Automatic Method for Vickers Hardness Estimation by Image Processing

Hardness is one of the most important mechanical properties of materials, since it is used to estimate their quality and to determine their suitability for a particular application. One method of determining quality is the Vickers hardness test, in which the resistance to plastic deformation at the...

Full description

Autores:
Polanco, Jonatan D.
Jacanamejoy-Jamioy, Carlos
Mambuscay, Claudia L.
Piamba Jiménez, Jeferson Fernando
Forero, Manuel G.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5540
Acceso en línea:
https://hdl.handle.net/20.500.12313/5540
https://www.mdpi.com/2313-433X/9/1/8
Palabra clave:
Procedimiento de imágenes
Mecánica de materiales
Acero - Tratamiento térmico
Hardness estimation
Image processing
Mechanics of materials
Steel heat treating
Vickers hardness
Rights
openAccess
License
© 2022 by the authors.
id UNIBAGUE2_8aab0d911852cf22e556a496a2948db1
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5540
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Automatic Method for Vickers Hardness Estimation by Image Processing
title Automatic Method for Vickers Hardness Estimation by Image Processing
spellingShingle Automatic Method for Vickers Hardness Estimation by Image Processing
Procedimiento de imágenes
Mecánica de materiales
Acero - Tratamiento térmico
Hardness estimation
Image processing
Mechanics of materials
Steel heat treating
Vickers hardness
title_short Automatic Method for Vickers Hardness Estimation by Image Processing
title_full Automatic Method for Vickers Hardness Estimation by Image Processing
title_fullStr Automatic Method for Vickers Hardness Estimation by Image Processing
title_full_unstemmed Automatic Method for Vickers Hardness Estimation by Image Processing
title_sort Automatic Method for Vickers Hardness Estimation by Image Processing
dc.creator.fl_str_mv Polanco, Jonatan D.
Jacanamejoy-Jamioy, Carlos
Mambuscay, Claudia L.
Piamba Jiménez, Jeferson Fernando
Forero, Manuel G.
dc.contributor.author.none.fl_str_mv Polanco, Jonatan D.
Jacanamejoy-Jamioy, Carlos
Mambuscay, Claudia L.
Piamba Jiménez, Jeferson Fernando
Forero, Manuel G.
dc.subject.armarc.none.fl_str_mv Procedimiento de imágenes
Mecánica de materiales
Acero - Tratamiento térmico
topic Procedimiento de imágenes
Mecánica de materiales
Acero - Tratamiento térmico
Hardness estimation
Image processing
Mechanics of materials
Steel heat treating
Vickers hardness
dc.subject.proposal.eng.fl_str_mv Hardness estimation
Image processing
Mechanics of materials
Steel heat treating
Vickers hardness
description Hardness is one of the most important mechanical properties of materials, since it is used to estimate their quality and to determine their suitability for a particular application. One method of determining quality is the Vickers hardness test, in which the resistance to plastic deformation at the surface of the material is measured after applying force with an indenter. The hardness is measured from the sample image, which is a tedious, time-consuming, and prone to human error procedure. Therefore, in this work, a new automatic method based on image processing techniques is proposed, allowing for obtaining results quickly and more accurately even with high irregularities in the indentation mark. For the development and validation of the method, a set of microscopy images of samples indented with applied forces of (Formula presented.) and (Formula presented.) on AISI D2 steel with and without quenching, tempering heat treatment and samples coated with titanium niobium nitride (TiNbN) was used. The proposed method was implemented as a plugin of the ImageJ program, allowing for obtaining reproducible Vickers hardness results in an average time of (Formula presented.) seconds with an accuracy of (Formula presented.) and a maximum error of (Formula presented.) with respect to the values obtained manually, used as a golden standard.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-01
