Generalized Quantification Function of Monogenic Phase Congruency
Edge detection is a technique in digital image processing that detects the contours of objects based on changes in brightness. Edges can be used to determine the size, orientation, and properties of the object of interest within an image. There are different techniques employed for edge detection, o...
- Autores:
-
Forero, Manuel G.
Jacanamejoy, Carlos A
Machado, Maximiliano
Penagos, Karla L.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5555
- Palabra clave:
- Fase Monogénica
Detección de bordes
Transformada de Fourier
Energía local
Filtro log-Gabor
Filtros monogénicos
Congruencia de fase
Edge detection
Fourier transform
Local energy
Log-Gabor filter
Monogenic filters
Phase congruency
- Rights
- openAccess
- License
- © 2023 by the authors.
| id |
UNIBAGUE2_bab320b29d46e4f5559341246000d00c |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5555 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Generalized Quantification Function of Monogenic Phase Congruency |
| title |
Generalized Quantification Function of Monogenic Phase Congruency |
| spellingShingle |
Generalized Quantification Function of Monogenic Phase Congruency Fase Monogénica Detección de bordes Transformada de Fourier Energía local Filtro log-Gabor Filtros monogénicos Congruencia de fase Edge detection Fourier transform Local energy Log-Gabor filter Monogenic filters Phase congruency |
| title_short |
Generalized Quantification Function of Monogenic Phase Congruency |
| title_full |
Generalized Quantification Function of Monogenic Phase Congruency |
| title_fullStr |
Generalized Quantification Function of Monogenic Phase Congruency |
| title_full_unstemmed |
Generalized Quantification Function of Monogenic Phase Congruency |
| title_sort |
Generalized Quantification Function of Monogenic Phase Congruency |
| dc.creator.fl_str_mv |
Forero, Manuel G. Jacanamejoy, Carlos A Machado, Maximiliano Penagos, Karla L. |
| dc.contributor.author.none.fl_str_mv |
Forero, Manuel G. Jacanamejoy, Carlos A Machado, Maximiliano Penagos, Karla L. |
| dc.subject.armarc.none.fl_str_mv |
Fase Monogénica Detección de bordes Transformada de Fourier Energía local Filtro log-Gabor Filtros monogénicos Congruencia de fase |
| topic |
Fase Monogénica Detección de bordes Transformada de Fourier Energía local Filtro log-Gabor Filtros monogénicos Congruencia de fase Edge detection Fourier transform Local energy Log-Gabor filter Monogenic filters Phase congruency |
| dc.subject.proposal.eng.fl_str_mv |
Edge detection Fourier transform Local energy Log-Gabor filter Monogenic filters Phase congruency |
| description |
Edge detection is a technique in digital image processing that detects the contours of objects based on changes in brightness. Edges can be used to determine the size, orientation, and properties of the object of interest within an image. There are different techniques employed for edge detection, one of them being phase congruency, a recently developed but still relatively unknown technique due to its mathematical and computational complexity compared to more popular methods. Additionally, it requires the adjustment of a greater number of parameters than traditional techniques. Recently, a unique formulation was proposed for the mathematical description of phase congruency, leading to a better understanding of the technique. This formulation consists of three factors, including a quantification function, which, depending on its characteristics, allows for improved edge detection. However, a detailed study of the characteristics had not been conducted. Therefore, this article proposes the development of a generalized function for quantifying phase congruency, based on the family of functions that, according to a previous study, yielded the best results in edge detection. |
| publishDate |
2023 |
| dc.date.issued.none.fl_str_mv |
2023-09 |
| dc.date.accessioned.none.fl_str_mv |
2025-08-29T13:24:59Z |
| dc.date.available.none.fl_str_mv |
2025-08-29T13:24:59Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
