A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature
We design and evaluate the performance of a one-dimensional photonic crystal (PhC) optical filter that comprises the integration of alternating layers of a barium titanate ferroelectric (Formula presented.) and an yttrium oxide dielectric (Formula presented.), with a critical high-temperature superc...
- Autores:
-
González, Luz E.
Segura-Gutierrez, Lina M.
Ordoñez, John E.
Zambrano, Gustavo
Reina, John H
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5511
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/5511
- Palabra clave:
- Temperatura criogénica
Comunicaciones ópticas
Filtros de cristal fotónico
Optical communications
Photonic crystal filters
Superconductors
Wavelength division multiplexing
- Rights
- openAccess
- License
- © 2022 by the authors.
| id |
UNIBAGUE2_bb94363c446a78cabf26fdaecf364666 |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5511 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature |
| title |
A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature |
| spellingShingle |
A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature Temperatura criogénica Comunicaciones ópticas Filtros de cristal fotónico Optical communications Photonic crystal filters Superconductors Wavelength division multiplexing |
| title_short |
A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature |
| title_full |
A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature |
| title_fullStr |
A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature |
| title_full_unstemmed |
A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature |
| title_sort |
A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature |
| dc.creator.fl_str_mv |
González, Luz E. Segura-Gutierrez, Lina M. Ordoñez, John E. Zambrano, Gustavo Reina, John H |
| dc.contributor.author.none.fl_str_mv |
González, Luz E. Segura-Gutierrez, Lina M. Ordoñez, John E. Zambrano, Gustavo Reina, John H |
| dc.subject.armarc.none.fl_str_mv |
Temperatura criogénica Comunicaciones ópticas Filtros de cristal fotónico |
| topic |
Temperatura criogénica Comunicaciones ópticas Filtros de cristal fotónico Optical communications Photonic crystal filters Superconductors Wavelength division multiplexing |
| dc.subject.proposal.eng.fl_str_mv |
Optical communications Photonic crystal filters Superconductors Wavelength division multiplexing |
| description |
We design and evaluate the performance of a one-dimensional photonic crystal (PhC) optical filter that comprises the integration of alternating layers of a barium titanate ferroelectric (Formula presented.) and an yttrium oxide dielectric (Formula presented.), with a critical high-temperature superconductor defect, yttrium–barium–copper oxide (Formula presented.), resulting in the (Formula presented.) (Formula presented.) multilayered nanostructure array. Here, we demonstrate that such a nanosystem allows for routing and switching optical signals at well-defined wavelengths, either in the visible or the near-infrared spectral regions—the latter as required in optical telecommunication channels. By tailoring the superconductor layer thickness, the multilayer period number N, the temperature and the direction of incident light, we provide a computational test-bed for the implementation of a PhC-optical filter that works for both wavelength-division multiplexing in the 300–800 nm region and for high-Q filtering in the 1300–1800 nm range. In particular, we show that the filter’s quality factor of resonances Q increases