Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation
The study of YBCO thin films under laser irradiation reveals a significant interplay between their electrical and optical properties. Despite being exposed to energies exceeding the superconducting gap, YBCO retains its superconductivity and shows unexpected resilience. This, together with the photo...
- Autores:
-
Segura-Gutiérrez, Lina M
Ordoñez, John Edward
González Reyes, Luz Esther
Medina, William Jair
Calderón-Losada, Omar
Lopera, Wilson
Zambrano, Gustavo
Reina, John Henry
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5826
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/5826
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c04291
- Palabra clave:
- Efecto fotovoltaico
Optical depth
uperconducting films
Current limits
Photovoltaics
- Rights
- openAccess
- License
- © 2024 The Authors. Published by American Chemical Society.
| id |
UNIBAGUE2_ae95c4ce133a8724a6ad54e0ef16e74b |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5826 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation |
| title |
Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation |
| spellingShingle |
Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation Efecto fotovoltaico Optical depth uperconducting films Current limits Photovoltaics |
| title_short |
Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation |
| title_full |
Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation |
| title_fullStr |
Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation |
| title_full_unstemmed |
Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation |
| title_sort |
Persistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser Irradiation |
| dc.creator.fl_str_mv |
Segura-Gutiérrez, Lina M Ordoñez, John Edward González Reyes, Luz Esther Medina, William Jair Calderón-Losada, Omar Lopera, Wilson Zambrano, Gustavo Reina, John Henry |
| dc.contributor.author.none.fl_str_mv |
Segura-Gutiérrez, Lina M Ordoñez, John Edward González Reyes, Luz Esther Medina, William Jair Calderón-Losada, Omar Lopera, Wilson Zambrano, Gustavo Reina, John Henry |
| dc.subject.armarc.none.fl_str_mv |
Efecto fotovoltaico |
| topic |
Efecto fotovoltaico Optical depth uperconducting films Current limits Photovoltaics |
| dc.subject.proposal.eng.fl_str_mv |
Optical depth uperconducting films Current limits Photovoltaics |
| description |
The study of YBCO thin films under laser irradiation reveals a significant interplay between their electrical and optical properties. Despite being exposed to energies exceeding the superconducting gap, YBCO retains its superconductivity and shows unexpected resilience. This, together with the photovoltaic effect induced by laser light, opens up possibilities for YBCO-based devices beyond current limits. YBCO thin films were fabricated on SrTiO3 substrates and exhibited a high critical temperature of 88 K. The superconductivity was minimally affected by the applied currents and pulsed laser irradiation, demonstrating its remarkable resilience. In addition, residual resistance and a photovoltaic effect were observed, revealing unique electronic properties. Reflectance measurements have highlighted the significant role of superelectrons in the optical response of YBCO. These findings have the potential to facilitate the development of novel and innovative YBCO-based devices, such as light-modulated superconductors and efficient solar cells. |
| publishDate |
2024 |
| dc.date.issued.none.fl_str_mv |
2024-11-14 |
| dc.date.accessioned.none.fl_str_mv |
2025-10-24T14:13:37Z |
| dc.date.available.none.fl_str_mv |
2025-10-24T14:13:37Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