Forero, M., Jacanamejoy, C., Machado, M. y Penagos, K. (2023). Generalized Quantification Function of Monogenic Phase Congruency. Mathematics, 11(17). DOI: 10.3390/math11173795 |
| dc.identifier.doi.none.fl_str_mv |
10.3390/math11173795 |
| dc.identifier.issn.none.fl_str_mv |
22277390 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/5555 |
| dc.identifier.url.none.fl_str_mv |
https://www.mdpi.com/2227-7390/11/17/3795 |
| identifier_str_mv |
Forero, M., Jacanamejoy, C., Machado, M. y Penagos, K. (2023). Generalized Quantification Function of Monogenic Phase Congruency. Mathematics, 11(17). DOI: 10.3390/math11173795 10.3390/math11173795 22277390 |
| url |
https://hdl.handle.net/20.500.12313/5555 https://www.mdpi.com/2227-7390/11/17/3795 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationissue.none.fl_str_mv |
17 |
| dc.relation.citationstartpage.none.fl_str_mv |
3795 |
| dc.relation.citationvolume.none.fl_str_mv |
11 |
| dc.relation.ispartofjournal.none.fl_str_mv |
Mathematics |
| dc.relation.references.none.fl_str_mv |
Muntarina, K.; Shorif, S.B.; Uddin, M.S. Notes on edge detection approaches. Evol. Syst. 2022, 13, 169–182. Roberts, L. Machine Perception of 3-D Solids, Optical and Electro-Optical Information Processing; MIT Press: Cambridge, MA, USA, 1965. Prewitt, J.M. Object enhancement and extraction. Pict. Process. Psychopictorics 1970, 10, 15–19. Sobel, I. An Isotropic 3 × 3 Image Gradient Operator. In Presentation at Stanford A.I. Project 1968; Academic Press: Cambridge, MA, USA, 2014; pp. 1–5. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. Deriche, R. Using Canny’s criteria to derive a recursively implemented optimal edge detector. Int. J. Comput. Vis. 1987, 1, 167–187 Choi, K.H.; Ha, J.E. An Adaptive Threshold for the Canny Edge With Actor-Critic Algorithm. IEEE Access 2023, 11, 67058–67069. Sultana, S.; Ahmed, B.; Paul, M.; Islam, M.R.; Ahmad, S. Vision-Based Robust Lane Detection and Tracking in Challenging Conditions. IEEE Access 2023, 11, 67938–67955. Yang, Z.; Zhang, M.; Li, C.; Meng, Z.; Li, Y.; Chen, Y.; Liu, L. Image Classification for Automobile Pipe Joints Surface Defect Detection Using Wavelet Decomposition and Convolutional Neural Network. IEEE Access 2022, 10, 77191–77204. Mubashar, M.; Khan, N.; Sajid, A.R.; Javed, M.H.; Hassan, N.U. Have We Solved Edge Detection? A Review of State-of-the-Art Datasets and DNN Based Techniques. IEEE Access 2022, 10, 70541–70552. Jia, L.; Dong, J.; Huang, S.; Liu, L.; Zhang, J. Optical and SAR Image Registration Based on Multi-Scale Orientated Map of Phase Congruency. Electronics 2023, 12, 1635. Koley, S.; Roy, H.; Dhar, S.; Bhattacharjee, D. Illumination invariant face recognition using Fused Cross Lattice Pattern of Phase Congruency (FCLPPC). Inf. Sci. 2022, 584, 633–648. Fan, J.; Ye, Y.; Li, J.; Liu, G.; Li, Y. A Novel Multiscale Adaptive Binning Phase Congruency Feature for SAR and Optical Image Registration. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. Forero, M.G.; Jacanamejoy, C.A. Unified Mathematical Formulation of Monogenic Phase Congruency. Mathematics 2021, 9, 3080. Marr, D.; Hildreth, E. Theory of edge detection. Proc. R. Soc. London Ser. Biol. Sci. 1980, 207, 187–217. Nachar, R.; Inaty, E.; Bonnin, P.J.; Alayli, Y. Hybrid minutiae and edge corners feature points for increased fingerprint recognition performance. Pattern Anal. Appl. 2020, 23, 213–224. Shrivakshan, G.; Chandrasekar, C. A comparison of various edge detection techniques used in image processing. Int. J. Comput. Sci. Issues (IJCSI) 2012, 9, 269. Kovesi, P. Image features from phase congruency. Videre J. Comput. Vis. Res. 1999, 1, 1–26. Kazubek, M. Wavelet domain image denoising by thresholding and Wiener filtering. IEEE Signal Process. Lett. 2003, 10, 324–326. Kovesi, P. Edges are not just steps. In Proceedings of the Fifth Asian Conference on Computer Vision, Melbourne, Australia, 22–25 January 2002; Volume 8, pp. 22–28. Kovesi, P. Invariant measures of image features from phase information. Ph.D. Thesis, University of Western Australia, Crawley, Australia, 1996. Lijuan, W.; Changsheng, Z.; Ziyu, L.; Bin, S.; Haiyong, T. Image feature detection based on phase