with the number of multilayers—it shows an exponential scaling with N (e.g., in the telecom C-band, (Formula presented.) for (Formula presented.)). In the telecom region, the light transmission slightly shifts towards longer wavelengths with increasing temperature; this occurs at an average rate of 0.25 nm/K in the range from 20 to 80 K, for (Formula presented.) at normal incidence. This rate can be enhanced, and the filter can thus be used for temperature sensing in the NIR range. Moreover, the filter works at cryogenic temperature environments (e.g., in outer space conditions) and can be integrated into either photonic and optoelectronic circuits or in devices for the transmission of information. |
| publishDate |
2022 |
| dc.date.issued.none.fl_str_mv |
2022-07 |
| dc.date.accessioned.none.fl_str_mv |
2025-08-21T19:47:45Z |
| dc.date.available.none.fl_str_mv |
2025-08-21T19:47:45Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
González, L., Segura-Gutierrez, L., Ordoñez, J., Zambrano, G. y Reina, J. (2022). A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature. Photonics, 9(7), 485. DOI: 10.3390/photonics9070485 |
| dc.identifier.doi.none.fl_str_mv |
10.3390/photonics9070485 |
| dc.identifier.issn.none.fl_str_mv |
23046732 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/5511 |
| identifier_str_mv |
González, L., Segura-Gutierrez, L., Ordoñez, J., Zambrano, G. y Reina, J. (2022). A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature. Photonics, 9(7), 485. DOI: 10.3390/photonics9070485 10.3390/photonics9070485 23046732 |
| url |
https://hdl.handle.net/20.500.12313/5511 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationissue.none.fl_str_mv |
7 |
| dc.relation.citationstartpage.none.fl_str_mv |
485 |
| dc.relation.citationvolume.none.fl_str_mv |
9 |
| dc.relation.ispartofjournal.none.fl_str_mv |
Photonics |
| dc.relation.references.none.fl_str_mv |
Yablonovitch, E. Photonic crystals. J. Mod. Opt. 1994, 41, 173–194. Vinet, L.; Zhedanov, A. Photonic Crystals: Physics and Technology; Springer: Milan, Italy, 2008. McGurn, A. Nanophotonics; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. Yoshino, K.; Shimoda, Y.; Kawagishi, Y.; Nakayama, K.; Ozaki, M. Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal. Appl. Phys. Lett. 1999, 75, 932. Li, H.; Low, M.X.; Ako, R.T.; Bhaskaran, M.; Sriram, S.; Withayachumnankul, W.; Kuhlmey, B.T.; Atakaramians, S. Broadband Single-Mode Hybrid Photonic Crystal Waveguides for Terahertz Integration on a Chip. Adv. Mater. Technol. 2020, 5, 2000117. Clementi, M.; Iadanza, S.; Schulz, S.A.; Urbinati, G.; Gerace, D.; O’Faloain, L.; Galli, M. Thermo-Optically Induced Transparency on a photonic chip. Light Sci. Appl. 2021, 10, 240. Mbakop, F.K.; Tom, A.; Dadjé, A.; Vidal, A.K.C.; Djongyang, N. One-dimensional comparison of TiO2/SiO2 and Si/SiO2 photonic crystals filters for thermophotovoltaic applications in visible and infrared. Chin. J. Phys. 2020, 67, 124. Soltani, O.; Zaghdoudi, J.; Kanzari, M. Tunable filter properties in 1D linear graded magnetized cold plasma photonic crystals based on Octonacci quasi-periodic structure. Photonics Nanostruct.-Fundam. Appl 2020, 38, 100744. Sakata, R.; Ishizaki, K.; De Zoysa, M.; Fukuhara, S.; Inoue, T.; Tanaka, Y.; Iwata, K.; Hatsuda, R.; Yoshida, M.; Gelleta, J.; et al. Dually modulated photonic crystals enabling high-power high-beam-quality two-dimensional beam scanning lasers. Nat. Commun. 