Segura-Gutiérrez, Lina M., Ordoñez, John Edward., González, L., Medina, W., Calderón-Losada, O., Lopera, W., Zambrano, G. y Reina, J. (2024). Journal of Physical Chemistry C, 128(45), 19329 - 19336. DOI: 10.1021/acs.jpcc.4c04291 |
| dc.identifier.doi.none.fl_str_mv |
10.1021/acs.jpcc.4c04291 |
| dc.identifier.eissn.none.fl_str_mv |
19327455 |
| dc.identifier.issn.none.fl_str_mv |
19327447 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/5826 |
| dc.identifier.url.none.fl_str_mv |
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c04291 |
| identifier_str_mv |
Segura-Gutiérrez, Lina M., Ordoñez, John Edward., González, L., Medina, W., Calderón-Losada, O., Lopera, W., Zambrano, G. y Reina, J. (2024). Journal of Physical Chemistry C, 128(45), 19329 - 19336. DOI: 10.1021/acs.jpcc.4c04291 10.1021/acs.jpcc.4c04291 19327455 19327447 |
| url |
https://hdl.handle.net/20.500.12313/5826 https://pubs.acs.org/doi/10.1021/acs.jpcc.4c04291 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.none.fl_str_mv |
19336 |
| dc.relation.citationissue.none.fl_str_mv |
45 |
| dc.relation.citationstartpage.none.fl_str_mv |
19329 |
| dc.relation.citationvolume.none.fl_str_mv |
128 |
| dc.relation.ispartofjournal.none.fl_str_mv |
Journal of Physical Chemistry C |
| dc.relation.references.none.fl_str_mv |
Orlando, T.; Delin, K., Foundations of Applied Superconductivity, Electrical Engineering Series; Addison-Wesley, 1991 Jurkutat, M.; Kattinger, C.; Tsankov, S.; Reznicek, R.; Erb, A.; Haase, J. How pressure enhances the critical temperature of superconductivity in YBa2Cu3O6+y. Proc. Natl. Acad. Sci. U.S.A. 2023, 120 (2), No. e2215458120 Cyr-Choiniere, ̀ O.; LeBoeuf, D.; Badoux, S.; Dufour-Beauséjour, S.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Graf, D.; Doiron-Leyraud, N.; Taillefer, L. Sensitivity of Tc to pressure and magnetic field in the cuprate superconductor YBa2Cu3Od Evidence of charge-order suppression by pressure. Phys. Rev. B 2018, 98 (6), 064513. Alcala,̀ J.; Fernández-Rodríguez, A.; Günkel, T.; Barrera, A.; Cabero, M.; Gazquez, J.; Balcells, L.; Mestres, N.; Palau, A. Tuning the superconducting performance of YBa2Cu3O7−δ films through field-induced oxygen doping. Sci. Rep. 2024, 14 (1), 1939. Tolendiuly, S.; Sovet, A.; Fomenko, S. Effect of doping on phase formation in YBCO composites. J. Compos. Sci. 2023, 7 (12), 517 Chouk, W.; Moualhi, K.; Othmani, A.; Zouaoui, M. Study of phase transition behavior and high dielectric properties in YBa2−xCaxCu3Oδ ceramics. Mater. Chem. Phys. 2024, 314, 128795. Sarkar, M. R. H.; Naqib, S. H. Magnetic field-and frequencydependent study of the AC susceptibility of high-Tc YBCO single crystal. J. Supercond. Nov. Magn. 2022, 35 (5), 1059−1070. Honma, T.; Sato, S.; Sato, K.; Watanabe, M.; Saito, A.; Koike, K.; Kato, H.; Ohshima, S. Microwave surface resistance of YBCO superconducting thin films under high DC magnetic field. Physica C: Superconductivity 2013, 484, 46−48. Congreve, J. V. J.; Shi, Y.; Druiff, H.; Dennis, A. R.; Taylor, R. W.; Bumby, C. W.; Cardwell, D. A.; Durrell, J. H. Optimisation of the processing parameters for the fabrication of high-quality joints between Y-Ba-Cu-O single grain, bulk superconductors. Supercond. Sci. Technol. 2024, 37, 035010 Baumann, J.; Shi, Y.; Dennis, A. R.; Durrell, J. H.; Cardwell, D. A. The influence of porosity on the superconducting properties of Y− Ba−Cu−O single grains. Supercond. Sci. Technol. 2023, 36 (8), 085020 Chen, X.; Tao, B.; Zhao, R.; Yang, K.; Xia, Y.; Wang, Q.; Li, Z.; Xie, T. Angle-and thickness-dependent response characteristics of YBa2Cu3O7−δ-based atomic-layer thermopile heat flux sensors. IEEE Sens. J. 2023, 23, 27053−27058 Gaffoor, M. Z.; Jarvis, A. L. L.; Archer, J. C. Investigating the critical transitional temperature increase in graphene oxide doped bulk YBCO. Results Phys. 2023, 44, 106140 Federici, J. F.; Bubb, D. M. The role of defects in persistent photoconductivity in YBa2Cu3O6+x. J. Supercond. 