congruency by Monogenic filters. In Proceedings of the Control and Decision Conference (2014 CCDC), The 26th Chinese, Changsha, China, 31 May–2 June 2014; pp. 2033–2038. Shi, M.; Zhao, X.; Qiao, D.; Xu, B.; Li, C. Conformal monogenic phase congruency model-based edge detection in color images. Multimed. Tools Appl. 2019, 78, 10701–10716. Jacanamejoy, C.; Meneses-Casas, N.; Forero, M.G. Image Feature Detection Based on Phase Congruency by Monogenic Filters with New Noise Estimation. In Proceedings of the Iberian Conference on Pattern Recognition and Image Analysis, Aveiro, Portugal, 4–6 May 2019; pp. 577–588. Forero, M.G.; Jacanamejoy, C.A.; Rivera-Nieto, S. Study of phase congruency quantization function properties for image edge detection. In Applications of Digital Image Processing XLIV; Tescher, A.G., Ebrahimi, T., Eds.; International Society for Optics and Photonics; SPIE: Bellingham, WA, USA, 2021; Volume 11842, pp. 472–490. Morrone, M.C.; Ross, J.; Burr, D.C.; Owens, R. Mach bands are phase dependent. Nature 1986, 324, 250–253. Morrone, M.C.; Owens, R.A. Feature detection from local energy. Pattern Recognit. Lett. 1987, 6, 303–313 Felsberg, M.; Sommer, G. A new extension of linear signal processing for estimating local properties and detecting features. In Mustererkennung 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 195–202 Kovesi, P. MATLAB and Octave Functions for Computer Vision and Image Processing. 2013. Available online: https://www.peterkovesi.com/matlabfns/ (accessed on 17th August 2023). Collins, T.J. ImageJ for microscopy. Biotechniques 2007, 43, S25–S30. Mapurisa, W.; Sithole, G. Improved Edge Detection for Satellite Images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 2, 185–192. Putri, F.N.R.; Wibowo, N.C.H.; Mustofa, H. Clustering of Tuberculosis and Normal Lungs Based on Image Segmentation Results of Chan-Vese and Canny with K-Means. Indones. J. Artif. Intell. Data Min. 2023, 6, 18–28. Zainuddin, S.N.A.N.; Jumadi, N.A. A Prototype Design and Image Quality Assessment of Low-Cost Finger Vein Image Acquisition using Logitech Webcam. Evol. Electr. Electron. Eng. 2023, 4, 579–588. Aliu, A.A.; Ariff, N.R.M.; Ametefe, D.S.; John, D. Automatic classification and isolation of cracks on masonry surfaces using deep transfer learning and semantic segmentation. J. Build. Pathol. Rehabil. 2023, 8, 28. Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302 Sorensen, T.A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skar. 1948, 5, 1–34. Abdou, I.; Pratt, W. Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc. IEEE 1979, 67, 753–763. |
| dc.rights.eng.fl_str_mv |
© 2023 by the authors. |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| rights_invalid_str_mv |
© 2023 by the authors. http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
| dc.publisher.place.none.fl_str_mv |
Suiza |
| publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
| dc.source.none.fl_str_mv |
https://www.mdpi.com/2227-7390/11/17/3795 |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/2831d88e-6eff-4d65-9a15-7f666b6b604b/download https://repositorio.unibague.edu.co/bitstreams/8c2c90dc-bb9d-46be-9b57-d03daa91fdb5/download https://repositorio.unibague.edu.co/bitstreams/73ff39c9-0857-41ad-a198-fe8fd5fcaefb/download https://repositorio.unibague.edu.co/bitstreams/1d65cad7-e144-45f1-8aa7-7ccd8afdb58d/download |
| bitstream.checksum.fl_str_mv |
958a895ffd9ff1c60c77c2d37315be99 3015712561242e1698fb56ed10663b50 2fa3e590786b9c0f3ceba1b9656b7ac3 20e49b049333e51eae3261d036531892 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059972243193856 |
| spelling |
