Bioprospección de Urceolina caucana: caracterización metabolómica de compuestos lipídicos y fenólicos empleando HPLC-QTOF-MS para la identificación de nuevos compuestos bioactivos con potencial farmacéutico
La biodiversidad colombiana, una de las más grandes del mundo, ofrece una gran oportunidad parala bioprospección, que busca identificar compuestos bioactivos, en este caso específicamente conpotencial farmacéutico. Sin embargo, su uso y aprovechamiento aún enfrentan desafíosrelacionados con el conoc...
- Autores:
-
Tirone García, Angie Viviana
Hernández Useche, Juan David
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5496
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/5496
- Palabra clave:
- Compuestos bioactivos con potencial farmacéutico
Bioprospección de Urceolina caucana
Urceolina caucana
HPLC-QTOF-MS
Bioeconomía
Lípidos
Fenoles
Bioeconomy
Lipids
Phenols
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
| id |
UNIBAGUE2_a884da767abea512430a2bf787361e0e |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5496 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Bioprospección de Urceolina caucana: caracterización metabolómica de compuestos lipídicos y fenólicos empleando HPLC-QTOF-MS para la identificación de nuevos compuestos bioactivos con potencial farmacéutico |
| title |
Bioprospección de Urceolina caucana: caracterización metabolómica de compuestos lipídicos y fenólicos empleando HPLC-QTOF-MS para la identificación de nuevos compuestos bioactivos con potencial farmacéutico |
| spellingShingle |
Bioprospección de Urceolina caucana: caracterización metabolómica de compuestos lipídicos y fenólicos empleando HPLC-QTOF-MS para la identificación de nuevos compuestos bioactivos con potencial farmacéutico Compuestos bioactivos con potencial farmacéutico Bioprospección de Urceolina caucana Urceolina caucana HPLC-QTOF-MS Bioeconomía Lípidos Fenoles Bioeconomy Lipids Phenols |
| title_short |
Bioprospección de Urceolina caucana: caracterización metabolómica de compuestos lipídicos y fenólicos empleando HPLC-QTOF-MS para la identificación de nuevos compuestos bioactivos con potencial farmacéutico |
| title_full |
Bioprospección de Urceolina caucana: caracterización metabolómica de compuestos lipídicos y fenólicos empleando HPLC-QTOF-MS para la identificación de nuevos compuestos bioactivos con potencial farmacéutico |
| title_fullStr |
Bioprospección de Urceolina caucana: caracterización metabolómica de compuestos lipídicos y fenólicos empleando HPLC-QTOF-MS para la identificación de nuevos compuestos bioactivos con potencial farmacéutico |
| title_full_unstemmed |
Bioprospección de Urceolina caucana: caracterización metabolómica de compuestos lipídicos y fenólicos empleando HPLC-QTOF-MS para la identificación de nuevos compuestos bioactivos con potencial farmacéutico |
| title_sort |
Bioprospección de Urceolina caucana: caracterización metabolómica de compuestos lipídicos y fenólicos empleando HPLC-QTOF-MS para la identificación de nuevos compuestos bioactivos con potencial farmacéutico |
| dc.creator.fl_str_mv |
Tirone García, Angie Viviana Hernández Useche, Juan David |
| dc.contributor.advisor.none.fl_str_mv |
Cortes, Charlotte Natalie Ortiz Domínguez, Brandon Elí |
| dc.contributor.author.none.fl_str_mv |
Tirone García, Angie Viviana Hernández Useche, Juan David |
| dc.contributor.jury.none.fl_str_mv |
Osorio Lopez, Edison Humberto Florido Cuellar, Bilma Adela |
| dc.subject.armarc.none.fl_str_mv |
Compuestos bioactivos con potencial farmacéutico Bioprospección de Urceolina caucana |
| topic |
Compuestos bioactivos con potencial farmacéutico Bioprospección de Urceolina caucana Urceolina caucana HPLC-QTOF-MS Bioeconomía Lípidos Fenoles Bioeconomy Lipids Phenols |
| dc.subject.proposal.other.fl_str_mv |
Urceolina caucana HPLC-QTOF-MS |
| dc.subject.proposal.spa.fl_str_mv |
Bioeconomía Lípidos Fenoles |
| dc.subject.proposal.eng.fl_str_mv |
Bioeconomy Lipids Phenols |
| description |
La biodiversidad colombiana, una de las más grandes del mundo, ofrece una gran oportunidad parala bioprospección, que busca identificar compuestos bioactivos, en este caso específicamente conpotencial farmacéutico. Sin embargo, su uso y aprovechamiento aún enfrentan desafíosrelacionados con el conocimiento limitado de los metabolitos específicos en especies nativas,como Urceolina caucana, y la necesidad de desarrollar metodologías eficientes para suidentificación y uso sostenible. El objetivo principal de este estudio fue realizar una caracterizaciónmetabolómica de los compuestos lipídicos y fenólicos presentes en U. caucana, empleando latécnica de HPLC-QTOF-MS, para identificar nuevos compuestos bioactivos con potencialfarmacéutico. Los objetivos específicos incluyeron obtener extractos de los metabolitos medianteextracción por ultrasonido, identificar los principales compuestos lipídicos y fenólicos en laespecie, y proponer posibles aplicaciones de estos metabolitos. La metodología consistió en laobtención de extractos y el análisis de estos mediante HPLC-QTOF-MS, una técnica avanzada quepermitió detectar y caracterizar un amplio perfil de metabolitos en la muestra. Los resultadosmostraron que U. caucana contiene una variedad significativa de compuestos lipídicos y fenólicos,muchos de los cuales tienen actividades biológicas relevantes y potencial en farmacología.Además, refuerzan el valor de la biodiversidad colombiana como fuente de nuevos compuestosbioactivos, subrayando la importancia de su aprovechamiento sostenible y responsable parafomentar la innovación y desarrollo. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-08-19T17:04:37Z |
| dc.date.available.none.fl_str_mv |
2025-08-19T17:04:37Z |
| dc.date.issued.none.fl_str_mv |
2025 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
| format |
http://purl.org/coar/resource_type/c_7a1f |
| status_str |
acceptedVersion |
| dc.identifier.citation.none.fl_str_mv |
Tirone García, A. V., & Hernández Useche, J. D. (2025). Bioprospección de Urceolina caucana: caracterización metabolómica de compuestos lipídicos y fenólicos empleando HPLC-QTOF-MS para la identificación de nuevos compuestos bioactivos con potencial farmacéutico. Universidad de Ibagué. https://hdl.handle.net/20.500.12313/5496 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/5496 |
| identifier_str_mv |
Tirone García, A. V., & Hernández Useche, J. D. (2025). Bioprospección de Urceolina caucana: caracterización metabolómica de compuestos lipídicos y fenólicos empleando HPLC-QTOF-MS para la identificación de nuevos compuestos bioactivos con potencial farmacéutico. Universidad de Ibagué. https://hdl.handle.net/20.500.12313/5496 |
| url |
https://hdl.handle.net/20.500.12313/5496 |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.none.fl_str_mv |
1. Abdel-Aal, E.-S., & Akhtar, M. (2006). Recent Advances in the Analyses of Carotenoids and Their Role in Human Health. Current Pharmaceutical Analysis, 2(2), 195–204. https://doi.org/10.2174/157341206776819319 2. Acumen. (2022, julio). Pharmaceutical Lipids—Global Market and Forecast Till 2030. Acumen Research and Consulting. https://www.acumenresearchandconsulting.com/pharmaceutical-lipids-market 3. Ahlawat, Y. K., Singh, M., Manorama, K., Lakra, N., Zaid, A., & Zulfiqar, F. (2023). Plant phenolics: Neglected secondary metabolites in plant stress tolerance. Brazilian Journal of Botany, 47(3), 703-721. https://doi.org/10.1007/s40415-023-00949-x 4. Akiyama, Y., Yoshioka, M., Horibe, H., Hirai, S., Kitamori, N., & Toguchi, H. (1993). Novel oral controlled-release microspheres using polyglycerol esters of fatty acids. Journal of Controlled Release, 26(1), 1-10. https://doi.org/10.1016/0168-3659(93)90203-H 5. Al Jitan, S., Alkhoori, S. A., & Yousef, L. F. (2018). Chapter 13 - Phenolic Acids From Plants: Extraction and Application to Human Health. En Atta-ur-Rahman (Ed.), Studies in Natural Products Chemistry (Vol. 58, pp. 389-417). Elsevier. https://doi.org/10.1016/B978-0-444-64056-7.00013-1 6. Al Mamun, A. A. (2023). Amaryllidaceae alkaloids of genus Narcissus and their biological activity. Univerzita Karlova, Farmaceutická fakulta v Hradci Králové. https://dspace.cuni.cz/bitstream/handle/20.500.11956/183568/150059837.pdf?sequence=1&isAllowed=y 7. Alarcon-Barrera, J. C., Kostidis, S., Ondo-Mendez, A., & Giera, M. (2022). Recent advances in metabolomics analysis for early drug development. Drug Discovery Today, 27(6), 1763-1773. https://doi.org/10.1016/j.drudis.2022.02.018 8. Alam, F., Mohammadin, K., Shafique, Z., Amjad, S. T., & Asad, M. H. H. bin. (2022). Citrus flavonoids as potential therapeutic agents: A review. Phytotherapy Research, 36(4), 1417-1441. https://doi.org/10.1002/ptr.7261 9. Albuquerque, B. R., Heleno, S. A., Oliveira, M. B. P. P., Barros, L., & Ferreira, I. C. F. R. (2021). Phenolic compounds: Current industrial applications, limitations and future challenges. Food & Function, 12(1), 14-29. https://doi.org/10.1039/D0FO02324H 10. Ali, A., Bashmil, Y. M., Cottrell, J. J., Suleria, H. A. R., & Dunshea, F. R. (2021). LC-MS/MS-QTOF Screening and Identification of Phenolic Compounds from Australian Grown Herbs and Their Antioxidant Potential. Antioxidants, 10(11), 1770. https://doi.org/10.3390/antiox10111770 11. Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M., & Al-Mssallem, M. Q. (2022). Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules, 27(9), Article 9. https://doi.org/10.3390/molecules27092901 12. Allen, D. R., & McWhinney, B. C. (2019). Quadrupole Time-of-Flight Mass Spectrometry: A Paradigm Shift in Toxicology Screening Applications. The Clinical Biochemist Reviews, 40(3), 135-146. https://doi.org/10.33176/AACB-19-00023 13. Alves, E., Dias, M., Lopes, D., Almeida, A., Domingues, M. do R., & Rey, F. (2020). Antimicrobial Lipids from Plants and Marine Organisms: An Overview of the Current State-of-the-Art and Future Prospects. Antibiotics, 9(8), 441. https://doi.org/10.3390/antibiotics9080441 14. Alzate, F., Lesmes, M., Cortés, N., Varela, S., & Osorio, E. (2019). Sinopsis de la familia Amaryllidaceae en Colombia. Biota Colombiana, 20(1), 2-20. https://doi.org/10.21068/c2019.v20n01a01 15. Argüeso Armesto, R., Díaz Díaz, J., Díaz Peromingo, J., Rodríguez González, A., Castro Mao, M., & Diz-Lois, F. (2011). Lípidos, colesterol y lipoproteínas. 72, S7-S17. 16. ATSDR. (2008). ATSDR – Page Not Found or Temporarily Unavailable. ATSDR - Agency for Toxic Substances and Disease Registry. https://www.atsdr.cdc.gov/phs/phs.asp?id=146&tid=27 17. ATSDR. (2014). ToxFAQsTM for Phenol. ATSDR - Agency for Toxic Substances and Disease Registry. https://wwwn.cdc.gov/TSP/ToxFAQs/ToxFAQsDetails.aspx?faqid=147&toxid=27 18. Bach, A., Bożena, P., & Katarzyna, H. (2010). The effect of the exogenous phenolic compound, caffeic acid on organogenesis of Galanthus elwesii Hook. Cultured in vitro. ResearchGate. https://www.researchgate.net/publication/279765630_The_effect_of_the_exogenous_phenolic_compound_caffeic_acid_on_organogenesis_of_Galanthus_elwesii_Hook_Cultured_in_vitro_Wplyw_egzogennego_zwiazku_fenolowego_-_Kwasu_kawowego_na_organogeneze_Galanthus_ 19. Bailey, R. L. (2020). Current regulatory guidelines and resources to support research of dietary supplements in the United States. Critical reviews in food science and nutrition, 60(2), 298-309. https://doi.org/10.1080/10408398.2018.1524364 20. Bampidis, V., Azimonti, G., Bastos, M. de L., Christensen, H., Fašmon Durjava, M., Kouba, M., López‐Alonso, M., López Puente, S., Marcon, F., Mayo, B., Pechová, A., Petkova, M., Ramos, F., Sanz, Y., Villa, R. E., Woutersen, R., Brantom, P., Chesson, A., Westendorf, J., Manini, P., Pizzo, F., & Dusemund, B. (2021). Safety and efficacy of a feed additive consisting of a flavonoid‐rich dried extract of Citrus × aurantium L. fruit (bitter orange extract) for use in all animal species (FEFANA asbl). EFSA Journal, 19(7), e06709. https://doi.org/10.2903/j.efsa.2021.6709 21. Bastida, J., Lavilla, R., & Viladomat, F. (2006). Chapter 3 Chemical and Biological Aspects of Narcissus Alkaloids (pp. 87-179). https://doi.org/10.1016/S1099-4831(06)63003-4 22. Bay-Smidt, M. G. K., Jäger, A. K., Krydsfeldt, K., Meerow, A. W., Stafford, G. I., Van Staden, J., & Rønsted, N. (2011). Phylogenetic selection of target species in Amaryllidaceae tribe Haemantheae for acetylcholinesterase inhibition and affinity to the serotonin reuptake transport protein. South African Journal of Botany, 77(1), 175-183. https://doi.org/10.1016/j.sajb.2010.07.016 23. Berkov, S., Atanasova, M., Georgiev, B., Bastida, J., & Doytchinova, I. (2022). The Amaryllidaceae alkaloids: An untapped source of acetylcholinesterase inhibitors. Phytochemistry Reviews, 21(5), 1415-1443. https://doi.org/10.1007/s11101-021-09790-0 24. Berkov, S., Osorio, E., Viladomat, F., & Bastida, J. (2020). Chapter Two—Chemodiversity, chemotaxonomy and chemoecology of Amaryllidaceae alkaloids. En The Alkaloids: Chemistry and Biology (Vol. 83, pp. 113-185). Academic Press. https://doi.org/10.1016/bs.alkal.2019.10.002 25. Bhargava, N., Mor, R. S., Kumar, K., & Sharanagat, V. S. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70, 105293. https://doi.org/10.1016/j.ultsonch.2020.105293 26. Biais, B., Krisa, S., Cluzet, S., Da Costa, G., Waffo-Teguo, P., Mérillon, J.-M., & Richard, T. (2017). Antioxidant and Cytoprotective Activities of Grapevine Stilbenes. Journal of Agricultural and Food Chemistry, 65(24), 4952–4960. https://doi.org/10.1021/acs.jafc.7b01254 27. Buchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biochemistry and Molecular Biology of Plants. John Wiley & Sons. 28. Burciaga Monge, A. D. (2019). Metabolismo de esteroles esterificados en plantas: Implicación en el desarrollo y la respuesta a estrés. Universidad de Barcelona. 29. Burgos, A., Szymanski, J., Seiwert, B., Degenkolbe, T., Hannah, M. A., Giavalisco, P., & Willmitzer, L. (2011). Analysis of short-term changes in the Arabidopsis thaliana glycerolipidome in response to temperature and light. The Plant Journal, 66(4), 656–668. https://doi.org/10.1111/j.1365-313X.2011.04531.x 30. Busto, R., Serna, J., Perianes-Cachero, A., Quintana-Portillo, R., García-Seisdedos, D., Canfrán-Duque, A., Paino, C. L., Lerma, M., Casado, M. E., Martín-Hidalgo, A., Arilla-Ferreiro, E., Lasunción, M. A., & Pastor, Ó. (2018). Ellagic acid protects from myelin-associated sphingolipid loss in experimental autoimmune encephalomyelitis. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1863(9), 958-967. https://doi.org/10.1016/j.bbalip.2018.05.009 31. Cahlíková, L., Breiterová, K., & Opletal, L. (2020). Chemistry and Biological Activity of Alkaloids from the Genus Lycoris (Amaryllidaceae). Molecules, 25(20), 47-97. 32. Caleja, C., Ribeiro, A., Barreiro, M. F., & Ferreira, I. C. F. R. (2017). Phenolic Compounds as Nutraceuticals or Functional Food Ingredients. Current Pharmaceutical Design, 23(19), 2787-2806. https://doi.org/10.2174/1381612822666161227153906 33. Camargo, A. C. de, & Lima, R. da S. (2019). A perspective on phenolic compounds, their potential health benefits, and international regulations: The revised Brazilian normative on food supplements. Journal of Food Bioactives, 7, 7-17. https://doi.org/10.31665/JFB.2019.7193 34. Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: A review. Environmental Science and Pollution Research, 22(8), 5711–5741. https://doi.org/10.1007/s11356-014-3974-5 35. Cebrián, R., Li, Q., Peñalver, P., Belmonte-Reche, E., Andrés-Bilbao, M., Lucas, R., de Paz, M. V., Kuipers, O. P., & Morales, J. C. (2022). Chemically Tuning Resveratrol for the Effective Killing of Gram-Positive Pathogens. Journal of Natural Products, 85(6), 1459–1473. https://doi.org/10.1021/acs.jnatprod.1c01107 36. Cheng, M.-C., Ker, Y.-B., Yu, T.-H., Lin, L.-Y., Peng, R., & Peng, C.-H. (2010). Chemical Synthesis of 9(Z)-Octadecenamide and Its Hypolipidemic Effect: A Bioactive Agent Found in the Essential Oil of Mountain Celery Seeds. Journal of agricultural and food chemistry, 58, 1502–1508. https://doi.org/10.1021/jf903573g 37. Choy, K. W., Murugan, D., Leong, X.-F., Abas, R., Alias, A., & Mustafa, M. R. (2019). Flavonoids as Natural Anti-Inflammatory Agents Targeting Nuclear Factor-Kappa B (NFκB) Signaling in Cardiovascular Diseases: A Mini Review. Frontiers in Pharmacology, 10. https://doi.org/10.3389/fphar.2019.01295 38. Čižmárová, B., Hubková, B., Tomečková, V., & Birková, A. (2023). Flavonoids as Promising Natural Compounds in the Prevention and Treatment of Selected Skin Diseases. International Journal of Molecular Sciences, 24(7), Article 7. https://doi.org/10.3390/ijms24076324 39. Coelho, N., Gonçalves, S., & Romano, A. (2020). Endemic Plant Species Conservation: Biotechnological Approaches. Plants, 9(3), 345. https://doi.org/10.3390/plants9030345 40. Coleman, R. A., Wang, P., & Bhat, B. G. (1998). Diradylglycerols alter fatty acid inhibition of monoacylglycerol acyltransferase activity in Triton X-100 mixed micelles. Biochemistry, 37(17), 5916–5922. https://doi.org/10.1021/bi9802972 41. Colombia Productiva. (2019). Farmacéuticos. https://www.colombiaproductiva.com/ptp-sectores/manufactura/farmaceuticos 42. Cooke, M., & Kazanietz, M. G. (2022). Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Science Signaling, 15(729), eabo0264. https://doi.org/10.1126/scisignal.abo0264 43. Corzo, C., Lopes, D. G., Lochmann, D., Reyer, S., Stehr, M., & Salar-Behzadi, S. (2020). Novel approach for overcoming the stability challenges of lipid-based excipients. Part 1: Screening of solid-state and physical properties of polyglycerol esters of fatty acids as advanced pharmaceutical excipients. European Journal of Pharmaceutics and Biopharmaceutics, 148, 134-147. https://doi.org/10.1016/j.ejpb.2020.01.012 44. Cuaderno de cultura científica. (2019, febrero 22). Metabolómica: El todo sobre la suma de las partes. Cuaderno de Cultura científica. https://culturacientifica.com/2019/02/22/metabolomica-el-todo-sobre-la-suma-de-las-partes/ 45. Data Bridge Market Research. (2021). Mercado mundial de compuestos fenólicos: Tendencias de la industria y pronóstico hasta 2028. Data Bridge Market Research. https://www.databridgemarketresearch.com/es/reports/global-phenolic-compounds-market 46. Decreto 1156 de 2018 (6 de julio) (2018). https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=87281 47. Decreto 2266 de 2004 (15 de julio) (2004). https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/Decreto-2266-de-2004.pdf 48. Deo, D. D., Bazan, N. G., & Hunt, J. D. (2004). Lipid Second Messengers and Receptors. En L. Martini (Ed.), Encyclopedia of Endocrine Diseases (pp. 182-187). Elsevier. https://doi.org/10.1016/B0-12-475570-4/00825-8 49. Department of Health & Human Services, Public Health Service, & Agency for Toxic Substances and Disease Registry. (2008). Toxicological Profile for Phenol. Agency for Toxic Substances and Disease Registry (US). http://www.ncbi.nlm.nih.gov/books/NBK599448/ 50. Desgagné-Penix, I. (2021). Biosynthesis of alkaloids in Amaryllidaceae plants: A review. Phytochem Rev, 20, 409-431. https://doi.org/10.1007/s11101-020-09678-5 51. Desmarchelier, C. (2024). Repensar la bioprospección en América Latina Propuestas para descubrir el valor de la biodiversidad. 52. Dias, R., Oliveira, H., Fernandes, I., Simal-Gandara, J., & Perez-Gregorio, R. (2021). Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics. Critical Reviews in Food Science and Nutrition, 61(7), 1130-1151. https://doi.org/10.1080/10408398.2020.1754162 53. Díaz Velásquez, D. M., Upegui Mayor, A. T., Arboleda Nava, J. A., & Vásquez Mucúa, A. L. (2020). LOS LÍPIDOS Y SUS GENERALIDADES. En A. lvarez-Ramírez, J. López-Peláez, & Meneses-Urrea LA (Eds.), Dislipidemias y estilos de vida en jóvenes (pp. 17-50). Editorial Universidad Santiago de Cali 54. Ding, Y., Qu, D., Zhang, K.-M., Cang, X.-X., Kou, Z.-N., Xiao, W., & Zhu, J.-B. (2017). Phytochemical and biological investigations of Amaryllidaceae alkaloids: A review. Journal of Asian Natural Products Research, 19(1), 53-100. https://doi.org/10.1080/10286020.2016.1198332 55. DrugBank. (2025, abril 7). Phosphatidyl serine. https://go.drugbank.com/drugs/DB00144 56. Duarte Torres, Ó. (2011). La bioprospección en Colombia. EXPEDITĬO, 7, Article 7. https://revistas.utadeo.edu.co/index.php/EXP/article/view/732 57. Durazzo, A., Lucarini, M., Souto, E. B., Cicala, C., Caiazzo, E., Izzo, A. A., Novellino, E., & Santini, A. (2019). Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytotherapy Research, 33(9), 2221-2243. https://doi.org/10.1002/ptr.6419 58. Espinoza, J. L., Trung, L. Q., Inaoka, P. T., Yamada, K., An, D. T., Mizuno, S., Nakao, S., & Takami, A. (2017). The Repeated Administration of Resveratrol Has Measurable Effects on Circulating T‐Cell Subsets in Humans. Oxidative Medicine and Cellular Longevity, 2017(1). https://doi.org/10.1155/2017/6781872 59. Estrella, A., Funda, E., Misic, Z., Schaefer, C., Beck, M., Schlegel, B., & Urban, K. (2022). Nueva formulación de luteína y/o zeaxantina que puede formularse como comprimidos (Patent No. ES2917212T3). https://patents.google.com/patent/ES2917212T3/es 60. Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill, A. H., Murphy, R. C., Raetz, C. R. H., Russell, D. W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., VanNieuwenhze, M. S., White, S. H., Witztum, J. L., & Dennis, E. A. (2005). A comprehensive classification system for lipids. Journal of Lipid Research, 46(5), 839-861. https://doi.org/10.1194/jlr.E400004-JLR200 61. Fahy, E., Subramaniam, S., Murphy, R. C., Nishijima, M., Raetz, C. R. H., Shimizu, T., Spener, F., Meer, G. V., Wakelam, M. J. O., & Dennis, E. A. (2009). Update of the LIPID MAPS comprehensive classification system for lipids. Journal of Lipid Research, 50(SUPPL.). https://doi.org/10.1194/jlr.R800095-JLR200 62. Fajardo Contreras, J. D., Sánchez Plaza, F. A., Dueñas Rivadeneira, J. P., Dueñas Rivadeneira, A. A., Fajardo Contreras, J. D., Sánchez Plaza, F. A., Dueñas Rivadeneira, J. P., & Dueñas Rivadeneira, A. A. (2022). EXTRACCIÓN ASISTIDA POR ULTRASONIDO Y SU APLICACIÓN EN LA OBTENCIÓN DE ACEITES VEGETALES. Centro Azúcar, 49(4), 125–143. 63. Farzaei, M. H., Singh, A. K., Kumar, R., Croley, C. R., Pandey, A. K., Coy-Barrera, E., Kumar Patra, J., Das, G., Kerry, R. G., Annunziata, G., Tenore, G. C., Khan, H., Micucci, M., Budriesi, R., Momtaz, S., Nabavi, S. M., & Bishayee, A. (2019). Targeting Inflammation by Flavonoids: Novel Therapeutic Strategy for Metabolic Disorders. International Journal of Molecular Sciences, 20(19), Article 19. https://doi.org/10.3390/ijms20194957 64. Feng, K., Duan, Y., Zhang, H., Xiao, J., Ho, C.-T., Huang, Q., & Cao, Y. (2023). Influence of 1,3-diacylglycerol on physicochemical and digestion properties of nanoemulsions and its enhancement of encapsulation and bioaccessibility of hydrophobic nobiletin. Food & Function, 14(13), 6212–6225. https://doi.org/10.1039/D3FO00543G 65. Feng, Y., Sun, C., Yuan, Y., Zhu, Y., Wan, J., Firempong, C. K., Omari-Siaw, E., Xu, Y., Pu, Z., Yu, J., & Xu, X. (2016). Enhanced oral bioavailability and in vivo antioxidant activity of chlorogenic acid via liposomal formulation. International Journal of Pharmaceutics, 501(1-2), 342-349. https://doi.org/10.1016/j.ijpharm.2016.01.081 66. Fernández-Rojas, B., & Gutiérrez-Venegas, G. (2018). Flavonoids exert multiple periodontic benefits including anti-inflammatory, periodontal ligament-supporting, and alveolar bone-preserving effects. Life Sciences, 209, 435–454. https://doi.org/10.1016/j.lfs.2018.08.029 67. Figueroa-Robles, A., Antunes-Ricardo, M., & Guajardo-Flores, D. (2021). Encapsulation of phenolic compounds with liposomal improvement in the cosmetic industry. International Journal of Pharmaceutics, 593, 120125. https://doi.org/10.1016/j.ijpharm.2020.120125 68. Flores, J., White, B. M., Brea, R. J., Baskin, J. M., & Devaraj, N. K. (2020). Lipids: Chemical tools for their synthesis, modification, and analysis. Chemical Society Reviews, 49(14), 4602-4614. https://doi.org/10.1039/D0CS00154F 69. Flores-Ramos, L., Ruiz-Soto, A., Oscanoa-Huaynate, A. I., & Cervantes-Gallegos, M. A. (2020). Extracción e identificación de lípidos polares de las microalgas Nannochloropsis oceanica y Desmodesmus asymmetricus. Revista Colombiana de Química, 49(2), Article 2. https://doi.org/10.15446/rev.colomb.quim.v49n2.83766 70. Fonseca-Kelly, Z., Nassrallah, M., Uribe, J., Khan, R. S., Dine, K., Dutt, M., & Shindler, K. S. (2012). Resveratrol Neuroprotection in a Chronic Mouse Model of Multiple Sclerosis. Frontiers in Neurology, 3. https://doi.org/10.3389/fneur.2012.00084 71. Fortune Business Insights. (2025, marzo 24). Tamaño del mercado de nanopartículas lipídicas, participación y análisis de la industria, por tipo (nanopartículas lipídicas sólidas (SLN), portadores de lípidos nanoestructurados (NLC) y otros), por aplicación (terapéutica, investigación), por usuario final (empresas farmacéuticas y de biotecnología, académico e Institutos de Investigación, y otros), y Pronóstico Regional, 2024-2032. https://www.fortunebusinessinsights.com/lipid-nanoparticles-market-106960 72. Furt, F., Simon-Plas, F., & Mongrand, S. (2011). Lipids of the Plant Plasma Membrane. En The Plant Plasma Membrane (pp. 3-30). Springer. https://doi.org/10.1007/978-3-642-13431-9_1 73. García-Lafuente, A., Moro, C., Manchón, N., Gonzalo-Ruiz, A., Villares, A., Guillamón, E., Rostagno, M., & Mateo-Vivaracho, L. (2014). In vitro anti-inflammatory activity of phenolic rich extracts from white and red common beans. Food Chemistry, 161, 216-223. https://doi.org/10.1016/j.foodchem.2014.04.004 74. Garcia-Perez, P., Cassani, L., Garcia-Oliveira, P., Xiao, J., Simal-Gandara, J., Prieto, M. A., & Lucini, L. (2023). Algal nutraceuticals: A perspective on metabolic diversity, current food applications, and prospects in the field of metabolomics. Food Chemistry, 409, 135295. https://doi.org/10.1016/j.foodchem.2022.135295 75. Gautam, S., Karmakar, S., Batra, R., Sharma, P., Pradhan, P., Singh, J., Kundu, B., & Chowdhury, P. K. (2017). Polyphenols in combination with β-cyclodextrin can inhibit and disaggregate α-synuclein amyloids under cell mimicking conditions: A promising therapeutic alternative. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1865(5), 589-603. https://doi.org/10.1016/j.bbapap.2017.02.014 76. Ge, L., Li, S.-P., & Lisak, G. (2020). Advanced sensing technologies of phenolic compounds for pharmaceutical and biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis, 179, 112913. https://doi.org/10.1016/j.jpba.2019.112913 77. Ginwala, R., McTish, E., Raman, C., Singh, N., Nagarkatti, M., Nagarkatti, P., Sagar, D., Jain, P., & Khan, Z. K. (2016). Apigenin, a Natural Flavonoid, Attenuates EAE Severity Through the Modulation of Dendritic Cell and Other Immune Cell Functions. Journal of Neuroimmune Pharmacology, 11(1), 36-47. https://doi.org/10.1007/s11481-015-9617-x 78. Gieger, C., Geistlinger, L., Altmaier, E., Angelis, M. H. de, Kronenberg, F., Meitinger, T., Mewes, H.-W., Wichmann, H.-E., Weinberger, K. M., Adamski, J., Illig, T., & Suhre, K. (2008). Genetics Meets Metabolomics: A Genome-Wide Association Study of Metabolite Profiles in Human Serum. PLOS Genetics, 4(11), e1000282. https://doi.org/10.1371/journal.pgen.1000282 79. Gómez-Lechón, M. J., & Cascales, M. (2009). Las ómicas en el desarrollo de nuevos fármacos. Real Academia Nacional de Farmacia: Portal Publicaciones. https://core.ac.uk/outputs/230315941/?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1 80. Goncharuk, E. A., & Zagoskina, N. V. (2023). Heavy Metals, Their Phytotoxicity, and the Role of Phenolic Antioxidants in Plant Stress Responses with Focus on Cadmium: Review. Molecules, 28(9), Article 9. https://doi.org/10.3390/molecules28093921 81. González, I., Noguera-Urbano, E.A., Velásquez-Tibatá, J. Y J.M. Ochoa-Quintero (2018).Especies endémicas, áreas protegidas y deforestación. En Moreno, L. A, Andrade, G. I. y Goméz, M.F. (Eds.). 2019. Biodiversidad 2018. Estado y tendencias de la biodiversidad continental de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá, D. C., Colombia. 82. Górniak, I., Bartoszewski, R., & Króliczewski, J. (2019). Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews, 18(1), 241–272. https://doi.org/10.1007/s11101-018-9591-z 83. Gowd, V., Jia, Z., & Chen, W. (2017). Anthocyanins as promising molecules and dietary bioactive components against diabetes – A review of recent advances. Trends in Food Science & Technology, 68, 1-13. https://doi.org/10.1016/j.tifs.2017.07.015 84. Guo, Q., Liu, L., & Barkla, B. J. (2019). Membrane Lipid Remodeling in Response to Salinity. International Journal of Molecular Sciences, 20(17), Article 17. https://doi.org/10.3390/ijms20174264 85. Gutierrez, V. R., Peruna, J. S., Rodriguez, R. R., & Gonzales, M. D. H. (2004). Utilizacion del acido oleanolico como agente vasodilatador y restaurador de la disfuncion endotelial (World Intellectual Property Organization Patent No. WO2004096203A1). https://patents.google.com/patent/WO2004096203A1/es 86. Haghmorad, D., Mahmoudi, M. B., Salehipour, Z., Jalayer, Z., brojeni, A. A. M., Rastin, M., Kokhaei, P., & Mahmoudi, M. (2017). Hesperidin ameliorates immunological outcome and reduces neuroinflammation in the mouse model of multiple sclerosis. Journal of Neuroimmunology, 302, 23-33. https://doi.org/10.1016/j.jneuroim.2016.11.009 87. Hannun, Y. A., & Obeid, L. M. (2018). Sphingolipids and their metabolism in physiology and disease. Nature Reviews Molecular Cell Biology, 19(3), 175–191. https://doi.org/10.1038/nrm.2017.107 88. Hauptmann, R., Pavon, M., & Charles, A. (2007). Concentrado de esteres de zeaxantina mezclados y usos del mismo (Patent No. MXPA05013025A). https://patents.google.com/patent/MXPA05013025A/es 89. Hazafa, A., Iqbal, M. O., Javaid, U., Tareen, M. B. K., Amna, D., Ramzan, A., Piracha, S., & Naeem, M. (2022). Inhibitory effect of polyphenols (phenolic acids, lignans, and stilbenes) on cancer by regulating signal transduction pathways: A review. Clinical and Translational Oncology, 24(3), 432–445. https://doi.org/10.1007/s12094-021-02709-3 90. He, M., Qu, C., Gao, O., Hu, X., & Hong, X. (2015). Biological and pharmacological activities of amaryllidaceae alkaloids. RSC Advances, 5(21), 16562-16574. https://doi.org/10.1039/C4RA14666B 91. Health Canada. (2019). The Safety of Vitamin E Supplements [Education and awareness]. Health Canada. https://www.canada.ca/en/health-canada/services/healthy-living/your-health/food-nutrition/safety-vitamin-supplements.html 92. Hernández-Bello, F., Franco, M., Pérez-Méndez, Ó., Donis-Maturano, L., Zarco-Olvera, G., Bautista-Pérez, R., Hernández-Bello, F., Franco, M., Pérez-Méndez, Ó., Donis-Maturano, L., Zarco-Olvera, G., & Bautista-Pérez, R. (2023). Metabolismo de los esfingolípidos y su relación con las enfermedades cardiovasculares, renales y metabólicas. Archivos de cardiología de México, 93(1), 88–95. https://doi.org/10.24875/acm.21000333 93. Hernando Boigues, J. F., & Mach, N. (2015). Efecto de los ácidos grasos poliinsaturados en la prevención de la obesidad a través de modificaciones epigenéticas. Endocrinología y Nutrición, 62(7), 338–349. https://doi.org/10.1016/j.endonu.2015.03.009 94. Hitzman, C. J., Elmquist, W. F., Wattenberg, L. W., & Wiedmann, T. S. (2006). Development of a Respirable, Sustained Release Microcarrier for 5-Fluorouracil I: In Vitro Assessment of Liposomes, Microspheres, and Lipid Coated Nanoparticles. Journal of Pharmaceutical Sciences, 95(5), 1114-1126. https://doi.org/10.1002/jps.20591 95. Houillé, B., Papon, N., Boudesocque, L., Bourdeaud, E., Besseau, S., Courdavault, V., Enguehard-Gueiffier, C., Delanoue, G., Guérin, L., Bouchara, J.-P., Clastre, M., Giglioli-Guivarc’h, N., Guillard, J., & Lanoue, A. (2014). Antifungal activity of resveratrol derivatives against candida species. Journal of Natural Products, 77(7), 1658–1662. https://doi.org/10.1021/np5002576 96. Hoyos Serrano, M., & Rosales Calle, V. V. (2014). Lípidos: Caracteristicas principales y su metabolismo. Revista de Actualización Clínica Investiga, 41, 2142-2145. 97. Huang, W.-Y., Cai ,Yi-Zhong, & and Zhang, Y. (2009). Natural Phenolic Compounds From Medicinal Herbs and Dietary Plants: Potential Use for Cancer Prevention. Nutrition and Cancer, 62(1), 1-20. https://doi.org/10.1080/01635580903191585 98. Human Foods Program. (2024). FDA Announces Qualified Health Claim for Cocoa Flavanols in High Flavanol Cocoa Powder and Reduced Risk of Cardiovascular Disease. FDA. https://www.fda.gov/food/hfp-constituent-updates/fda-announces-qualified-health-claim-cocoa-flavanols-high-flavanol-cocoa-powder-and-reduced-risk 99. Hummel, J., Segu, S., Li, Y., Irgang, S., Jueppner, J., & Giavalisco, P. (2011). Ultra Performance Liquid Chromatography and High Resolution Mass Spectrometry for the Analysis of Plant Lipids. Frontiers in Plant Science, 2. https://doi.org/10.3389/fpls.2011.00054 100. International Olive Council. (2022). Document to declare the use of ioc methods for phenolic compounds determination [International Olive Council]. International Olive Council. https://www.internationaloliveoil.org/wp-content/uploads/2022/06/Doc.