos
Efecto sinérgico
Inhibición no competitiva
Acetoclastic methanogenesis
Antibiotics for veterinary uses
Half-maximal inhibitory concentration
Swine wastewater
Synergistic effect
Uncompetitive inhibition
Rights
openAccess
License
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY
id UNIBAGUE2_c42487a552b80cc171b13b810de3cbaa
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5502
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Effects of short-term inhibition of Tetracyclines and Macrolides on specific methanogenic activity and swine biodegradability
title Effects of short-term inhibition of Tetracyclines and Macrolides on specific methanogenic activity and swine biodegradability
spellingShingle Effects of short-term inhibition of Tetracyclines and Macrolides on specific methanogenic activity and swine biodegradability
Antibióticos para usos veterinarios
Metanogénesis acetoclástica
Concentración inhibitoria media
Aguas residuales de cerdos
Efecto sinérgico
Inhibición no competitiva
Acetoclastic methanogenesis
Antibiotics for veterinary uses
Half-maximal inhibitory concentration
Swine wastewater
Synergistic effect
Uncompetitive inhibition
title_short Effects of short-term inhibition of Tetracyclines and Macrolides on specific methanogenic activity and swine biodegradability
title_full Effects of short-term inhibition of Tetracyclines and Macrolides on specific methanogenic activity and swine biodegradability
title_fullStr Effects of short-term inhibition of Tetracyclines and Macrolides on specific methanogenic activity and swine biodegradability
title_full_unstemmed Effects of short-term inhibition of Tetracyclines and Macrolides on specific methanogenic activity and swine biodegradability
title_sort Effects of short-term inhibition of Tetracyclines and Macrolides on specific methanogenic activity and swine biodegradability
dc.creator.fl_str_mv Delgadillo-Mirquez L.
Gonzalez-Tineo P
Serrano D
Durán U
dc.contributor.author.none.fl_str_mv Delgadillo-Mirquez L.
Gonzalez-Tineo P
Serrano D
Durán U
dc.subject.armarc.none.fl_str_mv Antibióticos para usos veterinarios
Metanogénesis acetoclástica
Concentración inhibitoria media
Aguas residuales de cerdos
Efecto sinérgico
Inhibición no competitiva
topic Antibióticos para usos veterinarios
Metanogénesis acetoclástica
Concentración inhibitoria media
Aguas residuales de cerdos
Efecto sinérgico
Inhibición no competitiva
Acetoclastic methanogenesis
Antibiotics for veterinary uses
Half-maximal inhibitory concentration
Swine wastewater
Synergistic effect
Uncompetitive inhibition
dc.subject.proposal.eng.fl_str_mv Acetoclastic methanogenesis
Antibiotics for veterinary uses
Half-maximal inhibitory concentration
Swine wastewater
Synergistic effect
Uncompetitive inhibition
description Limited studies have examined kinetic models related to the impact of antibiotics on acetoclastic methanogenesis and swine wastewater biodegradability, which can be useful for improvement and correct operation of anaerobic systems. Many researchers have evaluated the inhibition on this main methane-producing pathway by antibiotics individually but in rare cases as a mix. Thus, two tetracyclines: oxytetracycline (OTC) and tetracycline (TCN) and one macrolide: tylosin (TYL) were used separately and in combination OTC+TCN+TYL (MIX) to evaluate their inhibition effects. Short-term inhibition assays are useful to evaluate the antibiotics impact detected on swine wastewater specific methanogenic activity (SMA) and biodegradability (BD) at different concentrations of antibiotics (15, 30 and 45 μg/mL); OTC and MIX showed the highest inhibition on SMA (78 and 76%, respectively) while the lower one was on methane production at 45 μg/mL of MIX (61%). The assays with swine wastewater showed that OTC and TCN had the highest inhibition on BD at 45 μg/mL, 71 and 51%, respectively. As expected, the maximum decrease in methane production (43.0% and 56.0%, respectively) occurred in the assays with the highest OTC and MIX concentrations, while TYL did not impact methane production in all assays. In specific activity, the results showed half- maximal half-maximal inhibitory OTC concentrations (3.8 and 2.8 μg/mL) in SMA and BD assays, respectively, while OTC recorded in methane production 4.5 and 54.2μg/mL in SMA and BD assays, respectively. These results indicate that antibiotics affect specific methanogenic activity and biodegradability more than methane production and inhibition was proposed as uncompetitive.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-08
dc.date.accessioned.none.fl_str_mv 2025-08-20T21:25:44Z
dc.date.available.none.fl_str_mv 2025-08-20T21:25:44Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Delgadillo-Mirquez L., Delgadillo-Mirquez L., Serrano, D y Durán, U. (2022). Effects of short-term inhibition of Tetracyclines and Macrolides on specific methanogenic activity and swine biodegradability. Environmental Technology and Innovation, 27, 102574. DOI: 10.1016/j.eti.2022.102574
dc.identifier.doi.none.fl_str_mv 10.1016/j.eti.2022.102574
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5502
identifier_str_mv Delgadillo-Mirquez L., Delgadillo-Mirquez L., Serrano, D y Durán, U. (2022). Effects of short-term inhibition of Tetracyclines and Macrolides on specific methanogenic activity and swine biodegradability. Environmental Technology and Innovation, 27, 102574. DOI: 10.1016/j.eti.2022.102574
10.1016/j.eti.2022.102574
url https://hdl.handle.net/20.500.12313/5502
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationstartpage.none.fl_str_mv 102574
dc.relation.citationvolume.none.fl_str_mv 27
dc.relation.ispartofjournal.none.fl_str_mv Environmental Technology and Innovation
dc.relation.references.none.fl_str_mv Ali Shah, F., Mahmood, Q., Maroof Shah, M., Pervez, A., Ahmad Asad, S., 2014. Microbial ecology of anaerobic digesters: The key players of anaerobiosis. Sci. World J. 2014, 183752. http://dx.doi.org/10.1155/2014/183752.
