Social network analysis to understand the dynamics of global supply chains
Purpose: The aim of this study is to increase the understanding of collaborative relationships and assess according to the project size, the influence of the contributory factors in shaping collaboration network structure in projects developed in global supply chains (GSC). Design/methodology/approa...
- Autores:
-
Meisel, Carlos A.
Meisel, Jose D
Bermeo-Andrade, Helga
Carranza, Laura
Zsifkovits, Helmut
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5536
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/5536
https://www.emerald.com/k/article-abstract/52/9/2992/514627/Social-network-analysis-to-understand-the-dynamics?redirectedFrom=fulltext
- Palabra clave:
- Redes social - Análisis
Cadenas de suministro globales
Collaboration
Global projects
Network analysis
Project management
Supply chain
- Rights
- openAccess
- License
- © 2022, Emerald Publishing Limited.
| id |
UNIBAGUE2_7e1f984e9e96abca49fbb5e66ae94b3c |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5536 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Social network analysis to understand the dynamics of global supply chains |
| title |
Social network analysis to understand the dynamics of global supply chains |
| spellingShingle |
Social network analysis to understand the dynamics of global supply chains Redes social - Análisis Cadenas de suministro globales Collaboration Global projects Network analysis Project management Supply chain |
| title_short |
Social network analysis to understand the dynamics of global supply chains |
| title_full |
Social network analysis to understand the dynamics of global supply chains |
| title_fullStr |
Social network analysis to understand the dynamics of global supply chains |
| title_full_unstemmed |
Social network analysis to understand the dynamics of global supply chains |
| title_sort |
Social network analysis to understand the dynamics of global supply chains |
| dc.creator.fl_str_mv |
Meisel, Carlos A. Meisel, Jose D Bermeo-Andrade, Helga Carranza, Laura Zsifkovits, Helmut |
| dc.contributor.author.none.fl_str_mv |
Meisel, Carlos A. Meisel, Jose D Bermeo-Andrade, Helga Carranza, Laura Zsifkovits, Helmut |
| dc.subject.armarc.none.fl_str_mv |
Redes social - Análisis Cadenas de suministro globales |
| topic |
Redes social - Análisis Cadenas de suministro globales Collaboration Global projects Network analysis Project management Supply chain |
| dc.subject.proposal.eng.fl_str_mv |
Collaboration Global projects Network analysis Project management Supply chain |
| description |
Purpose: The aim of this study is to increase the understanding of collaborative relationships and assess according to the project size, the influence of the contributory factors in shaping collaboration network structure in projects developed in global supply chains (GSC). Design/methodology/approach: The paper used a case study methodology applied to eight global projects developed by an Austrian company leader in global market intra-logistics solutions and warehouse automation. The cases were studied by two approaches in network analysis. First, visual and descriptive analysis to describe structural aspects of the network. Second, stochastic network analysis to evaluate the influence of contributory factors in the structure of the collaboration network. Findings: The results evidence that independently of the project size and project manager influence, project team roles (PTR) who have a reciprocal communication among other PTR tend to have a higher collaboration intensity (CI). Additionally, the results highlight the influence of the project manager in shaping the collaboration network in standard projects (STP) and small projects (SMP). According to the project size, the results show that the PTR that form complete triangles or cluster or who communicate frequently among each other tend to have a high CI, being more evident these tendencies in large-scale projects than STP and SMP. Originality/value: This research provides a framework to identify the key actors and contributory factors in shaping collaborative relationships in GSC. The findings could be used to support the decision-making process and formulation strategies for effective collaborative relationship management in GSC. |
| publishDate |
2023 |
| dc.date.issued.none.fl_str_mv |