-No-29-REV-2_ENK.pdf 101. Ishihata, A., Maruki-Uchida, H., Gotoh, N., Kanno, S., Aso, Y., Togashi, S., Sai, M., Ito, T., & Katano, Y. (2016). Vascular- and hepato-protective effects of passion fruit seed extract containing piceatannol in chronic high-fat diet-fed rats. Food & Function, 7(9), 4075–4081. https://doi.org/10.1039/C6FO01067A 102. Jewett, M. C., Hofmann, G., & Nielsen, J. (2006). Fungal metabolite analysis in genomics and phenomics. Current Opinion in Biotechnology, 17(2), 191-197. https://doi.org/10.1016/j.copbio.2006.02.001 103. Ka, S., Koirala, M., Mérindol, N., & Desgagné-Penix, I. (2020). Biosynthesis and Biological Activities of Newly Discovered Amaryllidaceae Alkaloids. Molecules, 25(21), Article 21. https://doi.org/10.3390/molecules25214901 104. Kala, H. K., Mehta, R., Sen, K. K., Tandey, R., & Mandal, V. (2016). Critical analysis of research trends and issues in microwave assisted extraction of phenolics: Have we really done enough. TrAC Trends in Analytical Chemistry, 85, 140-152. https://doi.org/10.1016/j.trac.2016.09.007 105. Karamali Khanbabaee & Teunis van Ree. (2024). Tannins: Classification and Definition. ResearchGate. https://doi.org/10.1039/B101061L 106. Kareem Ali, O., Abdul-Kareem Tawfiq, A., & Yaseen Mohammed Hasan, Z. (2023). Qualitative and Quantitative Estimation of Total Phenols in Narcissus tazettaL. Bulbs. Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(4), 7-20. https://doi.org/10.30526/36.4.3160 107. Kareem Ali, O., Yaseen Mohammed Hasan, Z., & Tawfiq, A. (2023). A Comparison between Total Phenols and Total Alkaloids Antibacterial Activity Extracted from Bulbs of Narcissus tazetta L. Iraqi Journal of Pharmaceutical Sciences, 32(Suppl.), 110-117. https://doi.org/10.31351/vol32issSuppl.pp110-117 108. Kingsley, J. D., Dou, H., Morehead, J., Rabinow, B., Gendelman, H. E., & Destache, C. J. (2006). Nanotechnology: A Focus on Nanoparticles as a Drug Delivery System. Journal of Neuroimmune Pharmacology, 1(3), 340-350. https://doi.org/10.1007/s11481-006-9032-4 109. Kochhar, S. L., & Gujral, S. K. (Eds.). (2020). Concepts of Metabolism. En Plant Physiology: Theory and Applications (2a ed., pp. 153–167). Cambridge University Press. https://doi.org/10.1017/9781108486392.008 110. Koh, Y.-C., Ho, C.-T., & Pan, M.-H. (2021). Recent Advances in Health Benefits of Stilbenoids. Journal of Agricultural and Food Chemistry, 69(35), 10036–10057. https://doi.org/10.1021/acs.jafc.1c03699 111. Kooijman, E. E., & Burger, K. N. J. (2009). Biophysics and function of phosphatidic acid: A molecular perspective. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1791(9), 881-888. https://doi.org/10.1016/j.bbalip.2009.04.001 112. Köttgen, A., Raffler, J., Sekula, P., & Kastenmüller, G. (2018). Genome-Wide Association Studies of Metabolite Concentrations (mGWAS): Relevance for Nephrology. Seminars in Nephrology, 38(2), 151-174. https://doi.org/10.1016/j.semnephrol.2018.01.009 113. Kumar, A., Khan, F., & Saikia, D. (2022). Phenolic Compounds and their Biological and Pharmaceutical Activities. En P. K. Chaurasia & S. L. Bharati (Eds.), He Chemistry inside Spices & Herbs: Research and Development (Vol. 1, pp. 204-234). BENTHAM SCIENCE PUBLISHERS. https://doi.org/10.2174/97898150395661220101 114. Kubo, I., Fujita, K., Nihei, K., & Masuoka, N. (2003). Non-antibiotic antibacterial activity of dodecyl gallate. Bioorganic & Medicinal Chemistry, 11(4), 573-580. https://doi.org/10.1016/S0968-0896(02)00436-4 115. Kruszka, D., Selvakesavan, R. K., Kachlicki, P., & Franklin, G. (2022). Untargeted metabolomics analysis reveals the elicitation of important secondary metabolites upon treatment with various metal and metal oxide nanoparticles in Hypericum perforatum L. cell suspension cultures. Industrial Crops and Products, 178, 114561. https://doi.org/10.1016/j.indcrop.2022.114561 116. Kwon, K.-D., Jo, W.-K., Lim, H.-J., & Jeong, W.-S. (2008). Volatile pollutants emitted from selected liquid household products. Environmental Science and Pollution Research, 15(6), 521–526. https://doi.org/10.1007/s11356-008-0028-x 117. Lago, J. H. G., Toledo-Arruda, A. C., Mernak, M., Barrosa, K. H., Martins, M. A., Tibério, I. F. L. C., & Prado, C. M. (2014). Structure-Activity Association of Flavonoids in Lung Diseases. Molecules, 19(3), Article 3. https://doi.org/10.3390/molecules19033570 118. Lajis, N., Maulidiani, M., Abas, F., & Ismail, I. S. (2017). Chapter 30—Metabolomics Approach in Pharmacognosy. En S. Badal & R. Delgoda (Eds.), Pharmacognosy (pp. 597–616). Academic Press. https://doi.org/10.1016/B978-0-12-802104-0.00030-5 119. Leporini, M., Catinella, G., Bruno, M., Falco, T., Tundis, R., & Loizzo, M. R. (2018). Investigating the Antiproliferative and Antioxidant Properties of Pancratium maritimum L. (Amaryllidaceae) Stems, Flowers, Bulbs, and Fruits Extracts. Evidence-Based Complementary and Alternative Medicine: eCAM, 2018, 9301247. https://doi.org/10.1155/2018/9301247 120. Leventis, P. A., & Grinstein, S. (2010). The Distribution and Function of Phosphatidylserine in Cellular Membranes. Annual Review of Biophysics, 39(1), 407-427. https://doi.org/10.1146/annurev.biophys.093008.131234 121. Ley 2386 De 2024 (Julio 25) (2024). https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=158637 122. Liden, T., Wang, E., & Schug, K. (2023). An Overview of the Untargeted Analysis Using LC–MS (QTOF): Experimental Process and Design Considerations. 41, 8-12. 123. Liebisch, G., Fahy, E., Aoki, J., Dennis, E. A., Durand, T., Ejsing, C. S., Fedorova, M., Feussner, I., Griffiths, W. J., Köfeler, H., Merrill, A. H., Murphy, R. C., O’Donnell, V. B., Oskolkova, O., Subramaniam, S., Wakelam, M. J. O., & Spener, F. (2020). Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. Journal of Lipid Research, 61(12), 1539-1555. https://doi.org/10.1194/jlr.S120001025 124. LIPID MAPS. (s. f.). LIPID MAPS® Structure Database (LMSD): LIPID MAPS® Structure Database (LMSD): Recuperado de https://lipidmaps.org/databases/lmsd/browse 125. Liu, W., Cui, X., Zhong, Y., Ma, R., Liu, B., & Xia, Y. (2023). Phenolic metabolites as therapeutic in inflammation and neoplasms: Molecular pathways explaining their efficacy. Pharmacological Research, 193, 106812. https://doi.org/10.1016/j.phrs.2023.106812 126. Liu, Y., Sun, C., Li, W., Adu-Frimpong, M., Wang, Q., Yu, J., & Xu, X. (2019). Preparation and Characterization of Syringic Acid–Loaded TPGS Liposome with Enhanced Oral Bioavailability and In Vivo Antioxidant Efficiency. AAPS PharmSciTech, 20(3), 98. https://doi.org/10.1208/s12249-019-1290-6 127. Lustre Sánchez, H. (2022). Los superpoderes de las plantas: Los metabolitos secundarios en su adaptación y defensa. Revista Digital Universitaria, 23(2). https://doi.org/10.22201/cuaieed.16076079e.2022.23.2.10 129. Majumder, R., Banerjee, S., Mandal, M., Patra, S., Das, S., & Mandal, M. (2024). A Virtual Drug Discovery Screening Illuminates Campesterol as a Potent Estrogen Receptor Alpha Inhibitor in Breast Cancer. Journal of Medicinal Chemistry, 67(12), 10321–10335. https://doi.org/10.1021/acs.jmedchem.4c00766 130. McKee, T., & McKee, J. R. (2016). Lípidos y membranas. En Bioquímica. Las bases moleculares de la vida, 5e (5a ed.). McGraw-Hill Education. accessmedicina.mhmedical.com/content.aspx?aid=1137988183 131. Medina, E. (2024). Principios de ecofisiología vegetal. Ediciones IVIC, Instituto Venezolano de Investigaciones Cientificas. 132. Meerow, A. W. (2023). Classification and phylogeny of Amaryllidaceae, the modern synthesis and the road ahead: A review. Boletín de la Sociedad Argentina de Botánica, 58(3). https://doi.org/10.31055/1851.2372.v58.n3.40046 133. Meerow, A. W., Fay, M. F., Guy, C. L., Li, Q.-B., Zaman, F. Q., & Chase, M. W. (1999). Systematics of Amaryllidaceae based on cladistic analysis of plastid sequence data. American Journal of Botany, 86(9), 1325-1345. https://doi.org/10.2307/2656780 134. Meerow, A. W., Gardner, E. M., & Nakamura, K. (2020). Phylogenomics of the Andean Tetraploid Clade of the American Amaryllidaceae (Subfamily Amaryllidoideae): Unlocking a Polyploid Generic Radiation Abetted by Continental Geodynamics. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.582422 135. Megías, M., Molist, P., & Pombal, M. (2025). La célula 3. Membrana celular—Lípidos [Universidad de Vigo]. Atlas de histología vegetal y animal. https://mmegias.webs.uvigo.es/5-celulas/3-lipidos-c.php 136. Melgarejo, L. M., Sánchez, J., Chaparro, A., Newmark, F., Santos-Acevedo, M., Burbano, C., & Reyes, C. (2002). Aproximación al estado actual de la bioprospección en Colombia. Invemar. 137. Melgarejo, L. M., Sánchez, J., Reyes, C., Newmark, F., & Santos-Acevedo, M. (2002). Plan nacional en bioprospección continental y marina (propuesta técnica). Invemar. 138. Méndez González, J. (2013). Efectos de los esteroles y estanoles vegetales en el metabolismo enterohepático del colesterol y los triglicéridos [Http://purl.org/dc/dcmitype/Text, Universitat Autònoma de Barcelona]. https://dialnet.unirioja.es/servlet/tesis?codigo=80940 139. Menéndez, R., García, T., Garateix, A., Morales, R. A., Regalado, E. L., Laguna, A., Valdés, O., & Fernández, M. D. (2014). Neuroprotective and antioxidant effects of Thalassia testudinum extract BM-21, against acrylamide-induced neurotoxicity in mice. Journal of Pharmacy & Pharmacognosy Research, 2(1), 53. 140. Menezes Barra, I. M., Silva dos Reis, A., Miyagawa, H. K., Berkov, S., & Santos, A. (2021). Systematic investigation and lipidomic profiles composition characterization in leaves of five Amaryllidaceae species by HRGC-MS technique. South African Journal of Botany, 142, 25–33. https://doi.org/10.1016/j.sajb.2021.06.007 141. Menezes Barra, I. M., Silva dos Reis, A., Miyagawa, H. K., Berkov, S., & Santos, A. (2021). Systematic investigation and lipidomic profiles composition characterization in leaves of five Amaryllidaceae species by HRGC-MS technique. South African Journal of Botany, 142, 25-33. https://doi.org/10.1016/j.sajb.2021.06.007 142. Mesa García, M. D., Aguilera García, C. M., & Gil Hernández, A. (2006). Importancia de los lípidos en el tratamiento nutricional de las patologías de base inflamatoria. Nutr. Hosp., 21, 30-43. 143. Ministerio de Agricultura, Pesca y Alimentación - España. (2006). Prohibición de determinadas sustancias de efecto hormonal y tireostático y sustancias β-agonistas en la cría de ganado. https://www.mapa.gob.es/es/desarrollo-rural/temas/programas-ue/cap_hormonas_tcm30-57825.pdf 144. Ministerio de Ambiente y Desarrollo Sostenible; Ospina Arango, O. L. (Ed.); Instituto de Investigación de Recursos Biológicos Alexander von Humboldt; Alcázar Caicedo, C.; Avella Muñoz, E. A.; Norden Medina, N.; García Villalobos, D. H.; García Martínez, H.; Castellanos Castro, C.; GonzálezM, R. (2021). Programa nacional para la conservación y restauración del bosque seco tropical en Colombia: Plan de acción 20202030 (78 p.). Bogotá, Colombia: Ministerio de Ambiente y Desarrollo Sostenible & Instituto Alexander von Humboldt. 145. Misra, D., Dutta, W., Jha, G., & Ray, P. (2023). Interactions and Regulatory Functions of Phenolics in Soil-Plant-Climate Nexus. Agronomy, 13(2), Article 2. https://doi.org/10.3390/agronomy13020280 146. Mohamad Said, K. A., Ismail, A. F., Abdul Karim, Z., Abdullah, M. S., & Hafeez, A. (2021). A review of technologies for the phenolic compounds recovery and phenol removal from wastewater. Process Safety and Environmental Protection, 151, 257–289. https://doi.org/10.1016/j.psep.2021.05.015 147. Morales Soto, A. (2014). Desarrollo de nuevas estrategias para la caracterización e identificación de compuestos bioactivos en fuentes vegetales. 148. Morańska, E., Simlat, M., Warchoł, M., Skrzypek, E., Waligórski, P., Laurain-Mattar, D., Spina, R., & Ptak, A. (2023). Phenolic Acids and Amaryllidaceae Alkaloids Profiles in Leucojum aestivum L. In Vitro Plants Grown under Different Light Conditions. Molecules, 28(4), 1525. https://doi.org/10.3390/molecules28041525 149. Munnik, T. (2001). Phosphatidic acid: An emerging plant lipid second messenger. Trends in Plant Science, 6(5), 227-233. https://doi.org/10.1016/S1360-1385(01)01918-5 150. Nair, J. J., van Staden, J., Bonnet, S. L., & Wilhelm, A. (2017). Distribution and Diversity of Usage of the Amaryllidaceae in the Traditional Remediation of Infectious Diseases. Natural Product Communications, 12(4), 1934578X1701200440. https://doi.org/10.1177/1934578X1701200440 151. Nikolova, M., & Gevrenova, R. (2005). Determination of Phenolic Acids in Amaryllidaceae Species by High Performance Liquid Chromatography. Pharmaceutical Biology, 43(3), 289-291. https://doi.org/10.1080/13880200590928906 152. Nwaeburu, C. C., Bauer, N., Zhao, Z., Abukiwan, A., Gladkich, J., Benner, A., & Herr, I. (2016). Up-regulation of microRNA let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl. Oncotarget, 7(36), 58367-58380. https://doi.org/10.18632/oncotarget.11122 153. Nye, L. C., Williams, J. P., Munjoma, N. C., Letertre, M. P. M., Coen, M., Bouwmeester, R., Martens, L., Swann, J. R., Nicholson, J. K., Plumb, R. S., McCullagh, M., Gethings, L. A., Lai, S., Langridge, J. I., Vissers, J. P. C., & Wilson, I. D. (2019). A comparison of collision cross section values obtained via travelling wave ion mobility-mass spectrometry and ultra high performance liquid chromatography-ion mobility-mass spectrometry: Application to the characterisation of metabolites in rat urine. Journal of Chromatography A, 1602, 386-396. https://doi.org/10.1016/j.chroma.2019.06.056 154. Official Journal of the European Union. (2016). Commission Regulation (EU) 2016/1416 of 24 August 2016 – Amending and Correcting Regulation (EU) No 10/2011 on Plastic Materials and Articles Intended to Come into Contact with Food. Official Journal of the European Union, Official Journal of the European Union. https://doi.org/10.2903/j.efsa.2007.555 155. Ojito Ramos, K., & Portal, O. (2017). Metabolitos secundarios de las Plantas, una alternativa para el manejo de enfermedades en cultivos de interés económico. 156. Özeker, E. (1999). Phenolic compounds and their importance. DergiPark, 9(2), 114–124. 157. Paduch, R., Kandefer-Szerszeń, M., Trytek, M., & Fiedurek, J. (2007). Terpenes: Substances useful in human healthcare. Archivum Immunologiae et Therapiae Experimentalis, 55(5), 315–327. https://doi.org/10.1007/s00005-007-0039-1 158. Palma, M., Barbero, G. F., Piñeiro, Z., Liazid, A., Barroso, C. G., Rostagno, M. A., Prado, J. M., & Meireles, M. A. A. (2013). CHAPTER 2. Extraction of Natural Products: Principles and Fundamental Aspects. En M. A. Rostagno & J. M. Prado (Eds.), Green Chemistry Series (pp. 58–88). Royal Society of Chemistry. https://doi.org/10.1039/9781849737579-00058 159. Parsaeimehr, A., Sargsyan, E., & Vardanyan, A. (2011). Expression of Secondary Metabolites in Plants And Their Useful Perspective in Animal Health. ABAH Bioflux, 3(2), 115-124. 160. Pasković, I., Lukić, I., Žurga, P., Majetić Germek, V., Brkljača, M., Koprivnjak, O., Major, N., Grozić, K., Franić, M., Ban, D., Marcelić, Š., & Goreta Ban, S. (2020). Temporal Variation of Phenolic and Mineral Composition in Olive Leaves Is Cultivar Dependent. Plants, 9(9), Article 9. https://doi.org/10.3390/plants9091099 161. Pathakoti, K., Goodla, L., Manubolu, M., & Tencomnao, T. (2017). Metabolic Alterations and the Protective Effect of Punicalagin Against Glutamate-Induced Oxidative Toxicity in HT22 Cells. Neurotoxicity Research, 31(4), 521-531. https://doi.org/10.1007/s12640-016-9697-2 162. Pawase, P. A., Goswami, C., Shams, R., Pandey, V. K., Tripathi, A., Rustagi, S., & G, D. (2024). A conceptual review on classification, extraction, bioactive potential and role of phytochemicals in human health. Future Foods, 9, 100313. https://doi.org/10.1016/j.fufo.2024.100313 163. Pereira do Nascimento, R., Lino Dos Santos, B., Oliveira Alves, J. A., Ribeiro Pereira Soares, J., Costa da Silva, K., Reis Santana, M., Alves Nunes Almeida, Á. M., Amaral da Silva, V. D., de Fátima Dias Costa, M., Ulrich, H., Moura-Neto, Pinto de Faria Lopes, G., & Lima Costa, S. (2022). Neuroimmunomodulatory Properties of Flavonoids and Derivates: A Potential Action as Adjuvants for the Treatment of Glioblastoma. Pharmaceutics, 14(1), Article 1. https://doi.org/10.3390/pharmaceutics14010116 164. Pérez-Urria Carril, E., & Ávalos García, A. (2009). Metabolismo secundario de plantas. https://hdl.handle.net/20.500.14352/50406 165. Pingret, D., Fabiano-Tixier, A.-S., & Chemat, F. (2013). CHAPTER 3. Ultrasound‐assisted Extraction. En M. A. Rostagno & J. M. Prado (Eds.), Green Chemistry Series (pp. 89–112). Royal Society of Chemistry. https://doi.org/10.1039/9781849737579-00089 166. Pinto, T., Aires, A., Cosme, F., Bacelar, E., Morais, M. C., Oliveira, I., Ferreira-Cardoso, J., Anjos, R., Vilela, A., & Gonçalves, B. (2021). Bioactive (Poly)phenols, Volatile Compounds from Vegetables, Medicinal and Aromatic Plants. Foods, 10(1), 106. https://doi.org/10.3390/foods10010106 167. Piotrowska, H., Kucinska, M., & Murias, M. (2012). Biological activity of piceatannol: Leaving the shadow of resveratrol. Mutation Research/Reviews in Mutation Research, 750(1), 60–82. https://doi.org/10.1016/j.mrrev.2011.11.001 168. Pivnenko, K., Pedersen, G. A., Eriksson, E., & Astrup, T. F. (2015). Bisphenol A and its structural analogues in household waste paper. Waste Management, 44, 39–47. https://doi.org/10.1016/j.wasman.2015.07.017 169. Pratheeshkumar, P., Son, Y.