Use of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios
Land-use changes produce variations in upper soil hydraulic properties and alter the hydrological response and hydraulic behavior of streams. Thus, the combined effect of variations in soil properties and current hydraulics interacts with the exposure of structures exposed and their degree of physic...
- Autores:
-
Hernández López, Jorge Armando
Peña, Luis E
Muñoz, Diego
Rojas, Isabel
Álvarez, Alexander
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5567
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/5567
- Palabra clave:
- Infiltración del Suelo
Flujo de los Ríos - Velocidad
Flood assessment
hydraulic soil properties
Land-use evolution
Physical vulnerability
Scaling behavior
- Rights
- openAccess
- License
- © 2023 by the authors.
| id |
UNIBAGUE2_7d48fcb94871bfb0f6fe5bce7081c7cb |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5567 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Use of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios |
| title |
Use of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios |
| spellingShingle |
Use of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios Infiltración del Suelo Flujo de los Ríos - Velocidad Flood assessment hydraulic soil properties Land-use evolution Physical vulnerability Scaling behavior |
| title_short |
Use of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios |
| title_full |
Use of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios |
| title_fullStr |
Use of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios |
| title_full_unstemmed |
Use of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios |
| title_sort |
Use of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios |
| dc.creator.fl_str_mv |
Hernández López, Jorge Armando Peña, Luis E Muñoz, Diego Rojas, Isabel Álvarez, Alexander |
| dc.contributor.author.none.fl_str_mv |
Hernández López, Jorge Armando Peña, Luis E Muñoz, Diego Rojas, Isabel Álvarez, Alexander |
| dc.subject.armarc.none.fl_str_mv |
Infiltración del Suelo Flujo de los Ríos - Velocidad |
| topic |
Infiltración del Suelo Flujo de los Ríos - Velocidad Flood assessment hydraulic soil properties Land-use evolution Physical vulnerability Scaling behavior |
| dc.subject.proposal.eng.fl_str_mv |
Flood assessment hydraulic soil properties Land-use evolution Physical vulnerability Scaling behavior |
| description |
Land-use changes produce variations in upper soil hydraulic properties and alter the hydrological response and hydraulic behavior of streams. Thus, the combined effect of variations in soil properties and current hydraulics interacts with the exposure of structures exposed and their degree of physical vulnerability. This study aims to evaluate the effect of land-use evolution from 1976 to 2017 on the physical vulnerability of structures exposed to floods in the Combeima cathment, Colombia, proposing two novel approaches: (i) based on soil infiltration capacity variation (CN) in the basin and changes in stream flow velocity (v), (ii) through soil water storage variation in the root zone (Hu). Hydrological and hydraulic modeling and the implementation of four physical vulnerability assessment methods were performed using GIS analysis. Findings indicate that simplifying physical vulnerability estimations through CN, Hu, and (Formula presented.) variations in catchments and at cross-section resolutions is possible, allowing a detailed analysis of the land-use change effect on the vulnerability of structures. The scaling behavior of the physical vulnerability of structures was identified when Hu is defined as a scale variable and, similarly, concerning flow velocity in the stream. Therefore, applying the power law could be useful in planning processes with limited information. |
| publishDate |
2023 |
| dc.date.issued.none.fl_str_mv |
2023-03 |
| dc.date.accessioned.none.fl_str_mv |
2025-08-29T20:28:44Z |
| dc.date.available.none.fl_str_mv |
2025-08-29T20:28:44Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
