Empirical study on learning curves in logistics management systems[Estudio empírico sobre curvas de aprendizaje en sistemas de gestión logística

Learning curves have been frequently applied in production/operations management and various logistics processes in many manufacturing and service organizations. However, studies on their integral use in the supply chain are recent. This paper contributes to filling this knowledge gap by measuring t...

Full description

Autores:
Romero, Yalili Rodríguez
Castro, Roberto Cespón
Perilla, Nelson Javier Tovar
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
spa
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5558
Acceso en línea:
https://hdl.handle.net/20.500.12313/5558
https://www.scielo.cl/scielo.php?pid=S0718-33052022000400794&script=sci_arttext
Palabra clave:
Sistemas de gestión logística - Curvas de aprendizaje
Sistemas de gestión logística - Curvas de aprendizaje - Estudio empírico
Learning curve
Logistics management system
SCOR model
Supply chain
Rights
openAccess
License
© 2022, Universidad de Tarapaca. All rights reserved.
id UNIBAGUE2_a3d0840cada31061389afeaba593d21c
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5558
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Empirical study on learning curves in logistics management systems[Estudio empírico sobre curvas de aprendizaje en sistemas de gestión logística
dc.title.translated.none.fl_str_mv Estudio empírico sobre curvas de aprendizaje en sistemas de gestión logística
title Empirical study on learning curves in logistics management systems[Estudio empírico sobre curvas de aprendizaje en sistemas de gestión logística
spellingShingle Empirical study on learning curves in logistics management systems[Estudio empírico sobre curvas de aprendizaje en sistemas de gestión logística
Sistemas de gestión logística - Curvas de aprendizaje
Sistemas de gestión logística - Curvas de aprendizaje - Estudio empírico
Learning curve
Logistics management system
SCOR model
Supply chain
title_short Empirical study on learning curves in logistics management systems[Estudio empírico sobre curvas de aprendizaje en sistemas de gestión logística
title_full Empirical study on learning curves in logistics management systems[Estudio empírico sobre curvas de aprendizaje en sistemas de gestión logística
title_fullStr Empirical study on learning curves in logistics management systems[Estudio empírico sobre curvas de aprendizaje en sistemas de gestión logística
title_full_unstemmed Empirical study on learning curves in logistics management systems[Estudio empírico sobre curvas de aprendizaje en sistemas de gestión logística
title_sort Empirical study on learning curves in logistics management systems[Estudio empírico sobre curvas de aprendizaje en sistemas de gestión logística
dc.creator.fl_str_mv Romero, Yalili Rodríguez
Castro, Roberto Cespón
Perilla, Nelson Javier Tovar
dc.contributor.author.none.fl_str_mv Romero, Yalili Rodríguez
Castro, Roberto Cespón
Perilla, Nelson Javier Tovar
dc.subject.armarc.none.fl_str_mv Sistemas de gestión logística - Curvas de aprendizaje
Sistemas de gestión logística - Curvas de aprendizaje - Estudio empírico
topic Sistemas de gestión logística - Curvas de aprendizaje
Sistemas de gestión logística - Curvas de aprendizaje - Estudio empírico
Learning curve
Logistics management system
SCOR model
Supply chain
dc.subject.proposal.eng.fl_str_mv Learning curve
Logistics management system
SCOR model
Supply chain
