Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation

The study of YBCO thin films under laser irradiation reveals a significant interplay between their electrical and optical properties. Despite being exposed to energies exceeding the superconducting gap, YBCO retains its superconductivity and shows unexpected resilience. This, together with the photo...

Full description

Autores:
Segura-Gutiérrez, Lina M
Ordoñez, John Edward
González Reyes, Luz Esther
Medina, William Jair
Calderón-Losada, Omar
Lopera, Wilson
Zambrano, Gustavo
Reina, John Henry
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5826
Acceso en línea:
https://hdl.handle.net/20.500.12313/5826
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c04291
Palabra clave:
Efecto fotovoltaico
Optical depth
uperconducting films
Current limits
Photovoltaics
Rights
openAccess
License
© 2024 The Authors. Published by American Chemical Society.
id UNIBAGUE2_ae95c4ce133a8724a6ad54e0ef16e74b
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5826
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation
title Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation
spellingShingle Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation
Efecto fotovoltaico
Optical depth
uperconducting films
Current limits
Photovoltaics
title_short Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation
title_full Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation
title_fullStr Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation
title_full_unstemmed Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation
title_sort Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation
dc.creator.fl_str_mv Segura-Gutiérrez, Lina M
Ordoñez, John Edward
González Reyes, Luz Esther
Medina, William Jair
Calderón-Losada, Omar
Lopera, Wilson
Zambrano, Gustavo
Reina, John Henry
dc.contributor.author.none.fl_str_mv Segura-Gutiérrez, Lina M
Ordoñez, John Edward
González Reyes, Luz Esther
Medina, William Jair
Calderón-Losada, Omar
Lopera, Wilson
Zambrano, Gustavo
Reina, John Henry
dc.subject.armarc.none.fl_str_mv Efecto fotovoltaico
topic Efecto fotovoltaico
Optical depth
uperconducting films
Current limits
Photovoltaics
dc.subject.proposal.eng.fl_str_mv Optical depth
uperconducting films
Current limits
Photovoltaics
description The study of YBCO thin films under laser irradiation reveals a significant interplay between their electrical and optical properties. Despite being exposed to energies exceeding the superconducting gap, YBCO retains its superconductivity and shows unexpected resilience. This, together with the photovoltaic effect induced by laser light, opens up possibilities for YBCO-based devices beyond current limits. YBCO thin films were fabricated on SrTiO3 substrates and exhibited a high critical temperature of 88 K. The superconductivity was minimally affected by the applied currents and pulsed laser irradiation, demonstrating its remarkable resilience. In addition, residual resistance and a photovoltaic effect were observed, revealing unique electronic properties. Reflectance measurements have highlighted the significant role of superelectrons in the optical response of YBCO. These findings have the potential to facilitate the development of novel and innovative YBCO-based devices, such as light-modulated superconductors and efficient solar cells.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-11-14
dc.date.accessioned.none.fl_str_mv 2025-10-24T14:13:37Z
dc.date.available.none.fl_str_mv 2025-10-24T14:13:37Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Segura-Gutiérrez, Lina M., Ordoñez, John Edward., González, L., Medina, W., Calderón-Losada, O., Lopera, W., Zambrano, G. y Reina, J. (2024). Journal of Physical Chemistry C, 128(45), 19329 - 19336. DOI: 10.1021/acs.jpcc.4c04291
dc.identifier.doi.none.fl_str_mv 10.1021/acs.jpcc.4c04291
dc.identifier.eissn.none.fl_str_mv 19327455
dc.identifier.issn.none.fl_str_mv 19327447
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5826
dc.identifier.url.none.fl_str_mv https://pubs.acs.org/doi/10.1021/acs.jpcc.4c04291
identifier_str_mv Segura-Gutiérrez, Lina M., Ordoñez, John Edward., González, L., Medina, W., Calderón-Losada, O., Lopera, W., Zambrano, G. y Reina, J. (2024). Journal of Physical Chemistry C, 128(45), 19329 - 19336. DOI: 10.1021/acs.jpcc.4c04291
10.1021/acs.jpcc.4c04291
19327455
19327447
url https://hdl.handle.net/20.500.12313/5826
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c04291
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 19336
dc.relation.citationissue.none.fl_str_mv 45
dc.relation.citationstartpage.none.fl_str_mv 19329
dc.relation.citationvolume.none.fl_str_mv 128
dc.relation.ispartofjournal.none.fl_str_mv Journal of Physical Chemistry C
dc.relation.references.none.fl_str_mv Orlando, T.; Delin, K., Foundations of Applied Superconductivity, Electrical Engineering Series; Addison-Wesley, 1991
Jurkutat, M.; Kattinger, C.; Tsankov, S.; Reznicek, R.; Erb, A.; Haase, J. How pressure enhances the critical temperature of superconductivity in YBa2Cu3O6+y. Proc. Natl. Acad. Sci. U.S.A. 2023, 120 (2), No. e2215458120
Cyr-Choiniere, ̀ O.; LeBoeuf, D.; Badoux, S.; Dufour-Beauséjour, S.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Graf, D.; Doiron-Leyraud, N.; Taillefer, L. Sensitivity of Tc to pressure and magnetic field in the cuprate superconductor YBa2Cu3Od Evidence of charge-order suppression by pressure. Phys. Rev. B 2018, 98 (6), 064513.