Hernández-Atencia, Y., Peña, L., Muñoz-Ramos, J., Rojas, I. y Álvarez, A. (2023). Use of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios. Water (Switzerland), 15(6), 1214. DOI: 10.3390/w15061214 |
| dc.identifier.doi.none.fl_str_mv |
10.3390/w15061214 |
| dc.identifier.issn.none.fl_str_mv |
20734441 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/5567 |
| identifier_str_mv |
Hernández-Atencia, Y., Peña, L., Muñoz-Ramos, J., Rojas, I. y Álvarez, A. (2023). Use of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios. Water (Switzerland), 15(6), 1214. DOI: 10.3390/w15061214 10.3390/w15061214 20734441 |
| url |
https://hdl.handle.net/20.500.12313/5567 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationissue.none.fl_str_mv |
6 |
| dc.relation.citationstartpage.none.fl_str_mv |
1214 |
| dc.relation.citationvolume.none.fl_str_mv |
15 |
| dc.relation.ispartofjournal.none.fl_str_mv |
Water (Switzerland) |
| dc.relation.references.none.fl_str_mv |
WMO. 2018 Annual Report: WMO for the Twenty-First Century, No. 1229. 2018. Available online: https://library.wmo.int/doc_num.php?explnum_id=6264 Erlick, J.C. Natural Disasters in Latin America and the Caribbean; Routledge: London, UK, 2021. Bhatt, C.; Rao, G.; Diwakar, P.; Dadhwal, V. Development of flood inundation extent libraries over a range of potential flood levels: A practical framework for quick flood response. Geomat. Nat. Hazards Risk 2016, 8, 384–401. Baeck, S.H.; Choi, S.J.; Choi, G.W.; Lee, N.R. A study of evaluating and forecasting watersheds using the flood vulnerability assessment index in Korea. Geomat. Nat. Hazards Risk 2014, 5, 208–231. Ye, B.; Jiang, J.; Liu, J.; Zheng, Y.; Zhou, N. Research on quantitative assessment of climate change risk at an urban scale: Review of recent progress and outlook of future direction. Renew. Sustain. Energy Rev. 2021, 135, 110415 Yang, Y.-C.; Ge, Y.-E. Adaptation strategies for port infrastructure and facilities under climate change at the Kaohsiung port. Transp. Policy 2020, 97, 232–244. Dandapat, K.; Panda, G.K. Flood vulnerability analysis and risk assessment using analytical hierarchy process. Model. Earth Syst. Environ. 2017, 3, 1627–1646. Gain, A.K.; Mojtahed, V.; Biscaro, C.; Balbi, S.; Giupponi, C. An integrated approach of flood risk assessment in the eastern part of Dhaka City. Nat. Hazards 2015, 79, 1499–1530. Marques, G.F.; de Souza, V.B.; Moraes, N.V. The economic value of the flow regulation environmental service in a Brazilian urban watershed. J. Hydrol. 2017, 554, 406–419. Chowdhuri, I.; Pal, S.C.; Chakrabortty, R. Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India. Adv. Space Res. 2020, 65, 1466–1489 Haque, M.; Islam, S.; Sikder, B.; Islam, S. Community flood resilience assessment in Jamuna floodplain: A case study in Jamalpur District Bangladesh. Int. J. Disaster Risk Reduct. 2022, 72, 102861. Fernández-Montblanc, T.; Duo, E.; Ciavola, P. Dune reconstruction and revegetation as a potential measure to decrease coastal erosion and flooding under extreme storm conditions. Ocean Coast. Manag. 2019, 188, 105075. Ettinger, S.; Mounaud, L.; Magill, C.; Yao-Lafourcade, A.-F.; Thouret, J.-C.; Manville, V.; Negulescu, C.; Zuccaro, G.; De Gregorio, D.; Nardone, S.; et al. Building vulnerability to hydro-geomorphic hazards: Estimating damage probability from qualitative vulnerability assessment using logistic regression. J. Hydrol. 2016, 541, 563–581. Laudan, J.; Rözer, V.; Sieg, T.; Vogel, K.; Thieken, A.H. Damage assessment in Braunsbach 2016: Data collection and analysis for an improved understanding of damaging processes during flash floods. Nat. Hazards Earth Syst. Sci. 2017, 17, 2163–2179. Guidolin, M.; Chen, A.S.; Ghimire, B.; Keedwell, E.C.; Djordjević, S.; Savić, D.A. A weighted cellular automata 2D inundation model for rapid flood analysis. Environ. Model. Softw. 2016, 84, 378–394. Van Westen, C.J. Remote Sensing and GIS for Natural Hazards Assessment and Disaster Risk Management. In Treatise on Geomorphology; Academic Press: Cambridge, MA, USA, 2013; Volume 3, pp. 259–298 Hendrawan, V.S.A.; Komori, D. Developing flood vulnerability curve for rice crop using remote sensing and hydrodynamic modeling. Int. J. Disaster Risk Reduct. 