description Learning curves have been frequently applied in production/operations management and various logistics processes in many manufacturing and service organizations. However, studies on their integral use in the supply chain are recent. This paper contributes to filling this knowledge gap by measuring the impact of learning on lead time in logistics management systems. The empirical study was used as a methodological tool to demonstrate this. The logarithmic-linear models, with their terminology and calculation equations, were applied to three case studies representatives of the logistics systems proposed by the Supply Chain Operations Reference (SCOR) model: make-to-order, make-to-stock, and engineer-to-order. As a result, the first two were adjusted to the Stanford model and the third to De Jong’s model. Their learning curve, mathematical equations, and a sensitivity analysis were determined. This approach demonstrated its relevance and difference compared to previous publications, which mainly analyze links or parts of the CS.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12
dc.date.accessioned.none.fl_str_mv 2025-08-29T14:03:39Z
dc.date.available.none.fl_str_mv 2025-08-29T14:03:39Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Romero, Y., Castro, R. y Perilla, N. (2022). Empirical study on learning curves in logistics management systems [Estudio empírico sobre curvas de aprendizaje en sistemas de gestión logística]. Ingeniare, 30(4), 794 - 802. DOI: 10.4067/S0718-33052022000400794
dc.identifier.doi.none.fl_str_mv 10.4067/S0718-33052022000400794
dc.identifier.eissn.none.fl_str_mv 07183305
dc.identifier.issn.none.fl_str_mv 07183291
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5558
dc.identifier.url.none.fl_str_mv https://www.scielo.cl/scielo.php?pid=S0718-33052022000400794&script=sci_arttext
identifier_str_mv Romero, Y., Castro, R. y Perilla, N. (2022). Empirical study on learning curves in logistics management systems [Estudio empírico sobre curvas de aprendizaje en sistemas de gestión logística]. Ingeniare, 30(4), 794 - 802. DOI: 10.4067/S0718-33052022000400794
10.4067/S0718-33052022000400794
07183305
07183291
url https://hdl.handle.net/20.500.12313/5558
https://www.scielo.cl/scielo.php?pid=S0718-33052022000400794&script=sci_arttext
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.citationendpage.none.fl_str_mv 802
dc.relation.citationissue.none.fl_str_mv 4
dc.relation.citationstartpage.none.fl_str_mv 794
dc.relation.citationvolume.none.fl_str_mv 30
dc.relation.ispartofjournal.none.fl_str_mv Ingeniare
dc.relation.references.none.fl_str_mv R. Lipsey. “Hammarskjöld: a life”. University of Michigan Press, pp. 373-380. 2013.
T.P. Wright. “Factors affecting the cost of airplanes”. Journal of aeronautical sciences. Vol. 3 Nº 4, pp. 122-128. 1936. DOI: 10.2514/8.155.
A. Jarkas and M. Horner. “Revisiting the applicability of learning curve theory to formwork labour productivity. “Construction Management and Economics. Vol. 29 Issue 5, pp. 483-493. 2011. DOI: 10.1080/01446193.2011.562911
F. Lolli, M. Messori, R. Gamberini, B. Rimini and E. Balugani. “Modelling production cost with the effects of learning and forgetting”. IFAC-PapersOnLine. Vol. 49 Issue 12, pp. 503-508. 2016. DOI: 10.1016/j. ifacol.2016.07.672
H. Abedinnia, C.H. Glock, E.H. Grosse and M. Schneider. “Machine scheduling problems in production: A tertiary study”. Computers Industrial Engineering. Vol. 111, pp. 403-416. 2017. DOI: 10.1016/j.cie.2017.06.026.
A. Azzouz, M. Ennigrou and L. Ben Said. “Scheduling problems under learning effects: classification and cartography”. International Journal of Production Research. Vol. 56 Issue 4, pp. 1642-1661. 2018. DOI: 10.1080/00207543.2017.1355576
C.H. Glock, E.H. Grosse and J.M. Ries. “The lot sizing problem: A tertiary study”. International Journal of Production Economics. Vol. 155, pp. 39-51. 2014. DOI: 10.1016/j.ijpe.2013.12.009.
M. Jaber and M. Khan. “Managing yield by lot splitting in a serial production line with learning, rework and scrap”. International Journal of Production Economics. Vol. 124 Issue 1, pp. 32-39. 2010. DOI: 10.1016/j. ijpe.2009.09.004
P.-C. Pedersen and D. Slepniov. “Management of the learning curve: a case of overseas production capacity expansion”. International Journal of Operations & Production Management. Vol. 36 Nº 1, pp. 42-60. 2016. ISSN: 0144-3577. DOI: 10.1108/ IJOPM-08-2013-0365.