2001, 14, 331−340. González, L. E.; Ordoñez, J. E.; Melo-Luna, C. A.; Mendoza, E.; Reyes, D.; Zambrano, G.; Porras-Montenegro, N.; Granada, J. C.; Gómez, M. E.; Reina, J. H. Experimental realisation of tunable ferroelectric/superconductor (BTO/YBCO)n/STO 1D photonic crystals in the whole visible spectrum. Sci. Rep. 2020, 10, 13083. González, L. E.; Segura-Gutierrez, L. M.; Ordoñez, J. E.; Zambrano, G.; Reina, J. H. A multichannel superconductor-based photonic crystal optical filter tunable in the visible and telecom windows at cryogenic temperature. Photonics 2022, 9, 485 Yu, G.; Heeger, A. J.; Stucky, G.; Herron, N.; McCarron, E. M. Transient photoinduced conductivity in semiconducting single crystals of YBa2Cu3O6.3: search for photoinduced metallic state and for photoinduced superconductivity. Solid State Commun. 1989, 72 (4), 345−349 Kudinov, V. I.; Kirilyuk, A. I.; Kreines, N. M.; Laiho, R.; Lähderanta, E. Photoinduced superconductivity in YBaCuO7 films. Phys. Lett. A 1990, 151 (6−7), 358−364. Kityk, I. V.; Kolinko, M. I. Photostimulated phase transitions in high-Tc superconductors and the origin of the superconductivity. Phys. Status Solidi B 1994, 185 (2), 429−438. Tanabe, K.; Kubo, S.; Hosseini Teherani, F.; Asano, H.; Suzuki, M. Effects of photoinduced hole doping on normal-state and superconducting transport in oxygen-deficient YBa2Cu3Oy. Phys. Rev. Lett. 1994, 72 (10), 1537−1540. Hage, R. E.; D., Sánchez-Manzano, Humbert, V.; Carreira, S. J.; Rouco, V.; Sander, A.; Cuellar, F.; Seurre, K.; Lagarrigue, A.; et al., “Disentangling photodoping, photoconductivity, and photosuperconductivity in the cuprates”, arXiv preprint arXiv:2310.02761, Condensed Matter: Superconductivity, 2023. accessed 2024−10−03. Markowitsch, W.; Altenburger, A.; Lang, W.; Peruzzi, M.; Pedarnig, J. D.; Bäuerle, D. Persistent photoconductivity in YBa2Cu3Ox by visible and UV excitation below Tc. Phys. C 2004, 405 (2), 173−178 Yang, F.; Zhang, H.; Liu, Z. Y.; Jiang, Y.; Han, M. Y.; Chang, F. Photovoltaic effect of YBa2Cu3O6+x/SrTiO3: Nb heterojunction annealed in different oxygen partial pressure. Mater. Lett. 2014, 130, 51−53 Yang, F.; Han, M. Y.; Chang, F. G. Origin of photovoltaic effect in superconducting YBa2Cu3O6.96 ceramics. Sci. Rep. 2015, 5 (1), 11504. Tulina, N. A.; Rossolenko, A. N.; Borisenko, I. Y.; Ivanov, A. A. Multilevel memristive structures based on YBa2Cu3O7−δ epitaxial films. Russ. Microelectron. 2023, 52 (4), 283−289. Liu, X.; Liu, J.; Li, W.; Sheng, Q.; He, Y.; Jia, J. I−V characteristics of Pt/HfO2/YBa2Cu3O7−x heterostructures. Mater. Sci. Semicond. Process. 2024, 173, 108166. Dai, W.; Jia, J.; Liu, C. Electrical properties of Pb0.92La0.08(Zr0.52Ti0.48)O3/YBa2Cu3O7−δ heterostructures. Phys. C: Supercond. Appl. 2023, 607, 1354242 Yang, F.; Liu, H.; Liu, H.; Lu, Q.; Chang, F. Polarity switching of the photo-induced voltage in YBCO/Ag heterojunction. J. Phys. Chem. Solids 2020, 138, 109232. Murray, P. D.; Gilbert, D. A.; Grutter, A. J.; Kirby, B. J.; Hernandez-Maldonado, D.; Varela, M.; Brubaker, Z. E.; Liyanage, W. L. N. C.; Chopdekar, R. V.; Taufour, V.; et al. Interfacial-redoxinduced tuning of superconductivity in YBa2Cu3O7−δ. ACS Appl. Mater. Interfaces 2020, 12 (4), 4741−4748. Nurgaliev, T.; Beshkova, M. Estimation of HTS electrodes properties for use in piezoelectric resonators. J. Phys.: Conf. Ser. 2020, 1492 (1), 012016 Xia, Y.; Song, M.; Ma, T.; Xu, Y. Research on current distribution characteristics of the superconducting cable with YBCO tapes. J. Supercond. Novel Magn. 2024, 37, 301−310. Lagarrigue, A.; C., de Dios, Mesoraca, S.; Carreira, S.; Humbert, V.; Briatico, J.; Trastoy, J., Villegas, J. E., ”Memristive effects in YBa2Cu3O7−x devices with transistor-like structure, arXiv preprint arXiv:2306.12373, Condensed Matter: Superconductivity, accessed 2024−10−03. Schmid, A.; Baiutti, F.; Tarancon, A.; Fleig, J. A high temperature harvestorer based on a photovoltaic cell and an oxygen ion battery. ACS Appl. Energy Mater. 