Álvarez, J.A., Otero, L., Lema, J.M., Omil, F., 2010. The effect and fate of antibiotics during the anaerobic digestion of pig manure. Bioresour. Technol. 101, 8581–8586. http://dx.doi.org/10.1016/j.biortech.2010.06.075
Amin, M.M., Zilles, J.L., Greiner, J., Charbonneau, S., Raskin, L., Morgenroth, E., 2006. Influence of the antibiotic erythromycin on anaerobic treatment of a pharmaceutical wastewater. Environ. Sci. Technol. 40, 3971–3977. http://dx.doi.org/10.1021/es060428.
Angenent, L.T., Mau, M., George, U., Zahn, J.A., Raskin, L., 2008. Effect of the presence of the antimicrobial tylosin in swine waste on anaerobic treatment. Water Res. 42, 2377–2384. http://dx.doi.org/10.1016/j.watres.2008.01.005
APHA, AWWA, WEF, 2015. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington D.C.
Aydin, S., Cetecioglu, Z., Arikan, O., Ince, B., Ozbayram, E.G., Ince, O., 2015. Inhibitory effects of antibiotic combinations on syntrophic bacteria, homoacetogens and methanogens. Chemosphere 120, 515–520. http://dx.doi.org/10.1016/j.chemosphere.2014.09.045.
Bala, R., Gupta, G.K., Dasgupta, B.V., Mondal, M.K., 2019. Pretreatment optimisation and kinetics of batch anaerobic digestion of liquidised OFMSW treated with NaOH: Models verification with experimental data. J. Environ. Manag. 237, 313–321. http://dx.doi.org/10.1016/j.jenvman.2019.02.083.
Barton, M.D., 2014. Impact of antibiotic use in the swine industry. Curr. Opin. Microbiol. 19, 9–15. http://dx.doi.org/10.1016/j.mib.2014.05.017.
Cetecioglu, Z., Ince, B., Gros, M., Rodriguez-Mozaz, S., Barceló, D., Orhon, D., Ince, O., 2013. Chronic impact of tetracycline on the biodegradation of an organic substrate mixture under anaerobic conditions. Water Res. 47, 2959–2969. http://dx.doi.org/10.1016/j.watres.2013.02.053.
Cetecioglu, Z., Orhon, D., 2017. Acute and chronic effects of antibiotics on deterioration of anaerobic substrate utilization. Curr. Org. Chem. 21, 1044–1053. http://dx.doi.org/10.2174/1385272821666170117095645.
Chelliapan, S., Wilby, T., Sallis, P.J., Yuzir, A., 2011. Tolerance of the antibiotic tylosin on treatment performance of an up-flow anaerobic stage reactor (UASR). Water Sci. Technol. 63, 1599–1606. http://dx.doi.org/10.2166/wst.2011.222.
Cheng, D.L., Ngo, H.H., Guo, W.S., Liu, Y.W., Zhou, J.L., Chang, S.W., Nguyen, D.D., Bui, X.T., Zhang, X.B., 2018. Bioprocessing for elimination antibiotics and hormones from swine wastewater. Sci. Total Environ. 621, 1664–1682. http://dx.doi.org/10.1016/j.scitotenv.2017.10.059
Du, L., Liu, W., 2012. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems: A review. Agron. Sustain. Dev. http://dx.doi.org/10.1007/ s13593-011-0062-9.
Fountoulakis, M.S., Stamatelatou, K., Lyberatos, G., 2008. The effect of pharmaceuticals on the kinetics of methanogenesis and acetogenesis. Bioresour. Technol. 99, 7083–7090. http://dx.doi.org/10.1016/j.biortech.2008.01.008
García-Sánchez, L., Garzón-Zúñiga, M.A., Buelna, G., Moeller-Chávez, G.E., Noyola, A., Avilez-Flores, M., Estrada-Arriaga, E.B., 2013. Occurrence of tylosin in swine wastewater in Mexico. Water Sci. Technol. 68, http://dx.doi.org/10.2166/wst.2013.323
Griffin, M.O., Ceballos, G., Villarreal, F.J., 2011. Tetracycline compounds with non-antimicrobial organ protective properties: Possible mechanisms of action. Pharmacol. Res. 63, http://dx.doi.org/10.1016/j.phrs.2010.10.004
Heuer, H., Solehati, Q., Zimmerling, U., Kleineidam, K., Schloter, M., Müller, T., Focks, A., Thiele-Bruhn, S., Smalla, K., 2011. Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Appl. Environ. Microbiol. 77, 2527–2530. http://dx.doi.org/10.1128/AEM.02577-10.
Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P., 2009. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 100, http://dx.doi.org/10.1016/j.biortech.2008.12.046.
Ji, J.Y., Xing, Y.J., Ma, Z.T., Zhang, M., Zheng, P., 2013. Acute toxicity of pharmaceutical wastewaters containing antibiotics to anaerobic digestion treatment. Chemosphere 91, 1094–1098. http://dx.doi.org/10.1016/j.chemosphere.2013.01.009.
Jiang, Y., Banks, C., Zhang, Y., Heaven, S., Longhurst, P., 2018. Quantifying the percentage of methane formation via acetoclastic and syntrophic acetate oxidation pathways in anaerobic digesters. Waste Manage. 71, 749–756. http://dx.doi.org/10.1016/j.wasman.2017.04.005.
Ke, X., Wang, C. yong, Li, R. dong, Zhang, Y., 2014. Effects of oxytetracycline on methane production and the microbial communities during anaerobic digestion of cow manure. J. Integr. Agric. 13, 1373–1381. http://dx.doi.org/10.1016/S2095-3119(13)60683-8.
Koike, S., Krapac, I.G., Oliver, H.D., Yannarell, A.C., Chee-Sanford, J.C., Aminov, R.I., Mackie, R.I., 2007. Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period. Appl. Environ. Microbiol. 73, 4813–4823. http://dx.doi.org/10.1128/AEM.00665-07.
Kumar, G., Cheon, H.C., Kim, S.H., 2014. Effects of 5-hydromethylfurfural, levulinic acid and formic acid, pretreatment byproducts of biomass, on fermentative H2 production from glucose and galactose. Int. J. Hydrog. Energy 39, 16885–16890. http://dx.doi.org/10.1016/j.ijhydene.2014.08.063.
Kuppusamy, S., Kakarla, D., Venkateswarlu, K., Megharaj, M., Yoon, Y.E., Lee, Y.B., 2018. Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: A critical view. Agric. Ecosyst. Env. http://dx.doi.org/10.1016/j.agee.2018.01.026.
Loftin, K.A., Henny, C., Adams, C.D., Surampali, R., Mormile, M.R., 2005. Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate. Environ. Toxicol. Chem. 24, http://dx.doi.org/10.1897/04-093R.1.
Lu, M., Niu, X., Liu, W., Zhang, J., Wang, J., Yang, J., Wang, W., Yang, Z., 2016. Biogas generation in anaerobic wastewater treatment under tetracycline antibiotic pressure. Sci. Rep. 6, http://dx.doi.org/10.1038/srep28336
Lu, X., Zhen, G., Liu, Y., Hojo, T., Estrada, A.L., Li, Y.Y., 2014. Long-term effect of the antibiotic cefalexin on methane production during waste activated sludge anaerobic digestion. Bioresour. Technol. 169, 644–651. http://dx.doi.org/10.1016/j.biortech.2014.07.056.
Madison, J., 2008. Antibacterial drugs. In: Small Animal Clinical Pharmacology, second ed. Elsevier Ltd, http://dx.doi.org/10.1016/B978-0-7020-2858- 8.50010-5
Martín, M.A., Fernández, R., Gutiérrez, M.C., Siles, J.A., 2018. Thermophilic anaerobic digestion of pre-treated orange peel: Modelling of methane production. Process Saf. Environ. Prot. 117, 245–253. http://dx.doi.org/10.1016/j.psep.2018.05.008.
Massé, D.I., Saady, N.M.C., Gilbert, Y., 2014. Potential of biological processes to eliminate antibiotics in livestock manure: An overview. Animals http://dx.doi.org/10.3390/ani4020146.
Mitchell, S.M., Ullman, J.L., Teel, A.L., Watts, R.J., Frear, C., 2013. The effects of the antibiotics ampicillin, florfenicol, sulfamethazine, and tylosin on biogas production and their degradation efficiency during anaerobic digestion. Bioresour. Technol. 149, 244–252. http://dx.doi.org/10.1016/j. biortech.2013.09.048.
Nguyen, D.D., Jeon, B.H., Jeung, J.H., Rene, E.R., Banu, J.R., Ravindran, B., Vu, C.M., Ngo, H.H., Guo, W., Chang, S.W., 2019. Thermophilic anaerobic digestion of model organic wastes: Evaluation of biomethane production and multiple kinetic models analysis. Bioresour. Technol. 280, 269–276. http://dx.doi.org/10.1016/j.biortech.2019.02.033.