Forero, Manuel G.221ba9eb-1b06-4908-aac9-b50cd974a391-1Jacanamejoy, Carlos A5e5025dc-501e-4ce6-b554-fbf8def7d042-1Machado, Maximiliano95dbe28a-f6be-434b-9bea-787f7aae5656-1Penagos, Karla L.719243bb-c9e1-41d1-a570-71768e8335ec-12025-08-29T13:24:59Z2025-08-29T13:24:59Z2023-09Edge detection is a technique in digital image processing that detects the contours of objects based on changes in brightness. Edges can be used to determine the size, orientation, and properties of the object of interest within an image. There are different techniques employed for edge detection, one of them being phase congruency, a recently developed but still relatively unknown technique due to its mathematical and computational complexity compared to more popular methods. Additionally, it requires the adjustment of a greater number of parameters than traditional techniques. Recently, a unique formulation was proposed for the mathematical description of phase congruency, leading to a better understanding of the technique. This formulation consists of three factors, including a quantification function, which, depending on its characteristics, allows for improved edge detection. However, a detailed study of the characteristics had not been conducted. Therefore, this article proposes the development of a generalized function for quantifying phase congruency, based on the family of functions that, according to a previous study, yielded the best results in edge detection.application/pdfForero, M., Jacanamejoy, C., Machado, M. y Penagos, K. (2023). Generalized Quantification Function of Monogenic Phase Congruency. Mathematics, 11(17). DOI: 10.3390/math1117379510.3390/math1117379522277390https://hdl.handle.net/20.500.12313/5555https://www.mdpi.com/2227-7390/11/17/3795engMultidisciplinary Digital Publishing Institute (MDPI)Suiza17379511MathematicsMuntarina, K.; Shorif, S.B.; Uddin, M.S. Notes on edge detection approaches. Evol. Syst. 2022, 13, 169–182.Roberts, L. Machine Perception of 3-D Solids, Optical and Electro-Optical Information Processing; MIT Press: Cambridge, MA, USA, 1965.Prewitt, J.M. Object enhancement and extraction. Pict. Process. Psychopictorics 1970, 10, 15–19.Sobel, I. An Isotropic 3 × 3 Image Gradient Operator. In Presentation at Stanford A.I. Project 1968; Academic Press: Cambridge, MA, USA, 2014; pp. 1–5.Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698.Deriche, R. Using Canny’s criteria to derive a recursively implemented optimal edge detector. Int. J. Comput. Vis. 1987, 1, 167–187Choi, K.H.; Ha, J.E. An Adaptive Threshold for the Canny Edge With Actor-Critic Algorithm. IEEE Access 2023, 11, 67058–67069.Sultana, S.; Ahmed, B.; Paul, M.; Islam, M.R.; Ahmad, S. Vision-Based Robust Lane Detection and Tracking in Challenging Conditions. IEEE Access 2023, 11, 67938–67955.Yang, Z.; Zhang, M.; Li, C.; Meng, Z.; Li, Y.; Chen, Y.; Liu, L. Image Classification for Automobile Pipe Joints Surface Defect Detection Using Wavelet Decomposition and Convolutional Neural Network. IEEE Access 2022, 10, 77191–77204.Mubashar, M.; Khan, N.; Sajid, A.R.; Javed, M.H.; Hassan, N.U. Have We Solved Edge Detection? A Review of State-of-the-Art Datasets and DNN Based Techniques. IEEE Access 2022, 10, 70541–70552.Jia, L.; Dong, J.; Huang, S.; Liu, L.; Zhang, J. Optical and SAR Image Registration Based on Multi-Scale Orientated Map of Phase Congruency. Electronics 2023, 12, 1635.Koley, S.; Roy, H.; Dhar, S.; Bhattacharjee, D. Illumination invariant face recognition using Fused Cross Lattice Pattern of Phase Congruency (FCLPPC). Inf. Sci. 2022, 584, 633–648.Fan, J.; Ye, Y.; Li, J.; Liu, G.; Li, Y. A Novel Multiscale Adaptive Binning Phase Congruency Feature for SAR and Optical Image Registration. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16.Forero, M.G.; Jacanamejoy, C.A. Unified Mathematical Formulation of Monogenic Phase Congruency. Mathematics 2021, 9, 3080.Marr, D.; Hildreth, E. Theory of edge detection. Proc. R. Soc. London Ser. Biol. Sci. 1980, 207, 187–217.Nachar, R.; Inaty, E.; Bonnin, P.J.; Alayli, Y. Hybrid minutiae and edge corners feature points for increased fingerprint recognition performance. Pattern Anal. Appl. 2020, 23, 213–224.Shrivakshan, G.; Chandrasekar, C. A comparison of various edge detection techniques used in image processing. Int. J. Comput. Sci. Issues (IJCSI) 2012, 9, 269.Kovesi, P. Image features from phase congruency. Videre J. Comput. Vis. Res. 1999, 1, 1–26.Kazubek, M. Wavelet domain image denoising by thresholding and Wiener filtering. IEEE Signal Process. Lett. 2003, 10, 324–326.Kovesi, P. Edges are not just steps. In Proceedings of the Fifth Asian Conference on Computer