2023-09-25 |
| dc.date.accessioned.none.fl_str_mv |
2025-08-25T15:42:51Z |
| dc.date.available.none.fl_str_mv |
2025-08-25T15:42:51Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
Meisel, C., Meisel, J., Bermeo-Andrade, H., Carranza, L. y Zsifkovits, H. (2023). Social network analysis to understand the dynamics of global supply chains. Kybernetes, 52(9), 2992 - 3021. DOI: 10.1108/K-02-2022-0191 |
| dc.identifier.doi.none.fl_str_mv |
10.1108/K-02-2022-0191 |
| dc.identifier.issn.none.fl_str_mv |
0368492X |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/5536 |
| dc.identifier.url.none.fl_str_mv |
https://www.emerald.com/k/article-abstract/52/9/2992/514627/Social-network-analysis-to-understand-the-dynamics?redirectedFrom=fulltext |
| identifier_str_mv |
Meisel, C., Meisel, J., Bermeo-Andrade, H., Carranza, L. y Zsifkovits, H. (2023). Social network analysis to understand the dynamics of global supply chains. Kybernetes, 52(9), 2992 - 3021. DOI: 10.1108/K-02-2022-0191 10.1108/K-02-2022-0191 0368492X |
| url |
https://hdl.handle.net/20.500.12313/5536 https://www.emerald.com/k/article-abstract/52/9/2992/514627/Social-network-analysis-to-understand-the-dynamics?redirectedFrom=fulltext |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.none.fl_str_mv |
3021 |
| dc.relation.citationissue.none.fl_str_mv |
9 |
| dc.relation.citationstartpage.none.fl_str_mv |
2992 |
| dc.relation.citationvolume.none.fl_str_mv |
52 |
| dc.relation.ispartofjournal.none.fl_str_mv |
Kybernetes |
| dc.relation.references.none.fl_str_mv |
Alsharo, M., Gregg, D. and Ramirez, R. (2017), “Virtual team effectiveness: the role of knowledge sharing and trust”, Information and Management, Vol. 54 No. 4, pp. 479-490. An, W. (2016), “Fitting ERGMs on big networks”, Social Science Research, Vol. 59, pp. 107-119. Anantatmula, V. and Thomas, M. (2010), “Managing global projects: a structured approach for better performance”, Project Management Journal, Vol. 41 No. 2, pp. 60-72. Bala, R., Krishnan, V. and Zhu, W. (2014), “Distributed development and product line decisions”, Production and Operations Management, Vol. 23 No. 6, pp. 1057-1066. Ballou, R.H. (2004), Business Logistics/Supply Chain Management: Planning, Organizing, and Controlling the Supply Chain, 5th ed., Pearson/Prentice Hall, Upper Saddle River, NJ. Bardhan, I., Krishnan, V.V. and Lin, S. (2013), “Team dispersion, information technology, and project performance”, Production and Operations Management, Vol. 22 No. 6, pp. 1478-1493. Bellamy, M.A. and Basole, R.C. (2013), “Network analysis of supply chain systems: a systematic review and future research”, Systems Engineering, Vol. 16 No. 2, pp. 235-249. Binder, J. (2016), “Global project management: communication, collaboration and management across borders”, available at: https://www.taylorfrancis.com/books/e/9781315584997 (accessed 3 June 2022). Blondel, V.D., Guillaume, J.-L., Lambiotte, R. and Lefebvre, E. (2008), “Fast unfolding of communities in large networks”, Journal of Statistical Mechanics: Theory and Experiment, Vol. 2008 No. 10, P10008. Borgatti, S.P. and Li, X. (2009), “ON social network analysis in a supply chain context”, Journal of Supply Chain Management, Vol. 45 No. 2, pp. 5-22. Cao, Z., Huo, B., Li, Y. and Zhao, X. (2015), “The impact of organizational culture on supply chain integration: a contingency and configuration approach”, Supply Chain Management: An International Journal, Vol. 20 No. 1, pp. 24-41. Capaldo, A. and Giannoccaro, I. (2015), “Interdependence and network-level trust in supply chain networks: a computational study”, Industrial Marketing Management, Vol. 44, pp. 180-195. Chen, T.-Y., Chen, Y.-M. and Chu, H.-C. (2008), “Developing a trust evaluation method between coworkers in virtual project team for enabling resource sharing and collaboration”, Computers in Industry, Vol. 59 No. 6, pp. 565-579. Czernek-Marszałek, K. (2018), “Cooperation evaluation with the use of network analysis”, Annals of Tourism Research, Vol. 72, pp. 126-139. Czernek-Marszałek, K. (2019), “Applying mixed methods in social network research – the case of cooperation in a Polish tourist destination”, Journal of Destination Marketing and Management, Vol. 11, pp. 40-52. de la Haye, K., Robins, G., Mohr, P. and Wilson, C. (2010), “Obesity-related behaviors in adolescent friendship networks”, Social Networks, Vol. 32 No. 3, pp. 