Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/Degradation of Methylene Blue and Esterification
The aim of this study is to evaluate the applicability of the catalytic activity (CA) of the Fe3O4 magnetic system in the adsorption/degradation of methylene blue and esterification. The thermal decomposition method allowed the preparation of Fe3O4 nanoparticles. The crystallites of the Fe3O4 struct...
- Autores:
-
Torrente Rocha, Juan Jose
Aragón-Muriel, Alberto
Hernández Quintero, Hernando Antonio
Castro Velásquez, Juan Camilo
Salazar-Camacho, Natalia Andrea
Pérez Alcázar, German Antonio
Tabares, Jesús Anselmo
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5541
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/5541
- Palabra clave:
- Nanopartículas de FeO - Caracterización
Actividad catalítica
Nanopartículas de Fe₃O₄
Azul de metileno
Espectroscopía Mössbauer
Catalytic activity
Esterification
Fe3O4 nanoparticles
Methylene blue
Mössbauer spectroscopy
- Rights
- openAccess
- License
- © 2022 by the authors.
| id |
UNIBAGUE2_9000d35e4aace5d17cceb091df288bdf |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5541 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/Degradation of Methylene Blue and Esterification |
| title |
Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/Degradation of Methylene Blue and Esterification |
| spellingShingle |
Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/Degradation of Methylene Blue and Esterification Nanopartículas de FeO - Caracterización Actividad catalítica Nanopartículas de Fe₃O₄ Azul de metileno Espectroscopía Mössbauer Catalytic activity Esterification Fe3O4 nanoparticles Methylene blue Mössbauer spectroscopy |
| title_short |
Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/Degradation of Methylene Blue and Esterification |
| title_full |
Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/Degradation of Methylene Blue and Esterification |
| title_fullStr |
Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/Degradation of Methylene Blue and Esterification |
| title_full_unstemmed |
Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/Degradation of Methylene Blue and Esterification |
| title_sort |
Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/Degradation of Methylene Blue and Esterification |
| dc.creator.fl_str_mv |
Torrente Rocha, Juan Jose Aragón-Muriel, Alberto Hernández Quintero, Hernando Antonio Castro Velásquez, Juan Camilo Salazar-Camacho, Natalia Andrea Pérez Alcázar, German Antonio Tabares, Jesús Anselmo |
| dc.contributor.author.none.fl_str_mv |
Torrente Rocha, Juan Jose Aragón-Muriel, Alberto Hernández Quintero, Hernando Antonio Castro Velásquez, Juan Camilo Salazar-Camacho, Natalia Andrea Pérez Alcázar, German Antonio Tabares, Jesús Anselmo |
| dc.subject.armarc.none.fl_str_mv |
Nanopartículas de FeO - Caracterización Actividad catalítica Nanopartículas de Fe₃O₄ Azul de metileno Espectroscopía Mössbauer |
| topic |
Nanopartículas de FeO - Caracterización Actividad catalítica Nanopartículas de Fe₃O₄ Azul de metileno Espectroscopía Mössbauer Catalytic activity Esterification Fe3O4 nanoparticles Methylene blue Mössbauer spectroscopy |
| dc.subject.proposal.eng.fl_str_mv |
Catalytic activity Esterification Fe3O4 nanoparticles Methylene blue Mössbauer spectroscopy |
| description |