2023, 7, 205−213. El Hage, R.; Humbert, V.; Rouco, V.; Sánchez-Santolino, G.; Lagarrigue, A.; Seurre, K.; Carreira, S. J.; Sander, A.; Charliac, J.; Mesoraca, S.; et al. Bimodal ionic photomemristor based on a hightemperature oxide superconductor/semiconductor junction. Nat. Commun. 2023, 14 (1), 3010 Valentini, M.; Sagi, O.; Baghumyan, L.; de Gijsel, T.; Jung, J.; Calcaterra, S.; Ballabio, A.; Aguilera Servin, J.; Aggarwal, K.; Janik, M.; et al. Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium. Nat. Commun. 2024, 15 (1), 169. Katsumi, K.; Nishida, M.; Kaiser, S.; Miyasaka, S.; Tajima, S.; Shimano, R. Near-infrared light-induced superconducting-like state in underdoped Y Ba2Cu3Oy studied by c-axis terahertz third-harmonic generation. Phys. Rev. B 2023, 107 (21), 214506. ) Rowe, E.; Yuan, B.; Buzzi, M.; Jotzu, G.; Zhu, Y.; Fechner, M.; Först, M.; Liu, B.; Pontiroli, D.; Ricco, ̀ M.; et al. Resonant enhancement of photo-induced superconductivity in K3C60. Nat. Phys. 2023, 19 (12), 1821−1826 Fava, S.; De Vecchi, G.; Jotzu, G.; Buzzi, M.; Gebert, T.; Liu, Y.; Keimer, B.; Cavalleri, A. Magnetic field expulsion in optically driven YBa2Cu3O6.48. Nature 2024, 632, 75−80. Chou, T.-H.; Först, M.; Fechner, M.; Henstridge, M.; Roy, S.; Buzzi, M.; Nicoletti, D.; Liu, Y.; Nakata, S.; Keimer, B.; et al. Ultrafast Raman thermometry in driven YBa2Cu3O6.48. Phys. Rev. B 2024, 109, 195141 Katsumi, K.; Nishida, M.; Kaiser, S.; Miyasaka, S.; Tajima, S.; Shimano, R. Near-infrared light-induced superconducting-like state in underdoped YBa2Cu3Oy studied by c-axis terahertz third-harmonic generation. Phys. Rev. B 2023, 107, 214506. Zhang, S. J.; Wang, Z. X.; Xiang, H.; Yao, X.; Liu, Q. M.; Shi, L. Y.; Lin, T.; Dong, T.; Wu, D.; Wang, N. L. Photoinduced nonequilibrium response in underdoped YBa2Cu3O6+x probed by time-resolved terahertz spectroscopy. Phys. Rev. X 2020, 10, 011056. Sumanth, A.; Ganapathi, K. L.; Rao, M. S. R.; Dixit, T. A review on realizing the modern optoelectronic applications through persistent photoconductivity. J. Phys. D: Appl. Phys. 2022, 55 (39), 393001. Emetere, M. E. Yttrium cuprates modification in linear generator application for power generation. Clean Energy 2024, 8 (5), 229−240. Hannachi, E.; Sayyed, M. I.; Slimani, Y.; Mahmoud, K. A. Assessment of shielding efficiency of highly energetic electromagnetic radiation for lead-free cuprate-class material: Effect of MnFe2O4 ratios. Inorg. Chem. Commun. 2024, 169, 112996 Nadeem, M.; Fuhrer, M. S.; Wang, X. The superconducting diode effect. Nat. Rev. Phys. 2023, 5 (10), 558−577. Lang, W.; Puica, I.; Peruzzi, M.; Lemmermann, K.; Pedarnig, J. D.; Bäuerle, D. Depairing current and superconducting transition of YBCO at intense pulsed currents. Phys. Status Solidi C 2005, 2 (5), 1615−1624. ) Inam, A.; Wu, X. D.; Venkatesan, T.; Ogale, S. B.; Chang, C. C.; Dijkkamp, D. Pulsed laser etching of high Tc superconducting films. Appl. Phys. Lett. 1987, 51, 1112−1114 Buckel, W.; Kleiner, R. Superconductivity: Fundamentals and Applications; John Wiley & Sons, 2008 Chrisey, D. B.; Maisch, W. G.; Summers, G. P.; Knudson, A. R. The influence of radiation damage on the superconducting properties of thin film YBa2Cu3O7−d. IEEE Trans. Nucl. Sci. 1988, 35 (6), 1456− 1460. Wei-Kan, C.; Liu, J. R. Radiation effects of high-Tc superconductors. Nucl. Instrum. Methods Phys. Res., B 1991, 59, 1447−1457. Tolpygo, S. K.; Lin, J. Y.; Gurvitch, M.; Hou, S. Y.; Phillips, J. M. Effect of oxygen defects on transport properties and Tc of YBa2Cu3O6+x: Displacement energy for plane and chain oxygen and implications for irradiation-induced resistivity and Tc suppression. Phys. Rev. B 1996, 53 (18), 12462−12474 Poole, C. P.; Farach, H. A.; Creswick, R. J.; Prozorov, R. Superconductivity; Elsevier, 2014. |