Alcala,̀ J.; Fernández-Rodríguez, A.; Günkel, T.; Barrera, A.; Cabero, M.; Gazquez, J.; Balcells, L.; Mestres, N.; Palau, A. Tuning the superconducting performance of YBa2Cu3O7−δ films through field-induced oxygen doping. Sci. Rep. 2024, 14 (1), 1939.
Tolendiuly, S.; Sovet, A.; Fomenko, S. Effect of doping on phase formation in YBCO composites. J. Compos. Sci. 2023, 7 (12), 517
Chouk, W.; Moualhi, K.; Othmani, A.; Zouaoui, M. Study of phase transition behavior and high dielectric properties in YBa2−xCaxCu3Oδ ceramics. Mater. Chem. Phys. 2024, 314, 128795.
Sarkar, M. R. H.; Naqib, S. H. Magnetic field-and frequencydependent study of the AC susceptibility of high-Tc YBCO single crystal. J. Supercond. Nov. Magn. 2022, 35 (5), 1059−1070.
Honma, T.; Sato, S.; Sato, K.; Watanabe, M.; Saito, A.; Koike, K.; Kato, H.; Ohshima, S. Microwave surface resistance of YBCO superconducting thin films under high DC magnetic field. Physica C: Superconductivity 2013, 484, 46−48.
Congreve, J. V. J.; Shi, Y.; Druiff, H.; Dennis, A. R.; Taylor, R. W.; Bumby, C. W.; Cardwell, D. A.; Durrell, J. H. Optimisation of the processing parameters for the fabrication of high-quality joints between Y-Ba-Cu-O single grain, bulk superconductors. Supercond. Sci. Technol. 2024, 37, 035010
Baumann, J.; Shi, Y.; Dennis, A. R.; Durrell, J. H.; Cardwell, D. A. The influence of porosity on the superconducting properties of Y− Ba−Cu−O single grains. Supercond. Sci. Technol. 2023, 36 (8), 085020
Chen, X.; Tao, B.; Zhao, R.; Yang, K.; Xia, Y.; Wang, Q.; Li, Z.; Xie, T. Angle-and thickness-dependent response characteristics of YBa2Cu3O7−δ-based atomic-layer thermopile heat flux sensors. IEEE Sens. J. 2023, 23, 27053−27058
Gaffoor, M. Z.; Jarvis, A. L. L.; Archer, J. C. Investigating the critical transitional temperature increase in graphene oxide doped bulk YBCO. Results Phys. 2023, 44, 106140
Federici, J. F.; Bubb, D. M. The role of defects in persistent photoconductivity in YBa2Cu3O6+x. J. Supercond. 2001, 14, 331−340.
González, L. E.; Ordoñez, J. E.; Melo-Luna, C. A.; Mendoza, E.; Reyes, D.; Zambrano, G.; Porras-Montenegro, N.; Granada, J. C.; Gómez, M. E.; Reina, J. H. Experimental realisation of tunable ferroelectric/superconductor (BTO/YBCO)n/STO 1D photonic crystals in the whole visible spectrum. Sci. Rep. 2020, 10, 13083.
González, L. E.; Segura-Gutierrez, L. M.; Ordoñez, J. E.; Zambrano, G.; Reina, J. H. A multichannel superconductor-based photonic crystal optical filter tunable in the visible and telecom windows at cryogenic temperature. Photonics 2022, 9, 485
Yu, G.; Heeger, A. J.; Stucky, G.; Herron, N.; McCarron, E. M. Transient photoinduced conductivity in semiconducting single crystals of YBa2Cu3O6.3: search for photoinduced metallic state and for photoinduced superconductivity. Solid State Commun. 1989, 72 (4), 345−349
Kudinov, V. I.; Kirilyuk, A. I.; Kreines, N. M.; Laiho, R.; Lähderanta, E. Photoinduced superconductivity in YBaCuO7 films. Phys. Lett. A 1990, 151 (6−7), 358−364.