-O., Divya, S. P., Wang, L., Turcios, L., Roy, R. V., Hitron, J. A., Kim, D., Dai, J., Asha, P., Zhang, Z., & Shi, X. (2017). Quercetin inhibits Cr(VI)-induced malignant cell transformation by targeting miR-21-PDCD4 signaling pathway. Oncotarget, 8(32), 52118-52131. https://doi.org/10.18632/oncotarget.10130 170. Quirantes-Piné, R., Lozano-Sánchez, J., Herrero, M., Ibáñez, E., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2012). HPLC–ESI–QTOF–MS as a Powerful Analytical Tool for Characterising Phenolic Compounds in Olive-leaf Extracts. Phytochemical Analysis, 24(3), 213-223. https://doi.org/10.1002/pca.2401 171. Rahman, M. M., Rahaman, M. S., Islam, M. R., Rahman, F., Mithi, F. M., Alqahtani, T., Almikhlafi, M. A., Alghamdi, S. Q., Alruwaili, A. S., Hossain, M. S., Ahmed, M., Das, R., Emran, T. B., & Uddin, M. S. (2022). Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules, 27(1), 233. https://doi.org/10.3390/molecules27010233 172. Rashidinejad, A., Birch, E. J., Sun-Waterhouse, D., & Everett, D. W. (2014). Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chemistry, 156, 176-183. https://doi.org/10.1016/j.foodchem.2014.01.115 173. Resolución 1478 de 2006 (10 de mayo) (2006). https://ids.gov.co/2024/MEDICAMENTOS/Resolucion_1478_de_2006.pdf 174. Ribeiro, D., Freitas, M., Tomé, S. M., Silva, A. M. S., Laufer, S., Lima, J. L. F. C., & Fernandes, E. (2015). Flavonoids Inhibit COX-1 and COX-2 Enzymes and Cytokine/Chemokine Production in Human Whole Blood. Inflammation, 38(2), 858-870. https://doi.org/10.1007/s10753-014-9995-x 175. Riccio, P. (2011). The molecular basis of nutritional intervention in multiple sclerosis: A narrative review. Complementary Therapies in Medicine, 19(4), 228-237. https://doi.org/10.1016/j.ctim.2011.06.006 176. Roberts, L. (2010). Defining the metabolic effect of peroxisome proliferator-activated receptor δ activation. 177. Roessner, U., & Bowne, J. (2009). What is metabolomics all about? BioTechniques, 46(5), 363-365. https://doi.org/10.2144/000113133 178. Royston, G. (2007). Metabolomics of a Superorganism. The Journal of Nutrition, 137(1), 259S-266S. https://doi.org/10.1093/jn/137.1.259S 179. Rodeiro-Guerra, I., Hernández-Ojeda, S. L., Herrera-Isidrón, J. A., Hernández-Balmaseda, I., Padrón-Yaquis, S., Olguín-Reyes, S. del R., Alejo-Rodríguez, P. L., Ronquillo-Sánchez, M. D., Camacho-Carranza, R., Menéndez-Soto del Valle, R., Fernández-Pérez, M. D., Espinosa-Aguirre, J. J., Rodeiro-Guerra, I., Hernández-Ojeda, S. L., Herrera-Isidrón, J. A., Hernández-Balmaseda, I., Padrón-Yaquis, S., Olguín-Reyes, S. del R., Alejo-Rodríguez, P. L., … Espinosa-Aguirre, J. J. (2017). Study of the interaction of an extract obtained from the marine plant Thalassia Testudinum with phase i metabolism in rats. Revista Internacional de Contaminación Ambiental, 33(4), 547-557. https://doi.org/10.20937/rica.2017.33.04.01 180. Rodríguez, J. V., Cravero, R. M., Hourcade, M., Mamprin, M. E., Pellegrino, J. M., Poletti, G., & Sturz, N. G. (2008). Análisis de Lípidos de Biomembranas. Curso Práctico. (1.a ed.). UNR EDitora. https://doi.org/10.13140/RG.2.1.4691.1529 181. Royal Botanic Gardens. (2018). Urceolina caucana (Meerow). En Royal Botanic Gardens. http://hdl.handle.net/2445/124308 182. Salgado Padilla, J. D. (2020). Una revisión de la Microencapsulación de compuestos polifenólicos en la industria alimentaria y farmacéutica. Universidad de cartagena. https://repositorio.unicartagena.edu.co/server/api/core/bitstreams/42f12c52-5070-4924-9c8c-407fb753ad7f/content 183. Salam, U., Ullah, S., Tang, Z.-H., Elateeq, A. A., Khan, Y., Khan, J., Khan, A., & Ali, S. (2023). Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life, 13(3), Article 3. https://doi.org/10.3390/life13030706 184. San Mauro-Martín, I., Collado-Yurrita, L., Blumenfeld-Olivares, J. A., Cuadrado-Cenzual, M. Á., Calle-Purón, M. E., Hernández-Cabria, M., Garicano-Vilar, E., & Pérez-Arruche, E. (2016). Efecto de esteroles vegetales en la reducción del colesterol plasmático: Ensayo clínico, controlado, aleatorizado, cruzado y doble ciego. Nutrición Hospitalaria, 33(3), 685–691. https://doi.org/10.20960/nh.279 185. Schmelzer, K., Fahy, E., Subramaniam, S., & Dennis, E. A. (2007). The Lipid Maps Initiative in Lipidomics. En Methods in Enzymology (Vol. 432, pp. 171-183). Academic Press. https://doi.org/10.1016/S0076-6879(07)32007-7 186. Sebghatollahi, Z., Ghanadian, M., Agarwal, P., Ghaheh, H. S., Mahato, N., Yogesh, R., & Hejazi, S. H. (2022). Citrus Flavonoids: Biological Activities, Implementation in Skin Health, and Topical Applications: A Review. ACS Food Science & Technology, 2(9), 1417–1432. https://doi.org/10.1021/acsfoodscitech.2c00165 187. Sen, P., & Orešič, M. (2023). Integrating Omics Data in Genome-Scale Metabolic Modeling: A Methodological Perspective for Precision Medicine. Metabolites, 13(7), Article 7. https://doi.org/10.3390/metabo13070855 188. Seca, A. M. L., & Pinto, D. C. G. A. (2019). Biological Potential and Medical Use of Secondary Metabolites. Medicines, 6(2), 66. https://doi.org/10.3390/medicines6020066 189. Shahid, M., Khan, F., & Ahern, A. (2018). Review of A Paradigm Shift to Prevent and Treat Alzheimer’s Disease: From Monotargeting Pharmaceuticals to Pleiotropic Plant Polyphenols. Journal of Natural Products, 81(9), 2159-2160. https://doi.org/10.1021/acs.jnatprod.8b00686 190. Shan, Q.-Y., Cao, G., Cai, H., Cong, X.-D., & Cai, B.-C. (2012). Novel software-based method to classify structurally similar compounds combined with high performance liquid chromatography–quadrupole time of flight mass spectrometry to identify complex components of herbal medicines. Journal of Chromatography A, 1264, 13-21. https://doi.org/10.1016/j.chroma.2012.09.045 191. Sharma, S., Perera, K. Y., Jaiswal, A. K., & Jaiswal, S. (2024). Chapter 8—Natural antimicrobials from fruits and plant extract for food packaging and preservation. En A. K. Jaiswal & S. Shankar (Eds.), Food Packaging and Preservation (pp. 133-152). Academic Press. https://doi.org/10.1016/B978-0-323-90044-7.00008-2 192. Sharma, M., Sandhir, R., Singh, A., Kumar, P., Mishra, A., Jachak, S., Singh, S. P., Singh, J., & Roy, J. (2016). Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01870 193. SiB Colombia (2025, 23 de abril). Catálogo de la Biodiversidad de Colombia, Sistema de Información sobre Biodiversidad de Colombia. https://catalogo.biodiversidad.co/file/567c0e9df289f5a40c0cd34a/summary 194. SiB Colombia. (2024, marzo 21). Nueva lista de especies amenazadas en Colombia al detalle. https://biodiversidad.co/post/2024/lista-especies-amenazadas-colombia/ 195. Silva, P., Pinheiro, A. C., Rodríguez, L., Figueroa, V., & Baginsky, C. (2016). Fuentes naturales de fitoesteroles y factores de producción que lo modifican. Archivos Latinoamericanos de Nutrición, 66(1). http://www.alanrevista.org/ediciones/2016/1/art-2/ 196. Silverstone-Sopkin, P. A. (2011). Los muertos vivientes: La historia natural de cuatro lirios amazónicos del suroccidente de Colombia (Eucharis y Plagiolirion, Amaryllidaceae). Programa Editorial Universidad del Valle. https://doi.org/10.25100/peu.97 197. Sisalema Cisneros, S. A. (2022). Revisión de los alcaloides de amaryllidaceae en sudamérica [PhD Thesis]. Universidad tecnológica indoamérica. 198. Soto Vásquez, M. R., & Leiva Salinas, M. J. (2016). Estudio exomorfológico y fitoquímico de los bulbos y hojas de Rauhia multiflora (Kunth) Ravenna (Amaryllidaceae) endémica del norte del Perú. Universidad Privada Antenor Orrego, 23(1). https://www.researchgate.net/profile/Marilu-Roxana-Soto-Vasquez/publication/304473050_Estudio_exomorfologico_y_fitoquimico_de_los_bulbos_y_hojas_de_Rauhia_multiflora_Kunth_Ravenna_Amaryllidaceae_endemica_del_norte_del_Peru/links/5770a97208ae62194748802c/Estudio-exomorfologico-y-fitoquimico-de-los-bulbos-y-hojas-de-Rauhia-multiflora-Kunth-Ravenna-Amaryllidaceae-endemica-del-norte-del-Peru.pdf 199. Squires, E. J. (2024). Applied Animal Endocrinology (3.a ed.). CABI. https://doi.org/10.1079/9781800620742.0000 200. Stelling Férez, J. (2024). Oleanolic Acid Improves Different Aspects of Wound Healing [doctoralThesis]. https://repositorio.ucam.edu/handle/10952/7524 201. Sterin-Speziale, N., & Leocata Nieto, F. (2007). Los esfingolípidos en la muerte y proliferación celular. Química Viva, 6(3), 112–138. 202. Sengupta, A., & Narad, P. (2018). Metabolomics. En P. Arivaradarajan & G. Misra (Eds.), Omics Approaches, Technologies And Applications: Integrative Approaches For Understanding OMICS Data (pp. 75-97). Springer. https://doi.org/10.1007/978-981-13-2925-8_5 203. Sun, J., & Xia, Y. (2024). Pretreating and normalizing metabolomics data for statistical analysis. Genes & Diseases, 11(3), 100979. https://doi.org/10.1016/j.gendis.2023.04.018 204. Tallini, L. R., Torras-Claveria, L., Borges, W. de S., Kaiser, M., Viladomat, F., Zuanazzi, J. A. S., & Bastida, J. (2018). N-oxide alkaloids from Crinum amabile (Amaryllidaceae). Molecules, 23(6), 1277. https://doi.org/10.3390/molecules23061277 205. Teixeira, F. J., Tavares, N., Matias, C. N., & Phillips, S. M. (2022). The effects of phosphatidic acid on performance and body composition—A scoping review. Journal of Sports Sciences, 40(3), 364–369. https://doi.org/10.1080/02640414.2021.1994769 206. Teka, T., Zhang, L., Ge, X., Li, Y., Han, L., & Yan, X. (2022). Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review. Phytochemistry, 197, 113128. https://doi.org/10.1016/j.phytochem.2022.113128 207. Tong, J., Vo, Q. N. Q., He, X., Liu, H., Zhou, H., & Park, C. H. (2024). Physically crosslinked chitosan/αβ–glycerophosphate hydrogels enhanced by surface-modified cyclodextrin: An efficient strategy for controlled drug release. International Journal of Biological Macromolecules, 283, 137163. https://doi.org/10.1016/j.ijbiomac.2024.137163 208. Trevathan-Tackett, S. M., Lane, A. L., Bishop, N., & Ross, C. (2015). Metabolites derived from the tropical seagrass Thalassia testudinum are bioactive against pathogenic Labyrinthula sp. Aquatic Botany, 122, 1-8. https://doi.org/10.1016/j.aquabot.2014.12.005 209. Troisi, J., Landolfi, A., Cavallo, P., Marciano, F., Barone, P., & Amboni, M. (2021). Chapter Three—Metabolomics in Parkinson’s disease. En G. S. Makowski (Ed.), Advances in Clinical Chemistry (Vol. 104, pp. 107–149). Elsevier. https://doi.org/10.1016/bs.acc.2020.09.003 210. Tursi, A. (2019). A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Research Journal, 6(2), 962-979. https://doi.or/10.18331/BRJ2019.6.2.3 211. Valderrama, N., García, N., Baptiste, M. P., Renjifo, L. M., Sánchez-Duarte, P., Cárdenas-Toro, J., Rubiano, G., Lasso, C. A., Morales-Betancourt, M. A., Amaya-Villareal, Á. M., & Lázaro-Toro, J. (2014). Especies amenazadas de fauna y flora. En J. C. Bello, M. Báez, M. F. Gómez, O. Orrego, & L. Nägele, Biodiversidad 2014. Reporte de estado y tendencias de la biodiversidad continental de Colombia (1a ed., pp. 13–14). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. https://doi.org/10.21068/B001.2014.201 212. Valenzuela B, A., & Sanhueza C, J. (2008). ESTRUCTURACIÓN DE LIPIDOS Y SUSTITUTOS DE GRASAS, ¿LIPIDOS DEL FUTURO? Revista chilena de nutrición, 35(4), 394–405. https://doi.org/10.4067/S0717-75182008000500001 213. Valenzuela B, A., Sanhueza C, J., & Nieto K, S. (2002). El uso de lípidos estructurados en la nutrición: Una tecnología que abre nuevas perspectivas en el desarrollo de productos innovadores. Revista chilena de nutrición, 29(2), 106-115. https://doi.org/10.4067/S0717-75182002000200005 214. Valletta, A., Iozia, L. M., & Leonelli, F. (2021). Impact of Environmental Factors on Stilbene Biosynthesis. Plants, 10(1), Article 1. https://doi.org/10.3390/plants10010090 215. Vega-Sánchez, N., Montero-Jara, M. F., Marín-Fajardo, R., & Chavarría Rojas, M. (2022). Liposomas en el desarrollo de formas farmacéuticas semisólidas. Ars Pharmaceutica (Internet), 63(4), Article 4. https://doi.org/10.30827/ars.v63i4.26059 216. Veldman, R. J., Blitterswijk, W. J. V., Verheij, M., & Koning, G. A. (2009). Formulaciones farmaceuticas que utilizan esfingolipidos de cadena corta y usos de las mismas (Patent No. ES2329374T3). https://patents.google.com/patent/ES2329374T3/es 217. Villafuerte Robles, L. (2011). Los excipientes y su funcionalidad en productos farmacéuticos sólidos. 42(1). https://www.scielo.org.mx/pdf/rmcf/v42n1/v42n1a3.pdf 218. Villalobos, M. del C., Serradilla, M. J., Martín, A., Ordiales, E., Ruiz-Moyano, S., & Córdoba, M. de G. (2016). Antioxidant and antimicrobial activity of natural phenolic extract from defatted soybean flour by-product for stone fruit postharvest application. Journal of the Science of Food and Agriculture, 96(6), 2116-2124. https://doi.org/10.1002/jsfa.7327 219. Waitzberg, D. L., & Garla, P. (2014). Contribución de los Acidos Grasos Omega-3 para la Memoria y la Función Cognitiva. Nutrición Hospitalaria, 30(3), 467–477. https://doi.org/10.3305/nh.2014.30.3.7632 220. Wang, K.-T., Chen, L.-G., Tseng, S.-H., Huang, J.-S., Hsieh, M.-S., & Wang, C.-C. (2011). Anti-inflammatory effects of resveratrol and oligostilbenes from vitis thunbergii var. Taiwaniana against lipopolysaccharide-induced arthritis(Article). 59(8). https://doi.org/10.1021/jf104718g 221. Weber, K., Schulz, B., & Ruhnke, M. (2011). Resveratrol and its antifungal activity against Candida species. Mycoses, 54(1), 30–33. https://doi.org/10.1111/j.1439-0507.2009.01763.x 222. Wishart, D. S. (2005). Metabolomics: The Principles and Potential Applications to Transplantation. American Journal of Transplantation, 5(12), 2814-2820. https://doi.org/10.1111/j.1600-6143.2005.01119.x 223. Yagi, S., Nilofar, Zengin, G., Yildiztugay, E., Caprioli, G., Piatti, D., Menghini, L., Ferrante, C., Di Simone, S. C., Chiavaroli, A., & Maggi, F. (2023). Exploring for HPLC-MS/MS Profiles and Biological Activities of Different Extracts from Allium lycaonicum Siehe ex Hayek from Turkey Flora. Foods, 12(24), 4507. https://doi.org/10.3390/foods12244507 224. Yao, H.-Y., & Xue, H.-W. (2018). Phosphatidic acid plays key roles regulating plant development and stress responses. Journal of Integrative Plant Biology, 60(9), 851-863. https://doi.org/10.1111/jipb.12655 225. Yong, H., & Liu, J. (2020). Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packaging and Shelf Life, 26, 100550. https://doi.org/10.1016/j.fpsl.2020.100550 226. Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Dusemund, B., Filipič, M., Frutos, M. J., Galtier, P., Gott, D., Gundert-Remy, U., Kuhnle, G. G., Leblanc, J.-C., Lillegaard, I. T., Moldeus, P., Mortensen, A., Oskarsson, A., Stankovic, I., Waalkens-Berendsen, I., Woutersen, R. A., … Lambré, C. (2017). Re-evaluation of polyglycerol esters of fatty acids (E 475) as a food additive. EFSA Journal. European Food Safety Authority, 15(12), e05089. https://doi.org/10.2903/j.efsa.2017.5089 227. Zhang, Q., & Yue, S.-J. (2022). Editorial: Flavonoids and Cardiovascular Metabolism. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.939798 228. Zhong, J., & Guangmin, Y. (2019). Amaryllidaceae and Sceletium alkaloids. Natural Product Reports, 36(10), 1462-1488. 229. Zhu, K., & Wang, W. (2016). Green tea polyphenol EGCG suppresses osteosarcoma cell growth through upregulating miR-1. Tumor Biology, 37(4), 4373-4382. https://doi.org/10.1007/s13277-015-4187-3 230. Zulfiqar, F., & Ashraf, M. (2021). Bioregulators: Unlocking their potential role in regulation of the plant oxidative defense system. Plant Molecular Biology, 105(1-2), 11-41. https://doi.org/10.1007/s11103-020-01077-w |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ |
| dc.format.extent.none.fl_str_mv |
98 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Ibagué |
| dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Naturales y Matemáticas |
| dc.publisher.place.none.fl_str_mv |
Ibagué |
| dc.publisher.program.none.fl_str_mv |
Biología ambiental |
| publisher.none.fl_str_mv |
Universidad de Ibagué |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/7c5187dd-aaef-4af3-8f6a-4d9b3dc93842/download https://repositorio.unibague.edu.co/bitstreams/172bddc0-2aaa-4ad8-9908-eb6b11bf49f4/download https://repositorio.unibague.edu.co/bitstreams/88752e63-db66-4f56-b189-b2a58a655324/download https://repositorio.unibague.edu.co/bitstreams/6ec32140-1d95-4fb8-aa9b-4e8e588fdfd1/download https://repositorio.unibague.edu.co/bitstreams/68eb4669-09f1-4796-9c6f-43dd83a4ead0/download https://repositorio.unibague.edu.co/bitstreams/072889de-149c-44fe-802d-987dce638adf/download https://repositorio.unibague.edu.co/bitstreams/ee890234-88c2-48a2-936e-59a734f76d70/download https://repositorio.unibague.edu.co/bitstreams/373e31ef-01fe-47c9-9d5f-f4f4d4b2b946/download |
| bitstream.checksum.fl_str_mv |