| dc.rights.none.fl_str_mv |
© 2024 The Authors. Published by American Chemical Society. |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| rights_invalid_str_mv |
© 2024 The Authors. Published by American Chemical Society. http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
American Chemical Society |
| dc.publisher.place.none.fl_str_mv |
Estados Unidos |
| publisher.none.fl_str_mv |
American Chemical Society |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/1abdc8ee-38ad-47ae-bb4d-87d0bb75e788/download https://repositorio.unibague.edu.co/bitstreams/60674257-bdd5-4eee-89f6-8460657b3fb2/download https://repositorio.unibague.edu.co/bitstreams/5c674e30-ebe7-43a8-8ee5-7381d4a361e0/download https://repositorio.unibague.edu.co/bitstreams/e7e54782-13fe-4fde-8274-9000ace6f539/download |
| bitstream.checksum.fl_str_mv |
2fa3e590786b9c0f3ceba1b9656b7ac3 8570a54da180835f01e294c029f7bf85 80f11f79a2846bea61cd717e3aa6cc6c abab90b6cfd56316a1cda637849b8385 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059981148749824 |
| spelling |
Segura-Gutiérrez, Lina Mac22d33b-bdfb-4bba-8720-dc27d648c9fc-1Ordoñez, John Edward26b80af1-b2b5-46fd-9cb5-807a6390d958-1González Reyes, Luz Esther4304434f-d804-4367-9627-56592509f554-1Medina, William Jaire0680bc2-734a-4633-ba6a-d6d8b8d2ebf0-1Calderón-Losada, Omar71d7178b-26eb-4650-b369-e54071236133-1Lopera, Wilson96ad9620-a798-44ca-af2d-beb6b1700763-1Zambrano, Gustavo676d2066-6621-4afb-94d5-e4974db68220-1Reina, John Henry21ba5e8d-625a-48dd-9579-b813532d94e1-12025-10-24T14:13:37Z2025-10-24T14:13:37Z2024-11-14The study of YBCO thin films under laser irradiation reveals a significant interplay between their electrical and optical properties. Despite being exposed to energies exceeding the superconducting gap, YBCO retains its superconductivity and shows unexpected resilience. This, together with the photovoltaic effect induced by laser light, opens up possibilities for YBCO-based devices beyond current limits. YBCO thin films were fabricated on SrTiO3 substrates and exhibited a high critical temperature of 88 K. The superconductivity was minimally affected by the applied currents and pulsed laser irradiation, demonstrating its remarkable resilience. In addition, residual resistance and a photovoltaic effect were observed, revealing unique electronic properties. Reflectance measurements have highlighted the significant role of superelectrons in the optical response of YBCO. These findings have the potential to facilitate the development of novel and innovative YBCO-based devices, such as light-modulated superconductors and efficient solar cells.application/pdfSegura-Gutiérrez, Lina M., Ordoñez, John Edward., González, L., Medina, W., Calderón-Losada, O., Lopera, W., Zambrano, G. y Reina, J. (2024). Journal of Physical Chemistry C, 128(45), 19329 - 19336. DOI: 10.1021/acs.jpcc.4c0429110.1021/acs.jpcc.4c042911932745519327447https://hdl.handle.net/20.500.12313/5826https://pubs.acs.org/doi/10.1021/acs.jpcc.4c04291engAmerican Chemical SocietyEstados Unidos193364519329128Journal of Physical Chemistry COrlando, T.; Delin, K., Foundations of Applied Superconductivity, Electrical Engineering Series; Addison-Wesley, 1991Jurkutat, M.; Kattinger, C.; Tsankov, S.; Reznicek, R.; Erb, A.; Haase, J. How pressure enhances the critical temperature of superconductivity in YBa2Cu3O6+y. Proc. Natl. Acad. Sci. U.S.A. 2023, 120 (2), No. e2215458120Cyr-Choiniere, ̀ O.; LeBoeuf, D.; Badoux, S.; Dufour-Beauséjour, S.