2021, 54, 102058. Karagiorgos, K.; Thaler, T.; Hübl, J.; Maris, F.; Fuchs, S. Multi-vulnerability analysis for flash flood risk management. Nat. Hazards 2016, 82, 63–87. Bankoff. Mapping Vulnerability: Disasters, Development and People, Earthscan, 1st ed.; Taylor & Francis: London, UK, 2004. Gabel, F. Chancen dynamischer Konzeptionen von Vulnerabilität für den Katastrophenschutz. In Resilienz im Katastrophenfall Konzepte zur Stärkung von Pflege- und Hilfsbedürftigen im Bevölkerungsschutz; Marco Krüger, Matthias Max—Bielefeld Transcr: Gnoien, Germany, 2019; pp. 77–96. Malik, S.; Pal, S.C.; Sattar, A.; Singh, S.K.; Das, B.; Chakrabortty, R.; Mohammad, P. Trend of extreme rainfall events using suitable Global Circulation Model to combat the water logging condition in Kolkata Metropolitan Area. Urban Clim. 2020, 32, 100599. Blöschl, G. Three hypotheses on changing river flood hazards. Hydrol. Earth Syst. Sci. 2022, 26, 5015–5033 Messner, V.; Meyer, F. Flood Damage, Vulnerability and Risk Perception—Challenges for Flood Damage Research; Springer: Berlin/Heidelberg, Germany, 2005. Liu, J.; Shi, Z.; Wang, D. Measuring and mapping the flood vulnerability based on land-use patterns: A case study of Beijing, China. Nat. Hazards 2016, 83, 1545–1565. Wu, F.; Sun, Y.; Sun, Z.; Wu, S.; Zhang, Q. Assessing agricultural system vulnerability to floods: A hybrid approach using emergy and a landscape fragmentation index. Ecol. Indic. 2019, 105, 337–346. Caldas, A.M.; Pissarra, T.C.T.; Costa, R.C.A.; Neto, F.C.R.; Zanata, M.; da Parahyba, R.B.V.; Fernandes, L.F.S.; Pacheco, F.A.L. Flood Vulnerability, Environmental Land Use Conflicts, and Conservation of Soil and Water: A Study in the Batatais SP Municipality, Brazil. Water 2018, 10, 1357. USDA-SCS. Section 4: Hidrology. In National Engineering Handbook; Soil Conservation Service; United States Department of Agriculture: Washington, DC, USA, 1972; p. 127. Peña, L.E.; Barrios, M.; Francés, F. Flood quantiles scaling with upper soil hydraulic properties for different land uses at catchment scale. J. Hydrol. 2016, 541, 1258–1272. Saxton, K.E.; Rawls, W.J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. Soil Survey Staff. Soil Taxonomy, 2nd ed.; U.S. Government Printing Office: Washington, DC, USA, 1999. United States Departament of Agriculture. Keys to Soil Taxonomy; SMSS Technical monograph No. 19; Pocahontas Press, Inc.: Blacksburg, VA, USA, 1992. Francés, F.; Vélez, J.I.; Vélez, J.J. Split-parameter structure for the automatic calibration of distributed hydrological models. J. Hydrol. 2007, 332, 226–240. Medici, C.; Butturini, A.; Bernal, S.; Vázquez, E.; Sabater, F.; Vélez, J.I.; Francés, F. Modelling the non-linear hydrological behaviour of a small Mediterranean forested catchment. Hydrol. Process. 2008, 22, 3814–3828 Salazar, S.; Francés, F.; Komma, J.; Blume, T.; Francke, T.; Bronstert, A.; Bloschl, G. A comparative analysis of the effectiveness of flood management measures based on the concept of “retaining water in the landscape” in different European hydro-climatic regions. Nat. Hazards Earth Syst. Sci. 2012, 12, 3287–3306 Francésa, F.; Bussib, G. Análisis del impacto del cambio climático en el ciclo de sedimentos de la cuenca del río Ésera (España) mediante un modelo hidrológico distribuido. Rev. Iberoam. Ribagua 2014, 1, 14–25. Siswanto, S.Y.; Francés, F. How land use/land cover changes can affect water, flooding and sedimentation in a tropical watershed: A case study using distributed modeling in the Upper Citarum watershed, Indonesia. Environ. Earth Sci. 2019, 78, 550. Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. Bozzi, S.; Passoni, G.; Bernardara, P.; Goutal, N.; Arnaud, A. Roughness and Discharge Uncertainty in 1D Water Level Calculations. Environ. Model. Assess. 