Oberoi, A.S., Jia, Y., Zhang, H., Khanal, S.K., Lu, H., 2019. Insights into the fate and removal of antibiotics in engineered biological treatment systems: A critical review. Environ. Sci. Technol. 53, http://dx.doi.org/10.1021/acs.est.9b01131.
Reyes-Contreras, C., Vidal, G., 2015. Methanogenic toxicity evaluation of chlortetracycline hydrochloride. Electron. J. Biotechnol. 18, http://dx.doi.org/ 10.1016/j.ejbt.2015.09.009.
Shi, J.C., Liao, X.D., Wu, Y.B., Liang, J.B., 2011. Effect of antibiotics on methane arising from anaerobic digestion of pig manure. Anim. Feed Sci. Technol. 166–167, 457–463. http://dx.doi.org/10.1016/j.anifeedsci.2011.04.033.
Shimada, T., Zilles, J.L., Morgenroth, E., Raskin, L., 2008. Inhibitory effects of the macrolide antimicrobial tylosin on anaerobic treatment. Biotechnol. Bioeng. 101, 73–82. http://dx.doi.org/10.1002/bit.21864.
Stone, J.J., Clay, S.A., Zhu, Z., Wong, K.L., Porath, L.R., Spellman, G.M., 2009. Effect of antimicrobial compounds tylosin and chlortetracycline during batch anaerobic swine manure digestion. Water Res. 43, 4740–4750. http://dx.doi.org/10.1016/j.watres.2009.08.005
Sung, S., Liu, T., 2003. Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere 53, 43–52. http://dx.doi.org/10.1016/S0045-6535(03) 00434-X.
Taleghani, A.H., Lim, T.T., Lin, C.H., Ericsson, A.C., Vo, P.H., 2020. Degradation of veterinary antibiotics in swine manure via anaerobic digestion. Bioengineering 7, http://dx.doi.org/10.3390/bioengineering7040123.
US Food and Drug Administration, 2013. Guidance for industry – The judicious use of medically important antimicrobial drugs in food-producing animals [WWW document]. Guid. Ind. – Judicious Use Medically Important Antimicrob, Drugs Food-Producing Anim., URL https://www.fda.gov/ media/79140/download.
Van Epps, A., Blaney, L., 2016. Antibiotic residues in animal waste: occurrence and degradation in conventional agricultural waste management practices. Curr. Pollut. Rep. http://dx.doi.org/10.1007/s40726-016-0037-1.
Ware, A., Power, N., 2017. Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions. Renew. Energy 104, 50–59. http://dx.doi.org/10.1016/j.renene.2016.11.045.
Wei, R., Ge, F., Huang, S., Chen, M., Wang, R., 2011. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in jiangsu province, China. Chemosphere 82, http://dx.doi.org/10.1016/j.chemosphere.2010.11.067
Widyasari-Mehta, A., Hartung, S., Kreuzig, R., 2016. From the application of antibiotics to antibiotic residues in liquid manures and digestates: A screening study in one European center of conventional pig husbandry. J. Environ. Manag. 177, 129–137. http://dx.doi.org/10.1016/j.jenvman. 2016.04.012.
Xiao, L., Wang, Y., Lichtfouse, E., Li, Z., Kumar, P.S., Liu, J., Feng, D., Yang, Q., Liu, F., 2021. Effect of antibiotics on the microbial efficiency of anaerobic digestion of wastewater: A review. Front. Microbiol. http://dx.doi.org/10.3389/fmicb.2020.611613.
Xiong, W., Sun, Y., Ding, X., Wang, M., Zeng, Z., 2015. Selective pressure of antibiotics on ARGs and bacterial communities in manure-polluted freshwater-sediment microcosms. Front. Microbiol. 6, http://dx.doi.org/10.3389/fmicb.2015.00194
Xu, T.J., Ting, Y.P., 2009. Fungal bioleaching of incineration fly ash: Metal extraction and modeling growth kinetics. Enzym. Microb. Technol. 44, 323–328. http://dx.doi.org/10.1016/j.enzmictec.2009.01.006.
Yang, S., McDonald, J., Hai, F.I., Price, W.E., Khan, S.J., Nghiem, L.D., 2017. The fate of trace organic contaminants in sewage sludge during recuperative thickening anaerobic digestion. Bioresour. Technol. 240, http://dx.doi.org/10.1016/j.biortech.2017.02.020.
Yin, F., Dong, H., Zhang, W., Zhu, Z., Shang, B., Wang, Y., 2019. Removal of combined antibiotic (florfenicol, tylosin and tilmicosin) during anaerobic digestion and their relative effect. Renew. Energy 139, 895–903. http://dx.doi.org/10.1016/j.renene.2019.03.001.
Zhou, Q., Li, X., Wu, S., Zhong, Y., Yang, C., 2021. Enhanced strategies for antibiotic removal from swine wastewater in anaerobic digestion. Trends Biotechnol. http://dx.doi.org/10.1016/j.tibtech.2020.07.002.
Zhou, L.J., Ying, G.G., Liu, S., Zhang, R.Q., Lai, H.J., Chen, Z.F., Pan, C.G., 2013. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. Sci. Total Environ. 444, 183–195. http://dx.doi.org/10.1016/j.scitotenv.2012.11.087.