C.H. Glock, E.H. Grosse, M.Y. Jaber and T.L. Smunt. “Applications of learning curves in production and operations management: A systematic literature review”. Computers & Industrial Engineering. Vol. 131, pp. 422- 441. 2019. DOI: 10.1016/j.cie.2018.10.030.
K.E. Samuel, M.-L. Goury, A. Gunasekaran and A. Spalanzani. “Knowledge management in supply chain: An empirical study from France”. The Journal of Strategic Information Systems. Vol. 20 Issue 3, pp. 283-306. 2011. DOI: 10.1016/j.jsis.2010.11.001
B.B. Flynn, B. Huo and X. Zhao. “The impact of supply chain integration on performance: A contingency and configuration approach”. Journal of operations management. Vol. 28 Issue 1, pp. 58-71. 2010. ISSN: 0272-6963. DOI: 10.1016/j.jom.2009.06.001
G. Li, H. Yang, L. Sun and A.S. Sohal. “The impact of IT implementation on supply chain integration and performance”. International Journal of Production Economics. Vol. 120 Issue 1, pp. 125-138. 2009. DOI: 10.1016/j. ijpe.2008.07.017.
E.D. Rosenzweig, A.V. Roth and J.W. Dean Jr. “The influence of an integration strategy on competitive capabilities and business performance: an exploratory study of consumer products manufacturers”. Journal of operations management. Vol. 21 Issue 4, pp. 437-456. 2003. DOI: 10.1016/S0272-6963(03)00037-8
M. Khan, M. Jaber and A. Guiffrida. “The effect of human factors on the performance of a two level supply chain”. International Journal of Production Research. Vol. 50 Issue 2, pp. 517-533. 2012. DOI: 10.1080/00207543.2010.539282.
C.H. Glock, E.H. Grosse, M.Y. Jaber and T.L. Smunt. “Novel applications of learning curves in production planning and logistics”. Computers & Industrial Engineering. Vol. 131, pp. 419-421. 2019. DOI: 10.1016/j. cie.2019.03.030.
H. Rafiei and M. Rabbani. “Order partitioning in hybrid MTS/MTO contexts using fuzzy ANP”. Engineering and Technology. Vol. 3, pp. 467-472. 2009. ISSN: 1307-6892.
B. Ganji Jamehshooran, M. Shaharoun and H. Norehan Haron. “Assessing supply chain performance through applying the SCOR model”. International Journal of Supply Chain Management. Vol. 4 Nº 1. 2015. ISSN: 1935-5734.
M.A. Sellitto, G.M. Pereira, M. Borchardt, R.I. da Silva and C.V. Viegas. “A SCORbased model for supply chain performance measurement: application in the footwear industry”. International Journal of Production Research. Vol. 53 Issue 16, pp. 4917-4926. 2015. DOI: 10.1080/00207543.2015.1005251
A. Moharamkhani, A. Bozorgi-Amiri and H. Mina. “Supply chain performance measurement using SCOR model based on interval-valued fuzzy TOPSIS”. International Journal of Logistics Systems Management. Vol. 27 Issue 1, pp. 115-132. 2017. ISSN: 1742-7967.
B. Sundarakani, H. Abdul Razzak and S. Manikandan. “Creating a competitive advantage in the global flight catering supply chain: a case study using SCOR model”. International Journal of Logistics Research Applications. Vol. 21 Issue 5, pp. 481-501. 2018. DOI: 10.1080/13675567.2018.1448767.
C.K. Dissanayake and J.A. Cross. “Systematic mechanism for identifying the relative impact of supply chain performance areas on the overall supply chain performance using SCOR model and SEM”. International Journal of Production Economics. Vol. 201, pp. 102- 115. 2018. DOI: 10.1016/j.ijpe.2018.04.027.