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Graf, D.; Doiron-Leyraud, N.; Taillefer, L. Sensitivity of Tc to pressure and magnetic field in the cuprate superconductor YBa2Cu3Od Evidence of charge-order suppression by pressure. Phys. Rev. B 2018, 98 (6), 064513.Alcala,̀ J.; Fernández-Rodríguez, A.; Günkel, T.; Barrera, A.; Cabero, M.; Gazquez, J.; Balcells, L.; Mestres, N.; Palau, A. Tuning the superconducting performance of YBa2Cu3O7−δ films through field-induced oxygen doping. Sci. Rep. 2024, 14 (1), 1939.Tolendiuly, S.; Sovet, A.; Fomenko, S. Effect of doping on phase formation in YBCO composites. J. Compos. Sci. 2023, 7 (12), 517Chouk, W.; Moualhi, K.; Othmani, A.; Zouaoui, M. Study of phase transition behavior and high dielectric properties in YBa2−xCaxCu3Oδ ceramics. Mater. Chem. Phys. 2024, 314, 128795.Sarkar, M. R. H.; Naqib, S. H. Magnetic field-and frequencydependent study of the AC susceptibility of high-Tc YBCO single crystal. J. Supercond. Nov. Magn. 2022, 35 (5), 1059−1070.Honma, T.; Sato, S.; Sato, K.; Watanabe, M.; Saito, A.; Koike, K.; Kato, H.; Ohshima, S. Microwave surface resistance of YBCO superconducting thin films under high DC magnetic field. Physica C: Superconductivity 2013, 484, 46−48.Congreve, J. V. J.; Shi, Y.; Druiff, H.; Dennis, A. R.; Taylor, R. W.; Bumby, C. W.; Cardwell, D. A.; Durrell, J. H. Optimisation of the processing parameters for the fabrication of high-quality joints between Y-Ba-Cu-O single grain, bulk superconductors. Supercond. Sci. Technol. 2024, 37, 035010Baumann, J.; Shi, Y.; Dennis, A. R.; Durrell, J. H.; Cardwell, D. A. The influence of porosity on the superconducting properties of Y− Ba−Cu−O single grains. Supercond. Sci. Technol. 2023, 36 (8), 085020Chen, X.; Tao, B.; Zhao, R.; Yang, K.; Xia, Y.; Wang, Q.; Li, Z.; Xie, T. Angle-and thickness-dependent response characteristics of YBa2Cu3O7−δ-based atomic-layer thermopile heat flux sensors. IEEE Sens. J. 2023, 23, 27053−27058Gaffoor, M. Z.; Jarvis, A. L. L.; Archer, J. C. Investigating the critical transitional temperature increase in graphene oxide doped bulk YBCO. Results Phys. 2023, 44, 106140Federici, J. F.; Bubb, D. M. The role of defects in persistent photoconductivity in YBa2Cu3O6+x. J. Supercond. 2001, 14, 331−340.González, L. E.; Ordoñez, J. E.; Melo-Luna, C. A.; Mendoza, E.; Reyes, D.; Zambrano, G.; Porras-Montenegro, N.; Granada, J. C.; Gómez, M. E.; Reina, J. H. Experimental realisation of tunable ferroelectric/superconductor (BTO/YBCO)n/STO 1D photonic crystals in the whole visible spectrum. Sci. Rep. 2020, 10, 13083.González, L. E.; Segura-Gutierrez, L. M.; Ordoñez, J. E.; Zambrano, G.; Reina, J. H. A multichannel superconductor-based photonic crystal optical filter tunable in the visible and telecom windows at cryogenic temperature. Photonics 2022, 9, 485Yu, G.; Heeger, A. J.; Stucky, G.; Herron, N.; McCarron, E. M. Transient photoinduced conductivity in semiconducting single crystals of YBa2Cu3O6.3: search for photoinduced metallic state and for photoinduced superconductivity. Solid State Commun. 1989, 72 (4), 345−349Kudinov, V. I.; Kirilyuk, A. I.; Kreines, N. M.; Laiho, R.; Lähderanta, E. Photoinduced superconductivity in YBaCuO7 films. Phys. Lett. A 1990, 151 (6−7), 358−364.Kityk, I. V.; Kolinko, M. I. Photostimulated phase transitions in high-Tc superconductors and the origin of the superconductivity. Phys. Status Solidi B 1994, 185 (2), 429−438.Tanabe, K.; Kubo, S.; Hosseini Teherani, F.; Asano, H.; Suzuki, M. Effects of photoinduced hole doping on normal-state and superconducting transport in oxygen-deficient YBa2Cu3Oy. Phys. Rev. Lett. 1994, 72 (10), 