Vision, Melbourne, Australia, 22–25 January 2002; Volume 8, pp. 22–28.Kovesi, P. Invariant measures of image features from phase information. Ph.D. Thesis, University of Western Australia, Crawley, Australia, 1996.Lijuan, W.; Changsheng, Z.; Ziyu, L.; Bin, S.; Haiyong, T. Image feature detection based on phase congruency by Monogenic filters. In Proceedings of the Control and Decision Conference (2014 CCDC), The 26th Chinese, Changsha, China, 31 May–2 June 2014; pp. 2033–2038.Shi, M.; Zhao, X.; Qiao, D.; Xu, B.; Li, C. Conformal monogenic phase congruency model-based edge detection in color images. Multimed. Tools Appl. 2019, 78, 10701–10716.Jacanamejoy, C.; Meneses-Casas, N.; Forero, M.G. Image Feature Detection Based on Phase Congruency by Monogenic Filters with New Noise Estimation. In Proceedings of the Iberian Conference on Pattern Recognition and Image Analysis, Aveiro, Portugal, 4–6 May 2019; pp. 577–588.Forero, M.G.; Jacanamejoy, C.A.; Rivera-Nieto, S. Study of phase congruency quantization function properties for image edge detection. In Applications of Digital Image Processing XLIV; Tescher, A.G., Ebrahimi, T., Eds.; International Society for Optics and Photonics; SPIE: Bellingham, WA, USA, 2021; Volume 11842, pp. 472–490.Morrone, M.C.; Ross, J.; Burr, D.C.; Owens, R. Mach bands are phase dependent. Nature 1986, 324, 250–253.Morrone, M.C.; Owens, R.A. Feature detection from local energy. Pattern Recognit. Lett. 1987, 6, 303–313Felsberg, M.; Sommer, G. A new extension of linear signal processing for estimating local properties and detecting features. In Mustererkennung 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 195–202Kovesi, P. MATLAB and Octave Functions for Computer Vision and Image Processing. 2013. Available online: https://www.peterkovesi.com/matlabfns/ (accessed on 17th August 2023).Collins, T.J. ImageJ for microscopy. Biotechniques 2007, 43, S25–S30.Mapurisa, W.; Sithole, G. Improved Edge Detection for Satellite Images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 2, 185–192.Putri, F.N.R.; Wibowo, N.C.H.; Mustofa, H. Clustering of Tuberculosis and Normal Lungs Based on Image Segmentation Results of Chan-Vese and Canny with K-Means. Indones. J. Artif. Intell. Data Min. 2023, 6, 18–28.Zainuddin, S.N.A.N.; Jumadi, N.A. A Prototype Design and Image Quality Assessment of Low-Cost Finger Vein Image Acquisition using Logitech Webcam. Evol. Electr. Electron. Eng. 2023, 4, 579–588.Aliu, A.A.; Ariff, N.R.M.; Ametefe, D.S.; John, D. Automatic classification and isolation of cracks on masonry surfaces using deep transfer learning and semantic segmentation. J. Build. Pathol. Rehabil. 2023, 8, 28.Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302Sorensen, T.A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skar. 1948, 5, 1–34.Abdou, I.; Pratt, W. Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc. IEEE 1979, 67, 753–763.© 2023 by the authors.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.mdpi.com/2227-7390/11/17/3795Fase MonogénicaDetección de bordesTransformada de FourierEnergía localFiltro log-GaborFiltros monogénicosCongruencia de faseEdge detectionFourier transformLocal energyLog-Gabor filterMonogenic filtersPhase congruencyGeneralized Quantification Function of Monogenic Phase CongruencyArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain2532https://repositorio.unibague.edu.co/bitstreams/2831d88e-6eff-4d65-9a15-7f666b6b604b/download958a895ffd9ff1c60c77c2d37315be99MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg21450https://repositorio.unibague.edu.co/bitstreams/8c2c90dc-bb9d-46be-9b57-d03daa91fdb5/download3015712561242e1698fb56ed10663b50MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/73ff39c9-0857-41ad-a198-fe8fd5fcaefb/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf86721https://repositorio.unibague.edu.co/bitstreams/1d65cad7-e144-45f1-8aa7-7ccd8afdb58d/download20e49b049333e51eae3261d036531892MD5220.500.12313/5555oai:repositorio.unibague.edu.co:20.500.12313/55552025-09-12 12:06:58.292https://creativecommons.org/licenses/by-nc/4.0/© 2023 by the authors.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