The aim of this study is to evaluate the applicability of the catalytic activity (CA) of the Fe3O4 magnetic system in the adsorption/degradation of methylene blue and esterification. The thermal decomposition method allowed the preparation of Fe3O4 nanoparticles. The crystallites of the Fe3O4 structural phase present an acicular form confirmed by X-ray diffraction. Transmission electron microscopy results identified the acicular shape and agglomeration of the nanoparticles. Mössbauer spectroscopy showed that the spectrum is composed of five components at room temperature, a hyperfine magnetic field distribution (HMFD), two sextets, a doublet, and a singlet. The presence of the HMFD means that a particle size distribution is present. Fluorescence spectroscopy studied the CA of the nanoparticles with methylene blue and found adsorption/degradation properties of the dye. The catalytic activity of the nanoparticles was evaluated in the esterification reaction by comparing the results in the presence and absence of catalyst for the reaction with isobutanol and octanol, where it is observed that the selectivity for the products MIBP and MNOP is favored in the first three hours of reaction. |
| publishDate |
2022 |
| dc.date.issued.none.fl_str_mv |
2022-12 |
| dc.date.accessioned.none.fl_str_mv |
2025-08-25T16:44:52Z |
| dc.date.available.none.fl_str_mv |
2025-08-25T16:44:52Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
Hernandez, J., Aragón-Muriel, A., Corrales, W., Castro, J., Salazar-Camacho, N., Pérez, A. y Tabares, J. (2022). Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/Degradation of Methylene Blue and Esterification. Molecules, 27(4), 8976. DOI: 10.3390/molecules27248976 |
| dc.identifier.doi.none.fl_str_mv |
10.3390/molecules27248976 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/5541 |
| identifier_str_mv |
Hernandez, J., Aragón-Muriel, A., Corrales, W., Castro, J., Salazar-Camacho, N., Pérez, A. y Tabares, J. (2022). Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/Degradation of Methylene Blue and Esterification. Molecules, 27(4), 8976. DOI: 10.3390/molecules27248976 10.3390/molecules27248976 |
| url |
https://hdl.handle.net/20.500.12313/5541 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationissue.none.fl_str_mv |
4 |
| dc.relation.citationstartpage.none.fl_str_mv |
8976 |
| dc.relation.citationvolume.none.fl_str_mv |
27 |
| dc.relation.ispartofjournal.none.fl_str_mv |
Molecules |
| dc.relation.references.none.fl_str_mv |
Mohajerani, A.; Burnett, L.; Smith, J.V.; Kurmus, H.; Milas, J.; Arulrajah, A.; Horpibulsuk, S.; Kadir, A.A. Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials 2019, 12, 3052. [ Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67. Andra, S.; Balu, S.K.; Jeevanandham, J.; Muthalagu, M.; Vidyavathy, M.; Chan, Y.S.; Danquah, M.K. Phytosynthesized Metal Oxide Nanoparticles for Pharmaceutical Applications. Naunyn Schmiedebergs Arch. Pharmacol. 2019, 392, 755–771. Radoń, A.; Łoński, Y.; Warski, T.; Babilas, R.; Tański, T.; Dudziak, M.; Łukowiec, D. Catalytic Activity of Non-Spherical Shaped Magnetite Nanoparticles in Degradation of Sudan I, Rhodamine B and Methylene Blue Dyes. Appl. Surf. Sci. 2019, 487, 1018–1025. Schwaminger, S.P.; Bauer, D.; Fraga-García, P.; Wagner, F.E.; Berensmeier, S. Oxidation of Magnetite Nanoparticles: Impact on Surface and Crystal Properties. CrystEngComm 2017, 19, 246–255. Bhole, R.; Gonsalves, D.; Murugesan, G.; Narasimhan, M.K.; Srinivasan, N.R.; Dave, N.; Varadavenkatesan, T.; Vinayagam, R.; Govarthanan, M.; Selvaraj, R. Superparamagnetic Spherical Magnetite Nanoparticles: Synthesis, Characterization and Catalytic Potential. Appl. Nanosci. 