1537−1540.Hage, R. E.; D., Sánchez-Manzano, Humbert, V.; Carreira, S. J.; Rouco, V.; Sander, A.; Cuellar, F.; Seurre, K.; Lagarrigue, A.; et al., “Disentangling photodoping, photoconductivity, and photosuperconductivity in the cuprates”, arXiv preprint arXiv:2310.02761, Condensed Matter: Superconductivity, 2023. accessed 2024−10−03.Markowitsch, W.; Altenburger, A.; Lang, W.; Peruzzi, M.; Pedarnig, J. D.; Bäuerle, D. Persistent photoconductivity in YBa2Cu3Ox by visible and UV excitation below Tc. Phys. C 2004, 405 (2), 173−178Yang, F.; Zhang, H.; Liu, Z. Y.; Jiang, Y.; Han, M. Y.; Chang, F. Photovoltaic effect of YBa2Cu3O6+x/SrTiO3: Nb heterojunction annealed in different oxygen partial pressure. Mater. Lett. 2014, 130, 51−53Yang, F.; Han, M. Y.; Chang, F. G. Origin of photovoltaic effect in superconducting YBa2Cu3O6.96 ceramics. Sci. Rep. 2015, 5 (1), 11504.Tulina, N. A.; Rossolenko, A. N.; Borisenko, I. Y.; Ivanov, A. A. Multilevel memristive structures based on YBa2Cu3O7−δ epitaxial films. Russ. Microelectron. 2023, 52 (4), 283−289.Liu, X.; Liu, J.; Li, W.; Sheng, Q.; He, Y.; Jia, J. I−V characteristics of Pt/HfO2/YBa2Cu3O7−x heterostructures. Mater. Sci. Semicond. Process. 2024, 173, 108166.Dai, W.; Jia, J.; Liu, C. Electrical properties of Pb0.92La0.08(Zr0.52Ti0.48)O3/YBa2Cu3O7−δ heterostructures. Phys. C: Supercond. Appl. 2023, 607, 1354242Yang, F.; Liu, H.; Liu, H.; Lu, Q.; Chang, F. Polarity switching of the photo-induced voltage in YBCO/Ag heterojunction. J. Phys. Chem. Solids 2020, 138, 109232.Murray, P. D.; Gilbert, D. A.; Grutter, A. J.; Kirby, B. J.; Hernandez-Maldonado, D.; Varela, M.; Brubaker, Z. E.; Liyanage, W. L. N. C.; Chopdekar, R. V.; Taufour, V.; et al. Interfacial-redoxinduced tuning of superconductivity in YBa2Cu3O7−δ. ACS Appl. Mater. Interfaces 2020, 12 (4), 4741−4748.Nurgaliev, T.; Beshkova, M. Estimation of HTS electrodes properties for use in piezoelectric resonators. J. Phys.: Conf. Ser. 2020, 1492 (1), 012016Xia, Y.; Song, M.; Ma, T.; Xu, Y. Research on current distribution characteristics of the superconducting cable with YBCO tapes. J. Supercond. Novel Magn. 2024, 37, 301−310.Lagarrigue, A.; C., de Dios, Mesoraca, S.; Carreira, S.; Humbert, V.; Briatico, J.; Trastoy, J., Villegas, J. E., ”Memristive effects in YBa2Cu3O7−x devices with transistor-like structure, arXiv preprint arXiv:2306.12373, Condensed Matter: Superconductivity, accessed 2024−10−03.Schmid, A.; Baiutti, F.; Tarancon, A.; Fleig, J. A high temperature harvestorer based on a photovoltaic cell and an oxygen ion battery. ACS Appl. Energy Mater. 2023, 7, 205−213.El Hage, R.; Humbert, V.; Rouco, V.; Sánchez-Santolino, G.; Lagarrigue, A.; Seurre, K.; Carreira, S. J.; Sander, A.; Charliac, J.; Mesoraca, S.; et al. Bimodal ionic photomemristor based on a hightemperature oxide superconductor/semiconductor junction. Nat. Commun. 2023, 14 (1), 3010Valentini, M.; Sagi, O.; Baghumyan, L.; de Gijsel, T.; Jung, J.; Calcaterra, S.; Ballabio, A.; Aguilera Servin, J.; Aggarwal, K.; Janik, M.; et al. Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium. Nat. Commun. 2024, 15 (1), 169.Katsumi, K.; Nishida, M.; Kaiser, S.; Miyasaka, S.; Tajima, S.; Shimano, R. Near-infrared light-induced superconducting-like state in underdoped Y Ba2Cu3Oy studied by c-axis terahertz third-harmonic generation. Phys. Rev. B 2023, 107 (21), 214506.) Rowe, E.; Yuan, B.; Buzzi, M.; Jotzu, G.; Zhu, Y.; Fechner, M.; Först, M.; Liu, B.; Pontiroli, D.; Ricco, ̀ M.; et al. Resonant enhancement of photo-induced superconductivity in K3C60. Nat. Phys. 2023, 19 (12), 1821−1826Fava, S.; De Vecchi, G.; Jotzu, G.; Buzzi, M.; Gebert, T.; Liu, Y.; Keimer, B.; Cavalleri, A. Magnetic field expulsion in optically driven YBa2Cu3O6.48. Nature 2024, 632, 75−80.Chou, T.