2014, 20, 343–353. Liu, J.; Shi, Z.; Tan, X. Measuring the dynamic evolution of road network vulnerability to floods: A case study of Wuhan, China. Travel Behav. Soc. 2020, 23, 13–24. Ologunorisa, T.E. An assessment of flood vulnerability zones in the Niger delta, Nigeria. Int. J. Environ. Stud. 2004, 61, 31–38. Sokal, R.R.; Michener, C.D. A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 1958, 38, 1409–1438. Huang, L.; Wang, G.; Wang, Y.; Blanzieri, E.; Su, C. Link Clustering with Extended Link Similarity and EQ Evaluation Division. PLoS ONE 2013, 8, e66005. Xu, H.; Ma, C.; Lian, J.; Xu, K.; Chaima, E. Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China. J. Hydrol. 2018, 563, 975–986. Burlando, P.; Rosso, R. Scaling and muitiscaling models of depth-duration-frequency curves for storm precipitation. J. Hydrol. 1996, 187, 45–64. Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. Kundu, S.; Khare, D.; Mondal, A. Individual and combined impacts of future climate and land use changes on the water balance. Ecol. Eng. 2017, 105, 42–57. Marshall, M.R.; Ballard, C.E.; Frogbrook, Z.L.; Solloway, I.; McIntyre, N.; Reynolds, B.; Wheater, H.S. The impact of rural land management changes on soil hydraulic properties and runoff processes: Results from experimental plots in upland UK. Hydrol. Process. 2014, 28, 2617–2629 GEOTEC. Estudio de Amenazas Naturales, Vulnerabilidad y Escenarios de Riesgo en los Centros Poblados de Villarestrepo, Llanitos, Juntas, Pastales, Pico de Oro, Bocatoma Combeima y Cay, por Flujos Torrenciales en las Microcuencas del Río Combeima; Geotec Group—Alcaldía de Ibagué—Cortolima: Ibagué, Colombia, 2007. Alaoui, A.; Rogger, M.; Peth, S.; Blöschl, G. Does soil compaction increase floods? A review. J. Hydrol. 2018, 557, 631–642 Odunuga, S.; Adegun, O.; Raji, S.A.; Udofia, S. Changes in flood risk in Lower Niger–Benue catchments. Proc. Int. Assoc. Hydrol. Sci. 2015, 370, 97–102. Jobe, A.; Kalra, A.; Ibendahl, E. Conservation Reserve Program effects on floodplain land cover management. J. Environ. Manag. 2018, 214, 305–314. Horton, A.J.; Nygren, A.; Diaz-Perera, M.A.; Kummu, M. Flood severity along the Usumacinta River, Mexico: Identifying the anthropogenic signature of tropical forest conversion. J. Hydrol. X 2020, 10, 100072. Andréassian, V. Waters and forests: From historical controversy to scientific debate. J. Hydrol. 2004, 291, 1–27. Tanir, T.; Sumi, S.J.; Lima, A.D.S.D.; Coelho, G.D.A.; Uzun, S.; Cassalho, F.; Ferreira, C.M. Multi-scale comparison of urban socio-economic vulnerability in the Washington, DC metropolitan region resulting from compound flooding. Int. J. Disaster Risk Reduct. 2021, 61, 102362. Czech, W.; Radecki-Pawlik, A.; Wyżga, B.; Hajdukiewicz, H. Modelling the flooding capacity of a Polish Carpathian river: A comparison of constrained and free channel conditions. Geomorphology 2016, 272, 32–42 McEachran, Z.P.; Karwan, D.L.; Sebestyen, S.D.; Slesak, R.A.; Ng, G.-H.C. Nonstationary flood-frequency analysis to assess effects of harvest and cover type conversion on peak flows at the Marcell Experimental Forest, Minnesota, USA. J. Hydrol. 2021, 596, 126054. Zhao, L.; Liu, F. Land-use planning adaptation in response to SLR based on a vulnerability analysis. Ocean Coast. Manag. 2020, 196, 105297. Rahman, M.; Ningsheng, C.; Mahmud, G.I.; Islam, M.; Pourghasemi, H.R.; Ahmad, H.; Habumugisha, J.M.; Washakh, R.M.A.; Alam, M.; Liu, E.; et al. Flooding and its relationship with land cover change, population growth, and road density. Geosci. Front. 2021, 12, 101224. |
| dc.rights.eng.fl_str_mv |
© 2023 by the authors. |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| rights_invalid_str_mv |
© 2023 by the authors. http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
MDPI |
| dc.publisher.place.none.fl_str_mv |
Suiza |
| publisher.none.fl_str_mv |
MDPI |
| dc.source.none.fl_str_mv |
https://www.mdpi.com/2073-4441/15/6/1214 |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/a30a4999-e505-44f9-a788-11de76cd04f4/download https://repositorio.unibague.edu.co/bitstreams/81f1342d-f302-4df6-b18d-cca556f053fe/download https://repositorio.unibague.edu.co/bitstreams/25d324ce-8f6f-4214-adf0-7c0c6cd12127/download https://repositorio.unibague.edu.co/bitstreams/161a8281-e6fe-46f2-b15d-6385163703d1/download |
| bitstream.checksum.fl_str_mv |