2022, 12, 1–12. Giraldo, L.; Erto, A.; Moreno-Piraján, J.C. Magnetite Nanoparticles for Removal of Heavy Metals from Aqueous Solutions: Synthesis and Characterization. Adsorption 2013, 19, 465–475. Fato, F.P.; Li, D.W.; Zhao, L.J.; Qiu, K.; Long, Y.T. Simultaneous Removal of Multiple Heavy Metal Ions from River Water Using Ultrafine Mesoporous Magnetite Nanoparticles. ACS Omega 2019, 4, 7543–7549. Mahdavi, S.; Jalali, M.; Afkhami, A. Removal of Heavy Metals from Aqueous Solutions Using Fe3O 4, ZnO, and CuO Nanoparticles. J. Nanopart. Res. 2012, 14, 846. Ali, S.M.; Galal, A.; Atta, N.F.; Shammakh, Y. Toxic Heavy Metal Ions Removal from Wastewater by Nano-Magnetite: Case Study Nile River Water. Egypt. J. Chem. 2017, 60, 601–612. Pirsaheb, M.; Moradi, N. A Systematic Review of the Sonophotocatalytic Process for the Decolorization of Dyes in Aqueous Solution: Synergistic Mechanisms, Degradation Pathways, and Process Optimization. J. Water Process Eng. 2021, 44, 102314. Panda, S.K.; Prasad, L. Fe3O4 Based Nanoparticles as a Catalyst in Degradation of Dyes: A Short Review. Int. J. Adv. Res. Sci. Commun. Technol. 2020, 11, 34–42. dos Santos-Durndell, V.C.; Peruzzolo, T.M.; Ucoski, G.M.; Ramos, L.P.; Nakagaki, S. Magnetically Recyclable Nanocatalysts Based on Magnetite: An Environmentally Friendly and Recyclable Catalyst for Esterification Reactions. Biofuel Res. J. 2018, 5, 806–812. Nizam, A.; Warrier, V.G.; Devasia, J.; Ganganagappa, N. Magnetic Iron Oxide Nanoparticles Immobilized on Microporous Molecular Sieves as Efficient Porous Catalyst for Photodegradation, Transesterification and Esterification Reactions. J. Porous Mater. 2022, 29, 119–129. Cai, H.; An, X.; Cui, J.; Li, J.; Wen, S.; Li, K.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X. Facile Hydrothermal Synthesis and Surface Functionalization of Polyethyleneimine-Coated Iron Oxide Nanoparticles for Biomedical Applications. Mater. Interfaces 2013, 5, 1722–1731. Veisi, H.; Moradi, S.B.; Saljooqi, A.; Safarimehr, P. Silver Nanoparticle-Decorated on Tannic Acid-Modified Magnetite Nanoparticles (Fe3O4@TA/Ag) for Highly Active Catalytic Reduction of 4-Nitrophenol, Rhodamine B and Methylene Blue. Mater. Sci. Eng. C 2019, 100, 445–452. Trujillo Hernandez, J.S.; Aragón Muriel, A.; Tabares, J.A.; Pérez Alcázar, G.A.; Bolaños, A. Preparation of Fe3O4 nanoparticles and removal of methylene blue through adsorption. J. Phys. Conf. Ser. 2015, 614, 012007. Elazab, H.A.; El-Idreesy, T.T. Optimization of the Catalytic Performance of Pd/Fe3O4 Nanoparticles Prepared via Microwave-Assisted Synthesis for Pharmaceutical and Catalysis Applications. Biointerface Res. Appl. Chem. 2019, 9, 3794–3799. Johnson, C.E.; Johnson, J.A.; Hah, H.Y.; Cole, M.; Gray, S.; Kolesnichenko, V.; Kucheryavy, P.; Goloverda, G. Mössbauer studies of stoichiometry of Fe3O4: Characterization of nanoparticles for biomedical applications. Hyperfine Interact. 