Kityk, I. V.; Kolinko, M. I. Photostimulated phase transitions in high-Tc superconductors and the origin of the superconductivity. Phys. Status Solidi B 1994, 185 (2), 429−438.
Tanabe, K.; Kubo, S.; Hosseini Teherani, F.; Asano, H.; Suzuki, M. Effects of photoinduced hole doping on normal-state and superconducting transport in oxygen-deficient YBa2Cu3Oy. Phys. Rev. Lett. 1994, 72 (10), 1537−1540.
Hage, R. E.; D., Sánchez-Manzano, Humbert, V.; Carreira, S. J.; Rouco, V.; Sander, A.; Cuellar, F.; Seurre, K.; Lagarrigue, A.; et al., “Disentangling photodoping, photoconductivity, and photosuperconductivity in the cuprates”, arXiv preprint arXiv:2310.02761, Condensed Matter: Superconductivity, 2023. accessed 2024−10−03.
Markowitsch, W.; Altenburger, A.; Lang, W.; Peruzzi, M.; Pedarnig, J. D.; Bäuerle, D. Persistent photoconductivity in YBa2Cu3Ox by visible and UV excitation below Tc. Phys. C 2004, 405 (2), 173−178
Yang, F.; Zhang, H.; Liu, Z. Y.; Jiang, Y.; Han, M. Y.; Chang, F. Photovoltaic effect of YBa2Cu3O6+x/SrTiO3: Nb heterojunction annealed in different oxygen partial pressure. Mater. Lett. 2014, 130, 51−53
Yang, F.; Han, M. Y.; Chang, F. G. Origin of photovoltaic effect in superconducting YBa2Cu3O6.96 ceramics. Sci. Rep. 2015, 5 (1), 11504.
Tulina, N. A.; Rossolenko, A. N.; Borisenko, I. Y.; Ivanov, A. A. Multilevel memristive structures based on YBa2Cu3O7−δ epitaxial films. Russ. Microelectron. 2023, 52 (4), 283−289.
Liu, X.; Liu, J.; Li, W.; Sheng, Q.; He, Y.; Jia, J. I−V characteristics of Pt/HfO2/YBa2Cu3O7−x heterostructures. Mater. Sci. Semicond. Process. 2024, 173, 108166.
Dai, W.; Jia, J.; Liu, C. Electrical properties of Pb0.92La0.08(Zr0.52Ti0.48)O3/YBa2Cu3O7−δ heterostructures. Phys. C: Supercond. Appl. 2023, 607, 1354242
Yang, F.; Liu, H.; Liu, H.; Lu, Q.; Chang, F. Polarity switching of the photo-induced voltage in YBCO/Ag heterojunction. J. Phys. Chem. Solids 2020, 138, 109232.
Murray, P. D.; Gilbert, D. A.; Grutter, A. J.; Kirby, B. J.; Hernandez-Maldonado, D.; Varela, M.; Brubaker, Z. E.; Liyanage, W. L. N. C.; Chopdekar, R. V.; Taufour, V.; et al. Interfacial-redoxinduced tuning of superconductivity in YBa2Cu3O7−δ. ACS Appl. Mater. Interfaces 2020, 12 (4), 4741−4748.
Nurgaliev, T.; Beshkova, M. Estimation of HTS electrodes properties for use in piezoelectric resonators. J. Phys.: Conf. Ser. 2020, 1492 (1), 012016
Xia, Y.; Song, M.; Ma, T.; Xu, Y. Research on current distribution characteristics of the superconducting cable with YBCO tapes. J. Supercond. Novel Magn. 2024, 37, 301−310.
Lagarrigue, A.; C., de Dios, Mesoraca, S.; Carreira, S.; Humbert, V.; Briatico, J.; Trastoy, J., Villegas, J. E., ”Memristive effects in YBa2Cu3O7−x devices with transistor-like structure, arXiv preprint arXiv:2306.12373, Condensed Matter: Superconductivity, accessed 2024−10−03.
Schmid, A.; Baiutti, F.; Tarancon, A.; Fleig, J. A high temperature harvestorer based on a photovoltaic cell and an oxygen ion battery. ACS Appl. Energy Mater. 2023, 7, 205−213.
El Hage, R.; Humbert, V.; Rouco, V.; Sánchez-Santolino, G.; Lagarrigue, A.; Seurre, K.; Carreira, S. J.; Sander, A.; Charliac, J.; Mesoraca, S.; et al. Bimodal ionic photomemristor based on a hightemperature oxide superconductor/semiconductor junction. Nat. Commun. 2023, 14 (1), 3010
Valentini, M.; Sagi, O.; Baghumyan, L.; de Gijsel, T.; Jung, J.; Calcaterra, S.; Ballabio, A.; Aguilera Servin, J.; Aggarwal, K.; Janik, M.; et al. Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium. Nat. Commun. 2024, 15 (1), 169.