Zhu, H., Yang, J., Xiaowei, C., 2019. Application of modified gompertz model to study on biogas production from middle temperature co-digestion of pig manure and dead pigs. In: E3S Web of Conferences. http://dx.doi.org/10.1051/e3sconf/201911803022.
dc.rights.eng.fl_str_mv © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.place.none.fl_str_mv Paises bajos
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2352186422001596?pes=vor&utm_source=scopus&getft_integrator=scopus
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/970fa954-2e5a-429f-a7fc-0a43f4f4b871/download
https://repositorio.unibague.edu.co/bitstreams/c81f5022-cd10-45f9-a149-1c5f8f2e1823/download
https://repositorio.unibague.edu.co/bitstreams/0ab903e4-89e6-46a2-bf2e-2b415379ab51/download
https://repositorio.unibague.edu.co/bitstreams/b32ce87f-1acf-4c42-8f88-0c7f1c915e65/download
bitstream.checksum.fl_str_mv bf590a0de67304d9fb069b448fbc7122
1ca404000a7a16c49d43a0c683602a9c
092af8f5f592f9f67abc8e87219ef9d5
2fa3e590786b9c0f3ceba1b9656b7ac3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059981138264064
spelling Delgadillo-Mirquez L.6043e140-5f2a-45b9-b1c2-a328c753975b-1Gonzalez-Tineo P9bccb052-178d-43e8-a077-7de07289e3e4-1Serrano Dbdc7abfa-3c5f-40a7-9729-f8a1a715dd10-1Durán U59cc1f71-74cd-4eb4-b32e-0d56545204ce-12025-08-20T21:25:44Z2025-08-20T21:25:44Z2022-08Limited studies have examined kinetic models related to the impact of antibiotics on acetoclastic methanogenesis and swine wastewater biodegradability, which can be useful for improvement and correct operation of anaerobic systems. Many researchers have evaluated the inhibition on this main methane-producing pathway by antibiotics individually but in rare cases as a mix. Thus, two tetracyclines: oxytetracycline (OTC) and tetracycline (TCN) and one macrolide: tylosin (TYL) were used separately and in combination OTC+TCN+TYL (MIX) to evaluate their inhibition effects. Short-term inhibition assays are useful to evaluate the antibiotics impact detected on swine wastewater specific methanogenic activity (SMA) and biodegradability (BD) at different concentrations of antibiotics (15, 30 and 45 μg/mL); OTC and MIX showed the highest inhibition on SMA (78 and 76%, respectively) while the lower one was on methane production at 45 μg/mL of MIX (61%). The assays with swine wastewater showed that OTC and TCN had the highest inhibition on BD at 45 μg/mL, 71 and 51%, respectively. As expected, the maximum decrease in methane production (43.0% and 56.0%, respectively) occurred in the assays with the highest OTC and MIX concentrations, while TYL did not impact methane production in all assays. In specific activity, the results showed half- maximal half-maximal inhibitory OTC concentrations (3.8 and 2.8 μg/mL) in SMA and BD assays, respectively, while OTC recorded in methane production 4.5 and 54.2μg/mL in SMA and BD assays, respectively. These results indicate that antibiotics affect specific methanogenic activity and biodegradability more than methane production and inhibition was proposed as uncompetitive.application/pdfDelgadillo-Mirquez L., Delgadillo-Mirquez L., Serrano, D y Durán, U. (2022). Effects of short-term inhibition of Tetracyclines and Macrolides on specific methanogenic activity and swine biodegradability. Environmental Technology and Innovation, 27, 102574. DOI: 10.1016/j.eti.2022.10257410.1016/j.eti.2022.102574https://hdl.handle.net/20.500.12313/5502engElsevier B.V.Paises bajos10257427Environmental Technology and InnovationAli Shah, F., Mahmood, Q., Maroof Shah, M., Pervez, A., Ahmad Asad, S., 2014. Microbial ecology of anaerobic digesters: The key players of anaerobiosis. Sci. World J. 2014, 183752. http://dx.doi.org/10.1155/2014/183752.Álvarez, J.A., Otero, L., Lema, J.M., Omil, F., 2010. The effect and fate of antibiotics during the anaerobic digestion of pig manure. Bioresour. Technol. 101, 8581–8586. http://dx.doi.org/10.1016/j.biortech.2010.06.075Amin, M.M., Zilles, J.L., Greiner, J., Charbonneau, S., Raskin, L., Morgenroth, E., 2006. Influence of the antibiotic erythromycin on anaerobic treatment of a pharmaceutical wastewater. Environ. Sci. Technol. 