2016, 237, 27. Kamzin, A.S. Mössbauer Investigations of Fe and Fe3O4 Magnetic Nanoparticles for Hyperthermia Applications. Phys. Solid State 2016, 58, 532–539. Wareppam, B.; Kuzmann, E.; Garg, V.K.; Singh, L.H. Mössbauer spectroscopic investigations on iron oxides and modified nanostructures: A review. J. Mater. Res. 2022, 37, 1–21. Hossain, M.; Hossain, M.; Begum, M.; Shahjahan, M.; Islam, M.; Saha, B. Magnetite (Fe3O4) Nanoparticles for Chromium Removal. Bangladesh J. Sci. Ind. Res. 2018, 53, 219–224. Arévalo, P.; Isasi, J.; Caballero, A.C.; Marco, J.F.; Martín-Hernández, F. Magnetic and Structural Studies of Fe3O4 Nanoparticles Synthesized via Coprecipitation and Dispersed in Different Surfactants. Ceram. Int. 2017, 43, 10333–10340. Giri, S.K.; Das, N.N.; Pradhan, G.C. Synthesis and Characterization of Magnetite Nanoparticles Using Waste Iron Ore Tailings for Adsorptive Removal of Dyes from Aqueous Solution. Colloids Surf. A Physicochem. Eng. Asp. 2011, 389, 43–49. Mikhaylova, M.; Kim, D.K.; Bobrysheva, N.; Osmolowsky, M.; Semenov, V.; Tsakalakos, T.; Muhammed, M. Superparamagnetism of Magnetite Nanoparticles: Dependence on Surface Modification. Langmuir 2004, 20, 2472–2477. Yang, C.; Dong, W.; Cui, G.; Zhao, Y.; Shi, X.; Xia, X.; Tang, B.; Wang, W. Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA. RSC Adv. 2017, 7, 23699–23708. Chen, C.Y.; Liu, Y.R. Robust and Enhanced Photocatalytic Performance of Coupled CdSe/TiO2 Photocatalysts. Sci. Adv. Mater. 2015, 7, 1053–1057. Giovannetti, R.; Rommozzi, E.; D’Amato, C.A.; Zannotti, M. Kinetic Model for Simultaneous Adsorption/Photodegradation Process of Alizarin Red S in Water Solution by Nano-TiO2 under Visible Light. Catalysts 2016, 6, 84. Giovannetti, R.; D’ Amato, C.A.; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Minicucci, M.; Di Cicco, A. Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water. Sci. Rep. 2015, 5, 17801. Chen, C.Y.; Hsu, L.J. Kinetic study of self-assembly of Ni(II)-doped TiO2 nanocatalysts for the photodegradation of azo pollutants. RSC Adv. 2015, 5, 88266–88271. Woo, K.; Hong, J.; Choi, S.; Lee, H.; Ahn, J.; Kim, C.S.; Lee, S.W. Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles. Chem. Mater 2004, 16, 2814–2818. Toby, B.H.; von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 2013, 46, 544–549. Varret, F.; (University of Le Mans, Le Mans, France); Greneche, J.-M.; (University of Le Mans, Le Mans, France). Unpublished work. 1994. |
| dc.rights.eng.fl_str_mv |
© 2022 by the authors. |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| rights_invalid_str_mv |
© 2022 by the authors. http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
MDPI |
| dc.publisher.place.none.fl_str_mv |
Suiza |
| publisher.none.fl_str_mv |
MDPI |
| dc.source.none.fl_str_mv |
https://www.mdpi.com/1420-3049/27/24/8976 |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/36fa284e-bd65-4d43-ae13-845313ce7bdc/download https://repositorio.unibague.edu.co/bitstreams/c3433c1c-a35a-4980-82e4-66e009fb529e/download https://repositorio.unibague.edu.co/bitstreams/0a8e69db-8d43-4f36-b5d5-d3c3ac4a03c0/download https://repositorio.unibague.edu.co/bitstreams/b8f21ba2-7718-48e3-ae53-aac217e102fa/download |
| bitstream.checksum.fl_str_mv |
2fa3e590786b9c0f3ceba1b9656b7ac3 cd1a6533b975dc3f976e101af4fca01d 1455f6f72bfe0ffac9a2360a104d5403 1d67a590c4952549877f1ae7544fbb03 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059954509676544 |