Katsumi, K.; Nishida, M.; Kaiser, S.; Miyasaka, S.; Tajima, S.; Shimano, R. Near-infrared light-induced superconducting-like state in underdoped Y Ba2Cu3Oy studied by c-axis terahertz third-harmonic generation. Phys. Rev. B 2023, 107 (21), 214506.
) Rowe, E.; Yuan, B.; Buzzi, M.; Jotzu, G.; Zhu, Y.; Fechner, M.; Först, M.; Liu, B.; Pontiroli, D.; Ricco, ̀ M.; et al. Resonant enhancement of photo-induced superconductivity in K3C60. Nat. Phys. 2023, 19 (12), 1821−1826
Fava, S.; De Vecchi, G.; Jotzu, G.; Buzzi, M.; Gebert, T.; Liu, Y.; Keimer, B.; Cavalleri, A. Magnetic field expulsion in optically driven YBa2Cu3O6.48. Nature 2024, 632, 75−80.
Chou, T.-H.; Först, M.; Fechner, M.; Henstridge, M.; Roy, S.; Buzzi, M.; Nicoletti, D.; Liu, Y.; Nakata, S.; Keimer, B.; et al. Ultrafast Raman thermometry in driven YBa2Cu3O6.48. Phys. Rev. B 2024, 109, 195141
Katsumi, K.; Nishida, M.; Kaiser, S.; Miyasaka, S.; Tajima, S.; Shimano, R. Near-infrared light-induced superconducting-like state in underdoped YBa2Cu3Oy studied by c-axis terahertz third-harmonic generation. Phys. Rev. B 2023, 107, 214506.
Zhang, S. J.; Wang, Z. X.; Xiang, H.; Yao, X.; Liu, Q. M.; Shi, L. Y.; Lin, T.; Dong, T.; Wu, D.; Wang, N. L. Photoinduced nonequilibrium response in underdoped YBa2Cu3O6+x probed by time-resolved terahertz spectroscopy. Phys. Rev. X 2020, 10, 011056.
Sumanth, A.; Ganapathi, K. L.; Rao, M. S. R.; Dixit, T. A review on realizing the modern optoelectronic applications through persistent photoconductivity. J. Phys. D: Appl. Phys. 2022, 55 (39), 393001.
Emetere, M. E. Yttrium cuprates modification in linear generator application for power generation. Clean Energy 2024, 8 (5), 229−240.
Hannachi, E.; Sayyed, M. I.; Slimani, Y.; Mahmoud, K. A. Assessment of shielding efficiency of highly energetic electromagnetic radiation for lead-free cuprate-class material: Effect of MnFe2O4 ratios. Inorg. Chem. Commun. 2024, 169, 112996
Nadeem, M.; Fuhrer, M. S.; Wang, X. The superconducting diode effect. Nat. Rev. Phys. 2023, 5 (10), 558−577.
Lang, W.; Puica, I.; Peruzzi, M.; Lemmermann, K.; Pedarnig, J. D.; Bäuerle, D. Depairing current and superconducting transition of YBCO at intense pulsed currents. Phys. Status Solidi C 2005, 2 (5), 1615−1624.
) Inam, A.; Wu, X. D.; Venkatesan, T.; Ogale, S. B.; Chang, C. C.; Dijkkamp, D. Pulsed laser etching of high Tc superconducting films. Appl. Phys. Lett. 1987, 51, 1112−1114
Buckel, W.; Kleiner, R. Superconductivity: Fundamentals and Applications; John Wiley & Sons, 2008
Chrisey, D. B.; Maisch, W. G.; Summers, G. P.; Knudson, A. R. The influence of radiation damage on the superconducting properties of thin film YBa2Cu3O7−d. IEEE Trans. Nucl. Sci. 1988, 35 (6), 1456− 1460.
Wei-Kan, C.; Liu, J. R. Radiation effects of high-Tc superconductors. Nucl. Instrum. Methods Phys. Res., B 1991, 59, 1447−1457.
Tolpygo, S. K.; Lin, J. Y.; Gurvitch, M.; Hou, S. Y.; Phillips, J. M. Effect of oxygen defects on transport properties and Tc of YBa2Cu3O6+x: Displacement energy for plane and chain oxygen and implications for irradiation-induced resistivity and Tc suppression. Phys. Rev. B 1996, 53 (18), 12462−12474
Poole, C. P.; Farach, H. A.; Creswick, R. J.; Prozorov, R. Superconductivity; Elsevier, 2014.
dc.rights.none.fl_str_mv © 2024 The Authors. Published by American Chemical Society.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv © 2024 The Authors. Published by American Chemical Society.