2020, 11, 3487. Butler, S.M.; Singaravelu, P.K.J.; O’Faolain, L.; Hegarty, S.P. Long cavity photonic crystal laser in FDML operation using an akinetic reflective filter. Opt. Express 2020, 28, 38813. Shi, C.; Yuan, J.; Luo, X.; Shi, S.; Lu, S.; Yuan, P.; Xu, W.; Chen, Z.; Yu, H. Transmission characteristics of multi-structure bandgap for lithium niobate integrated photonic crystal and waveguide. Opt. Commun. 2020, 461, 125222. Baghbadorani, H.K.; Barvestani, J. Sensing improvement of 1D photonic crystal sensors by hybridization of defect and Bloch surface modes. Appl. Surf. Sci. 2021, 537, 147730. Mehaney, A.; Abadla, M.M.; Elsayed, H.A. 1D porous silicon photonic crystals comprising Tamm/Fano resonance as high performing optical sensors. J. Mol. Liq. 2021, 322, 114978. Delgado-Sanchez, J.M.; Lillo-Bravo, I. Angular dependence of photonic crystal coupled to photovoltaic solar cell. Appl. Sci. 2020, 10, 1574. Zheng, W.; Luo, X.; Zhang, Y.; Ye, C.; Qin, A.; Cao, Y.; Hou, L. Efficient Low-Cost All-Flexible Microcavity Semitransparent Polymer Solar Cells Enabled by Polymer Flexible One-Dimensional Photonic Crystals. ACS Appl. Mater. Interfaces 2020, 12, 23190. Aly, A.H.; Ghany, S.E.A.; Kamal, B.M.; Vigneswaran, D. Theoretical studies of hybrid multifunctional (YBa2Cu3O7-X) photonic crystals within visible and infra-red regions. Ceram. Int. 2020, 46, 365. Zaky, Z.A.; Aly, A.H. Theoretical Study of a Tunable Low-Temperature Photonic Crystal Sensor Using Dielectric-Superconductor Nanocomposite Layers. J. Supercond. Nov. Magn. 2020, 33, 2983. González, L.E.; Ordoñez, J.E.; Zambrano, G.; Porras-Montenegro, N. YBa2Cu3O7/BaTiO3 1D Superconducting Photonic Crystal with Tunable Broadband Response in the Visible Range. J. Supercond. Nov. Magn. 2018, 31, 2003. González, L.E.; Ordoñez, J.E.; Carlos, A.; Melo, L.; Mendoza, E.; Reyes, D.; Zambrano, G.; Porras-Montenegro, N.; Granada, J.C.; Gómez, M.E.; et al. Experimental realisation of tunable ferroelectric/superconductor (BTO/YBCO)N/STO 1D photonic crystals in the whole visible spectrum. Sci. Rep. 2020, 10, 13083. Segal, N.; Keren-Zur, S.; Hendler, N.; Ellenbogen, T. Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photonics 2015, 9, 180. Schlafmann, K.R.; White, T.J. Retention and Deformation of the Blue Phases in Liquid Crystalline Elastomers. Nat. Commun. 2021, 12, 4916. Chen, H.; Chen, Z.; Yang, H.; Wen, L.; Yi, Z.; Zhou, Z.; Dai, B.; Zhang, J.; Wu, X.; Wu, P. Mult-mode Surface plasmon resonance absorber base don dat-type single-layer graphene. RSC Adv. 2022, 12, 7821. Soltani, O.; Francoeur, S.; Baraket, Z.; Kanzari, M. Tunable polychromatic filters based on semiconductor-superconductor-dielectric periodic and quasi-periodic hybrid photonic crystal. Opt. Mater. 2020, 111, 110690 Hao, J.; Gu, K.; Xia, L.; Liu, Y.; Yang, Z.; Yang, H. Research on low-temperature blood tissues detection biosensor based on one-dimensional superconducting photonic crystal. Commun. Nonlinear Sci. Numer. Simulat. 2020, 89, 105299. Ravanamma, R.; Reddy, K.M.; Krishnaiah, K.V.; Ravi, N. Structure and morphology of yttrium doped barium titanate ceramics for multi-layer capacitor applications. Mater. Today Proc. 2021, 46, 259 Yang, Q.; Deng, J.; Wang, G.; Deng, Q.; Zhao, J.; Dai, Y.; Duan, P.; Cui, M.; Kong, L.; Gao, H.; et al. The physical properties and microstructure of BiFeO3/YBCO heterostructures. Vacuum 2019, 167, 313–318. Chacón, M.; Bolaños, G.; Lopera, W.; Prieto, P. Tunneling Characteristics of Epitaxial YBa2Cu3O7-x/Y2O3/YBa2Cu3O7-x Planar Type Junctions. Phys. Supercond. 