161-167. Fossum, K.R., Binder, J.C., Madsen, T.K., Aarseth, W. and Andersen, B. (2019), “Success factors in global project management: a study of practices in organizational support and the effects on cost and schedule”, International Journal of Managing Projects in Business, Vol. 13 No. 1, pp. 128-152. Golicic, S. and Mentzer, J. (2005), “Exploring the drivers of interorganizational relationship magnitude”, Journal of Business Logistics, Vol. 26 No. 2, pp. 47-71. Goodreau, S.M. (2007), “Advances in exponential random graph (p*) models applied to a large social network”, Social Networks, Vol. 29 No. 2, pp. 231-248. Henderson, L.S., Stackman, R.W. and Lindekilde, R. (2016), “The centrality of communication norm alignment, role clarity, and trust in global project teams”, International Journal of Project Management, Vol. 34 No. 8, pp. 1717-1730. Herczeg, G., Akkerman, R. and Hauschild, M.Z. (2018), “Supply chain collaboration in industrial symbiosis networks”, Journal of Cleaner Production, Vol. 171, pp. 1058-1067. Hudnurkar, M., Jakhar, S. and Rathod, U. (2014), “Factors affecting collaboration in supply chain: a literature review”, Procedia - Social and Behavioral Sciences, Vol. 133, pp. 189-202 Hunter, D.R., Goodreau, S.M. and Handcock, M.S. (2008a), “Goodness of fit of social network models”, Journal of the American Statistical Association, Vol. 103 No. 481, pp. 248-258. Hunter, D.R., Handcock, M.S., Butts, C.T., Goodreau, S.M. and Morris, M. (2008b), “Ergm: a package to fit, simulate and diagnose exponential-family models for networks”, available at: http://www. ncbi.nlm.nih.gov/pmc/articles/PMC2743438/ (accessed 30 August 2016). Kanter, R. (1994), “Collaborative advantage: the art of alliances”, Harvard Business Review, Vol. 72 No. 4, pp. 96-108. Kumar, G., Banerjee, R.N., Meena, P.L. and Ganguly, K. (2016), “Collaborative culture and relationship strength roles in collaborative relationships: a supply chain perspective”, Journal of Business and Industrial Marketing, Vol. 31 No. 5, pp. 587-599. Lamber, D.M., Knemeyer and Gardner, J.T. (2014), “Developing and implementing partnerships in the supply chain”, in Supply Chain Management, 4th ed., Supply Chain Management Institute, pp. 275-304. Lambert, D.M. and Enz, M.G. (2017), “Issues in supply chain management: progress and potential”, Industrial Marketing Management, Vol. 62, pp. 1-16. Latorre, R. and Su arez, J. (2017), “Measuring social networks when forming information system project teams”, Journal of Systems and Software, Vol. 134, pp. 304-323. Lilian, S.C. (2014), “Virtual teams: opportunities and challenges for e-leaders”, Procedia - Social and Behavioral Sciences, Vol. 110, pp. 1251-1261. |
| dc.rights.eng.fl_str_mv |
© 2022, Emerald Publishing Limited. |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| rights_invalid_str_mv |
© 2022, Emerald Publishing Limited. http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Emerald Publishing |
| dc.publisher.place.none.fl_str_mv |
Reino Unido |
| publisher.none.fl_str_mv |
Emerald Publishing |
| dc.source.none.fl_str_mv |
https://www.researchgate.net/publication/363317171_Social_network_analysis_to_understand_the_dynamics_of_global_supply_chains |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/f4f36e41-d7de-473e-ae95-dda214deabe0/download https://repositorio.unibague.edu.co/bitstreams/47c94a16-6c3a-491c-aa06-88785459dcd8/download https://repositorio.unibague.edu.co/bitstreams/30b40748-70df-4baa-a03e-169e96229493/download https://repositorio.unibague.edu.co/bitstreams/a1118802-9d73-459b-afc6-b8e8531edad8/download |
| bitstream.checksum.fl_str_mv |
2fa3e590786b9c0f3ceba1b9656b7ac3 f5c686be83bb7a299e017efb15eca271 eda15f0a52c9de96c490d28c761d0614 8a3201bd0f94766861863343312d6278 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059965670719488 |
| spelling |