dc.date.accessioned.none.fl_str_mv 2025-08-25T16:39:58Z
dc.date.available.none.fl_str_mv 2025-08-25T16:39:58Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Polanco, J., Jacanamejoy-Jamioy, C., Mambuscay, C., Piamba, J. y Forero, M. (2023). Automatic Method for Vickers Hardness Estimation by Image Processing. Journal of Imaging, 9(1). DOI: 10.3390/jimaging9010008
dc.identifier.doi.none.fl_str_mv 10.3390/jimaging9010008
dc.identifier.issn.none.fl_str_mv 2313433X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5540
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/2313-433X/9/1/8
identifier_str_mv Polanco, J., Jacanamejoy-Jamioy, C., Mambuscay, C., Piamba, J. y Forero, M. (2023). Automatic Method for Vickers Hardness Estimation by Image Processing. Journal of Imaging, 9(1). DOI: 10.3390/jimaging9010008
10.3390/jimaging9010008
2313433X
url https://hdl.handle.net/20.500.12313/5540
https://www.mdpi.com/2313-433X/9/1/8
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 8
dc.relation.citationvolume.none.fl_str_mv 9
dc.relation.ispartofjournal.none.fl_str_mv Journal of Imaging
dc.relation.references.none.fl_str_mv Callister, W.D. Introducción a la Ciencia E ingeniería de los Materiales: Tomo 1; Reverté: Barcelona, Spain, 1997
Askeland, D.R.; Fulay, P.P. The Science and Engineering of Materials; Cengage: Boston, MA, USA, 2016.
Sydor, M.; Pinkowski, G.; Jasińska, A. The Brinell method for determining hardness of wood flooring materials. Forests 2020, 11, 878.
Zeng, X.; Xiao, Y.; Ji, X.; Wang, G. Mineral identification based on deep learning that combines image and Mohs hardness. Minerals 2021, 11, 506.
Rodríguez-Prieto, A.; Primera, E.; Frigione, M.; Camacho, A.M. Reliability prediction of acrylonitrile O-ring for nuclear power applications based on shore hardness measurements. Polymers 2021, 13, 943.
Schiavi, A.; Origlia, C.; Germak, A.; Prato, A.; Genta, G. Indentation modulus, indentation work and creep of metals and alloys at the macro-scale level: Experimental insights into the use of a primary Vickers hardness standard machine. Materials 2021, 14, 2912.
Hościło, B.; Molski, K.L. Determination of Surface Stresses in X20Cr13 Steel by the Use of a Modified Hardness Measurement Procedure with Vickers Indenter. Materials 2020, 13, 4844.
Albella, J.M. Láminas Delgadas y Recubrimientos. Preparación, Propiedades y Aplicaciones; Consejo Superior de Investigaciones Científicas: Madrid, Spain, 2003; p. 704.
Jairo Florez Olaya, J.; Chipatecua, Y.L.G.; Rodil, S.E.P. Resistencia a la corrosión de recubrimientos de nitruros metálicos depositados sobre acero AISI M2 Corrosion resistance of transition metal nitride films deposited on AISI M2 steel. Ing. Y Desarro. 2012, 30, 1–22.
Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings 2018, 8, 402.
Soffritti, C.; Fortini, A.; Sola, R.; Fabbri, E.; Merlin, M.; Garagnani, G.L. Influence of Vacuum Heat Treatments on Microstructure and Mechanical Properties of M35 High Speed Steel. Metals 2020, 10, 643.
Barrena-Rodríguez, M.d.J.; Acosta-González, F.A.; Téllez-Rosas, M.M. A Review of the Boiling Curve with Reference to Steel Quenching. Metals 2021, 11, 974.
Cicek, H.; Baran, O.; Keles, A.; Totik, Y.; Efeoglu, I. A comparative study of fatigue properties of TiVN and TiNbN thin films deposited on different substrates. Surf. Coatings Technol. 2017, 332, 296–303.
Sheppard, L.R.; Zhang, H.; Liu, R.; Macartney, S.; Murphy, T.; Wuhrer, R. Reactive sputtered Ti X Nb Y N Z thin films. I. Basic processing relationships. Mater. Chem. Phys. 2019, 224, 308–313.
Sheppard, L.R.; Zhang, H.; Liu, R.; Macartney, S.; Murphy, T.; Wainer, P.; Wuhrer, R. Reactive sputtered Ti x Nb y N coatings. II. Effect of common deposition parameters. Mater. Chem. Phys. 2019, 224, 320–327.