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
dc.publisher.place.none.fl_str_mv Estados Unidos
publisher.none.fl_str_mv American Chemical Society
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/1abdc8ee-38ad-47ae-bb4d-87d0bb75e788/download
https://repositorio.unibague.edu.co/bitstreams/60674257-bdd5-4eee-89f6-8460657b3fb2/download
https://repositorio.unibague.edu.co/bitstreams/5c674e30-ebe7-43a8-8ee5-7381d4a361e0/download
https://repositorio.unibague.edu.co/bitstreams/e7e54782-13fe-4fde-8274-9000ace6f539/download
bitstream.checksum.fl_str_mv 2fa3e590786b9c0f3ceba1b9656b7ac3
8570a54da180835f01e294c029f7bf85
80f11f79a2846bea61cd717e3aa6cc6c
abab90b6cfd56316a1cda637849b8385
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059981148749824
spelling Segura-Gutiérrez, Lina Mac22d33b-bdfb-4bba-8720-dc27d648c9fc-1Ordoñez, John Edward26b80af1-b2b5-46fd-9cb5-807a6390d958-1González Reyes, Luz Esther4304434f-d804-4367-9627-56592509f554-1Medina, William Jaire0680bc2-734a-4633-ba6a-d6d8b8d2ebf0-1Calderón-Losada, Omar71d7178b-26eb-4650-b369-e54071236133-1Lopera, Wilson96ad9620-a798-44ca-af2d-beb6b1700763-1Zambrano, Gustavo676d2066-6621-4afb-94d5-e4974db68220-1Reina, John Henry21ba5e8d-625a-48dd-9579-b813532d94e1-12025-10-24T14:13:37Z2025-10-24T14:13:37Z2024-11-14The study of YBCO thin films under laser irradiation reveals a significant interplay between their electrical and optical properties. Despite being exposed to energies exceeding the superconducting gap, YBCO retains its superconductivity and shows unexpected resilience. This, together with the photovoltaic effect induced by laser light, opens up possibilities for YBCO-based devices beyond current limits. YBCO thin films were fabricated on SrTiO3 substrates and exhibited a high critical temperature of 88 K. The superconductivity was minimally affected by the applied currents and pulsed laser irradiation, demonstrating its remarkable resilience. In addition, residual resistance and a photovoltaic effect were observed, revealing unique electronic properties. Reflectance measurements have highlighted the significant role of superelectrons in the optical response of YBCO. These findings have the potential to facilitate the development of novel and innovative YBCO-based devices, such as light-modulated superconductors and efficient solar cells.application/pdfSegura-Gutiérrez, Lina M., Ordoñez, John Edward., González, L., Medina, W., Calderón-Losada, O., Lopera, W., Zambrano, G. y Reina, J. (2024). Journal of Physical Chemistry C, 128(45), 19329 - 19336. DOI: 10.1021/acs.jpcc.4c0429110.1021/acs.jpcc.4c042911932745519327447https://hdl.handle.net/20.500.12313/5826https://pubs.acs.org/doi/10.1021/acs.jpcc.4c04291engAmerican Chemical SocietyEstados Unidos193364519329128Journal of Physical Chemistry COrlando, T.; Delin, K., Foundations of Applied Superconductivity, Electrical Engineering Series; Addison-Wesley, 1991Jurkutat, M.; Kattinger, C.; Tsankov, S.; Reznicek, R.; Erb, A.; Haase, J. How pressure enhances the critical temperature of superconductivity in YBa2Cu3O6+y. Proc. Natl. Acad. Sci. U.S.A. 2023, 120 (2), No. e2215458120Cyr-Choiniere, ̀ O.; LeBoeuf, D.; Badoux, S.; Dufour-Beauséjour, S.