Meisel, Carlos A.b8f9ef40-615f-4056-8ff6-ef9a58e64002-1Meisel, Jose Dfb6ee7e4-d71a-4ad0-ada1-224714cb0696-1Bermeo-Andrade, Helga23464b1d-98e4-45a0-99b9-3a087b62d8ed-1Carranza, Lauraf16f766b-5ec5-457e-8004-474e71ab27f7-1Zsifkovits, Helmut016b18b5-9374-4ac8-927a-6d3e30ac9c07-12025-08-25T15:42:51Z2025-08-25T15:42:51Z2023-09-25Purpose: The aim of this study is to increase the understanding of collaborative relationships and assess according to the project size, the influence of the contributory factors in shaping collaboration network structure in projects developed in global supply chains (GSC). Design/methodology/approach: The paper used a case study methodology applied to eight global projects developed by an Austrian company leader in global market intra-logistics solutions and warehouse automation. The cases were studied by two approaches in network analysis. First, visual and descriptive analysis to describe structural aspects of the network. Second, stochastic network analysis to evaluate the influence of contributory factors in the structure of the collaboration network. Findings: The results evidence that independently of the project size and project manager influence, project team roles (PTR) who have a reciprocal communication among other PTR tend to have a higher collaboration intensity (CI). Additionally, the results highlight the influence of the project manager in shaping the collaboration network in standard projects (STP) and small projects (SMP). According to the project size, the results show that the PTR that form complete triangles or cluster or who communicate frequently among each other tend to have a high CI, being more evident these tendencies in large-scale projects than STP and SMP. Originality/value: This research provides a framework to identify the key actors and contributory factors in shaping collaborative relationships in GSC. The findings could be used to support the decision-making process and formulation strategies for effective collaborative relationship management in GSC.application/pdfMeisel, C., Meisel, J., Bermeo-Andrade, H., Carranza, L. y Zsifkovits, H. (2023). Social network analysis to understand the dynamics of global supply chains. Kybernetes, 52(9), 2992 - 3021. DOI: 10.1108/K-02-2022-019110.1108/K-02-2022-01910368492Xhttps://hdl.handle.net/20.500.12313/5536https://www.emerald.com/k/article-abstract/52/9/2992/514627/Social-network-analysis-to-understand-the-dynamics?redirectedFrom=fulltextengEmerald PublishingReino Unido30219299252KybernetesAlsharo, M., Gregg, D. and Ramirez, R. (2017), “Virtual team effectiveness: the role of knowledge sharing and trust”, Information and Management, Vol. 54 No. 4, pp. 479-490.An, W. (2016), “Fitting ERGMs on big networks”, Social Science Research, Vol. 59, pp. 107-119.Anantatmula, V. and Thomas, M. (2010), “Managing global projects: a structured approach for better performance”, Project Management Journal, Vol. 41 No. 2, pp. 60-72.Bala, R., Krishnan, V. and Zhu, W. (2014), “Distributed development and product line decisions”, Production and Operations Management, Vol. 23 No. 6, pp. 1057-1066.Ballou, R.H. (2004), Business Logistics/Supply Chain Management: Planning, Organizing, and Controlling the Supply Chain, 5th ed., Pearson/Prentice Hall, Upper Saddle River, NJ.Bardhan, I., Krishnan, V.V. and Lin, S. (2013), “Team dispersion, information technology, and project performance”, Production and Operations Management, Vol. 22 No. 6, pp. 1478-1493.Bellamy, M.A. and Basole, R.C. (2013), “Network analysis of supply chain systems: a systematic review and future research”, Systems Engineering, Vol. 16 No. 2, pp. 235-249.Binder, J. (2016), “Global project management: communication, collaboration and management across borders”, available at: https://www.taylorfrancis.com/books/e/9781315584997 (accessed 3 June 2022).Blondel, V.D., Guillaume, J.-L., Lambiotte, R. and Lefebvre, E. (2008), “Fast unfolding of communities in large networks”, Journal of Statistical Mechanics: Theory and Experiment, Vol. 2008 No. 10, P10008.Borgatti, S.P. and Li, X. (2009), “ON social network analysis in a supply chain context”, Journal of Supply Chain Management, Vol. 45 No. 2, pp. 5-22.Cao, Z., Huo, B., Li, Y. and Zhao, X. (2015), “The impact of organizational culture on supply chain integration: a contingency and configuration approach”, Supply Chain Management: An International Journal, Vol. 20 No. 1, pp. 24-41.Capaldo, A. and Giannoccaro, I. (2015), “Interdependence and network-level trust in supply chain networks: a computational study”, Industrial Marketing Management, Vol. 44, pp. 180-195.Chen, T.-Y., Chen, Y.-M. and Chu, H.