ASTM International Standards. Standard Test Method for Microindentation Hardness of Materials; ASTM International: West Conshohocken, PA, USA, 2017; Volume E384, pp. 1–40.
Sugimoto, T.; Kawaguchi, T. Development of an automatic Vickers hardness testing system using image processing technology. IEEE Trans. Ind. Electron. 1997, 44, 696–702.
Dominguez-Nicolas, S.M.; Wiederhold, P. Indentation Image Analysis for Vickers Hardness Testing. In Proceedings of the 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 5–7 September 2018; pp. 1–6.
Fedotkin, A.; Laktionov, I.; Kravchuk, K.; Maslenikov, I.; Useinov, A. Automatic Processing of Microhardness Images Using Computer Vision Methods. Instruments Exp. Tech. 2021, 64, 357–362.
Privezentsev, D.; Zhiznyakov, A.; Kulkov, Y. Automation of Measuring Microhardness of Materials using Metal-Graphic Images. In Proceedings of the 2019 International Russian Automation Conference (RusAutoCon), Sochi, Russia, 8–14 September 2019; pp. 1–5.
Tanaka, Y.; Seino, Y.; Hattori, K. Automated Vickers hardness measurement using convolutional neural networks. Int. J. Adv. Manuf. Technol. 2020, 109, 1345–1355.
Jalilian, E.; Uhl, A. Deep Learning Based Automated Vickers Hardness Measurement. In Computer Analysis of Images and Patterns; Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 3–13.
Li, Z.; Yin, F. Automated measurement of Vickers hardness using image segmentation with neural networks. Measurement 2021, 186, 110200.
Cheng, W.S.; Chen, G.Y.; Shih, X.Y.; Elsisi, M.; Tsai, M.H.; Dai, H.J. Vickers Hardness Value Test via Multi-Task Learning Convolutional Neural Networks and Image Augmentation. Appl. Sci. 2022, 12, 10820.
Chang, C.; Hwang, S.; Buehrer, D. A shape recognition scheme based on relative distances of feature points from the centroid. Pattern Recognit. 1991, 24, 1053–1063.
Mukhopadhyay, P.; Chaudhuri, B.B. A survey of Hough Transform. Pattern Recognit. 2015, 48, 993–1010
dc.rights.none.fl_str_mv © 2022 by the authors.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv © 2022 by the authors.
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
dc.publisher.place.none.fl_str_mv Suiza
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv https://www.mdpi.com/2313-433X/9/1/8
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/5fc9d95a-c24c-41c4-853f-568576fd7f54/download
https://repositorio.unibague.edu.co/bitstreams/85979f68-1bbf-4503-a80a-37d4a18e31bd/download
https://repositorio.unibague.edu.co/bitstreams/c9ac76b5-958b-4191-a0f1-b9181c05fb7b/download
https://repositorio.unibague.edu.co/bitstreams/b4cdc2ce-40ec-41e2-9fb5-7f13e4044e01/download
bitstream.checksum.fl_str_mv e9d00878f2056355e933263b49715c8f
0ccaecc0ee89ae6bf6b63d8607e2aa06
56819adf05dadd3fffd10a2ada4ae22c
2fa3e590786b9c0f3ceba1b9656b7ac3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059986657968128
spelling Polanco, Jonatan D.1beb0be2-b0e0-4875-9944-33e0caa72a4e-1Jacanamejoy-Jamioy, Carlosa350cdbd-f8b4-47c9-b17b-37b24d96a7ea-1Mambuscay, Claudia L.ab20b931-69fc-4d19-932f-1ba5268bfeba-1Piamba Jiménez, Jeferson Fernando2542324e-59b6-44cb-8577-2da79c47599a600Forero, Manuel G.d1814690-6764-437c-a01a-346c8f3436dc-12025-08-25T16:39:58Z2025-08-25T16:39:58Z2023-01Hardness is one of the most important mechanical properties of materials, since it is used to estimate their quality and to determine their suitability for a particular application. One method of determining quality is the Vickers hardness test, in which the resistance to plastic deformation at the surface of the material is measured after applying force with an