| spelling |
Torrente Rocha, Juan Josef495c010-d77d-4bef-bfc7-bb59287717d7600Aragón-Muriel, Alberto218f56c5-9bfa-4dc5-95bf-f69a592ca70f-1Hernández Quintero, Hernando Antonio9f2316ff-fd3d-49aa-80c3-18bb30857fe7600Castro Velásquez, Juan Camilo456467a6-47bf-4f1a-bcf7-8eeab608a42a-1Salazar-Camacho, Natalia Andreafd7c28f0-484f-4ea3-b34d-c7f3f67a06a3-1Pérez Alcázar, German Antonio568fb5c3-c63b-4a92-885f-b909d8b9e974-1Tabares, Jesús Anselmod2493ba1-3da1-4060-bfae-5f9bb4b06235-12025-08-25T16:44:52Z2025-08-25T16:44:52Z2022-12The aim of this study is to evaluate the applicability of the catalytic activity (CA) of the Fe3O4 magnetic system in the adsorption/degradation of methylene blue and esterification. The thermal decomposition method allowed the preparation of Fe3O4 nanoparticles. The crystallites of the Fe3O4 structural phase present an acicular form confirmed by X-ray diffraction. Transmission electron microscopy results identified the acicular shape and agglomeration of the nanoparticles. Mössbauer spectroscopy showed that the spectrum is composed of five components at room temperature, a hyperfine magnetic field distribution (HMFD), two sextets, a doublet, and a singlet. The presence of the HMFD means that a particle size distribution is present. Fluorescence spectroscopy studied the CA of the nanoparticles with methylene blue and found adsorption/degradation properties of the dye. The catalytic activity of the nanoparticles was evaluated in the esterification reaction by comparing the results in the presence and absence of catalyst for the reaction with isobutanol and octanol, where it is observed that the selectivity for the products MIBP and MNOP is favored in the first three hours of reaction.application/pdfHernandez, J., Aragón-Muriel, A., Corrales, W., Castro, J., Salazar-Camacho, N., Pérez, A. y Tabares, J. (2022). Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/Degradation of Methylene Blue and Esterification. Molecules, 27(4), 8976. DOI: 10.3390/molecules2724897610.3390/molecules27248976https://hdl.handle.net/20.500.12313/5541engMDPISuiza4897627MoleculesMohajerani, A.; Burnett, L.; Smith, J.V.; Kurmus, H.; Milas, J.; Arulrajah, A.; Horpibulsuk, S.; Kadir, A.A. Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials 2019, 12, 3052. [Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67.Andra, S.; Balu, S.K.; Jeevanandham, J.; Muthalagu, M.; Vidyavathy, M.; Chan, Y.S.; Danquah, M.K. Phytosynthesized Metal Oxide Nanoparticles for Pharmaceutical Applications. Naunyn Schmiedebergs Arch. Pharmacol. 2019, 392, 755–771.Radoń, A.; Łoński, Y.; Warski, T.; Babilas, R.; Tański, T.; Dudziak, M.; Łukowiec, D. Catalytic Activity of Non-Spherical Shaped Magnetite Nanoparticles in Degradation of Sudan I, Rhodamine B and Methylene Blue Dyes. Appl. Surf. Sci. 2019, 487, 1018–1025.Schwaminger, S.P.; Bauer, D.; Fraga-García, P.; Wagner, F.E.; Berensmeier, S. Oxidation of Magnetite Nanoparticles: Impact on Surface and Crystal Properties. CrystEngComm 2017, 19, 246–255.Bhole, R.; Gonsalves, D.; Murugesan, G.; Narasimhan, M.K.; Srinivasan, N.R.; Dave, N.; Varadavenkatesan, T.; Vinayagam, R.; Govarthanan, M.; Selvaraj, R. Superparamagnetic Spherical Magnetite Nanoparticles: Synthesis, Characterization and Catalytic Potential. Appl. Nanosci. 