1997, 287, 711. Li, L. Ferroelectric/superconductor heterostructure. Mater. Sci. Eng. R Rep. 2000, 29, 153. Macleod, H.A. Thin-Film Optical Filters; Taylor & Francis: Boca Ratón, FL, USA, 2018. Won, R. Is it crunch time? Nat. Photonics 2015, 9, 424. [ Lian, J.; Vatansever, Z.; Noshad, M.; Brandt-Pearce, M. Indoor visible light communications, networking, and applications. J. Phys. Photonics 2019, 1, 012001. Haas, H.; Elmirghani, J.; White, I. Optical Wireless Communication. Philos. Trans. R. Soc. A 2020, 378, 20200051. Eriksson, T.A.; Hirano, T.; Puttnam, B.J.; Rademacher, G.; Luís, R.S.; Fujiwara, M.; Namiki, R.; Awaji, Y.; Takeoka, M.; Wada, N.; et al. Wavelength división multiplexing of continuous variable quantum key distribution and 18.3 Tbit/s data channels. Commun. Phys. 2019, 2, 9. Feng, C.; Ying, Z.; Zhao, Z.; Gu, J.; Pan, D.Z.; Chen, R.T. Wavelength división multiplexing (WDM) based integrated electronic-photonic switching network (EPSN) for high-speed data processing and transportation. Nanophotonics 2020, 9, 4579. Chhipa, M.K.; Radhouene, M.; Robinson, S.; Suthar, B. Improved dropping efficiency in two-dimensional photonic crystal-based channel drop filter for coarse wavelength división multiplexing application. Opt. Eng. 2017, 56, 015107. Sabne, A.; Panda, A.; More, V. Simplified Wavelength Division Multiplexing in Visible Light Communication by Using RGB LED as Frequency Selective Receiver. In Proceedings of the 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; p. 45670. Zhang, H.; Lu, Y.; Duan, L.; Zhao, Z.; Shi, W.; Yao, J. Intracavity absorption multiplexed sensor network based on dense wavelength division multiplexing filter. Opt. Express 2014, 22, 24546. Minoli, D. Telecommunications Technology Handbook; Artech House: London, UK, 2003. Cavalcanti, S.B.; de Dios-Leyva, M.; Reyes-Gómez, E.; Oliveira, L.E. Photonic band structure and symmetry properties of electromagnetic modes in photonic crystals. Phys. Rev. E 2007, 75, 026607. Markos, P.; Soukoulis, C. Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials; Princeton University Press: Princeton, NJ, USA, 2008. Deng, Y.; Cao, G.; Yang, H.; Zhou, X.; Wu, Y. Dynamic control of double plasmon-induced transparencies in aperture-coupled waveguide-cavity system. Plasmonics 2018, 13, 345. Zheng, Z.; Luo, Y.; Yang, H.; Yi, Z.; Zhang, J.; Song, Q.; Yang, W.; Liu, C.; Wu, X.; Wu, P. Thermal tuning of teraherzt metamaterial absorber properties based on VO2. Phys. Chem. Chem. Phys. 2022, 24, 8846. Orlando, T.; Delin, K. Foundations of Applied Superconductivity; Electrical Engineering Series; Addison-Wesley: Boston, MA, USA, 1991. Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light; Princeton University Press: Princeton, NJ, USA, 2009. Karothu, D.P.; Dushaq, G.; Ahmed, E.; Catalano, L.; Polavaram, S.; Ferreira, R.; Li, L.; Mohamed, S.; Rasras, M.; Naumov, P. Mechanically robust amino acid crystals as fiber-optic transducers and wide bandpass filters for optical communication in the near-infrared. Nat. Commun. 2021, 12, 1326. Wemple, S.; Didomenico, M.; Camlibel, I. Dielectric and optical properties of melt-grown BaTiO3. J. Phys. Chem. Solids 1968, 29, 1797. Kay, H.F.; Vousden, P. Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties. Philos. Mag. J. Sci. 1949, 40, 1019. Merz, W.J. The Electric and Optical Behavior of BaTiO3 Single-Domain Crystals. Phys. Rev. 1949, 76, 1221. Nigara, Y. Measurement of the optical constants of Yttrium Oxide. Jpn. J. Appl. Phys. 1968, 7, 404. Skorobogatiy, M.; Yang, J. Fundamentals of Photonic Crystal Guiding; Cambridge University Press: Cambridge, UK, 2009. Zhang, J.; Wu, R.; Wang, M.; Fang, Z.; Lin, J.; Zhou, J.; Gao, R.; Chu, W.; Cheng, Y. High-index-contrast single-mode optical waveguides fabricated on lithium niobate by photolithography assisted chemo-mechanical etching. Jpn. J. Appl. Phys. 2020, 59, 086503. Deng, Y.; Cao, G.; Wu, Y.; Zhou, X.; Liao, W. Theoretical description of dynamic transmission characteristics in MDM waveguide apertura-side-coupled with ring cavity. Plasmonics 2015, 10, 1537. |