N. Baloff. “Extension of the learning curve-some empirical results”. Journal of the Operational Research Society. Vol. 22 Issue 4, pp. 329-340. 1971. DOI: 10.1057/jors.1971.77.
J. De Jong. “The effects of increasing skill on cycle time and its consequences for time standards”. Ergonomics. Vol. 1 Issue 1, pp. 51-60. 1957. DOI: 10.1080/001 40135708964571.
D.A. Nembhard and M.V. Uzumeri. “Experiential learning and forgetting for manual and cognitive tasks”. International journal of industrial ergonomics. Vol. 25 Issue 4, pp. 315-326. 2000. DOI: 10.1016/ S0169-8141(99)00021-9.
dc.rights.eng.fl_str_mv © 2022, Universidad de Tarapaca. All rights reserved.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv © 2022, Universidad de Tarapaca. All rights reserved.
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Tarapaca
dc.publisher.place.none.fl_str_mv Chile
publisher.none.fl_str_mv Universidad de Tarapaca
dc.source.none.fl_str_mv https://www.scielo.cl/pdf/ingeniare/v30n4/0718-3305-ingeniare-30-04-794.pdf
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/02cf1524-3985-49c0-a10e-2af0fb14520c/download
https://repositorio.unibague.edu.co/bitstreams/79b4bbb3-3601-4547-9bff-712a50cba36b/download
https://repositorio.unibague.edu.co/bitstreams/ceb53c23-c4fa-413f-a0ad-acaf466dee3e/download
https://repositorio.unibague.edu.co/bitstreams/f437d7e4-f476-405e-9fc7-32c7f4f0edd4/download
bitstream.checksum.fl_str_mv 157af37cd4fccd2a5f173e5a9ff7cb4c
fde42e9e0f516ae94c16d30b6e330b81
2fa3e590786b9c0f3ceba1b9656b7ac3
0790b255d6905609b79cfb308136e9b2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059964126167040
spelling Romero, Yalili Rodríguez83c0a6b6-cc19-47c8-8057-e24686944f2e-1Castro, Roberto Cespónbfb23449-fa70-4f97-bc08-052db4b3a115-1Perilla, Nelson Javier Tovarb45b4120-8f90-402d-859e-991468dd9093-12025-08-29T14:03:39Z2025-08-29T14:03:39Z2022-12Learning curves have been frequently applied in production/operations management and various logistics processes in many manufacturing and service organizations. However, studies on their integral use in the supply chain are recent. This paper contributes to filling this knowledge gap by measuring the impact of learning on lead time in logistics management systems. The empirical study was used as a methodological tool to demonstrate this. The logarithmic-linear models, with their terminology and calculation equations, were applied to three case studies representatives of the logistics systems proposed by the Supply Chain Operations Reference (SCOR) model: make-to-order, make-to-stock, and engineer-to-order. As a result, the first two were adjusted to the Stanford model and the third to De Jong’s model. Their learning curve, mathematical equations, and a sensitivity analysis were determined. This approach demonstrated its relevance and difference compared to previous publications, which mainly analyze links or parts of the CS.application/pdfRomero, Y., Castro, R. y Perilla, N. (2022). Empirical study on learning curves in logistics management systems [Estudio empírico sobre curvas de aprendizaje en sistemas de gestión logística]. Ingeniare, 30(4), 794 - 802. DOI: 10.4067/S0718-3305202200040079410.4067/S0718-330520220004007940718330507183291https://hdl.handle.net/20.500.12313/5558https://www.scielo.cl/scielo.php?pid=S0718-33052022000400794&script=sci_arttextspaUniversidad de TarapacaChile802479430IngeniareR. Lipsey. “Hammarskjöld: a life”. University of Michigan Press, pp. 373-380. 