2022, 12, 1–12.Giraldo, L.; Erto, A.; Moreno-Piraján, J.C. Magnetite Nanoparticles for Removal of Heavy Metals from Aqueous Solutions: Synthesis and Characterization. Adsorption 2013, 19, 465–475.Fato, F.P.; Li, D.W.; Zhao, L.J.; Qiu, K.; Long, Y.T. Simultaneous Removal of Multiple Heavy Metal Ions from River Water Using Ultrafine Mesoporous Magnetite Nanoparticles. ACS Omega 2019, 4, 7543–7549.Mahdavi, S.; Jalali, M.; Afkhami, A. Removal of Heavy Metals from Aqueous Solutions Using Fe3O 4, ZnO, and CuO Nanoparticles. J. Nanopart. Res. 2012, 14, 846.Ali, S.M.; Galal, A.; Atta, N.F.; Shammakh, Y. Toxic Heavy Metal Ions Removal from Wastewater by Nano-Magnetite: Case Study Nile River Water. Egypt. J. Chem. 2017, 60, 601–612.Pirsaheb, M.; Moradi, N. A Systematic Review of the Sonophotocatalytic Process for the Decolorization of Dyes in Aqueous Solution: Synergistic Mechanisms, Degradation Pathways, and Process Optimization. J. Water Process Eng. 2021, 44, 102314.Panda, S.K.; Prasad, L. Fe3O4 Based Nanoparticles as a Catalyst in Degradation of Dyes: A Short Review. Int. J. Adv. Res. Sci. Commun. Technol. 2020, 11, 34–42.dos Santos-Durndell, V.C.; Peruzzolo, T.M.; Ucoski, G.M.; Ramos, L.P.; Nakagaki, S. Magnetically Recyclable Nanocatalysts Based on Magnetite: An Environmentally Friendly and Recyclable Catalyst for Esterification Reactions. Biofuel Res. J. 2018, 5, 806–812.Nizam, A.; Warrier, V.G.; Devasia, J.; Ganganagappa, N. Magnetic Iron Oxide Nanoparticles Immobilized on Microporous Molecular Sieves as Efficient Porous Catalyst for Photodegradation, Transesterification and Esterification Reactions. J. Porous Mater. 2022, 29, 119–129.Cai, H.; An, X.; Cui, J.; Li, J.; Wen, S.; Li, K.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X. Facile Hydrothermal Synthesis and Surface Functionalization of Polyethyleneimine-Coated Iron Oxide Nanoparticles for Biomedical Applications. Mater. Interfaces 2013, 5, 1722–1731.Veisi, H.; Moradi, S.B.; Saljooqi, A.; Safarimehr, P. Silver Nanoparticle-Decorated on Tannic Acid-Modified Magnetite Nanoparticles (Fe3O4@TA/Ag) for Highly Active Catalytic Reduction of 4-Nitrophenol, Rhodamine B and Methylene Blue. Mater. Sci. Eng. C 2019, 100, 445–452.Trujillo Hernandez, J.S.; Aragón Muriel, A.; Tabares, J.A.; Pérez Alcázar, G.A.; Bolaños, A. Preparation of Fe3O4 nanoparticles and removal of methylene blue through adsorption. J. Phys. Conf. Ser. 2015, 614, 012007.Elazab, H.A.; El-Idreesy, T.T. Optimization of the Catalytic Performance of Pd/Fe3O4 Nanoparticles Prepared via Microwave-Assisted Synthesis for Pharmaceutical and Catalysis Applications. Biointerface Res. Appl. Chem. 2019, 9, 3794–3799.Johnson, C.E.; Johnson, J.A.; Hah, H.Y.; Cole, M.; Gray, S.; Kolesnichenko, V.; Kucheryavy, P.; Goloverda, G. Mössbauer studies of stoichiometry of Fe3O4: Characterization of nanoparticles for biomedical applications. Hyperfine Interact. 