-H.; Först, M.; Fechner, M.; Henstridge, M.; Roy, S.; Buzzi, M.; Nicoletti, D.; Liu, Y.; Nakata, S.; Keimer, B.; et al. Ultrafast Raman thermometry in driven YBa2Cu3O6.48. Phys. Rev. B 2024, 109, 195141Katsumi, K.; Nishida, M.; Kaiser, S.; Miyasaka, S.; Tajima, S.; Shimano, R. Near-infrared light-induced superconducting-like state in underdoped YBa2Cu3Oy studied by c-axis terahertz third-harmonic generation. Phys. Rev. B 2023, 107, 214506.Zhang, S. J.; Wang, Z. X.; Xiang, H.; Yao, X.; Liu, Q. M.; Shi, L. Y.; Lin, T.; Dong, T.; Wu, D.; Wang, N. L. Photoinduced nonequilibrium response in underdoped YBa2Cu3O6+x probed by time-resolved terahertz spectroscopy. Phys. Rev. X 2020, 10, 011056.Sumanth, A.; Ganapathi, K. L.; Rao, M. S. R.; Dixit, T. A review on realizing the modern optoelectronic applications through persistent photoconductivity. J. Phys. D: Appl. Phys. 2022, 55 (39), 393001.Emetere, M. E. Yttrium cuprates modification in linear generator application for power generation. Clean Energy 2024, 8 (5), 229−240.Hannachi, E.; Sayyed, M. I.; Slimani, Y.; Mahmoud, K. A. Assessment of shielding efficiency of highly energetic electromagnetic radiation for lead-free cuprate-class material: Effect of MnFe2O4 ratios. Inorg. Chem. Commun. 2024, 169, 112996Nadeem, M.; Fuhrer, M. S.; Wang, X. The superconducting diode effect. Nat. Rev. Phys. 2023, 5 (10), 558−577.Lang, W.; Puica, I.; Peruzzi, M.; Lemmermann, K.; Pedarnig, J. D.; Bäuerle, D. Depairing current and superconducting transition of YBCO at intense pulsed currents. Phys. Status Solidi C 2005, 2 (5), 1615−1624.) Inam, A.; Wu, X. D.; Venkatesan, T.; Ogale, S. B.; Chang, C. C.; Dijkkamp, D. Pulsed laser etching of high Tc superconducting films. Appl. Phys. Lett. 1987, 51, 1112−1114Buckel, W.; Kleiner, R. Superconductivity: Fundamentals and Applications; John Wiley & Sons, 2008Chrisey, D. B.; Maisch, W. G.; Summers, G. P.; Knudson, A. R. The influence of radiation damage on the superconducting properties of thin film YBa2Cu3O7−d. IEEE Trans. Nucl. Sci. 1988, 35 (6), 1456− 1460.Wei-Kan, C.; Liu, J. R. Radiation effects of high-Tc superconductors. Nucl. Instrum. Methods Phys. Res., B 1991, 59, 1447−1457.Tolpygo, S. K.; Lin, J. Y.; Gurvitch, M.; Hou, S. Y.; Phillips, J. M. Effect of oxygen defects on transport properties and Tc of YBa2Cu3O6+x: Displacement energy for plane and chain oxygen and implications for irradiation-induced resistivity and Tc suppression. Phys. Rev. B 1996, 53 (18), 12462−12474Poole, C. P.; Farach, H. A.; Creswick, R. J.; Prozorov, R. Superconductivity; Elsevier, 2014.© 2024 The Authors. Published by American Chemical Society.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/Efecto fotovoltaicoOptical depthuperconducting filmsCurrent limitsPhotovoltaicsPersistent Superconductivity and Enhanced Photovoltaic Effect in YBCO Thin Films under Laser IrradiationArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/1abdc8ee-38ad-47ae-bb4d-87d0bb75e788/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf836797https://repositorio.unibague.edu.co/bitstreams/60674257-bdd5-4eee-89f6-8460657b3fb2/download8570a54da180835f01e294c029f7bf85MD52TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain4817https://repositorio.unibague.edu.co/bitstreams/5c674e30-ebe7-43a8-8ee5-7381d4a361e0/download80f11f79a2846bea61cd717e3aa6cc6cMD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg35640https://repositorio.unibague.edu.co/bitstreams/e7e54782-13fe-4fde-8274-9000ace6f539/downloadabab90b6cfd56316a1cda637849b8385MD5420.500.12313/5826oai:repositorio.unibague.edu.co:20.500.12313/58262025-10-25 03:02:04.08https://creativecommons.org/licenses/by-nc/4.0/© 2024 The Authors. Published by American Chemical Society.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