indenter. The hardness is measured from the sample image, which is a tedious, time-consuming, and prone to human error procedure. Therefore, in this work, a new automatic method based on image processing techniques is proposed, allowing for obtaining results quickly and more accurately even with high irregularities in the indentation mark. For the development and validation of the method, a set of microscopy images of samples indented with applied forces of (Formula presented.) and (Formula presented.) on AISI D2 steel with and without quenching, tempering heat treatment and samples coated with titanium niobium nitride (TiNbN) was used. The proposed method was implemented as a plugin of the ImageJ program, allowing for obtaining reproducible Vickers hardness results in an average time of (Formula presented.) seconds with an accuracy of (Formula presented.) and a maximum error of (Formula presented.) with respect to the values obtained manually, used as a golden standard.application/pdfPolanco, J., Jacanamejoy-Jamioy, C., Mambuscay, C., Piamba, J. y Forero, M. (2023). Automatic Method for Vickers Hardness Estimation by Image Processing. Journal of Imaging, 9(1). DOI: 10.3390/jimaging901000810.3390/jimaging90100082313433Xhttps://hdl.handle.net/20.500.12313/5540https://www.mdpi.com/2313-433X/9/1/8engMDPISuiza189Journal of ImagingCallister, W.D. Introducción a la Ciencia E ingeniería de los Materiales: Tomo 1; Reverté: Barcelona, Spain, 1997Askeland, D.R.; Fulay, P.P. The Science and Engineering of Materials; Cengage: Boston, MA, USA, 2016.Sydor, M.; Pinkowski, G.; Jasińska, A. The Brinell method for determining hardness of wood flooring materials. Forests 2020, 11, 878.Zeng, X.; Xiao, Y.; Ji, X.; Wang, G. Mineral identification based on deep learning that combines image and Mohs hardness. Minerals 2021, 11, 506.Rodríguez-Prieto, A.; Primera, E.; Frigione, M.; Camacho, A.M. Reliability prediction of acrylonitrile O-ring for nuclear power applications based on shore hardness measurements. Polymers 2021, 13, 943.Schiavi, A.; Origlia, C.; Germak, A.; Prato, A.; Genta, G. Indentation modulus, indentation work and creep of metals and alloys at the macro-scale level: Experimental insights into the use of a primary Vickers hardness standard machine. Materials 2021, 14, 2912.Hościło, B.; Molski, K.L. Determination of Surface Stresses in X20Cr13 Steel by the Use of a Modified Hardness Measurement Procedure with Vickers Indenter. Materials 2020, 13, 4844.Albella, J.M. Láminas Delgadas y Recubrimientos. Preparación, Propiedades y Aplicaciones; Consejo Superior de Investigaciones Científicas: Madrid, Spain, 2003; p. 704.Jairo Florez Olaya, J.; Chipatecua, Y.L.G.; Rodil, S.E.P. Resistencia a la corrosión de recubrimientos de nitruros metálicos depositados sobre acero AISI M2 Corrosion resistance of transition metal nitride films deposited on AISI M2 steel. Ing. Y Desarro. 2012, 30, 1–22.Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings 2018, 8, 402.Soffritti, C.; Fortini, A.; Sola, R.; Fabbri, E.; Merlin, M.; Garagnani, G.L. Influence of Vacuum Heat Treatments on Microstructure and Mechanical Properties of M35 High Speed Steel. Metals 2020, 10, 643.Barrena-Rodríguez, M.d.J.; Acosta-González, F.A.; Téllez-Rosas, M.M. A Review of the Boiling Curve with Reference to Steel Quenching. Metals 2021, 11, 974.Cicek, H.; Baran, O.; Keles, A.; Totik, Y.; Efeoglu, I. A comparative study of fatigue properties of TiVN and TiNbN thin films deposited on different substrates. Surf. Coatings Technol. 