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Graf, D.; Doiron-Leyraud, N.; Taillefer, L. Sensitivity of Tc to pressure and magnetic field in the cuprate superconductor YBa2Cu3Od Evidence of charge-order suppression by pressure. Phys. Rev. B 2018, 98 (6), 064513.Alcala,̀ J.; Fernández-Rodríguez, A.; Günkel, T.; Barrera, A.; Cabero, M.; Gazquez, J.; Balcells, L.; Mestres, N.; Palau, A. Tuning the superconducting performance of YBa2Cu3O7−δ films through field-induced oxygen doping. Sci. Rep. 2024, 14 (1), 1939.Tolendiuly, S.; Sovet, A.; Fomenko, S. Effect of doping on phase formation in YBCO composites. J. Compos. Sci. 2023, 7 (12), 517Chouk, W.; Moualhi, K.; Othmani, A.; Zouaoui, M. Study of phase transition behavior and high dielectric properties in YBa2−xCaxCu3Oδ ceramics. Mater. Chem. Phys. 2024, 314, 128795.Sarkar, M. R. H.; Naqib, S. H. Magnetic field-and frequencydependent study of the AC susceptibility of high-Tc YBCO single crystal. J. Supercond. Nov. Magn. 2022, 35 (5), 1059−1070.Honma, T.; Sato, S.; Sato, K.; Watanabe, M.; Saito, A.; Koike, K.; Kato, H.; Ohshima, S. Microwave surface resistance of YBCO superconducting thin films under high DC magnetic field. Physica C: Superconductivity 2013, 484, 46−48.Congreve, J. V. J.; Shi, Y.; Druiff, H.; Dennis, A. R.; Taylor, R. W.; Bumby, C. W.; Cardwell, D. A.; Durrell, J. H. Optimisation of the processing parameters for the fabrication of high-quality joints between Y-Ba-Cu-O single grain, bulk superconductors. Supercond. Sci. Technol. 2024, 37, 035010Baumann, J.; Shi, Y.; Dennis, A. R.; Durrell, J. H.; Cardwell, D. A. The influence of porosity on the superconducting properties of Y− Ba−Cu−O single grains. Supercond. Sci. Technol. 2023, 36 (8), 085020Chen, X.; Tao, B.; Zhao, R.; Yang, K.; Xia, Y.; Wang, Q.; Li, Z.; Xie, T. Angle-and thickness-dependent response characteristics of YBa2Cu3O7−δ-based atomic-layer thermopile heat flux sensors. IEEE Sens. J. 2023, 23, 27053−27058Gaffoor, M. Z.; Jarvis, A. L. L.; Archer, J. C. Investigating the critical transitional temperature increase in graphene oxide doped bulk YBCO. Results Phys. 2023, 44, 106140Federici, J. F.; Bubb, D. M. The role of defects in persistent photoconductivity in YBa2Cu3O6+x. J. Supercond. 2001, 14, 331−340.González, L. E.; Ordoñez, J. E.; Melo-Luna, C. A.; Mendoza, E.; Reyes, D.; Zambrano, G.; Porras-Montenegro, N.; Granada, J. C.; Gómez, M. E.; Reina, J. H. Experimental realisation of tunable ferroelectric/superconductor (BTO/YBCO)n/STO 1D photonic crystals in the whole visible spectrum. Sci. Rep. 2020, 10, 13083.González, L. E.; Segura-Gutierrez, L. M.; Ordoñez, J. E.; Zambrano, G.; Reina, J. H. A multichannel superconductor-based photonic crystal optical filter tunable in the visible and telecom windows at cryogenic temperature. Photonics 2022, 9, 485Yu, G.; Heeger, A. J.; Stucky, G.; Herron, N.; McCarron, E. M. Transient photoinduced conductivity in semiconducting single crystals of YBa2Cu3O6.3: search for photoinduced metallic state and for photoinduced superconductivity. Solid State Commun. 1989, 72 (4), 345−349Kudinov, V. I.; Kirilyuk, A. I.; Kreines, N. M.; Laiho, R.; Lähderanta, E. Photoinduced superconductivity in YBaCuO7 films. Phys. Lett. A 1990, 151 (6−7), 358−364.Kityk, I. V.; Kolinko, M. I. Photostimulated phase transitions in high-Tc superconductors and the origin of the superconductivity. Phys. Status Solidi B 1994, 185 (2), 429−438.Tanabe, K.; Kubo, S.; Hosseini Teherani, F.; Asano, H.; Suzuki, M. Effects of photoinduced hole doping on normal-state and superconducting transport in oxygen-deficient YBa2Cu3Oy. Phys. Rev. Lett. 1994, 72 (10), 1537−1540.Hage, R. E.; D., Sánchez-Manzano, Humbert, V.; Carreira, S. J.; Rouco, V.; Sander, A.; Cuellar, F.; Seurre, K.; Lagarrigue, A.; et al., “Disentangling photodoping, photoconductivity, and photosuperconductivity in the cuprates”, arXiv preprint arXiv:2310.02761, Condensed Matter: Superconductivity, 2023. accessed 