2013.T.P. Wright. “Factors affecting the cost of airplanes”. Journal of aeronautical sciences. Vol. 3 Nº 4, pp. 122-128. 1936. DOI: 10.2514/8.155.A. Jarkas and M. Horner. “Revisiting the applicability of learning curve theory to formwork labour productivity. “Construction Management and Economics. Vol. 29 Issue 5, pp. 483-493. 2011. DOI: 10.1080/01446193.2011.562911F. Lolli, M. Messori, R. Gamberini, B. Rimini and E. Balugani. “Modelling production cost with the effects of learning and forgetting”. IFAC-PapersOnLine. Vol. 49 Issue 12, pp. 503-508. 2016. DOI: 10.1016/j. ifacol.2016.07.672H. Abedinnia, C.H. Glock, E.H. Grosse and M. Schneider. “Machine scheduling problems in production: A tertiary study”. Computers Industrial Engineering. Vol. 111, pp. 403-416. 2017. DOI: 10.1016/j.cie.2017.06.026.A. Azzouz, M. Ennigrou and L. Ben Said. “Scheduling problems under learning effects: classification and cartography”. International Journal of Production Research. Vol. 56 Issue 4, pp. 1642-1661. 2018. DOI: 10.1080/00207543.2017.1355576C.H. Glock, E.H. Grosse and J.M. Ries. “The lot sizing problem: A tertiary study”. International Journal of Production Economics. Vol. 155, pp. 39-51. 2014. DOI: 10.1016/j.ijpe.2013.12.009.M. Jaber and M. Khan. “Managing yield by lot splitting in a serial production line with learning, rework and scrap”. International Journal of Production Economics. Vol. 124 Issue 1, pp. 32-39. 2010. DOI: 10.1016/j. ijpe.2009.09.004P.-C. Pedersen and D. Slepniov. “Management of the learning curve: a case of overseas production capacity expansion”. International Journal of Operations & Production Management. Vol. 36 Nº 1, pp. 42-60. 2016. ISSN: 0144-3577. DOI: 10.1108/ IJOPM-08-2013-0365.C.H. Glock, E.H. Grosse, M.Y. Jaber and T.L. Smunt. “Applications of learning curves in production and operations management: A systematic literature review”. Computers & Industrial Engineering. Vol. 131, pp. 422- 441. 2019. DOI: 10.1016/j.cie.2018.10.030.K.E. Samuel, M.-L. Goury, A. Gunasekaran and A. Spalanzani. “Knowledge management in supply chain: An empirical study from France”. The Journal of Strategic Information Systems. Vol. 20 Issue 3, pp. 283-306. 2011. DOI: 10.1016/j.jsis.2010.11.001B.B. Flynn, B. Huo and X. Zhao. “The impact of supply chain integration on performance: A contingency and configuration approach”. Journal of operations management. Vol. 28 Issue 1, pp. 58-71. 2010. ISSN: 0272-6963. DOI: 10.1016/j.jom.2009.06.001G. Li, H. Yang, L. Sun and A.S. Sohal. “The impact of IT implementation on supply chain integration and performance”. International Journal of Production Economics. Vol. 120 Issue 1, pp. 125-138. 2009. DOI: 10.1016/j. ijpe.2008.07.017.E.D. Rosenzweig, A.V. Roth and J.W. Dean Jr. “The influence of an integration strategy on competitive capabilities and business performance: an exploratory study of consumer products manufacturers”. Journal of operations management. Vol. 21 Issue 4, pp. 437-456. 2003. DOI: 10.1016/S0272-6963(03)00037-8M. Khan, M. Jaber and A. Guiffrida. “The effect of human factors on the performance of a two level supply chain”. International Journal of Production Research. Vol. 50 Issue 2, pp. 517-533. 2012. DOI: 10.1080/00207543.2010.539282.C.H. Glock, E.H. Grosse, M.Y. Jaber and T.L. Smunt. “Novel applications of learning curves in production planning and logistics”. Computers & Industrial Engineering. Vol. 131, pp. 419-421. 2019. DOI: 10.1016/j. cie.2019.03.030.H. Rafiei and M. Rabbani. “Order partitioning in hybrid MTS/MTO contexts using fuzzy ANP”. Engineering and Technology. Vol. 3, pp. 467-472. 