| dc.rights.none.fl_str_mv |
© 2022 by the authors. |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| rights_invalid_str_mv |
© 2022 by the authors. http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
MDPI |
| dc.publisher.place.none.fl_str_mv |
Swiza |
| publisher.none.fl_str_mv |
MDPI |
| dc.source.none.fl_str_mv |
https://www.mdpi.com/2304-6732/9/7/485 |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/41ade31e-2836-4161-af65-6abdfcd1ae7b/download https://repositorio.unibague.edu.co/bitstreams/22d1c66c-9653-4e5f-b126-0094367a8adf/download https://repositorio.unibague.edu.co/bitstreams/7072c800-68e5-41eb-8e92-381a95c3b7ed/download https://repositorio.unibague.edu.co/bitstreams/7737adcd-4ede-42ed-81d5-b3e79fcb84b6/download |
| bitstream.checksum.fl_str_mv |
2fa3e590786b9c0f3ceba1b9656b7ac3 172a2907aa04015567b592657b69ae17 32b4f4a5554303e4e358fb402a3b8592 fad3eac59ec1df669804c9ae2e551c87 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059988303183872 |
| spelling |
González, Luz E.250c4c70-d898-4764-a3db-f406da3b0f96-1Segura-Gutierrez, Lina M.d26c67a4-8430-4c9a-9e3d-af20e5bc3836-1Ordoñez, John E.1fbe21e4-fa8a-4178-a6b5-aef280bfa2a3-1Zambrano, Gustavo676d2066-6621-4afb-94d5-e4974db68220-1Reina, John Hede74871-d9f4-483d-a97b-7112842e9a28-12025-08-21T19:47:45Z2025-08-21T19:47:45Z2022-07We design and evaluate the performance of a one-dimensional photonic crystal (PhC) optical filter that comprises the integration of alternating layers of a barium titanate ferroelectric (Formula presented.) and an yttrium oxide dielectric (Formula presented.), with a critical high-temperature superconductor defect, yttrium–barium–copper oxide (Formula presented.), resulting in the (Formula presented.) (Formula presented.) multilayered nanostructure array. Here, we demonstrate that such a nanosystem allows for routing and switching optical signals at well-defined wavelengths, either in the visible or the near-infrared spectral regions—the latter as required in optical telecommunication channels. By tailoring the superconductor layer thickness, the multilayer period number N, the temperature and the direction of incident light, we provide a computational test-bed for the implementation of a PhC-optical filter that works for both wavelength-division multiplexing in the 300–800 nm region and for high-Q filtering in the 1300–1800 nm range. In particular, we show that the filter’s quality factor of resonances Q increases with the number of multilayers—it shows an exponential scaling with N (e.g., in the telecom C-band, (Formula presented.) for (Formula presented.)). In the telecom region, the light transmission slightly shifts towards longer wavelengths with increasing temperature; this occurs at an average rate of 0.25 nm/K in the range from 20 to 80 K, for (Formula presented.) at normal incidence. This rate can be enhanced, and the filter can thus be used for temperature sensing in the NIR range. Moreover, the filter works at cryogenic temperature environments (e.g., in outer space conditions) and can be integrated into either photonic and optoelectronic circuits or in devices for