2024−10−03.Markowitsch, W.; Altenburger, A.; Lang, W.; Peruzzi, M.; Pedarnig, J. D.; Bäuerle, D. Persistent photoconductivity in YBa2Cu3Ox by visible and UV excitation below Tc. Phys. C 2004, 405 (2), 173−178Yang, F.; Zhang, H.; Liu, Z. Y.; Jiang, Y.; Han, M. Y.; Chang, F. Photovoltaic effect of YBa2Cu3O6+x/SrTiO3: Nb heterojunction annealed in different oxygen partial pressure. Mater. Lett. 2014, 130, 51−53Yang, F.; Han, M. Y.; Chang, F. G. Origin of photovoltaic effect in superconducting YBa2Cu3O6.96 ceramics. Sci. Rep. 2015, 5 (1), 11504.Tulina, N. A.; Rossolenko, A. N.; Borisenko, I. Y.; Ivanov, A. A. Multilevel memristive structures based on YBa2Cu3O7−δ epitaxial films. Russ. Microelectron. 2023, 52 (4), 283−289.Liu, X.; Liu, J.; Li, W.; Sheng, Q.; He, Y.; Jia, J. I−V characteristics of Pt/HfO2/YBa2Cu3O7−x heterostructures. Mater. Sci. Semicond. Process. 2024, 173, 108166.Dai, W.; Jia, J.; Liu, C. Electrical properties of Pb0.92La0.08(Zr0.52Ti0.48)O3/YBa2Cu3O7−δ heterostructures. Phys. C: Supercond. Appl. 2023, 607, 1354242Yang, F.; Liu, H.; Liu, H.; Lu, Q.; Chang, F. Polarity switching of the photo-induced voltage in YBCO/Ag heterojunction. J. Phys. Chem. Solids 2020, 138, 109232.Murray, P. D.; Gilbert, D. A.; Grutter, A. J.; Kirby, B. J.; Hernandez-Maldonado, D.; Varela, M.; Brubaker, Z. E.; Liyanage, W. L. N. C.; Chopdekar, R. V.; Taufour, V.; et al. Interfacial-redoxinduced tuning of superconductivity in YBa2Cu3O7−δ. ACS Appl. Mater. Interfaces 2020, 12 (4), 4741−4748.Nurgaliev, T.; Beshkova, M. Estimation of HTS electrodes properties for use in piezoelectric resonators. J. Phys.: Conf. Ser. 2020, 1492 (1), 012016Xia, Y.; Song, M.; Ma, T.; Xu, Y. Research on current distribution characteristics of the superconducting cable with YBCO tapes. J. Supercond. Novel Magn. 2024, 37, 301−310.Lagarrigue, A.; C., de Dios, Mesoraca, S.; Carreira, S.; Humbert, V.; Briatico, J.; Trastoy, J., Villegas, J. E., ”Memristive effects in YBa2Cu3O7−x devices with transistor-like structure, arXiv preprint arXiv:2306.12373, Condensed Matter: Superconductivity, accessed 2024−10−03.Schmid, A.; Baiutti, F.; Tarancon, A.; Fleig, J. A high temperature harvestorer based on a photovoltaic cell and an oxygen ion battery. ACS Appl. Energy Mater. 2023, 7, 205−213.El Hage, R.; Humbert, V.; Rouco, V.; Sánchez-Santolino, G.; Lagarrigue, A.; Seurre, K.; Carreira, S. J.; Sander, A.; Charliac, J.; Mesoraca, S.; et al. Bimodal ionic photomemristor based on a hightemperature oxide superconductor/semiconductor junction. Nat. Commun. 2023, 14 (1), 3010Valentini, M.; Sagi, O.; Baghumyan, L.; de Gijsel, T.; Jung, J.; Calcaterra, S.; Ballabio, A.; Aguilera Servin, J.; Aggarwal, K.; Janik, M.; et al. Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium. Nat. Commun. 2024, 15 (1), 169.Katsumi, K.; Nishida, M.; Kaiser, S.; Miyasaka, S.; Tajima, S.; Shimano, R. Near-infrared light-induced superconducting-like state in underdoped Y Ba2Cu3Oy studied by c-axis terahertz third-harmonic generation. Phys. Rev. B 2023, 107 (21), 214506.) Rowe, E.; Yuan, B.; Buzzi, M.; Jotzu, G.; Zhu, Y.; Fechner, M.; Först, M.; Liu, B.; Pontiroli, D.; Ricco, ̀ M.; et al. Resonant enhancement of photo-induced superconductivity in K3C60. Nat. Phys. 2023, 19 (12), 1821−1826Fava, S.; De Vecchi, G.; Jotzu, G.; Buzzi, M.; Gebert, T.; Liu, Y.; Keimer, B.; Cavalleri, A. Magnetic field expulsion in optically driven YBa2Cu3O6.48. Nature 2024, 632, 75−80.Chou, T.