2009. ISSN: 1307-6892.B. Ganji Jamehshooran, M. Shaharoun and H. Norehan Haron. “Assessing supply chain performance through applying the SCOR model”. International Journal of Supply Chain Management. Vol. 4 Nº 1. 2015. ISSN: 1935-5734.M.A. Sellitto, G.M. Pereira, M. Borchardt, R.I. da Silva and C.V. Viegas. “A SCORbased model for supply chain performance measurement: application in the footwear industry”. International Journal of Production Research. Vol. 53 Issue 16, pp. 4917-4926. 2015. DOI: 10.1080/00207543.2015.1005251A. Moharamkhani, A. Bozorgi-Amiri and H. Mina. “Supply chain performance measurement using SCOR model based on interval-valued fuzzy TOPSIS”. International Journal of Logistics Systems Management. Vol. 27 Issue 1, pp. 115-132. 2017. ISSN: 1742-7967.B. Sundarakani, H. Abdul Razzak and S. Manikandan. “Creating a competitive advantage in the global flight catering supply chain: a case study using SCOR model”. International Journal of Logistics Research Applications. Vol. 21 Issue 5, pp. 481-501. 2018. DOI: 10.1080/13675567.2018.1448767.C.K. Dissanayake and J.A. Cross. “Systematic mechanism for identifying the relative impact of supply chain performance areas on the overall supply chain performance using SCOR model and SEM”. International Journal of Production Economics. Vol. 201, pp. 102- 115. 2018. DOI: 10.1016/j.ijpe.2018.04.027.N. Baloff. “Extension of the learning curve-some empirical results”. Journal of the Operational Research Society. Vol. 22 Issue 4, pp. 329-340. 1971. DOI: 10.1057/jors.1971.77.J. De Jong. “The effects of increasing skill on cycle time and its consequences for time standards”. Ergonomics. Vol. 1 Issue 1, pp. 51-60. 1957. DOI: 10.1080/001 40135708964571.D.A. Nembhard and M.V. Uzumeri. “Experiential learning and forgetting for manual and cognitive tasks”. International journal of industrial ergonomics. Vol. 25 Issue 4, pp. 315-326. 2000. DOI: 10.1016/ S0169-8141(99)00021-9.© 2022, Universidad de Tarapaca. All rights reserved.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.scielo.cl/pdf/ingeniare/v30n4/0718-3305-ingeniare-30-04-794.pdfSistemas de gestión logística - Curvas de aprendizajeSistemas de gestión logística - Curvas de aprendizaje - Estudio empíricoLearning curveLogistics management systemSCOR modelSupply chainEmpirical study on learning curves in logistics management systems[Estudio empírico sobre curvas de aprendizaje en sistemas de gestión logísticaEstudio empírico sobre curvas de aprendizaje en sistemas de gestión logísticaArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain3422https://repositorio.unibague.edu.co/bitstreams/02cf1524-3985-49c0-a10e-2af0fb14520c/download157af37cd4fccd2a5f173e5a9ff7cb4cMD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg22232https://repositorio.unibague.edu.co/bitstreams/79b4bbb3-3601-4547-9bff-712a50cba36b/downloadfde42e9e0f516ae94c16d30b6e330b81MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/ceb53c23-c4fa-413f-a0ad-acaf466dee3e/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf35414https://repositorio.unibague.edu.co/bitstreams/f437d7e4-f476-405e-9fc7-32c7f4f0edd4/download0790b255d6905609b79cfb308136e9b2MD5220.500.12313/5558oai:repositorio.unibague.edu.co:20.500.12313/55582025-09-12 12:20:17.492https://creativecommons.org/licenses/by-nc/4.0/© 2022, Universidad de Tarapaca. All rights reserved.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=