the transmission of information.application/pdfGonzález, L., Segura-Gutierrez, L., Ordoñez, J., Zambrano, G. y Reina, J. (2022). A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature. Photonics, 9(7), 485. DOI: 10.3390/photonics907048510.3390/photonics907048523046732https://hdl.handle.net/20.500.12313/5511engMDPISwiza74859PhotonicsYablonovitch, E. Photonic crystals. J. Mod. Opt. 1994, 41, 173–194.Vinet, L.; Zhedanov, A. Photonic Crystals: Physics and Technology; Springer: Milan, Italy, 2008.McGurn, A. Nanophotonics; Springer International Publishing: Berlin/Heidelberg, Germany, 2018.Yoshino, K.; Shimoda, Y.; Kawagishi, Y.; Nakayama, K.; Ozaki, M. Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal. Appl. Phys. Lett. 1999, 75, 932.Li, H.; Low, M.X.; Ako, R.T.; Bhaskaran, M.; Sriram, S.; Withayachumnankul, W.; Kuhlmey, B.T.; Atakaramians, S. Broadband Single-Mode Hybrid Photonic Crystal Waveguides for Terahertz Integration on a Chip. Adv. Mater. Technol. 2020, 5, 2000117.Clementi, M.; Iadanza, S.; Schulz, S.A.; Urbinati, G.; Gerace, D.; O’Faloain, L.; Galli, M. Thermo-Optically Induced Transparency on a photonic chip. Light Sci. Appl. 2021, 10, 240.Mbakop, F.K.; Tom, A.; Dadjé, A.; Vidal, A.K.C.; Djongyang, N. One-dimensional comparison of TiO2/SiO2 and Si/SiO2 photonic crystals filters for thermophotovoltaic applications in visible and infrared. Chin. J. Phys. 2020, 67, 124.Soltani, O.; Zaghdoudi, J.; Kanzari, M. Tunable filter properties in 1D linear graded magnetized cold plasma photonic crystals based on Octonacci quasi-periodic structure. Photonics Nanostruct.-Fundam. Appl 2020, 38, 100744.Sakata, R.; Ishizaki, K.; De Zoysa, M.; Fukuhara, S.; Inoue, T.; Tanaka, Y.; Iwata, K.; Hatsuda, R.; Yoshida, M.; Gelleta, J.; et al. Dually modulated photonic crystals enabling high-power high-beam-quality two-dimensional beam scanning lasers. Nat. Commun. 2020, 11, 3487.Butler, S.M.; Singaravelu, P.K.J.; O’Faolain, L.; Hegarty, S.P. Long cavity photonic crystal laser in FDML operation using an akinetic reflective filter. Opt. Express 2020, 28, 38813.Shi, C.; Yuan, J.; Luo, X.; Shi, S.; Lu, S.; Yuan, P.; Xu, W.; Chen, Z.; Yu, H. Transmission characteristics of multi-structure bandgap for lithium niobate integrated photonic crystal and waveguide. Opt. Commun. 2020, 461, 125222.Baghbadorani, H.K.; Barvestani, J. Sensing improvement of 1D photonic crystal sensors by hybridization of defect and Bloch surface modes. Appl. Surf. Sci. 2021, 537, 147730.Mehaney, A.; Abadla, M.M.; Elsayed, H.A. 1D porous silicon photonic crystals comprising Tamm/Fano resonance as high performing optical sensors. J. Mol. Liq. 2021, 322, 114978.Delgado-Sanchez, J.M.; Lillo-Bravo, I. Angular dependence of photonic crystal coupled to photovoltaic solar cell. Appl. Sci. 2020, 10, 1574.Zheng, W.; Luo, X.; Zhang, Y.; Ye, C.; Qin, A.; Cao, Y.; Hou, L. Efficient Low-Cost All-Flexible Microcavity Semitransparent Polymer Solar Cells Enabled by Polymer Flexible One-Dimensional Photonic Crystals. ACS Appl. Mater. Interfaces 2020, 12, 23190.Aly, A.H.; Ghany, S.E.A.; Kamal, B.M.; Vigneswaran, D. Theoretical studies of hybrid multifunctional (YBa2Cu3O7-X) photonic crystals within visible and infra-red regions. Ceram. Int. 2020, 46, 365.Zaky, Z.A.; Aly, A.H. Theoretical Study of a Tunable Low-Temperature Photonic Crystal Sensor Using Dielectric-Superconductor Nanocomposite Layers. J. Supercond. Nov. Magn. 2020, 33, 2983.González, L.E.; Ordoñez, J.E.; Zambrano, G.; Porras-Montenegro, N. YBa2Cu3O7/BaTiO3 1D Superconducting Photonic Crystal with Tunable Broadband Response in the Visible Range. J. Supercond. Nov. Magn. 2018, 31, 2003.González, L.E.; Ordoñez, J.E.; Carlos, A.; Melo, L.; Mendoza, E.; Reyes, D.; Zambrano, G.; Porras-Montenegro, N.; Granada, J.C.; Gómez, M.E.; et al. Experimental realisation of tunable ferroelectric/superconductor (BTO/YBCO)N/STO 1D photonic crystals in the whole visible spectrum. Sci. Rep. 2020, 10, 13083.Segal, N.; Keren-Zur, S.; Hendler, N.; Ellenbogen, T. Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photonics 2015, 9, 180.Schlafmann, K.R.; White, T.J. Retention and Deformation of the Blue Phases in Liquid Crystalline Elastomers. Nat. Commun. 2021, 12, 4916.Chen, H.; Chen, Z.; Yang, H.; Wen, L.; Yi, Z.; Zhou, Z.; Dai, B.; Zhang, J.; Wu, X.; Wu, P. Mult-mode Surface plasmon resonance absorber base don dat-type single-layer graphene. RSC Adv. 2022, 12, 7821.Soltani, O.; Francoeur, S.; Baraket, Z.; Kanzari, M. Tunable polychromatic filters based on semiconductor-superconductor-dielectric periodic and quasi-periodic hybrid photonic crystal. Opt. Mater. 2020, 111, 110690Hao, J.; Gu, K.; Xia, L.; Liu, Y.; Yang, Z.; Yang, H. Research on low-temperature blood tissues detection biosensor based on one-dimensional superconducting photonic crystal. Commun. Nonlinear Sci. Numer. Simulat. 2020, 89, 105299.Ravanamma, R.; Reddy, K.M.; Krishnaiah, K.V.; Ravi, N. Structure and morphology of yttrium doped barium titanate ceramics for multi-layer capacitor applications. Mater. Today Proc. 2021, 46, 259Yang, Q.; Deng, J.; Wang, G.; Deng, Q.; Zhao, J.; Dai, Y.; Duan, P.; Cui, M.; Kong, L.; Gao, H.; et al. The physical properties and microstructure of BiFeO3/YBCO heterostructures. Vacuum 2019, 167, 313–318.Chacón, M.; Bolaños, G.; Lopera, W.; Prieto, P. Tunneling Characteristics of Epitaxial YBa2Cu3O7-x/Y2O3/YBa2Cu3O7-x Planar Type Junctions. Phys. Supercond. 1997, 287, 711.Li, L. Ferroelectric/superconductor heterostructure. Mater. Sci. Eng. R Rep. 2000, 29, 153.Macleod, H.A. Thin-Film Optical Filters; Taylor & Francis: Boca Ratón, FL, USA, 2018.Won, R. Is it crunch time? Nat. Photonics 2015, 9, 424. [Lian, J.; Vatansever, Z.; Noshad, M.; Brandt-Pearce, M. Indoor visible light communications, networking, and applications. J. Phys. Photonics 2019, 1, 012001.Haas, H.; Elmirghani, J.; White, I. Optical Wireless Communication. Philos. Trans. R. Soc. A 2020, 378, 20200051.Eriksson, T.A.; Hirano, T.; Puttnam, B.J.; Rademacher, G.; Luís, R.S.; Fujiwara, M.; Namiki, R.; Awaji, Y.; Takeoka, M.; Wada, N.; et al. Wavelength división multiplexing of continuous variable quantum key distribution and 18.3 Tbit/s data channels. Commun. Phys. 2019, 2, 9.Feng, C.; Ying, Z.; Zhao, Z.; Gu, J.; Pan, D.Z.; Chen, R.T. Wavelength división multiplexing (WDM) based integrated electronic-photonic switching network (EPSN) for high-speed data processing and transportation. Nanophotonics 2020, 9, 4579.Chhipa, M.K.; Radhouene, M.; Robinson, S.; Suthar, B. Improved dropping efficiency in two-dimensional photonic crystal-based channel drop filter for coarse wavelength división multiplexing application. Opt. Eng. 2017, 56, 015107.Sabne, A.; Panda, A.; More, V. Simplified Wavelength Division Multiplexing in Visible Light Communication by Using RGB LED as Frequency Selective Receiver. In Proceedings of the 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; p. 45670.Zhang, H.; Lu, Y.; Duan, L.; Zhao, Z.; Shi, W.; Yao, J. Intracavity absorption multiplexed sensor network based on dense wavelength division multiplexing filter. Opt. Express 2014, 22, 24546.Minoli, D. Telecommunications Technology Handbook; Artech House: London, UK, 2003.Cavalcanti, S.B.; de Dios-Leyva, M.; Reyes-Gómez, E.; Oliveira, L.E. Photonic band structure and symmetry properties of electromagnetic modes in photonic crystals. Phys. Rev. E 2007, 75, 026607.Markos, P.; Soukoulis, C. Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials; Princeton University Press: Princeton, NJ, USA, 2008.Deng, Y.; Cao, G.; Yang, H.; Zhou, X.; Wu, Y. Dynamic control of double plasmon-induced transparencies in aperture-coupled waveguide-cavity system. Plasmonics 2018, 13, 345.Zheng, Z.; Luo, Y.; Yang, H.; Yi, Z.; Zhang, J.; Song, Q.; Yang, W.; Liu, C.; Wu, X.; Wu, P. Thermal tuning of teraherzt metamaterial absorber properties based on VO2. Phys. Chem. Chem. Phys. 2022, 24, 8846.Orlando, T.; Delin, K. Foundations of Applied Superconductivity; Electrical Engineering Series; Addison-Wesley: Boston, MA, USA, 1991.Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light; Princeton University Press: Princeton, NJ, USA, 2009.Karothu, D.P.; Dushaq, G.; Ahmed, E.; Catalano, L.; Polavaram, S.; Ferreira, R.; Li, L.; Mohamed, S.; Rasras, M.; Naumov, P. Mechanically robust amino acid crystals as fiber-optic transducers and wide bandpass filters for optical communication in the near-infrared. Nat. Commun. 2021, 12, 1326.Wemple, S.; Didomenico, M.; Camlibel, I. Dielectric and optical properties of melt-grown BaTiO3. J. Phys. Chem. Solids 1968, 29, 1797.Kay, H.F.; Vousden, P. Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties. Philos. Mag. J. Sci. 1949, 40, 1019.Merz, W.J. The Electric and Optical Behavior of BaTiO3 Single-Domain Crystals. Phys. Rev. 1949, 76, 1221.Nigara, Y. Measurement of the optical constants of Yttrium Oxide. Jpn. J. Appl. Phys. 1968, 7, 404.Skorobogatiy, M.; Yang, J. Fundamentals of Photonic Crystal Guiding; Cambridge University Press: Cambridge, UK, 2009.Zhang, J.; Wu, R.; Wang, M.; Fang, Z.; Lin, J.; Zhou, J.; Gao, R.; Chu, W.; Cheng, Y. High-index-contrast single-mode optical waveguides fabricated on lithium niobate by photolithography assisted chemo-mechanical etching. Jpn. J. Appl. Phys. 2020, 59, 086503.Deng, Y.; Cao, G.; Wu, Y.; Zhou, X.; Liao, W. Theoretical description of dynamic transmission characteristics in MDM waveguide apertura-side-coupled with ring cavity. Plasmonics 2015, 10, 1537.© 2022 by the authors.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.mdpi.com/2304-6732/9/7/485Temperatura criogénicaComunicaciones ópticasFiltros de cristal fotónicoOptical communicationsPhotonic crystal filtersSuperconductorsWavelength division multiplexingA Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic TemperatureArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/41ade31e-2836-4161-af65-6abdfcd1ae7b/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain7473https://repositorio.unibague.edu.co/bitstreams/22d1c66c-9653-4e5f-b126-0094367a8adf/download172a2907aa04015567b592657b69ae17MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg33075https://repositorio.unibague.edu.co/bitstreams/7072c800-68e5-41eb-8e92-381a95c3b7ed/download32b4f4a5554303e4e358fb402a3b8592MD54ORIGINALArtículo.pdfArtículo.pdfapplication/pdf180039https://repositorio.unibague.edu.co/bitstreams/7737adcd-4ede-42ed-81d5-b3e79fcb84b6/downloadfad3eac59ec1df669804c9ae2e551c87MD5220.500.12313/5511oai:repositorio.unibague.edu.co:20.500.12313/55112025-08-22 03:03:14.673https://creativecommons.org/licenses/by-nc/4.0/© 2022 by the authors.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