40, 3971–3977. http://dx.doi.org/10.1021/es060428.Angenent, L.T., Mau, M., George, U., Zahn, J.A., Raskin, L., 2008. Effect of the presence of the antimicrobial tylosin in swine waste on anaerobic treatment. Water Res. 42, 2377–2384. http://dx.doi.org/10.1016/j.watres.2008.01.005APHA, AWWA, WEF, 2015. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington D.C.Aydin, S., Cetecioglu, Z., Arikan, O., Ince, B., Ozbayram, E.G., Ince, O., 2015. Inhibitory effects of antibiotic combinations on syntrophic bacteria, homoacetogens and methanogens. Chemosphere 120, 515–520. http://dx.doi.org/10.1016/j.chemosphere.2014.09.045.Bala, R., Gupta, G.K., Dasgupta, B.V., Mondal, M.K., 2019. Pretreatment optimisation and kinetics of batch anaerobic digestion of liquidised OFMSW treated with NaOH: Models verification with experimental data. J. Environ. Manag. 237, 313–321. http://dx.doi.org/10.1016/j.jenvman.2019.02.083.Barton, M.D., 2014. Impact of antibiotic use in the swine industry. Curr. Opin. Microbiol. 19, 9–15. http://dx.doi.org/10.1016/j.mib.2014.05.017.Cetecioglu, Z., Ince, B., Gros, M., Rodriguez-Mozaz, S., Barceló, D., Orhon, D., Ince, O., 2013. Chronic impact of tetracycline on the biodegradation of an organic substrate mixture under anaerobic conditions. Water Res. 47, 2959–2969. http://dx.doi.org/10.1016/j.watres.2013.02.053.Cetecioglu, Z., Orhon, D., 2017. Acute and chronic effects of antibiotics on deterioration of anaerobic substrate utilization. Curr. Org. Chem. 21, 1044–1053. http://dx.doi.org/10.2174/1385272821666170117095645.Chelliapan, S., Wilby, T., Sallis, P.J., Yuzir, A., 2011. Tolerance of the antibiotic tylosin on treatment performance of an up-flow anaerobic stage reactor (UASR). Water Sci. Technol. 63, 1599–1606. http://dx.doi.org/10.2166/wst.2011.222.Cheng, D.L., Ngo, H.H., Guo, W.S., Liu, Y.W., Zhou, J.L., Chang, S.W., Nguyen, D.D., Bui, X.T., Zhang, X.B., 2018. Bioprocessing for elimination antibiotics and hormones from swine wastewater. Sci. Total Environ. 621, 1664–1682. http://dx.doi.org/10.1016/j.scitotenv.2017.10.059Du, L., Liu, W., 2012. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems: A review. Agron. Sustain. Dev. http://dx.doi.org/10.1007/ s13593-011-0062-9.Fountoulakis, M.S., Stamatelatou, K., Lyberatos, G., 2008. The effect of pharmaceuticals on the kinetics of methanogenesis and acetogenesis. Bioresour. Technol. 99, 7083–7090. http://dx.doi.org/10.1016/j.biortech.2008.01.008García-Sánchez, L., Garzón-Zúñiga, M.A., Buelna, G., Moeller-Chávez, G.E., Noyola, A., Avilez-Flores, M., Estrada-Arriaga, E.B., 2013. Occurrence of tylosin in swine wastewater in Mexico. Water Sci. Technol. 68, http://dx.doi.org/10.2166/wst.2013.323Griffin, M.O., Ceballos, G., Villarreal, F.J., 2011. Tetracycline compounds with non-antimicrobial organ protective properties: Possible mechanisms of action. Pharmacol. Res. 63, http://dx.doi.org/10.1016/j.phrs.2010.10.004Heuer, H., Solehati, Q., Zimmerling, U., Kleineidam, K., Schloter, M., Müller, T., Focks, A., Thiele-Bruhn, S., Smalla, K., 2011. Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Appl. Environ. Microbiol. 77, 2527–2530. http://dx.doi.org/10.1128/AEM.02577-10.Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P., 2009. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 100, http://dx.doi.org/10.1016/j.biortech.2008.12.046.Ji, J.Y., Xing, Y.J., Ma, Z.T., Zhang, M., Zheng, P., 2013. Acute toxicity of pharmaceutical wastewaters containing antibiotics to anaerobic digestion treatment. Chemosphere 91, 1094–1098. http://dx.doi.org/10.1016/j.chemosphere.2013.01.009.Jiang, Y., Banks, C., Zhang, Y., Heaven, S., Longhurst, P., 2018. Quantifying the percentage of methane formation via acetoclastic and syntrophic acetate oxidation pathways in anaerobic digesters. Waste Manage. 71, 749–756. http://dx.doi.org/10.1016/j.wasman.2017.04.005.Ke, X., Wang, C. yong, Li, R. dong, Zhang, Y., 2014. Effects of oxytetracycline on methane production and the microbial communities during anaerobic digestion of cow manure. J. Integr. Agric. 13, 1373–1381. http://dx.doi.org/10.1016/S2095-3119(13)60683-8.Koike, S., Krapac, I.G., Oliver, H.D., Yannarell, A.C., Chee-Sanford, J.C., Aminov, R.I., Mackie, R.I., 2007. Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period. Appl. Environ. Microbiol. 