-C. (2008), “Developing a trust evaluation method between coworkers in virtual project team for enabling resource sharing and collaboration”, Computers in Industry, Vol. 59 No. 6, pp. 565-579.Czernek-Marszałek, K. (2018), “Cooperation evaluation with the use of network analysis”, Annals of Tourism Research, Vol. 72, pp. 126-139.Czernek-Marszałek, K. (2019), “Applying mixed methods in social network research – the case of cooperation in a Polish tourist destination”, Journal of Destination Marketing and Management, Vol. 11, pp. 40-52.de la Haye, K., Robins, G., Mohr, P. and Wilson, C. (2010), “Obesity-related behaviors in adolescent friendship networks”, Social Networks, Vol. 32 No. 3, pp. 161-167.Fossum, K.R., Binder, J.C., Madsen, T.K., Aarseth, W. and Andersen, B. (2019), “Success factors in global project management: a study of practices in organizational support and the effects on cost and schedule”, International Journal of Managing Projects in Business, Vol. 13 No. 1, pp. 128-152.Golicic, S. and Mentzer, J. (2005), “Exploring the drivers of interorganizational relationship magnitude”, Journal of Business Logistics, Vol. 26 No. 2, pp. 47-71.Goodreau, S.M. (2007), “Advances in exponential random graph (p*) models applied to a large social network”, Social Networks, Vol. 29 No. 2, pp. 231-248.Henderson, L.S., Stackman, R.W. and Lindekilde, R. (2016), “The centrality of communication norm alignment, role clarity, and trust in global project teams”, International Journal of Project Management, Vol. 34 No. 8, pp. 1717-1730.Herczeg, G., Akkerman, R. and Hauschild, M.Z. (2018), “Supply chain collaboration in industrial symbiosis networks”, Journal of Cleaner Production, Vol. 171, pp. 1058-1067.Hudnurkar, M., Jakhar, S. and Rathod, U. (2014), “Factors affecting collaboration in supply chain: a literature review”, Procedia - Social and Behavioral Sciences, Vol. 133, pp. 189-202Hunter, D.R., Goodreau, S.M. and Handcock, M.S. (2008a), “Goodness of fit of social network models”, Journal of the American Statistical Association, Vol. 103 No. 481, pp. 248-258.Hunter, D.R., Handcock, M.S., Butts, C.T., Goodreau, S.M. and Morris, M. (2008b), “Ergm: a package to fit, simulate and diagnose exponential-family models for networks”, available at: http://www. ncbi.nlm.nih.gov/pmc/articles/PMC2743438/ (accessed 30 August 2016).Kanter, R. (1994), “Collaborative advantage: the art of alliances”, Harvard Business Review, Vol. 72 No. 4, pp. 96-108.Kumar, G., Banerjee, R.N., Meena, P.L. and Ganguly, K. (2016), “Collaborative culture and relationship strength roles in collaborative relationships: a supply chain perspective”, Journal of Business and Industrial Marketing, Vol. 31 No. 5, pp. 587-599.Lamber, D.M., Knemeyer and Gardner, J.T. (2014), “Developing and implementing partnerships in the supply chain”, in Supply Chain Management, 4th ed., Supply Chain Management Institute, pp. 275-304.Lambert, D.M. and Enz, M.G. (2017), “Issues in supply chain management: progress and potential”, Industrial Marketing Management, Vol. 62, pp. 1-16.Latorre, R. and Su arez, J. (2017), “Measuring social networks when forming information system project teams”, Journal of Systems and Software, Vol. 134, pp. 304-323.Lilian, S.C. (2014), “Virtual teams: opportunities and challenges for e-leaders”, Procedia - Social and Behavioral Sciences, Vol. 110, pp. 1251-1261.© 2022, Emerald Publishing Limited.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.researchgate.net/publication/363317171_Social_network_analysis_to_understand_the_dynamics_of_global_supply_chainsRedes social - AnálisisCadenas de suministro globalesCollaborationGlobal projectsNetwork analysisProject managementSupply chainSocial network analysis to understand the dynamics of global supply chainsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/f4f36e41-d7de-473e-ae95-dda214deabe0/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf397094https://repositorio.unibague.edu.co/bitstreams/47c94a16-6c3a-491c-aa06-88785459dcd8/downloadf5c686be83bb7a299e017efb15eca271MD52TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain5053https://repositorio.unibague.edu.co/bitstreams/30b40748-70df-4baa-a03e-169e96229493/downloadeda15f0a52c9de96c490d28c761d0614MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg20081https://repositorio.unibague.edu.co/bitstreams/a1118802-9d73-459b-afc6-b8e8531edad8/download8a3201bd0f94766861863343312d6278MD5420.500.12313/5536oai:repositorio.unibague.edu.co:20.500.12313/55362025-09-12 11:42:19.679https://creativecommons.org/licenses/by-nc/4.0/© 2022, Emerald Publishing Limited.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