7fe1ea628da7e74c7ec3150e79f5bd6d efad51e0d29cf8b3e181b8b32cb65113 208b9670ed6cbb6306d21936e2556824 2fa3e590786b9c0f3ceba1b9656b7ac3 29a507869e3fe419a7d6e9e72f8ffd28 472c4312b0a9b909d525b6501863fab8 6a2459fe68b3bf78e218beadee2182f0 99666eca31a877969e6b4664deb69dd3 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059952781623296 |
| spelling |
Cortes, Charlotte Natalie29f49502-1027-47e8-be32-48e7c201a91d600Ortiz Domínguez, Brandon Elí79ab32b5-1885-431a-afbc-6eff518dda86-1Tirone García, Angie Viviana6f629210-b110-45ae-99e3-ae5360ab1f90-1Hernández Useche, Juan David9b92a88e-1321-45d2-ab05-5fac355805f5-1Osorio Lopez, Edison Humbertoa28240e4-ba7f-4632-9175-08073951f7f5-1Florido Cuellar, Bilma Adela28c1de04-8361-4d55-8a34-65bdf52344d4-12025-08-19T17:04:37Z2025-08-19T17:04:37Z2025La biodiversidad colombiana, una de las más grandes del mundo, ofrece una gran oportunidad parala bioprospección, que busca identificar compuestos bioactivos, en este caso específicamente conpotencial farmacéutico. Sin embargo, su uso y aprovechamiento aún enfrentan desafíosrelacionados con el conocimiento limitado de los metabolitos específicos en especies nativas,como Urceolina caucana, y la necesidad de desarrollar metodologías eficientes para suidentificación y uso sostenible. El objetivo principal de este estudio fue realizar una caracterizaciónmetabolómica de los compuestos lipídicos y fenólicos presentes en U. caucana, empleando latécnica de HPLC-QTOF-MS, para identificar nuevos compuestos bioactivos con potencialfarmacéutico. Los objetivos específicos incluyeron obtener extractos de los metabolitos medianteextracción por ultrasonido, identificar los principales compuestos lipídicos y fenólicos en laespecie, y proponer posibles aplicaciones de estos metabolitos. La metodología consistió en laobtención de extractos y el análisis de estos mediante HPLC-QTOF-MS, una técnica avanzada quepermitió detectar y caracterizar un amplio perfil de metabolitos en la muestra. Los resultadosmostraron que U. caucana contiene una variedad significativa de compuestos lipídicos y fenólicos,muchos de los cuales tienen actividades biológicas relevantes y potencial en farmacología.Además, refuerzan el valor de la biodiversidad colombiana como fuente de nuevos compuestosbioactivos, subrayando la importancia de su aprovechamiento sostenible y responsable parafomentar la innovación y desarrollo.Colombia's biodiversity, one of the largest in the world, offers a great opportunity forbioprospecting to identify bioactive compounds with pharmaceutical potential. However, their useand exploitation still face challenges related to the limited knowledge of specific metabolites innative species, such as Urceolina caucana, and the need to develop efficient methodologies fortheir identification and sustainable use. The main objective of this study was to perform ametabolomic characterization of lipid and phenolic compounds present in U. caucana, using theHPLC-QTOF-MS technique, to identify new bioactive compounds with pharmaceutical potential.The specific objectives included obtaining extracts of the metabolites by ultrasound extraction,identifying the main lipid and phenolic compounds in the species, and proposing possibleapplications of these metabolites. The methodology consisted of obtaining extracts and analyzingthem by HPLC-QTOF-MS, an advanced technique that allowed the detection and characterizationof a broad profile of metabolites in the sample. The results showed that U. caucana contains asignificant variety of lipid and phenolic compounds, many of which have relevant biologicalactivities and potential in pharmacology. They also reinforce the value of Colombian biodiversityas a source of new bioactive compounds, underlining the importance of their sustainable andresponsible use to foster innovation and development.PregradoBiologo ambientalTABLA DE CONTENIDO Introducción.....10 Descripción del proyecto.....10 1.1. Planteamiento del problema de investigación y justificación.....10 1.2. Marco teórico y estado del arte.....13 1.2.1. Bioprospección en Colombia.....13 1.2.2. Amaryllidaceae en Colombia.....15 1.2.3. Amaryllidoideae.....18 1.2.4. Urceolina caucana.....18 1.2.5. Compuestos fenólicos.....20 1.2.6. Compuestos lipídicos.....25 1.2.7. Metabolómica.....30 1.2.8. HPLC-QTOF-MS.....32 1.3. Objetivos.....34 1.3.1. Objetivo General.....34 1.3.2. Objetivos específicos.....34 1.4. Metodología.....34 1.4.1. OE1: Obtener los extractos de lípidos y fenoles mediante extracción con ultrasonido.....35 1.4.2. OE2: Identificar los principales compuestos lipídicos y fenólicos de U. caucana mediante HPLC-QTOF-MS.....37 1.4.3. OE3: Proponer las posibles aplicaciones de los compuestos identificados de U. caucana.....38 1.5. Resultados y Discusión.....39 1.5.1. OE1: Obtener los extractos de lípidos y fenoles mediante extracción con ultrasonido.....39 1.5.1.1. Actividad 1: Obtención del material vegetal.....39 1.5.1.2. Actividad 2: Extracción de Metabolitos.....40 1.5.2. OE2: Identificar los principales compuestos lipídicos y fenólicos de U. caucana mediante HPLC-QTOF-MS.....42 1.5.2.1. Actividad 1: Caracterización de compuestos.....42 1.5.2.2. Análisis de resultados de los compuestos fenólicos.....43 1.5.2.3. Análisis de resultados de los compuestos lipídicos.....48 1.5.3. OE3: Proponer las posibles aplicaciones de los compuestos identificados de U. caucana.....56 1.5.3.1. Actividad 1: Búsqueda información.....56 1.5.3.1.1. Compuestos fenólicos.....58 1.5.3.1.2. Compuestos lipídicos.....60 1.5.3.1.3. Regulación según normativa de compuestos fenólicos y lípidos.....66 1.6. Conclusiones.....69 1.7. Recomendaciones.....71 BIBLIOGRAFÍA.....72 ANEXOS.....9698 páginasapplication/pdfTirone García, A. V., & Hernández Useche, J. D. (2025). Bioprospección de Urceolina caucana: caracterización metabolómica de compuestos lipídicos y fenólicos empleando HPLC-QTOF-MS para la identificación de nuevos compuestos bioactivos con potencial farmacéutico. Universidad de Ibagué. https://hdl.handle.net/20.500.12313/5496https://hdl.handle.net/20.500.12313/5496spaUniversidad de IbaguéFacultad de Ciencias Naturales y MatemáticasIbaguéBiología ambiental1. Abdel-Aal, E.-S., & Akhtar, M. (2006). Recent Advances in the Analyses of Carotenoids and Their Role in Human Health. Current Pharmaceutical Analysis, 2(2), 195–204. https://doi.org/10.2174/1573412067768193192. Acumen. (2022, julio). Pharmaceutical Lipids—Global Market and Forecast Till 2030. Acumen Research and Consulting. https://www.acumenresearchandconsulting.com/pharmaceutical-lipids-market3. Ahlawat, Y. K., Singh, M., Manorama, K., Lakra, N., Zaid, A., & Zulfiqar, F. (2023). Plant phenolics: Neglected secondary metabolites in plant stress tolerance. Brazilian Journal of Botany, 47(3), 703-721. https://doi.org/10.1007/s40415-023-00949-x4. Akiyama, Y., Yoshioka, M., Horibe, H., Hirai, S., Kitamori, N., & Toguchi, H. (1993). Novel oral controlled-release microspheres using polyglycerol esters of fatty acids. Journal of Controlled Release, 26(1), 1-10. https://doi.org/10.1016/0168-3659(93)90203-H5. Al Jitan, S., Alkhoori, S. A., & Yousef, L. F. (2018). Chapter 13 - Phenolic Acids From Plants: Extraction and Application to Human Health. En Atta-ur-Rahman (Ed.), Studies in Natural Products Chemistry (Vol. 58, pp. 389-417). Elsevier. https://doi.org/10.1016/B978-0-444-64056-7.00013-16. Al Mamun, A. A. (2023). Amaryllidaceae alkaloids of genus Narcissus and their biological activity. Univerzita Karlova, Farmaceutická fakulta v Hradci Králové. https://dspace.cuni.cz/bitstream/handle/20.500.11956/183568/150059837.pdf?sequence=1&isAllowed=y7. Alarcon-Barrera, J. C., Kostidis, S., Ondo-Mendez, A., & Giera, M. (2022). Recent advances in metabolomics analysis for early drug development. Drug Discovery Today, 27(6), 1763-1773. https://doi.org/10.1016/j.drudis.2022.02.0188. Alam, F., Mohammadin, K., Shafique, Z., Amjad, S. T., & Asad, M. H. H. bin. (2022). Citrus flavonoids as potential therapeutic agents: A review. Phytotherapy Research, 36(4), 1417-1441. https://doi.org/10.1002/ptr.72619. Albuquerque, B. R., Heleno, S. A., Oliveira, M. B. P. P., Barros, L., & Ferreira, I. C. F. R. (2021). Phenolic compounds: Current industrial applications, limitations and future challenges. Food & Function, 12(1), 14-29. https://doi.org/10.1039/D0FO02324H10. Ali, A., Bashmil, Y. M., Cottrell, J. J., Suleria, H. A. R., & Dunshea, F. R. (2021). LC-MS/MS-QTOF Screening and Identification of Phenolic Compounds from Australian Grown Herbs and Their Antioxidant Potential. Antioxidants, 10(11), 1770. https://doi.org/10.3390/antiox1011177011. Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M., & Al-Mssallem, M. Q. (2022). Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules, 27(9), Article 9. https://doi.org/10.3390/molecules2709290112. Allen, D. R., & McWhinney, B. C. (2019). Quadrupole Time-of-Flight Mass Spectrometry: A Paradigm Shift in Toxicology Screening Applications. The Clinical Biochemist Reviews, 40(3), 135-146. https://doi.org/10.33176/AACB-19-0002313. Alves, E., Dias, M., Lopes, D., Almeida, A., Domingues, M. do R., & Rey, F. (2020). Antimicrobial Lipids from Plants and Marine Organisms: An Overview of the Current State-of-the-Art and Future Prospects. Antibiotics, 9(8), 441. https://doi.org/10.3390/antibiotics908044114. Alzate, F., Lesmes, M., Cortés, N., Varela, S., & Osorio, E. (2019). Sinopsis de la familia Amaryllidaceae en Colombia. Biota Colombiana, 20(1), 2-20. https://doi.org/10.21068/c2019.v20n01a0115. Argüeso Armesto, R., Díaz Díaz, J., Díaz Peromingo, J., Rodríguez González, A., Castro Mao, M., & Diz-Lois, F. (2011). Lípidos, colesterol y lipoproteínas. 72, S7-S17.16. ATSDR. (2008). ATSDR – Page Not Found or Temporarily Unavailable. ATSDR - Agency for Toxic Substances and Disease Registry. https://www.atsdr.cdc.gov/phs/phs.asp?id=146&tid=2717. ATSDR. (2014). ToxFAQsTM for Phenol. ATSDR - Agency for Toxic Substances and Disease Registry. https://wwwn.cdc.gov/TSP/ToxFAQs/ToxFAQsDetails.aspx?faqid=147&toxid=2718. Bach, A., Bożena, P., & Katarzyna, H. (2010). The effect of the exogenous phenolic compound, caffeic acid on organogenesis of Galanthus elwesii Hook. Cultured in vitro. ResearchGate. https://www.researchgate.net/publication/279765630_The_effect_of_the_exogenous_phenolic_compound_caffeic_acid_on_organogenesis_of_Galanthus_elwesii_Hook_Cultured_in_vitro_Wplyw_egzogennego_zwiazku_fenolowego_-_Kwasu_kawowego_na_organogeneze_Galanthus_19. Bailey, R. L. (2020). Current regulatory guidelines and resources to support research of dietary supplements in the United States. Critical reviews in food science and nutrition, 60(2), 298-309. https://doi.org/10.1080/10408398.2018.152436420. Bampidis, V., Azimonti, G., Bastos, M. de L., Christensen, H., Fašmon Durjava, M., Kouba, M., López‐Alonso, M., López Puente, S., Marcon, F., Mayo, B., Pechová, A., Petkova, M., Ramos, F., Sanz, Y., Villa, R. E., Woutersen, R., Brantom, P., Chesson, A., Westendorf, J., Manini, P., Pizzo, F., & Dusemund, B. (2021). Safety and efficacy of a feed additive consisting of a flavonoid‐rich dried extract of Citrus × aurantium L. fruit (bitter orange extract) for use in all animal species (FEFANA asbl). EFSA Journal, 19(7), e06709. https://doi.org/10.2903/j.efsa.2021.670921. Bastida, J., Lavilla, R., & Viladomat, F. (2006). Chapter 3 Chemical and Biological Aspects of Narcissus Alkaloids (pp. 87-179). https://doi.org/10.1016/S1099-4831(06)63003-422. Bay-Smidt, M. G. K., Jäger, A. K., Krydsfeldt, K., Meerow, A. W., Stafford, G. I., Van Staden, J., & Rønsted, N. (2011). Phylogenetic selection of target species in Amaryllidaceae tribe Haemantheae for acetylcholinesterase inhibition and affinity to the serotonin reuptake transport protein. South African Journal of Botany, 77(1), 175-183. https://doi.org/10.1016/j.sajb.2010.07.01623. Berkov, S., Atanasova, M., Georgiev, B., Bastida, J., & Doytchinova, I. (2022). The Amaryllidaceae alkaloids: An untapped source of acetylcholinesterase inhibitors. Phytochemistry Reviews, 21(5), 1415-1443. https://doi.org/10.1007/s11101-021-09790-024. Berkov, S., Osorio, E., Viladomat, F., & Bastida, J. (2020). Chapter Two—Chemodiversity, chemotaxonomy and chemoecology of Amaryllidaceae alkaloids. En The Alkaloids: Chemistry and Biology (Vol. 83, pp. 113-185). Academic Press. https://doi.org/10.1016/bs.alkal.2019.10.00225. Bhargava, N., Mor, R. S., Kumar, K., & Sharanagat, V. S. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70, 105293. https://doi.org/10.1016/j.ultsonch.2020.10529326. Biais, B., Krisa, S., Cluzet, S., Da Costa, G., Waffo-Teguo, P., Mérillon, J.-M., & Richard, T. (2017). Antioxidant and Cytoprotective Activities of Grapevine Stilbenes. Journal of Agricultural and Food Chemistry, 65(24), 4952–4960. https://doi.org/10.1021/acs.jafc.7b0125427. Buchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biochemistry and Molecular Biology of Plants. John Wiley & Sons.28. Burciaga Monge, A. D. (2019). Metabolismo de esteroles esterificados en plantas: Implicación en el desarrollo y la respuesta a estrés. Universidad de Barcelona.29. Burgos, A., Szymanski, J., Seiwert, B., Degenkolbe, T., Hannah, M. A., Giavalisco, P., & Willmitzer, L. (2011). Analysis of short-term changes in the Arabidopsis thaliana glycerolipidome in response to temperature and light. The Plant Journal, 66(4), 656–668. https://doi.org/10.1111/j.1365-313X.2011.04531.x30. Busto, R., Serna, J., Perianes-Cachero, A., Quintana-Portillo, R., García-Seisdedos, D., Canfrán-Duque, A., Paino, C. L., Lerma, M., Casado, M. E., Martín-Hidalgo, A., Arilla-Ferreiro, E., Lasunción, M. A., & Pastor, Ó. (2018). Ellagic acid protects from myelin-associated sphingolipid loss in experimental autoimmune encephalomyelitis. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1863(9), 958-967. https://doi.org/10.1016/j.bbalip.2018.05.00931. Cahlíková, L., Breiterová, K., & Opletal, L. (2020). Chemistry and Biological Activity of Alkaloids from the Genus Lycoris (Amaryllidaceae). Molecules, 25(20), 47-97.32. Caleja, C., Ribeiro, A., Barreiro, M. F., & Ferreira, I. C. F. R. (2017). Phenolic Compounds as Nutraceuticals or Functional Food Ingredients. Current Pharmaceutical Design, 23(19), 2787-2806. https://doi.org/10.2174/138161282266616122715390633. Camargo, A. C. de, & Lima, R. da S. (2019). A perspective on phenolic compounds, their potential health benefits, and international regulations: The revised Brazilian normative on food supplements. Journal of Food Bioactives, 7, 7-17. https://doi.org/10.31665/JFB.2019.719334. Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: A review. Environmental Science and Pollution Research, 22(8), 5711–5741. https://doi.org/10.1007/s11356-014-3974-535. Cebrián, R., Li, Q., Peñalver, P., Belmonte-Reche, E., Andrés-Bilbao, M., Lucas, R., de Paz, M. V., Kuipers, O. P., & Morales, J. C. (2022). Chemically Tuning Resveratrol for the Effective Killing of Gram-Positive Pathogens. Journal of Natural Products, 85(6), 1459–1473. https://doi.org/10.1021/acs.jnatprod.1c0110736. Cheng, M.-C., Ker, Y.-B., Yu, T.-H., Lin, L.-Y., Peng, R., & Peng, C.-H. (2010). Chemical Synthesis of 9(Z)-Octadecenamide and Its Hypolipidemic Effect: A Bioactive Agent Found in the Essential Oil of Mountain Celery Seeds. Journal of agricultural and food chemistry, 58, 1502–1508. https://doi.org/10.1021/jf903573g37. Choy, K. W., Murugan, D., Leong, X.-F., Abas, R., Alias, A., & Mustafa, M. R. (2019). Flavonoids as Natural Anti-Inflammatory Agents Targeting Nuclear Factor-Kappa B (NFκB) Signaling in Cardiovascular Diseases: A Mini Review. Frontiers in Pharmacology, 10. https://doi.org/10.3389/fphar.2019.0129538. Čižmárová, B., Hubková, B., Tomečková, V., & Birková, A. (2023). Flavonoids as Promising Natural Compounds in the Prevention and Treatment of Selected Skin Diseases. International Journal of Molecular Sciences, 24(7), Article 7. https://doi.org/10.3390/ijms2407632439. Coelho, N., Gonçalves, S., & Romano, A. (2020). Endemic Plant Species Conservation: Biotechnological Approaches. Plants, 9(3), 345. https://doi.org/10.3390/plants903034540. Coleman, R. A., Wang, P., & Bhat, B. G. (1998). Diradylglycerols alter fatty acid inhibition of monoacylglycerol acyltransferase activity in Triton X-100 mixed micelles. Biochemistry, 37(17), 5916–5922. https://doi.org/10.1021/bi980297241. Colombia Productiva. (2019). Farmacéuticos. https://www.colombiaproductiva.com/ptp-sectores/manufactura/farmaceuticos42. Cooke, M., & Kazanietz, M. G. (2022). Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Science Signaling, 15(729), eabo0264. https://doi.org/10.1126/scisignal.abo026443. Corzo, C., Lopes, D. G., Lochmann, D., Reyer, S., Stehr, M., & Salar-Behzadi, S. (2020). Novel approach for overcoming the stability challenges of lipid-based excipients. Part 1: Screening of solid-state and physical properties of polyglycerol esters of fatty acids as advanced pharmaceutical excipients. European Journal of Pharmaceutics and Biopharmaceutics, 148, 134-147. https://doi.org/10.1016/j.ejpb.2020.01.01244. Cuaderno de cultura científica. (2019, febrero 22). Metabolómica: El todo sobre la suma de las partes. Cuaderno de Cultura científica. https://culturacientifica.com/2019/02/22/metabolomica-el-todo-sobre-la-suma-de-las-partes/45. Data Bridge Market Research. (2021). Mercado mundial de compuestos fenólicos: Tendencias de la industria y pronóstico hasta 2028. Data Bridge Market Research. https://www.databridgemarketresearch.com/es/reports/global-phenolic-compounds-market46. Decreto 1156 de 2018 (6 de julio) (2018). https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=8728147. Decreto 2266 de 2004 (15 de julio) (2004). https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/Decreto-2266-de-2004.pdf48. Deo, D. D., Bazan, N. G., & Hunt, J. D. (2004). Lipid Second Messengers and Receptors. En L. Martini (Ed.), Encyclopedia of Endocrine Diseases (pp. 182-187). Elsevier. https://doi.org/10.1016/B0-12-475570-4/00825-849. Department of Health & Human Services, Public Health Service, & Agency for Toxic Substances and Disease Registry. (2008). Toxicological Profile for Phenol. Agency for Toxic Substances and Disease Registry (US). http://www.ncbi.nlm.nih.gov/books/NBK599448/50. Desgagné-Penix, I. (2021). Biosynthesis of alkaloids in Amaryllidaceae plants: A review. Phytochem Rev, 20, 409-431. https://doi.org/10.1007/s11101-020-09678-551. Desmarchelier, C. (2024). Repensar la bioprospección en América Latina Propuestas para descubrir el valor de la biodiversidad.52. Dias, R., Oliveira, H., Fernandes, I., Simal-Gandara, J., & Perez-Gregorio, R. (2021). Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics. Critical Reviews in Food Science and Nutrition, 61(7), 1130-1151. https://doi.org/10.1080/10408398.2020.175416253. Díaz Velásquez, D. M., Upegui Mayor, A. T., Arboleda Nava, J. A., & Vásquez Mucúa, A. L. (2020). LOS LÍPIDOS Y SUS GENERALIDADES. En A. lvarez-Ramírez, J. López-Peláez, & Meneses-Urrea LA (Eds.), Dislipidemias y estilos de vida en jóvenes (pp. 17-50). Editorial Universidad Santiago de Cali54. Ding, Y., Qu, D., Zhang, K.-M., Cang, X.-X., Kou, Z.-N., Xiao, W., & Zhu, J.-B. (2017). Phytochemical and biological investigations of Amaryllidaceae alkaloids: A review. Journal of Asian Natural Products Research, 19(1), 53-100. https://doi.org/10.1080/10286020.2016.119833255. DrugBank. (2025, abril 7). Phosphatidyl serine. https://go.drugbank.com/drugs/DB0014456. Duarte Torres, Ó. (2011). La bioprospección en Colombia. EXPEDITĬO, 7, Article 7. https://revistas.utadeo.edu.co/index.php/EXP/article/view/73257. Durazzo, A., Lucarini, M., Souto, E. B., Cicala, C., Caiazzo, E., Izzo, A. A., Novellino, E., & Santini, A. (2019). Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytotherapy Research, 33(9), 2221-2243. https://doi.org/10.1002/ptr.641958. Espinoza, J. L., Trung, L. Q., Inaoka, P. T., Yamada, K., An, D. T., Mizuno, S., Nakao, S., & Takami, A. (2017). The Repeated Administration of Resveratrol Has Measurable Effects on Circulating T‐Cell Subsets in Humans. Oxidative Medicine and Cellular Longevity, 2017(1). https://doi.org/10.1155/2017/678187259. Estrella, A., Funda, E., Misic, Z., Schaefer, C., Beck, M., Schlegel, B., & Urban, K. (2022). Nueva formulación de luteína y/o zeaxantina que puede formularse como comprimidos (Patent No. ES2917212T3). https://patents.google.com/patent/ES2917212T3/es60. Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill, A. H., Murphy, R. C., Raetz, C. R. H., Russell, D. W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., VanNieuwenhze, M. S., White, S. H., Witztum, J. L., & Dennis, E. A. (2005). A comprehensive classification system for lipids. Journal of Lipid Research, 46(5), 839-861. https://doi.org/10.1194/jlr.E400004-JLR20061. Fahy, E., Subramaniam, S., Murphy, R. C., Nishijima, M., Raetz, C. R. H., Shimizu, T., Spener, F., Meer, G. V., Wakelam, M. J. O., & Dennis, E. A. (2009). Update of the LIPID MAPS comprehensive classification system for lipids. Journal of Lipid Research, 50(SUPPL.). https://doi.org/10.1194/jlr.R800095-JLR20062. Fajardo Contreras, J. D., Sánchez Plaza, F. A., Dueñas Rivadeneira, J. P., Dueñas Rivadeneira, A. A., Fajardo Contreras, J. D., Sánchez Plaza, F. A., Dueñas Rivadeneira, J. P., & Dueñas Rivadeneira, A. A. (2022). EXTRACCIÓN ASISTIDA POR ULTRASONIDO Y SU APLICACIÓN EN LA OBTENCIÓN DE ACEITES VEGETALES. Centro Azúcar, 49(4), 125–143.63. Farzaei, M. H., Singh, A. K., Kumar, R., Croley, C. R., Pandey, A. K., Coy-Barrera, E., Kumar Patra, J., Das, G., Kerry, R. G., Annunziata, G., Tenore, G. C., Khan, H., Micucci, M., Budriesi, R., Momtaz, S., Nabavi, S. M., & Bishayee, A. (2019). Targeting Inflammation by Flavonoids: Novel Therapeutic Strategy for Metabolic Disorders. International Journal of Molecular Sciences, 20(19), Article 19. https://doi.org/10.3390/ijms2019495764. Feng, K., Duan, Y., Zhang, H., Xiao, J., Ho, C.-T., Huang, Q., & Cao, Y. (2023). Influence of 1,3-diacylglycerol on physicochemical and digestion properties of nanoemulsions and its enhancement of encapsulation and bioaccessibility of hydrophobic nobiletin. Food & Function, 14(13), 6212–6225. https://doi.org/10.1039/D3FO00543G65. Feng, Y., Sun, C., Yuan, Y., Zhu, Y., Wan, J., Firempong, C. K., Omari-Siaw, E., Xu, Y., Pu, Z., Yu, J., & Xu, X. (2016). Enhanced oral bioavailability and in vivo antioxidant activity of chlorogenic acid via liposomal formulation. International Journal of Pharmaceutics, 501(1-2), 342-349. https://doi.org/10.1016/j.ijpharm.2016.01.08166. Fernández-Rojas, B., & Gutiérrez-Venegas, G. (2018). Flavonoids exert multiple periodontic benefits including anti-inflammatory, periodontal ligament-supporting, and alveolar bone-preserving effects. Life Sciences, 209, 435–454. https://doi.org/10.1016/j.lfs.2018.08.02967. Figueroa-Robles, A., Antunes-Ricardo, M., & Guajardo-Flores, D. (2021). Encapsulation of phenolic compounds with liposomal improvement in the cosmetic industry. International Journal of Pharmaceutics, 593, 120125. https://doi.org/10.1016/j.ijpharm.2020.12012568. Flores, J., White, B. M., Brea, R. J., Baskin, J. M., & Devaraj, N. K. (2020). Lipids: Chemical tools for their synthesis, modification, and analysis. Chemical Society Reviews, 49(14), 4602-4614. https://doi.org/10.1039/D0CS00154F69. Flores-Ramos, L., Ruiz-Soto, A., Oscanoa-Huaynate, A. I., & Cervantes-Gallegos, M. A. (2020). Extracción e identificación de lípidos polares de las microalgas Nannochloropsis oceanica y Desmodesmus asymmetricus. Revista Colombiana de Química, 49(2), Article 2. https://doi.org/10.15446/rev.colomb.quim.v49n2.8376670. Fonseca-Kelly, Z., Nassrallah, M., Uribe, J., Khan, R. S., Dine, K., Dutt, M., & Shindler, K. S. (2012). Resveratrol Neuroprotection in a Chronic Mouse Model of Multiple Sclerosis. Frontiers in Neurology, 3. https://doi.org/10.3389/fneur.2012.0008471. Fortune Business Insights. (2025, marzo 24). Tamaño del mercado de nanopartículas lipídicas, participación y análisis de la industria, por tipo (nanopartículas lipídicas sólidas (SLN), portadores de lípidos nanoestructurados (NLC) y otros), por aplicación (terapéutica, investigación), por usuario final (empresas farmacéuticas y de biotecnología, académico e Institutos de Investigación, y otros), y Pronóstico Regional, 2024-2032. https://www.fortunebusinessinsights.com/lipid-nanoparticles-market-10696072. Furt, F., Simon-Plas, F., & Mongrand, S. (2011). Lipids of the Plant Plasma Membrane. En The Plant Plasma Membrane (pp. 3-30). Springer. https://doi.org/10.1007/978-3-642-13431-9_173. García-Lafuente, A., Moro, C., Manchón, N., Gonzalo-Ruiz, A., Villares, A., Guillamón, E., Rostagno, M., & Mateo-Vivaracho, L. (2014). In vitro anti-inflammatory activity of phenolic rich extracts from white and red common beans. Food Chemistry, 161, 216-223. https://doi.org/10.1016/j.foodchem.2014.04.00474. Garcia-Perez, P., Cassani, L., Garcia-Oliveira, P., Xiao, J., Simal-Gandara, J., Prieto, M. A., & Lucini, L. (2023). Algal nutraceuticals: A perspective on metabolic diversity, current food applications, and prospects in the field of metabolomics. Food Chemistry, 409, 135295. https://doi.org/10.1016/j.foodchem.2022.13529575. Gautam, S., Karmakar, S., Batra, R., Sharma, P., Pradhan, P., Singh, J., Kundu, B., & Chowdhury, P. K. (2017). Polyphenols in combination with β-cyclodextrin can inhibit and disaggregate α-synuclein amyloids under cell mimicking conditions: A promising therapeutic alternative. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1865(5), 589-603. https://doi.org/10.1016/j.bbapap.2017.02.01476. Ge, L., Li, S.-P., & Lisak, G. (2020). Advanced sensing technologies of phenolic compounds for pharmaceutical and biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis, 179, 112913. https://doi.org/10.1016/j.jpba.2019.11291377. Ginwala, R., McTish, E., Raman, C., Singh, N., Nagarkatti, M., Nagarkatti, P., Sagar, D., Jain, P., & Khan, Z. K. (2016). Apigenin, a Natural Flavonoid, Attenuates EAE Severity Through the Modulation of Dendritic Cell and Other Immune Cell Functions. Journal of Neuroimmune Pharmacology, 11(1), 36-47. https://doi.org/10.1007/s11481-015-9617-x78. Gieger, C., Geistlinger, L., Altmaier, E., Angelis, M. H. de, Kronenberg, F., Meitinger, T., Mewes, H.-W., Wichmann, H.-E., Weinberger, K. M., Adamski, J., Illig, T., & Suhre, K. (2008). Genetics Meets Metabolomics: A Genome-Wide Association Study of Metabolite Profiles in Human Serum. PLOS Genetics, 4(11), e1000282. https://doi.org/10.1371/journal.pgen.100028279. Gómez-Lechón, M. J., & Cascales, M. (2009). Las ómicas en el desarrollo de nuevos fármacos. Real Academia Nacional de Farmacia: Portal Publicaciones. https://core.ac.uk/outputs/230315941/?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v180. Goncharuk, E. A., & Zagoskina, N. V. (2023). Heavy Metals, Their Phytotoxicity, and the Role of Phenolic Antioxidants in Plant Stress Responses with Focus on Cadmium: Review. Molecules, 28(9), Article 9. https://doi.org/10.3390/molecules2809392181. González, I., Noguera-Urbano, E.A., Velásquez-Tibatá, J. Y J.M. Ochoa-Quintero (2018).Especies endémicas, áreas protegidas y deforestación. En Moreno, L. A, Andrade, G. I. y Goméz, M.F. (Eds.). 2019. Biodiversidad 2018. Estado y tendencias de la biodiversidad continental de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá, D. C., Colombia.82. Górniak, I., Bartoszewski, R., & Króliczewski, J. (2019). Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews, 18(1), 241–272. https://doi.org/10.1007/s11101-018-9591-z83. Gowd, V., Jia, Z., & Chen, W. (2017). Anthocyanins as promising molecules and dietary bioactive components against diabetes – A review of recent advances. Trends in Food Science & Technology, 68, 1-13. https://doi.org/10.1016/j.tifs.2017.07.01584. Guo, Q., Liu, L., & Barkla, B. J. (2019). Membrane Lipid Remodeling in Response to Salinity. International Journal of Molecular Sciences, 20(17), Article 17. https://doi.org/10.3390/ijms2017426485. Gutierrez, V. R., Peruna, J. S., Rodriguez, R. R., & Gonzales, M. D. H. (2004). Utilizacion del acido oleanolico como agente vasodilatador y restaurador de la disfuncion endotelial (World Intellectual Property Organization Patent No. WO2004096203A1). https://patents.google.com/patent/WO2004096203A1/es86. Haghmorad, D., Mahmoudi, M. B., Salehipour, Z., Jalayer, Z., brojeni, A. A. M., Rastin, M., Kokhaei, P., & Mahmoudi, M. (2017). Hesperidin ameliorates immunological outcome and reduces neuroinflammation in the mouse model of multiple sclerosis. Journal of Neuroimmunology, 302, 23-33. https://doi.org/10.1016/j.jneuroim.2016.11.00987. Hannun, Y. A., & Obeid, L. M. (2018). Sphingolipids and their metabolism in physiology and disease. Nature Reviews Molecular Cell Biology, 19(3), 175–191. https://doi.org/10.1038/nrm.2017.10788. Hauptmann, R., Pavon, M., & Charles, A. (2007). Concentrado de esteres de zeaxantina mezclados y usos del mismo (Patent No. MXPA05013025A). https://patents.google.com/patent/MXPA05013025A/es89. Hazafa, A., Iqbal, M. O., Javaid, U., Tareen, M. B. K., Amna, D., Ramzan, A., Piracha, S., & Naeem, M. (2022). Inhibitory effect of polyphenols (phenolic acids, lignans, and stilbenes) on cancer by regulating signal transduction pathways: A review. Clinical and Translational Oncology, 24(3), 432–445. https://doi.org/10.1007/s12094-021-02709-390. He, M., Qu, C., Gao, O., Hu, X., & Hong, X. (2015). Biological and pharmacological activities of amaryllidaceae alkaloids. RSC Advances, 5(21), 16562-16574. https://doi.org/10.1039/C4RA14666B91. Health Canada. (2019). The Safety of Vitamin E Supplements [Education and awareness]. Health Canada. https://www.canada.ca/en/health-canada/services/healthy-living/your-health/food-nutrition/safety-vitamin-supplements.html92. Hernández-Bello, F., Franco, M., Pérez-Méndez, Ó., Donis-Maturano, L., Zarco-Olvera, G., Bautista-Pérez, R., Hernández-Bello, F., Franco, M., Pérez-Méndez, Ó., Donis-Maturano, L., Zarco-Olvera, G., & Bautista-Pérez, R. (2023). Metabolismo de los esfingolípidos y su relación con las enfermedades cardiovasculares, renales y metabólicas. Archivos de cardiología de México, 93(1), 88–95. https://doi.org/10.24875/acm.2100033393. Hernando Boigues, J. F., & Mach, N. (2015). Efecto de los ácidos grasos poliinsaturados en la prevención de la obesidad a través de modificaciones epigenéticas. Endocrinología y Nutrición, 62(7), 338–349. https://doi.org/10.1016/j.endonu.2015.03.00994. Hitzman, C. J., Elmquist, W. F., Wattenberg, L. W., & Wiedmann, T. S. (2006). Development of a Respirable, Sustained Release Microcarrier for 5-Fluorouracil I: In Vitro Assessment of Liposomes, Microspheres, and Lipid Coated Nanoparticles. Journal of Pharmaceutical Sciences, 95(5), 1114-1126. https://doi.org/10.1002/jps.2059195. Houillé, B., Papon, N., Boudesocque, L., Bourdeaud, E., Besseau, S., Courdavault, V., Enguehard-Gueiffier, C., Delanoue, G., Guérin, L., Bouchara, J.-P., Clastre, M., Giglioli-Guivarc’h, N., Guillard, J., & Lanoue, A. (2014). Antifungal activity of resveratrol derivatives against candida species. Journal of Natural Products, 77(7), 1658–1662. https://doi.org/10.1021/np500257696. Hoyos Serrano, M., & Rosales Calle, V. V. (2014). Lípidos: Caracteristicas principales y su metabolismo. Revista de Actualización Clínica Investiga, 41, 2142-2145.97. Huang, W.-Y., Cai ,Yi-Zhong, & and Zhang, Y. (2009). Natural Phenolic Compounds From Medicinal Herbs and Dietary Plants: Potential Use for Cancer Prevention. Nutrition and Cancer, 62(1), 1-20. https://doi.org/10.1080/0163558090319158598. Human Foods Program. (2024). FDA Announces Qualified Health Claim for Cocoa Flavanols in High Flavanol Cocoa Powder and Reduced Risk of Cardiovascular Disease. FDA. https://www.fda.gov/food/hfp-constituent-updates/fda-announces-qualified-health-claim-cocoa-flavanols-high-flavanol-cocoa-powder-and-reduced-risk99. Hummel, J., Segu, S., Li, Y., Irgang, S., Jueppner, J., & Giavalisco, P. (2011). Ultra Performance Liquid Chromatography and High Resolution Mass Spectrometry for the Analysis of Plant Lipids. Frontiers in Plant Science, 2. https://doi.org/10.3389/fpls.2011.00054100. International Olive Council. (2022). Document to declare the use of ioc methods for phenolic compounds determination [International Olive Council]. International Olive Council. https://www.internationaloliveoil.org/wp-content/uploads/2022/06/Doc.-No-29-REV-2_ENK.pdf101. Ishihata, A., Maruki-Uchida, H., Gotoh, N., Kanno, S., Aso, Y., Togashi, S., Sai, M., Ito, T., & Katano, Y. (2016). Vascular- and hepato-protective effects of passion fruit seed extract containing piceatannol in chronic high-fat diet-fed rats. Food & Function, 7(9), 4075–4081. https://doi.org/10.1039/C6FO01067A102. Jewett, M. C., Hofmann, G., & Nielsen, J. (2006). Fungal metabolite analysis in genomics and phenomics. Current Opinion in Biotechnology, 17(2), 191-197. https://doi.org/10.1016/j.copbio.2006.02.001103. Ka, S., Koirala, M., Mérindol, N., & Desgagné-Penix, I. (2020). Biosynthesis and Biological Activities of Newly Discovered Amaryllidaceae Alkaloids. Molecules, 25(21), Article 21. https://doi.org/10.3390/molecules25214901104. Kala, H. K., Mehta, R., Sen, K. K., Tandey, R., & Mandal, V. (2016). Critical analysis of research trends and issues in microwave assisted extraction of phenolics: Have we really done enough. TrAC Trends in Analytical Chemistry, 85, 140-152. https://doi.org/10.1016/j.trac.2016.09.007105. Karamali Khanbabaee & Teunis van Ree. (2024). Tannins: Classification and Definition. ResearchGate. https://doi.org/10.1039/B101061L106. Kareem Ali, O., Abdul-Kareem Tawfiq, A., & Yaseen Mohammed Hasan, Z. (2023). Qualitative and Quantitative Estimation of Total Phenols in Narcissus tazettaL. Bulbs. Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(4), 7-20. https://doi.org/10.30526/36.4.3160107. Kareem Ali, O., Yaseen Mohammed Hasan, Z., & Tawfiq, A. (2023). A Comparison between Total Phenols and Total Alkaloids Antibacterial Activity Extracted from Bulbs of Narcissus tazetta L. Iraqi Journal of Pharmaceutical Sciences, 32(Suppl.), 110-117. https://doi.org/10.31351/vol32issSuppl.pp110-117108. Kingsley, J. D., Dou, H., Morehead, J., Rabinow, B., Gendelman, H. E., & Destache, C. J. (2006). Nanotechnology: A Focus on Nanoparticles as a Drug Delivery System. Journal of Neuroimmune Pharmacology, 1(3), 340-350. https://doi.org/10.1007/s11481-006-9032-4109. Kochhar, S. L., & Gujral, S. K. (Eds.). (2020). Concepts of Metabolism. En Plant Physiology: Theory and Applications (2a ed., pp. 153–167). Cambridge University Press. https://doi.org/10.1017/9781108486392.008110. Koh, Y.-C., Ho, C.-T., & Pan, M.-H. (2021). Recent Advances in Health Benefits of Stilbenoids. Journal of Agricultural and Food Chemistry, 69(35), 10036–10057. https://doi.org/10.1021/acs.jafc.1c03699111. Kooijman, E. E., & Burger, K. N. J. (2009). Biophysics and function of phosphatidic acid: A molecular perspective. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1791(9), 881-888. https://doi.org/10.1016/j.bbalip.2009.04.001112. Köttgen, A., Raffler, J., Sekula, P., & Kastenmüller, G. (2018). Genome-Wide Association Studies of Metabolite Concentrations (mGWAS): Relevance for Nephrology. Seminars in Nephrology, 38(2), 151-174. https://doi.org/10.1016/j.semnephrol.2018.01.009113. Kumar, A., Khan, F., & Saikia, D. (2022). Phenolic Compounds and their Biological and Pharmaceutical Activities. En P. K. Chaurasia & S. L. Bharati (Eds.), He Chemistry inside Spices & Herbs: Research and Development (Vol. 1, pp. 204-234). BENTHAM SCIENCE PUBLISHERS. https://doi.org/10.2174/97898150395661220101114. Kubo, I., Fujita, K., Nihei, K., & Masuoka, N. (2003). Non-antibiotic antibacterial activity of dodecyl gallate. Bioorganic & Medicinal Chemistry, 11(4), 573-580. https://doi.org/10.1016/S0968-0896(02)00436-4115. Kruszka, D., Selvakesavan, R. K., Kachlicki, P., & Franklin, G. (2022). Untargeted metabolomics analysis reveals the elicitation of important secondary metabolites upon treatment with various metal and metal oxide nanoparticles in Hypericum perforatum L. cell suspension cultures. Industrial Crops and Products, 178, 114561. https://doi.org/10.1016/j.indcrop.2022.114561116. Kwon, K.-D., Jo, W.-K., Lim, H.-J., & Jeong, W.-S. (2008). Volatile pollutants emitted from selected liquid household products. Environmental Science and Pollution Research, 15(6), 521–526. https://doi.org/10.1007/s11356-008-0028-x117. Lago, J. H. G., Toledo-Arruda, A. C., Mernak, M., Barrosa, K. H., Martins, M. A., Tibério, I. F. L. C., & Prado, C. M. (2014). Structure-Activity Association of Flavonoids in Lung Diseases. Molecules, 19(3), Article 3. https://doi.org/10.3390/molecules19033570118. Lajis, N., Maulidiani, M., Abas, F., & Ismail, I. S. (2017). Chapter 30—Metabolomics Approach in Pharmacognosy. En S. Badal & R. Delgoda (Eds.), Pharmacognosy (pp. 597–616). Academic Press. https://doi.org/10.1016/B978-0-12-802104-0.00030-5119. Leporini, M., Catinella, G., Bruno, M., Falco, T., Tundis, R., & Loizzo, M. R. (2018). Investigating the Antiproliferative and Antioxidant Properties of Pancratium maritimum L. (Amaryllidaceae) Stems, Flowers, Bulbs, and Fruits Extracts. Evidence-Based Complementary and Alternative Medicine: eCAM, 2018, 9301247. https://doi.org/10.1155/2018/9301247120. Leventis, P. A., & Grinstein, S. (2010). The Distribution and Function of Phosphatidylserine in Cellular Membranes. Annual Review of Biophysics, 39(1), 407-427. https://doi.org/10.1146/annurev.biophys.093008.131234121. Ley 2386 De 2024 (Julio 25) (2024). https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=158637122. Liden, T., Wang, E., & Schug, K. (2023). An Overview of the Untargeted Analysis Using LC–MS (QTOF): Experimental Process and Design Considerations. 41, 8-12.123. Liebisch, G., Fahy, E., Aoki, J., Dennis, E. A., Durand, T., Ejsing, C. S., Fedorova, M., Feussner, I., Griffiths, W. J., Köfeler, H., Merrill, A. H., Murphy, R. C., O’Donnell, V. B., Oskolkova, O., Subramaniam, S., Wakelam, M. J. O., & Spener, F. (2020). Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. Journal of Lipid Research, 61(12), 1539-1555. https://doi.org/10.1194/jlr.S120001025124. LIPID MAPS. (s. f.). LIPID MAPS® Structure Database (LMSD): LIPID MAPS® Structure Database (LMSD): Recuperado de https://lipidmaps.org/databases/lmsd/browse125. Liu, W., Cui, X., Zhong, Y., Ma, R., Liu, B., & Xia, Y. (2023). Phenolic metabolites as therapeutic in inflammation and neoplasms: Molecular pathways explaining their efficacy. Pharmacological Research, 193, 106812. https://doi.org/10.1016/j.phrs.2023.106812126. Liu, Y., Sun, C., Li, W., Adu-Frimpong, M., Wang, Q., Yu, J., & Xu, X. (2019). Preparation and Characterization of Syringic Acid–Loaded TPGS Liposome with Enhanced Oral Bioavailability and In Vivo Antioxidant Efficiency. AAPS PharmSciTech, 20(3), 98. https://doi.org/10.1208/s12249-019-1290-6127. Lustre Sánchez, H. (2022). Los superpoderes de las plantas: Los metabolitos secundarios en su adaptación y defensa. Revista Digital Universitaria, 23(2). https://doi.org/10.22201/cuaieed.16076079e.2022.23.2.10129. Majumder, R., Banerjee, S., Mandal, M., Patra, S., Das, S., & Mandal, M. (2024). A Virtual Drug Discovery Screening Illuminates Campesterol as a Potent Estrogen Receptor Alpha Inhibitor in Breast Cancer. Journal of Medicinal Chemistry, 67(12), 10321–10335. https://doi.org/10.1021/acs.jmedchem.4c00766130. McKee, T., & McKee, J. R. (2016). Lípidos y membranas. En Bioquímica. Las bases moleculares de la vida, 5e (5a ed.). McGraw-Hill Education. accessmedicina.mhmedical.com/content.aspx?aid=1137988183131. Medina, E. (2024). Principios de ecofisiología vegetal. Ediciones IVIC, Instituto Venezolano de Investigaciones Cientificas.132. Meerow, A. W. (2023). Classification and phylogeny of Amaryllidaceae, the modern synthesis and the road ahead: A review. Boletín de la Sociedad Argentina de Botánica, 58(3). https://doi.org/10.31055/1851.2372.v58.n3.40046133. Meerow, A. W., Fay, M. F., Guy, C. L., Li, Q.-B., Zaman, F. Q., & Chase, M. W. (1999). Systematics of Amaryllidaceae based on cladistic analysis of plastid sequence data. American Journal of Botany, 86(9), 1325-1345. https://doi.org/10.2307/2656780134. Meerow, A. W., Gardner, E. M., & Nakamura, K. (2020). Phylogenomics of the Andean Tetraploid Clade of the American Amaryllidaceae (Subfamily Amaryllidoideae): Unlocking a Polyploid Generic Radiation Abetted by Continental Geodynamics. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.582422135. Megías, M., Molist, P., & Pombal, M. (2025). La célula 3. Membrana celular—Lípidos [Universidad de Vigo]. Atlas de histología vegetal y animal. https://mmegias.webs.uvigo.es/5-celulas/3-lipidos-c.php136. Melgarejo, L. M., Sánchez, J., Chaparro, A., Newmark, F., Santos-Acevedo, M., Burbano, C., & Reyes, C. (2002). Aproximación al estado actual de la bioprospección en Colombia. Invemar.137. Melgarejo, L. M., Sánchez, J., Reyes, C., Newmark, F., & Santos-Acevedo, M. (2002). Plan nacional en bioprospección continental y marina (propuesta técnica). Invemar.138. Méndez González, J. (2013). Efectos de los esteroles y estanoles vegetales en el metabolismo enterohepático del colesterol y los triglicéridos [Http://purl.org/dc/dcmitype/Text, Universitat Autònoma de Barcelona]. https://dialnet.unirioja.es/servlet/tesis?codigo=80940139. Menéndez, R., García, T., Garateix, A., Morales, R. A., Regalado, E. L., Laguna, A., Valdés, O., & Fernández, M. D. (2014). Neuroprotective and antioxidant effects of Thalassia testudinum extract BM-21, against acrylamide-induced neurotoxicity in mice. Journal of Pharmacy & Pharmacognosy Research, 2(1), 53.140. Menezes Barra, I. M., Silva dos Reis, A., Miyagawa, H. K., Berkov, S., & Santos, A. (2021). Systematic investigation and lipidomic profiles composition characterization in leaves of five Amaryllidaceae species by HRGC-MS technique. South African Journal of Botany, 142, 25–33. https://doi.org/10.1016/j.sajb.2021.06.007141. Menezes Barra, I. M., Silva dos Reis, A., Miyagawa, H. K., Berkov, S., & Santos, A. (2021). Systematic investigation and lipidomic profiles composition characterization in leaves of five Amaryllidaceae species by HRGC-MS technique. South African Journal of Botany, 142, 25-33. https://doi.org/10.1016/j.sajb.2021.06.007142. Mesa García, M. D., Aguilera García, C. M., & Gil Hernández, A. (2006). Importancia de los lípidos en el tratamiento nutricional de las patologías de base inflamatoria. Nutr. Hosp., 21, 30-43.143. Ministerio de Agricultura, Pesca y Alimentación - España. (2006). Prohibición de determinadas sustancias de efecto hormonal y tireostático y sustancias β-agonistas en la cría de ganado. https://www.mapa.gob.es/es/desarrollo-rural/temas/programas-ue/cap_hormonas_tcm30-57825.pdf144. Ministerio de Ambiente y Desarrollo Sostenible; Ospina Arango, O. L. (Ed.); Instituto de Investigación de Recursos Biológicos Alexander von Humboldt; Alcázar Caicedo, C.; Avella Muñoz, E. A.; Norden Medina, N.; García Villalobos, D. H.; García Martínez, H.; Castellanos Castro, C.; GonzálezM, R. (2021). Programa nacional para la conservación y restauración del bosque seco tropical en Colombia: Plan de acción 20202030 (78 p.). Bogotá, Colombia: Ministerio de Ambiente y Desarrollo Sostenible & Instituto Alexander von Humboldt.145. Misra, D., Dutta, W., Jha, G., & Ray, P. (2023). Interactions and Regulatory Functions of Phenolics in Soil-Plant-Climate Nexus. Agronomy, 13(2), Article 2. https://doi.org/10.3390/agronomy13020280146. Mohamad Said, K. A., Ismail, A. F., Abdul Karim, Z., Abdullah, M. S., & Hafeez, A. (2021). A review of technologies for the phenolic compounds recovery and phenol removal from wastewater. Process Safety and Environmental Protection, 151, 257–289. https://doi.org/10.1016/j.psep.2021.05.015147. Morales Soto, A. (2014). Desarrollo de nuevas estrategias para la caracterización e identificación de compuestos bioactivos en fuentes vegetales.148. Morańska, E., Simlat, M., Warchoł, M., Skrzypek, E., Waligórski, P., Laurain-Mattar, D., Spina, R., & Ptak, A. (2023). Phenolic Acids and Amaryllidaceae Alkaloids Profiles in Leucojum aestivum L. In Vitro Plants Grown under Different Light Conditions. Molecules, 28(4), 1525. https://doi.org/10.3390/molecules28041525149. Munnik, T. (2001). Phosphatidic acid: An emerging plant lipid second messenger. Trends in Plant Science, 6(5), 227-233. https://doi.org/10.1016/S1360-1385(01)01918-5150. Nair, J. J., van Staden, J., Bonnet, S. L., & Wilhelm, A. (2017). Distribution and Diversity of Usage of the Amaryllidaceae in the Traditional Remediation of Infectious Diseases. Natural Product Communications, 12(4), 1934578X1701200440. https://doi.org/10.1177/1934578X1701200440151. Nikolova, M., & Gevrenova, R. (2005). Determination of Phenolic Acids in Amaryllidaceae Species by High Performance Liquid Chromatography. Pharmaceutical Biology, 43(3), 289-291. https://doi.org/10.1080/13880200590928906152. Nwaeburu, C. C., Bauer, N., Zhao, Z., Abukiwan, A., Gladkich, J., Benner, A., & Herr, I. (2016). Up-regulation of microRNA let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl. Oncotarget, 7(36), 58367-58380. https://doi.org/10.18632/oncotarget.11122153. Nye, L. C., Williams, J. P., Munjoma, N. C., Letertre, M. P. M., Coen, M., Bouwmeester, R., Martens, L., Swann, J. R., Nicholson, J. K., Plumb, R. S., McCullagh, M., Gethings, L. A., Lai, S., Langridge, J. I., Vissers, J. P. C., & Wilson, I. D. (2019). A comparison of collision cross section values obtained via travelling wave ion mobility-mass spectrometry and ultra high performance liquid chromatography-ion mobility-mass spectrometry: Application to the characterisation of metabolites in rat urine. Journal of Chromatography A, 1602, 386-396. https://doi.org/10.1016/j.chroma.2019.06.056154. Official Journal of the European Union. (2016). Commission Regulation (EU) 2016/1416 of 24 August 2016 – Amending and Correcting Regulation (EU) No 10/2011 on Plastic Materials and Articles Intended to Come into Contact with Food. Official Journal of the European Union, Official Journal of the European Union. https://doi.org/10.2903/j.efsa.2007.555155. Ojito Ramos, K., & Portal, O. (2017). Metabolitos secundarios de las Plantas, una alternativa para el manejo de enfermedades en cultivos de interés económico.156. Özeker, E. (1999). Phenolic compounds and their importance. DergiPark, 9(2), 114–124.157. Paduch, R., Kandefer-Szerszeń, M., Trytek, M., & Fiedurek, J. (2007). Terpenes: Substances useful in human healthcare. Archivum Immunologiae et Therapiae Experimentalis, 55(5), 315–327. https://doi.org/10.1007/s00005-007-0039-1158. Palma, M., Barbero, G. F., Piñeiro, Z., Liazid, A., Barroso, C. G., Rostagno, M. A., Prado, J. M., & Meireles, M. A. A. (2013). CHAPTER 2. Extraction of Natural Products: Principles and Fundamental Aspects. En M. A. Rostagno & J. M. Prado (Eds.), Green Chemistry Series (pp. 58–88). Royal Society of Chemistry. https://doi.org/10.1039/9781849737579-00058159. Parsaeimehr, A., Sargsyan, E., & Vardanyan, A. (2011). Expression of Secondary Metabolites in Plants And Their Useful Perspective in Animal Health. ABAH Bioflux, 3(2), 115-124.160. Pasković, I., Lukić, I., Žurga, P., Majetić Germek, V., Brkljača, M., Koprivnjak, O., Major, N., Grozić, K., Franić, M., Ban, D., Marcelić, Š., & Goreta Ban, S. (2020). Temporal Variation of Phenolic and Mineral Composition in Olive Leaves Is Cultivar Dependent. Plants, 9(9), Article 9. https://doi.org/10.3390/plants9091099161. Pathakoti, K., Goodla, L., Manubolu, M., & Tencomnao, T. (2017). Metabolic Alterations and the Protective Effect of Punicalagin Against Glutamate-Induced Oxidative Toxicity in HT22 Cells. Neurotoxicity Research, 31(4), 521-531. https://doi.org/10.1007/s12640-016-9697-2162. Pawase, P. A., Goswami, C., Shams, R., Pandey, V. K., Tripathi, A., Rustagi, S., & G, D. (2024). A conceptual review on classification, extraction, bioactive potential and role of phytochemicals in human health. Future Foods, 9, 100313. https://doi.org/10.1016/j.fufo.2024.100313163. Pereira do Nascimento, R., Lino Dos Santos, B., Oliveira Alves, J. A., Ribeiro Pereira Soares, J., Costa da Silva, K., Reis Santana, M., Alves Nunes Almeida, Á. M., Amaral da Silva, V. D., de Fátima Dias Costa, M., Ulrich, H., Moura-Neto, Pinto de Faria Lopes, G., & Lima Costa, S. (2022). Neuroimmunomodulatory Properties of Flavonoids and Derivates: A Potential Action as Adjuvants for the Treatment of Glioblastoma. Pharmaceutics, 14(1), Article 1. https://doi.org/10.3390/pharmaceutics14010116164. Pérez-Urria Carril, E., & Ávalos García, A. (2009). Metabolismo secundario de plantas. https://hdl.handle.net/20.500.14352/50406165. Pingret, D., Fabiano-Tixier, A.-S., & Chemat, F. (2013). CHAPTER 3. Ultrasound‐assisted Extraction. En M. A. Rostagno & J. M. Prado (Eds.), Green Chemistry Series (pp. 89–112). Royal Society of Chemistry. https://doi.org/10.1039/9781849737579-00089166. Pinto, T., Aires, A., Cosme, F., Bacelar, E., Morais, M. C., Oliveira, I., Ferreira-Cardoso, J., Anjos, R., Vilela, A., & Gonçalves, B. (2021). Bioactive (Poly)phenols, Volatile Compounds from Vegetables, Medicinal and Aromatic Plants. Foods, 10(1), 106. https://doi.org/10.3390/foods10010106167. Piotrowska, H., Kucinska, M., & Murias, M. (2012). Biological activity of piceatannol: Leaving the shadow of resveratrol. Mutation Research/Reviews in Mutation Research, 750(1), 60–82. https://doi.org/10.1016/j.mrrev.2011.11.001168. Pivnenko, K., Pedersen, G. A., Eriksson, E., & Astrup, T. F. (2015). Bisphenol A and its structural analogues in household waste paper. Waste Management, 44, 39–47. https://doi.org/10.1016/j.wasman.2015.07.017169. Pratheeshkumar, P., Son, Y.-O., Divya, S. P., Wang, L., Turcios, L., Roy, R. V., Hitron, J. A., Kim, D., Dai, J., Asha, P., Zhang, Z., & Shi, X. (2017). Quercetin inhibits Cr(VI)-induced malignant cell transformation by targeting miR-21-PDCD4 signaling pathway. Oncotarget, 8(32), 52118-52131. https://doi.org/10.18632/oncotarget.10130170. Quirantes-Piné, R., Lozano-Sánchez, J., Herrero, M., Ibáñez, E., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2012). HPLC–ESI–QTOF–MS as a Powerful Analytical Tool for Characterising Phenolic Compounds in Olive-leaf Extracts. Phytochemical Analysis, 24(3), 213-223. https://doi.org/10.1002/pca.2401171. Rahman, M. M., Rahaman, M. S., Islam, M. R., Rahman, F., Mithi, F. M., Alqahtani, T., Almikhlafi, M. A., Alghamdi, S. Q., Alruwaili, A. S., Hossain, M. S., Ahmed, M., Das, R., Emran, T. B., & Uddin, M. S. (2022). Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules, 27(1), 233. https://doi.org/10.3390/molecules27010233172. Rashidinejad, A., Birch, E. J., Sun-Waterhouse, D., & Everett, D. W. (2014). Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chemistry, 156, 176-183. https://doi.org/10.1016/j.foodchem.2014.01.115173. Resolución 1478 de 2006 (10 de mayo) (2006). https://ids.gov.co/2024/MEDICAMENTOS/Resolucion_1478_de_2006.pdf174. Ribeiro, D., Freitas, M., Tomé, S. M., Silva, A. M. S., Laufer, S., Lima, J. L. F. C., & Fernandes, E. (2015). Flavonoids Inhibit COX-1 and COX-2 Enzymes and Cytokine/Chemokine Production in Human Whole Blood. Inflammation, 38(2), 858-870. https://doi.org/10.1007/s10753-014-9995-x175. Riccio, P. (2011). The molecular basis of nutritional intervention in multiple sclerosis: A narrative review. Complementary Therapies in Medicine, 19(4), 228-237. https://doi.org/10.1016/j.ctim.2011.06.006176. Roberts, L. (2010). Defining the metabolic effect of peroxisome proliferator-activated receptor δ activation.177. Roessner, U., & Bowne, J. (2009). What is metabolomics all about? BioTechniques, 46(5), 363-365. https://doi.org/10.2144/000113133178. Royston, G. (2007). Metabolomics of a Superorganism. The Journal of Nutrition, 137(1), 259S-266S. https://doi.org/10.1093/jn/137.1.259S179. Rodeiro-Guerra, I., Hernández-Ojeda, S. L., Herrera-Isidrón, J. A., Hernández-Balmaseda, I., Padrón-Yaquis, S., Olguín-Reyes, S. del R., Alejo-Rodríguez, P. L., Ronquillo-Sánchez, M. D., Camacho-Carranza, R., Menéndez-Soto del Valle, R., Fernández-Pérez, M. D., Espinosa-Aguirre, J. J., Rodeiro-Guerra, I., Hernández-Ojeda, S. L., Herrera-Isidrón, J. A., Hernández-Balmaseda, I., Padrón-Yaquis, S., Olguín-Reyes, S. del R., Alejo-Rodríguez, P. L., … Espinosa-Aguirre, J. J. (2017). Study of the interaction of an extract obtained from the marine plant Thalassia Testudinum with phase i metabolism in rats. Revista Internacional de Contaminación Ambiental, 33(4), 547-557. https://doi.org/10.20937/rica.2017.33.04.01180. Rodríguez, J. V., Cravero, R. M., Hourcade, M., Mamprin, M. E., Pellegrino, J. M., Poletti, G., & Sturz, N. G. (2008). Análisis de Lípidos de Biomembranas. Curso Práctico. (1.a ed.). UNR EDitora. https://doi.org/10.13140/RG.2.1.4691.1529181. Royal Botanic Gardens. (2018). Urceolina caucana (Meerow). En Royal Botanic Gardens. http://hdl.handle.net/2445/124308182. Salgado Padilla, J. D. (2020). Una revisión de la Microencapsulación de compuestos polifenólicos en la industria alimentaria y farmacéutica. Universidad de cartagena. https://repositorio.unicartagena.edu.co/server/api/core/bitstreams/42f12c52-5070-4924-9c8c-407fb753ad7f/content183. Salam, U., Ullah, S., Tang, Z.-H., Elateeq, A. A., Khan, Y., Khan, J., Khan, A., & Ali, S. (2023). Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life, 13(3), Article 3. https://doi.org/10.3390/life13030706184. San Mauro-Martín, I., Collado-Yurrita, L., Blumenfeld-Olivares, J. A., Cuadrado-Cenzual, M. Á., Calle-Purón, M. E., Hernández-Cabria, M., Garicano-Vilar, E., & Pérez-Arruche, E. (2016). Efecto de esteroles vegetales en la reducción del colesterol plasmático: Ensayo clínico, controlado, aleatorizado, cruzado y doble ciego. Nutrición Hospitalaria, 33(3), 685–691. https://doi.org/10.20960/nh.279185. Schmelzer, K., Fahy, E., Subramaniam, S., & Dennis, E. A. (2007). The Lipid Maps Initiative in Lipidomics. En Methods in Enzymology (Vol. 432, pp. 171-183). Academic Press. https://doi.org/10.1016/S0076-6879(07)32007-7186. Sebghatollahi, Z., Ghanadian, M., Agarwal, P., Ghaheh, H. S., Mahato, N., Yogesh, R., & Hejazi, S. H. (2022). Citrus Flavonoids: Biological Activities, Implementation in Skin Health, and Topical Applications: A Review. ACS Food Science & Technology, 2(9), 1417–1432. https://doi.org/10.1021/acsfoodscitech.2c00165187. Sen, P., & Orešič, M. (2023). Integrating Omics Data in Genome-Scale Metabolic Modeling: A Methodological Perspective for Precision Medicine. Metabolites, 13(7), Article 7. https://doi.org/10.3390/metabo13070855188. Seca, A. M. L., & Pinto, D. C. G. A. (2019). Biological Potential and Medical Use of Secondary Metabolites. Medicines, 6(2), 66. https://doi.org/10.3390/medicines6020066189. Shahid, M., Khan, F., & Ahern, A. (2018). Review of A Paradigm Shift to Prevent and Treat Alzheimer’s Disease: From Monotargeting Pharmaceuticals to Pleiotropic Plant Polyphenols. Journal of Natural Products, 81(9), 2159-2160. https://doi.org/10.1021/acs.jnatprod.8b00686190. Shan, Q.-Y., Cao, G., Cai, H., Cong, X.-D., & Cai, B.-C. (2012). Novel software-based method to classify structurally similar compounds combined with high performance liquid chromatography–quadrupole time of flight mass spectrometry to identify complex components of herbal medicines. Journal of Chromatography A, 1264, 13-21. https://doi.org/10.1016/j.chroma.2012.09.045191. Sharma, S., Perera, K. Y., Jaiswal, A. K., & Jaiswal, S. (2024). Chapter 8—Natural antimicrobials from fruits and plant extract for food packaging and preservation. En A. K. Jaiswal & S. Shankar (Eds.), Food Packaging and Preservation (pp. 133-152). Academic Press. https://doi.org/10.1016/B978-0-323-90044-7.00008-2192. Sharma, M., Sandhir, R., Singh, A., Kumar, P., Mishra, A., Jachak, S., Singh, S. P., Singh, J., & Roy, J. (2016). Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01870193. SiB Colombia (2025, 23 de abril). Catálogo de la Biodiversidad de Colombia, Sistema de Información sobre Biodiversidad de Colombia. https://catalogo.biodiversidad.co/file/567c0e9df289f5a40c0cd34a/summary194. SiB Colombia. (2024, marzo 21). Nueva lista de especies amenazadas en Colombia al detalle. https://biodiversidad.co/post/2024/lista-especies-amenazadas-colombia/195. Silva, P., Pinheiro, A. C., Rodríguez, L., Figueroa, V., & Baginsky, C. (2016). Fuentes naturales de fitoesteroles y factores de producción que lo modifican. Archivos Latinoamericanos de Nutrición, 66(1). http://www.alanrevista.org/ediciones/2016/1/art-2/196. Silverstone-Sopkin, P. A. (2011). Los muertos vivientes: La historia natural de cuatro lirios amazónicos del suroccidente de Colombia (Eucharis y Plagiolirion, Amaryllidaceae). Programa Editorial Universidad del Valle. https://doi.org/10.25100/peu.97197. Sisalema Cisneros, S. A. (2022). Revisión de los alcaloides de amaryllidaceae en sudamérica [PhD Thesis]. Universidad tecnológica indoamérica.198. Soto Vásquez, M. R., & Leiva Salinas, M. J. (2016). Estudio exomorfológico y fitoquímico de los bulbos y hojas de Rauhia multiflora (Kunth) Ravenna (Amaryllidaceae) endémica del norte del Perú. Universidad Privada Antenor Orrego, 23(1). https://www.researchgate.net/profile/Marilu-Roxana-Soto-Vasquez/publication/304473050_Estudio_exomorfologico_y_fitoquimico_de_los_bulbos_y_hojas_de_Rauhia_multiflora_Kunth_Ravenna_Amaryllidaceae_endemica_del_norte_del_Peru/links/5770a97208ae62194748802c/Estudio-exomorfologico-y-fitoquimico-de-los-bulbos-y-hojas-de-Rauhia-multiflora-Kunth-Ravenna-Amaryllidaceae-endemica-del-norte-del-Peru.pdf199. Squires, E. J. (2024). Applied Animal Endocrinology (3.a ed.). CABI. https://doi.org/10.1079/9781800620742.0000200. Stelling Férez, J. (2024). Oleanolic Acid Improves Different Aspects of Wound Healing [doctoralThesis]. https://repositorio.ucam.edu/handle/10952/7524201. Sterin-Speziale, N., & Leocata Nieto, F. (2007). Los esfingolípidos en la muerte y proliferación celular. Química Viva, 6(3), 112–138.202. Sengupta, A., & Narad, P. (2018). Metabolomics. En P. Arivaradarajan & G. Misra (Eds.), Omics Approaches, Technologies And Applications: Integrative Approaches For Understanding OMICS Data (pp. 75-97). Springer. https://doi.org/10.1007/978-981-13-2925-8_5203. Sun, J., & Xia, Y. (2024). Pretreating and normalizing metabolomics data for statistical analysis. Genes & Diseases, 11(3), 100979. https://doi.org/10.1016/j.gendis.2023.04.018204. Tallini, L. R., Torras-Claveria, L., Borges, W. de S., Kaiser, M., Viladomat, F., Zuanazzi, J. A. S., & Bastida, J. (2018). N-oxide alkaloids from Crinum amabile (Amaryllidaceae). Molecules, 23(6), 1277. https://doi.org/10.3390/molecules23061277205. Teixeira, F. J., Tavares, N., Matias, C. N., & Phillips, S. M. (2022). The effects of phosphatidic acid on performance and body composition—A scoping review. Journal of Sports Sciences, 40(3), 364–369. https://doi.org/10.1080/02640414.2021.1994769206. Teka, T., Zhang, L., Ge, X., Li, Y., Han, L., & Yan, X. (2022). Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review. Phytochemistry, 197, 113128. https://doi.org/10.1016/j.phytochem.2022.113128207. Tong, J., Vo, Q. N. Q., He, X., Liu, H., Zhou, H., & Park, C. H. (2024). Physically crosslinked chitosan/αβ–glycerophosphate hydrogels enhanced by surface-modified cyclodextrin: An efficient strategy for controlled drug release. International Journal of Biological Macromolecules, 283, 137163. https://doi.org/10.1016/j.ijbiomac.2024.137163208. Trevathan-Tackett, S. M., Lane, A. L., Bishop, N., & Ross, C. (2015). Metabolites derived from the tropical seagrass Thalassia testudinum are bioactive against pathogenic Labyrinthula sp. Aquatic Botany, 122, 1-8. https://doi.org/10.1016/j.aquabot.2014.12.005209. Troisi, J., Landolfi, A., Cavallo, P., Marciano, F., Barone, P., & Amboni, M. (2021). Chapter Three—Metabolomics in Parkinson’s disease. En G. S. Makowski (Ed.), Advances in Clinical Chemistry (Vol. 104, pp. 107–149). Elsevier. https://doi.org/10.1016/bs.acc.2020.09.003210. Tursi, A. (2019). A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Research Journal, 6(2), 962-979. https://doi.or/10.18331/BRJ2019.6.2.3211. Valderrama, N., García, N., Baptiste, M. P., Renjifo, L. M., Sánchez-Duarte, P., Cárdenas-Toro, J., Rubiano, G., Lasso, C. A., Morales-Betancourt, M. A., Amaya-Villareal, Á. M., & Lázaro-Toro, J. (2014). Especies amenazadas de fauna y flora. En J. C. Bello, M. Báez, M. F. Gómez, O. Orrego, & L. Nägele, Biodiversidad 2014. Reporte de estado y tendencias de la biodiversidad continental de Colombia (1a ed., pp. 13–14). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. https://doi.org/10.21068/B001.2014.201212. Valenzuela B, A., & Sanhueza C, J. (2008). ESTRUCTURACIÓN DE LIPIDOS Y SUSTITUTOS DE GRASAS, ¿LIPIDOS DEL FUTURO? Revista chilena de nutrición, 35(4), 394–405. https://doi.org/10.4067/S0717-75182008000500001213. Valenzuela B, A., Sanhueza C, J., & Nieto K, S. (2002). El uso de lípidos estructurados en la nutrición: Una tecnología que abre nuevas perspectivas en el desarrollo de productos innovadores. Revista chilena de nutrición, 29(2), 106-115. https://doi.org/10.4067/S0717-75182002000200005214. Valletta, A., Iozia, L. M., & Leonelli, F. (2021). Impact of Environmental Factors on Stilbene Biosynthesis. Plants, 10(1), Article 1. https://doi.org/10.3390/plants10010090215. Vega-Sánchez, N., Montero-Jara, M. F., Marín-Fajardo, R., & Chavarría Rojas, M. (2022). Liposomas en el desarrollo de formas farmacéuticas semisólidas. Ars Pharmaceutica (Internet), 63(4), Article 4. https://doi.org/10.30827/ars.v63i4.26059216. Veldman, R. J., Blitterswijk, W. J. V., Verheij, M., & Koning, G. A. (2009). Formulaciones farmaceuticas que utilizan esfingolipidos de cadena corta y usos de las mismas (Patent No. ES2329374T3). https://patents.google.com/patent/ES2329374T3/es217. Villafuerte Robles, L. (2011). Los excipientes y su funcionalidad en productos farmacéuticos sólidos. 42(1). https://www.scielo.org.mx/pdf/rmcf/v42n1/v42n1a3.pdf218. Villalobos, M. del C., Serradilla, M. J., Martín, A., Ordiales, E., Ruiz-Moyano, S., & Córdoba, M. de G. (2016). Antioxidant and antimicrobial activity of natural phenolic extract from defatted soybean flour by-product for stone fruit postharvest application. Journal of the Science of Food and Agriculture, 96(6), 2116-2124. https://doi.org/10.1002/jsfa.7327219. Waitzberg, D. L., & Garla, P. (2014). Contribución de los Acidos Grasos Omega-3 para la Memoria y la Función Cognitiva. Nutrición Hospitalaria, 30(3), 467–477. https://doi.org/10.3305/nh.2014.30.3.7632220. Wang, K.-T., Chen, L.-G., Tseng, S.-H., Huang, J.-S., Hsieh, M.-S., & Wang, C.-C. (2011). Anti-inflammatory effects of resveratrol and oligostilbenes from vitis thunbergii var. Taiwaniana against lipopolysaccharide-induced arthritis(Article). 59(8). https://doi.org/10.1021/jf104718g221. Weber, K., Schulz, B., & Ruhnke, M. (2011). Resveratrol and its antifungal activity against Candida species. Mycoses, 54(1), 30–33. https://doi.org/10.1111/j.1439-0507.2009.01763.x222. Wishart, D. S. (2005). Metabolomics: The Principles and Potential Applications to Transplantation. American Journal of Transplantation, 5(12), 2814-2820. https://doi.org/10.1111/j.1600-6143.2005.01119.x223. Yagi, S., Nilofar, Zengin, G., Yildiztugay, E., Caprioli, G., Piatti, D., Menghini, L., Ferrante, C., Di Simone, S. C., Chiavaroli, A., & Maggi, F. (2023). Exploring for HPLC-MS/MS Profiles and Biological Activities of Different Extracts from Allium lycaonicum Siehe ex Hayek from Turkey Flora. Foods, 12(24), 4507. https://doi.org/10.3390/foods12244507224. Yao, H.-Y., & Xue, H.-W. (2018). Phosphatidic acid plays key roles regulating plant development and stress responses. Journal of Integrative Plant Biology, 60(9), 851-863. https://doi.org/10.1111/jipb.12655225. Yong, H., & Liu, J. (2020). Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packaging and Shelf Life, 26, 100550. https://doi.org/10.1016/j.fpsl.2020.100550226. Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Dusemund, B., Filipič, M., Frutos, M. J., Galtier, P., Gott, D., Gundert-Remy, U., Kuhnle, G. G., Leblanc, J.-C., Lillegaard, I. T., Moldeus, P., Mortensen, A., Oskarsson, A., Stankovic, I., Waalkens-Berendsen, I., Woutersen, R. A., … Lambré, C. (2017). Re-evaluation of polyglycerol esters of fatty acids (E 475) as a food additive. EFSA Journal. European Food Safety Authority, 15(12), e05089. https://doi.org/10.2903/j.efsa.2017.5089227. Zhang, Q., & Yue, S.-J. (2022). Editorial: Flavonoids and Cardiovascular Metabolism. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.939798228. Zhong, J., & Guangmin, Y. (2019). Amaryllidaceae and Sceletium alkaloids. Natural Product Reports, 36(10), 1462-1488.229. Zhu, K., & Wang, W. (2016). Green tea polyphenol EGCG suppresses osteosarcoma cell growth through upregulating miR-1. Tumor Biology, 37(4), 4373-4382. https://doi.org/10.1007/s13277-015-4187-3230. Zulfiqar, F., & Ashraf, M. (2021). Bioregulators: Unlocking their potential role in regulation of the plant oxidative defense system. Plant Molecular Biology, 105(1-2), 11-41. https://doi.org/10.1007/s11103-020-01077-winfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/Compuestos bioactivos con potencial farmacéuticoBioprospección de Urceolina caucanaUrceolina caucanaHPLC-QTOF-MSBioeconomíaLípidosFenolesBioeconomyLipidsPhenolsBioprospección de Urceolina caucana: caracterización metabolómica de compuestos lipídicos y fenólicos empleando HPLC-QTOF-MS para la identificación de nuevos compuestos bioactivos con potencial farmacéuticoTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1959463https://repositorio.unibague.edu.co/bitstreams/7c5187dd-aaef-4af3-8f6a-4d9b3dc93842/download7fe1ea628da7e74c7ec3150e79f5bd6dMD51Anexos.zipAnexos.zipapplication/zip31007https://repositorio.unibague.edu.co/bitstreams/172bddc0-2aaa-4ad8-9908-eb6b11bf49f4/downloadefad51e0d29cf8b3e181b8b32cb65113MD52Formato de autorización.pdfFormato de autorización.pdfapplication/pdf215319https://repositorio.unibague.edu.co/bitstreams/88752e63-db66-4f56-b189-b2a58a655324/download208b9670ed6cbb6306d21936e2556824MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/6ec32140-1d95-4fb8-aa9b-4e8e588fdfd1/download2fa3e590786b9c0f3ceba1b9656b7ac3MD54TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain101760https://repositorio.unibague.edu.co/bitstreams/68eb4669-09f1-4796-9c6f-43dd83a4ead0/download29a507869e3fe419a7d6e9e72f8ffd28MD55Formato de autorización.pdf.txtFormato de autorización.pdf.txtExtracted texttext/plain4043https://repositorio.unibague.edu.co/bitstreams/072889de-149c-44fe-802d-987dce638adf/download472c4312b0a9b909d525b6501863fab8MD57THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgIM Thumbnailimage/jpeg5528https://repositorio.unibague.edu.co/bitstreams/ee890234-88c2-48a2-936e-59a734f76d70/download6a2459fe68b3bf78e218beadee2182f0MD56Formato de autorización.pdf.jpgFormato de autorización.pdf.jpgIM Thumbnailimage/jpeg23757https://repositorio.unibague.edu.co/bitstreams/373e31ef-01fe-47c9-9d5f-f4f4d4b2b946/download99666eca31a877969e6b4664deb69dd3MD5820.500.12313/5496oai:repositorio.unibague.edu.co:20.500.12313/54962025-08-20 03:01:04.744https://creativecommons.org/licenses/by-nc/4.0/https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