73, 4813–4823. http://dx.doi.org/10.1128/AEM.00665-07.Kumar, G., Cheon, H.C., Kim, S.H., 2014. Effects of 5-hydromethylfurfural, levulinic acid and formic acid, pretreatment byproducts of biomass, on fermentative H2 production from glucose and galactose. Int. J. Hydrog. Energy 39, 16885–16890. http://dx.doi.org/10.1016/j.ijhydene.2014.08.063.Kuppusamy, S., Kakarla, D., Venkateswarlu, K., Megharaj, M., Yoon, Y.E., Lee, Y.B., 2018. Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: A critical view. Agric. Ecosyst. Env. http://dx.doi.org/10.1016/j.agee.2018.01.026.Loftin, K.A., Henny, C., Adams, C.D., Surampali, R., Mormile, M.R., 2005. Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate. Environ. Toxicol. Chem. 24, http://dx.doi.org/10.1897/04-093R.1.Lu, M., Niu, X., Liu, W., Zhang, J., Wang, J., Yang, J., Wang, W., Yang, Z., 2016. Biogas generation in anaerobic wastewater treatment under tetracycline antibiotic pressure. Sci. Rep. 6, http://dx.doi.org/10.1038/srep28336Lu, X., Zhen, G., Liu, Y., Hojo, T., Estrada, A.L., Li, Y.Y., 2014. Long-term effect of the antibiotic cefalexin on methane production during waste activated sludge anaerobic digestion. Bioresour. Technol. 169, 644–651. http://dx.doi.org/10.1016/j.biortech.2014.07.056.Madison, J., 2008. Antibacterial drugs. In: Small Animal Clinical Pharmacology, second ed. Elsevier Ltd, http://dx.doi.org/10.1016/B978-0-7020-2858- 8.50010-5Martín, M.A., Fernández, R., Gutiérrez, M.C., Siles, J.A., 2018. Thermophilic anaerobic digestion of pre-treated orange peel: Modelling of methane production. Process Saf. Environ. Prot. 117, 245–253. http://dx.doi.org/10.1016/j.psep.2018.05.008.Massé, D.I., Saady, N.M.C., Gilbert, Y., 2014. Potential of biological processes to eliminate antibiotics in livestock manure: An overview. Animals http://dx.doi.org/10.3390/ani4020146.Mitchell, S.M., Ullman, J.L., Teel, A.L., Watts, R.J., Frear, C., 2013. The effects of the antibiotics ampicillin, florfenicol, sulfamethazine, and tylosin on biogas production and their degradation efficiency during anaerobic digestion. Bioresour. Technol. 149, 244–252. http://dx.doi.org/10.1016/j. biortech.2013.09.048.Nguyen, D.D., Jeon, B.H., Jeung, J.H., Rene, E.R., Banu, J.R., Ravindran, B., Vu, C.M., Ngo, H.H., Guo, W., Chang, S.W., 2019. Thermophilic anaerobic digestion of model organic wastes: Evaluation of biomethane production and multiple kinetic models analysis. Bioresour. Technol. 280, 269–276. http://dx.doi.org/10.1016/j.biortech.2019.02.033.Oberoi, A.S., Jia, Y., Zhang, H., Khanal, S.K., Lu, H., 2019. Insights into the fate and removal of antibiotics in engineered biological treatment systems: A critical review. Environ. Sci. Technol. 53, http://dx.doi.org/10.1021/acs.est.9b01131.Reyes-Contreras, C., Vidal, G., 2015. Methanogenic toxicity evaluation of chlortetracycline hydrochloride. Electron. J. Biotechnol. 18, http://dx.doi.org/ 10.1016/j.ejbt.2015.09.009.Shi, J.C., Liao, X.D., Wu, Y.B., Liang, J.B., 2011. Effect of antibiotics on methane arising from anaerobic digestion of pig manure. Anim. Feed Sci. Technol. 166–167, 457–463. http://dx.doi.org/10.1016/j.anifeedsci.2011.04.033.Shimada, T., Zilles, J.L., Morgenroth, E., Raskin, L., 2008. Inhibitory effects of the macrolide antimicrobial tylosin on anaerobic treatment. Biotechnol. Bioeng. 101, 73–82. http://dx.doi.org/10.1002/bit.21864.Stone, J.J., Clay, S.A., Zhu, Z., Wong, K.L., Porath, L.R., Spellman, G.M., 2009. Effect of antimicrobial compounds tylosin and chlortetracycline during batch anaerobic swine manure digestion. Water Res. 43, 4740–4750. http://dx.doi.org/10.1016/j.watres.2009.08.005Sung, S., Liu, T., 2003. Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere 53, 43–52. http://dx.doi.org/10.1016/S0045-6535(03) 00434-X.Taleghani, A.H., Lim, T.T., Lin, C.H., Ericsson, A.C., Vo, P.H., 2020. Degradation of veterinary antibiotics in swine manure via anaerobic digestion. Bioengineering 7, http://dx.doi.org/10.3390/bioengineering7040123.US Food and Drug Administration, 2013. Guidance for industry – The judicious use of medically important antimicrobial drugs in food-producing animals [WWW document]. Guid. Ind. – Judicious Use Medically Important Antimicrob, Drugs Food-Producing Anim., URL https://www.fda.gov/ media/79140/download.Van Epps, A., Blaney, L., 2016. Antibiotic residues in animal waste: occurrence and degradation in conventional agricultural waste management practices. Curr. Pollut. Rep. http://dx.doi.org/10.1007/s40726-016-0037-1.Ware, A., Power, N., 2017. Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions. Renew. Energy 104, 50–59. http://dx.doi.org/10.1016/j.renene.2016.11.045.Wei, R., Ge, F., Huang, S., Chen, M., Wang, R., 2011. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in jiangsu province, China. Chemosphere 82, http://dx.doi.org/10.1016/j.chemosphere.2010.11.067Widyasari-Mehta, A., Hartung, S., Kreuzig, R., 2016. From the application of antibiotics to antibiotic residues in liquid manures and digestates: A screening study in one European center of conventional pig husbandry. J. Environ. Manag. 177, 129–137. http://dx.doi.org/10.1016/j.jenvman. 2016.04.012.Xiao, L., Wang, Y., Lichtfouse, E., Li, Z., Kumar, P.S., Liu, J., Feng, D., Yang, Q., Liu, F., 2021. Effect of antibiotics on the microbial efficiency of anaerobic digestion of wastewater: A review. Front. Microbiol. http://dx.doi.org/10.3389/fmicb.2020.611613.Xiong, W., Sun, Y., Ding, X., Wang, M., Zeng, Z., 2015. Selective pressure of antibiotics on ARGs and bacterial communities in manure-polluted freshwater-sediment microcosms. Front. Microbiol. 6, http://dx.doi.org/10.3389/fmicb.2015.00194Xu, T.J., Ting, Y.P., 2009. Fungal bioleaching of incineration fly ash: Metal extraction and modeling growth kinetics. Enzym. Microb. Technol. 44, 323–328. http://dx.doi.org/10.1016/j.enzmictec.2009.01.006.Yang, S., McDonald, J., Hai, F.I., Price, W.E., Khan, S.J., Nghiem, L.D., 2017. The fate of trace organic contaminants in sewage sludge during recuperative thickening anaerobic digestion. Bioresour. Technol. 240, http://dx.doi.org/10.1016/j.biortech.2017.02.020.Yin, F., Dong, H., Zhang, W., Zhu, Z., Shang, B., Wang, Y., 2019. Removal of combined antibiotic (florfenicol, tylosin and tilmicosin) during anaerobic digestion and their relative effect. Renew. Energy 139, 895–903. http://dx.doi.org/10.1016/j.renene.2019.03.001.Zhou, Q., Li, X., Wu, S., Zhong, Y., Yang, C., 2021. Enhanced strategies for antibiotic removal from swine wastewater in anaerobic digestion. Trends Biotechnol. http://dx.doi.org/10.1016/j.tibtech.2020.07.002.Zhou, L.J., Ying, G.G., Liu, S., Zhang, R.Q., Lai, H.J., Chen, Z.F., Pan, C.G., 2013. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. Sci. Total Environ. 444, 183–195. http://dx.doi.org/10.1016/j.scitotenv.2012.11.087.Zhu, H., Yang, J., Xiaowei, C., 2019. Application of modified gompertz model to study on biogas production from middle temperature co-digestion of pig manure and dead pigs. In: E3S Web of Conferences. http://dx.doi.org/10.1051/e3sconf/201911803022.© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BYinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.sciencedirect.com/science/article/pii/S2352186422001596?pes=vor&utm_source=scopus&getft_integrator=scopusAntibióticos para usos veterinariosMetanogénesis acetoclásticaConcentración inhibitoria mediaAguas residuales de cerdosEfecto sinérgicoInhibición no competitivaAcetoclastic methanogenesisAntibiotics for veterinary usesHalf-maximal inhibitory concentrationSwine wastewaterSynergistic effectUncompetitive inhibitionEffects of short-term inhibition of Tetracyclines and Macrolides on specific methanogenic activity and swine biodegradabilityArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain3749https://repositorio.unibague.edu.co/bitstreams/970fa954-2e5a-429f-a7fc-0a43f4f4b871/downloadbf590a0de67304d9fb069b448fbc7122MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg27317https://repositorio.unibague.edu.co/bitstreams/c81f5022-cd10-45f9-a149-1c5f8f2e1823/download1ca404000a7a16c49d43a0c683602a9cMD54ORIGINALArtículo.pdfArtículo.pdfapplication/pdf309964https://repositorio.unibague.edu.co/bitstreams/0ab903e4-89e6-46a2-bf2e-2b415379ab51/download092af8f5f592f9f67abc8e87219ef9d5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/b32ce87f-1acf-4c42-8f88-0c7f1c915e65/download2fa3e590786b9c0f3ceba1b9656b7ac3MD5120.500.12313/5502oai:repositorio.unibague.edu.co:20.500.12313/55022025-08-21 03:02:16.207https://creativecommons.org/licenses/by-nc/4.0/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BYhttps://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=