-H.; Först, M.; Fechner, M.; Henstridge, M.; Roy, S.; Buzzi, M.; Nicoletti, D.; Liu, Y.; Nakata, S.; Keimer, B.; et al. Ultrafast Raman thermometry in driven YBa2Cu3O6.48. Phys. Rev. B 2024, 109, 195141Katsumi, K.; Nishida, M.; Kaiser, S.; Miyasaka, S.; Tajima, S.; Shimano, R. Near-infrared light-induced superconducting-like state in underdoped YBa2Cu3Oy studied by c-axis terahertz third-harmonic generation. Phys. Rev. B 2023, 107, 214506.Zhang, S. J.; Wang, Z. X.; Xiang, H.; Yao, X.; Liu, Q. M.; Shi, L. Y.; Lin, T.; Dong, T.; Wu, D.; Wang, N. L. Photoinduced nonequilibrium response in underdoped YBa2Cu3O6+x probed by time-resolved terahertz spectroscopy. Phys. Rev. X 2020, 10, 011056.Sumanth, A.; Ganapathi, K. L.; Rao, M. S. R.; Dixit, T. A review on realizing the modern optoelectronic applications through persistent photoconductivity. J. Phys. D: Appl. Phys. 2022, 55 (39), 393001.Emetere, M. E. Yttrium cuprates modification in linear generator application for power generation. Clean Energy 2024, 8 (5), 229−240.Hannachi, E.; Sayyed, M. I.; Slimani, Y.; Mahmoud, K. A. Assessment of shielding efficiency of highly energetic electromagnetic radiation for lead-free cuprate-class material: Effect of MnFe2O4 ratios. Inorg. Chem. Commun. 2024, 169, 112996Nadeem, M.; Fuhrer, M. S.; Wang, X. The superconducting diode effect. Nat. Rev. Phys. 2023, 5 (10), 558−577.Lang, W.; Puica, I.; Peruzzi, M.; Lemmermann, K.; Pedarnig, J. D.; Bäuerle, D. Depairing current and superconducting transition of YBCO at intense pulsed currents. Phys. Status Solidi C 2005, 2 (5), 1615−1624.) Inam, A.; Wu, X. D.; Venkatesan, T.; Ogale, S. B.; Chang, C. C.; Dijkkamp, D. Pulsed laser etching of high Tc superconducting films. Appl. Phys. Lett. 1987, 51, 1112−1114Buckel, W.; Kleiner, R. Superconductivity: Fundamentals and Applications; John Wiley & Sons, 2008Chrisey, D. B.; Maisch, W. G.; Summers, G. P.; Knudson, A. R. The influence of radiation damage on the superconducting properties of thin film YBa2Cu3O7−d. IEEE Trans. Nucl. Sci. 1988, 35 (6), 1456− 1460.Wei-Kan, C.; Liu, J. R. Radiation effects of high-Tc superconductors. Nucl. Instrum. Methods Phys. Res., B 1991, 59, 1447−1457.Tolpygo, S. K.; Lin, J. Y.; Gurvitch, M.; Hou, S. Y.; Phillips, J. M. Effect of oxygen defects on transport properties and Tc of YBa2Cu3O6+x: Displacement energy for plane and chain oxygen and implications for irradiation-induced resistivity and Tc suppression. Phys. Rev. B 1996, 53 (18), 12462−12474Poole, C. P.; Farach, H. A.; Creswick, R. J.; Prozorov, R. Superconductivity; Elsevier, 2014.© 2024 The Authors. Published by American Chemical Society.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/Efecto fotovoltaicoOptical depthuperconducting filmsCurrent limitsPhotovoltaicsPersistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser IrradiationArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/1abdc8ee-38ad-47ae-bb4d-87d0bb75e788/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf836797https://repositorio.unibague.edu.co/bitstreams/60674257-bdd5-4eee-89f6-8460657b3fb2/download8570a54da180835f01e294c029f7bf85MD52TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain4817https://repositorio.unibague.edu.co/bitstreams/5c674e30-ebe7-43a8-8ee5-7381d4a361e0/download80f11f79a2846bea61cd717e3aa6cc6cMD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg35640https://repositorio.unibague.edu.co/bitstreams/e7e54782-13fe-4fde-8274-9000ace6f539/downloadabab90b6cfd56316a1cda637849b8385MD5420.500.12313/5826oai:repositorio.unibague.edu.co:20.500.12313/58262025-10-25 03:02:04.08https://creativecommons.org/licenses/by-nc/4.0/© 2024 The Authors. Published by American Chemical Society.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=