2017, 332, 296–303.Sheppard, L.R.; Zhang, H.; Liu, R.; Macartney, S.; Murphy, T.; Wuhrer, R. Reactive sputtered Ti X Nb Y N Z thin films. I. Basic processing relationships. Mater. Chem. Phys. 2019, 224, 308–313.Sheppard, L.R.; Zhang, H.; Liu, R.; Macartney, S.; Murphy, T.; Wainer, P.; Wuhrer, R. Reactive sputtered Ti x Nb y N coatings. II. Effect of common deposition parameters. Mater. Chem. Phys. 2019, 224, 320–327.ASTM International Standards. Standard Test Method for Microindentation Hardness of Materials; ASTM International: West Conshohocken, PA, USA, 2017; Volume E384, pp. 1–40.Sugimoto, T.; Kawaguchi, T. Development of an automatic Vickers hardness testing system using image processing technology. IEEE Trans. Ind. Electron. 1997, 44, 696–702.Dominguez-Nicolas, S.M.; Wiederhold, P. Indentation Image Analysis for Vickers Hardness Testing. In Proceedings of the 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 5–7 September 2018; pp. 1–6.Fedotkin, A.; Laktionov, I.; Kravchuk, K.; Maslenikov, I.; Useinov, A. Automatic Processing of Microhardness Images Using Computer Vision Methods. Instruments Exp. Tech. 2021, 64, 357–362.Privezentsev, D.; Zhiznyakov, A.; Kulkov, Y. Automation of Measuring Microhardness of Materials using Metal-Graphic Images. In Proceedings of the 2019 International Russian Automation Conference (RusAutoCon), Sochi, Russia, 8–14 September 2019; pp. 1–5.Tanaka, Y.; Seino, Y.; Hattori, K. Automated Vickers hardness measurement using convolutional neural networks. Int. J. Adv. Manuf. Technol. 2020, 109, 1345–1355.Jalilian, E.; Uhl, A. Deep Learning Based Automated Vickers Hardness Measurement. In Computer Analysis of Images and Patterns; Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 3–13.Li, Z.; Yin, F. Automated measurement of Vickers hardness using image segmentation with neural networks. Measurement 2021, 186, 110200.Cheng, W.S.; Chen, G.Y.; Shih, X.Y.; Elsisi, M.; Tsai, M.H.; Dai, H.J. Vickers Hardness Value Test via Multi-Task Learning Convolutional Neural Networks and Image Augmentation. Appl. Sci. 2022, 12, 10820.Chang, C.; Hwang, S.; Buehrer, D. A shape recognition scheme based on relative distances of feature points from the centroid. Pattern Recognit. 1991, 24, 1053–1063.Mukhopadhyay, P.; Chaudhuri, B.B. A survey of Hough Transform. Pattern Recognit. 2015, 48, 993–1010© 2022 by the authors.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.mdpi.com/2313-433X/9/1/8Procedimiento de imágenesMecánica de materialesAcero - Tratamiento térmicoHardness estimationImage processingMechanics of materialsSteel heat treatingVickers hardnessAutomatic Method for Vickers Hardness Estimation by Image ProcessingArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationORIGINALArtículo.pdfArtículo.pdfapplication/pdf108441https://repositorio.unibague.edu.co/bitstreams/5fc9d95a-c24c-41c4-853f-568576fd7f54/downloade9d00878f2056355e933263b49715c8fMD52TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain3297https://repositorio.unibague.edu.co/bitstreams/85979f68-1bbf-4503-a80a-37d4a18e31bd/download0ccaecc0ee89ae6bf6b63d8607e2aa06MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg31956https://repositorio.unibague.edu.co/bitstreams/c9ac76b5-958b-4191-a0f1-b9181c05fb7b/download56819adf05dadd3fffd10a2ada4ae22cMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/b4cdc2ce-40ec-41e2-9fb5-7f13e4044e01/download2fa3e590786b9c0f3ceba1b9656b7ac3MD5120.500.12313/5540oai:repositorio.unibague.edu.co:20.500.12313/55402025-09-12 11:49:59.872https://creativecommons.org/licenses/by-nc/4.0/© 2022 by the authors.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=