2016, 237, 27.Kamzin, A.S. Mössbauer Investigations of Fe and Fe3O4 Magnetic Nanoparticles for Hyperthermia Applications. Phys. Solid State 2016, 58, 532–539.Wareppam, B.; Kuzmann, E.; Garg, V.K.; Singh, L.H. Mössbauer spectroscopic investigations on iron oxides and modified nanostructures: A review. J. Mater. Res. 2022, 37, 1–21.Hossain, M.; Hossain, M.; Begum, M.; Shahjahan, M.; Islam, M.; Saha, B. Magnetite (Fe3O4) Nanoparticles for Chromium Removal. Bangladesh J. Sci. Ind. Res. 2018, 53, 219–224.Arévalo, P.; Isasi, J.; Caballero, A.C.; Marco, J.F.; Martín-Hernández, F. Magnetic and Structural Studies of Fe3O4 Nanoparticles Synthesized via Coprecipitation and Dispersed in Different Surfactants. Ceram. Int. 2017, 43, 10333–10340.Giri, S.K.; Das, N.N.; Pradhan, G.C. Synthesis and Characterization of Magnetite Nanoparticles Using Waste Iron Ore Tailings for Adsorptive Removal of Dyes from Aqueous Solution. Colloids Surf. A Physicochem. Eng. Asp. 2011, 389, 43–49.Mikhaylova, M.; Kim, D.K.; Bobrysheva, N.; Osmolowsky, M.; Semenov, V.; Tsakalakos, T.; Muhammed, M. Superparamagnetism of Magnetite Nanoparticles: Dependence on Surface Modification. Langmuir 2004, 20, 2472–2477.Yang, C.; Dong, W.; Cui, G.; Zhao, Y.; Shi, X.; Xia, X.; Tang, B.; Wang, W. Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA. RSC Adv. 2017, 7, 23699–23708.Chen, C.Y.; Liu, Y.R. Robust and Enhanced Photocatalytic Performance of Coupled CdSe/TiO2 Photocatalysts. Sci. Adv. Mater. 2015, 7, 1053–1057.Giovannetti, R.; Rommozzi, E.; D’Amato, C.A.; Zannotti, M. Kinetic Model for Simultaneous Adsorption/Photodegradation Process of Alizarin Red S in Water Solution by Nano-TiO2 under Visible Light. Catalysts 2016, 6, 84.Giovannetti, R.; D’ Amato, C.A.; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Minicucci, M.; Di Cicco, A. Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water. Sci. Rep. 2015, 5, 17801.Chen, C.Y.; Hsu, L.J. Kinetic study of self-assembly of Ni(II)-doped TiO2 nanocatalysts for the photodegradation of azo pollutants. RSC Adv. 2015, 5, 88266–88271.Woo, K.; Hong, J.; Choi, S.; Lee, H.; Ahn, J.; Kim, C.S.; Lee, S.W. Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles. Chem. Mater 2004, 16, 2814–2818.Toby, B.H.; von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 2013, 46, 544–549.Varret, F.; (University of Le Mans, Le Mans, France); Greneche, J.-M.; (University of Le Mans, Le Mans, France). Unpublished work. 1994.© 2022 by the authors.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.mdpi.com/1420-3049/27/24/8976Nanopartículas de FeO - CaracterizaciónActividad catalíticaNanopartículas de Fe₃O₄Azul de metilenoEspectroscopía MössbauerCatalytic activityEsterificationFe3O4 nanoparticlesMethylene blueMössbauer spectroscopyCharacterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/Degradation of Methylene Blue and EsterificationArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/36fa284e-bd65-4d43-ae13-845313ce7bdc/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf172656https://repositorio.unibague.edu.co/bitstreams/c3433c1c-a35a-4980-82e4-66e009fb529e/downloadcd1a6533b975dc3f976e101af4fca01dMD52TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain5196https://repositorio.unibague.edu.co/bitstreams/0a8e69db-8d43-4f36-b5d5-d3c3ac4a03c0/download1455f6f72bfe0ffac9a2360a104d5403MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg24325https://repositorio.unibague.edu.co/bitstreams/b8f21ba2-7718-48e3-ae53-aac217e102fa/download1d67a590c4952549877f1ae7544fbb03MD5420.500.12313/5541oai:repositorio.unibague.edu.co:20.500.12313/55412025-08-26 03:01:09.925https://creativecommons.org/licenses/by-nc/4.0/© 2022 by the authors.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