97823b9c5f09f4e99ceebd5cbb5e3585 9c23fc7818c6074e31a98f8d89440319 2fa3e590786b9c0f3ceba1b9656b7ac3 5c618e81f8ea5ddc582dd02f639ddfdd |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059984620584960 |
| spelling |
Hernández López, Jorge Armando5168002c-a9ec-44ae-8f7a-4c58e1bd949e600Peña, Luis Eb8e15f98-c09b-4a85-8025-9a9d1e43b712-1Muñoz, Diego51919ecf-0489-43e0-8eec-db2ec126edd8600Rojas, Isabelc425bfc3-9091-48c4-9e71-d3994a15cb19-1Álvarez, Alexander3f06aadc-b1d2-4d42-85b6-4ea0b58f6269-12025-08-29T20:28:44Z2025-08-29T20:28:44Z2023-03Land-use changes produce variations in upper soil hydraulic properties and alter the hydrological response and hydraulic behavior of streams. Thus, the combined effect of variations in soil properties and current hydraulics interacts with the exposure of structures exposed and their degree of physical vulnerability. This study aims to evaluate the effect of land-use evolution from 1976 to 2017 on the physical vulnerability of structures exposed to floods in the Combeima cathment, Colombia, proposing two novel approaches: (i) based on soil infiltration capacity variation (CN) in the basin and changes in stream flow velocity (v), (ii) through soil water storage variation in the root zone (Hu). Hydrological and hydraulic modeling and the implementation of four physical vulnerability assessment methods were performed using GIS analysis. Findings indicate that simplifying physical vulnerability estimations through CN, Hu, and (Formula presented.) variations in catchments and at cross-section resolutions is possible, allowing a detailed analysis of the land-use change effect on the vulnerability of structures. The scaling behavior of the physical vulnerability of structures was identified when Hu is defined as a scale variable and, similarly, concerning flow velocity in the stream. Therefore, applying the power law could be useful in planning processes with limited information.application/pdfHernández-Atencia, Y., Peña, L., Muñoz-Ramos, J., Rojas, I. y Álvarez, A. (2023). Use of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios. Water (Switzerland), 15(6), 1214. DOI: 10.3390/w1506121410.3390/w1506121420734441https://hdl.handle.net/20.500.12313/5567engMDPISuiza6121415Water (Switzerland)WMO. 2018 Annual Report: WMO for the Twenty-First Century, No. 1229. 2018. Available online: https://library.wmo.int/doc_num.php?explnum_id=6264Erlick, J.C. Natural Disasters in Latin America and the Caribbean; Routledge: London, UK, 2021.Bhatt, C.; Rao, G.; Diwakar, P.; Dadhwal, V. Development of flood inundation extent libraries over a range of potential flood levels: A practical framework for quick flood response. Geomat. Nat. Hazards Risk 2016, 8, 384–401.Baeck, S.H.; Choi, S.J.; Choi, G.W.; Lee, N.R. A study of evaluating and forecasting watersheds using the flood vulnerability assessment index in Korea. Geomat. Nat. Hazards Risk 2014, 5, 208–231.Ye, B.; Jiang, J.; Liu, J.; Zheng, Y.; Zhou, N. Research on quantitative assessment of climate change risk at an urban scale: Review of recent progress and outlook of future direction. Renew. Sustain. Energy Rev. 2021, 135, 110415Yang, Y.-C.; Ge, Y.-E. Adaptation strategies for port infrastructure and facilities under climate change at the Kaohsiung port. Transp. Policy 2020, 97, 232–244.Dandapat, K.; Panda, G.K. Flood vulnerability analysis and risk assessment using analytical hierarchy process. Model. Earth Syst. Environ. 2017, 3, 1627–1646.Gain, A.K.; Mojtahed, V.; Biscaro, C.; Balbi, S.; Giupponi, C. An integrated approach of flood risk assessment in the eastern part of Dhaka City. Nat. Hazards 2015, 79, 1499–1530.Marques, G.F.; de Souza, V.B.; Moraes, N.V. The economic value of the flow regulation environmental service in a Brazilian urban watershed. J. Hydrol. 2017, 554, 406–419.Chowdhuri, I.; Pal, S.C.; Chakrabortty, R. Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India. Adv. Space Res. 2020, 65, 1466–1489Haque, M.; Islam, S.; Sikder, B.; Islam, S. Community flood resilience assessment in Jamuna floodplain: A case study in Jamalpur District Bangladesh. Int. J. Disaster Risk Reduct. 2022, 72, 102861.Fernández-Montblanc, T.; Duo, E.; Ciavola, P. Dune reconstruction and revegetation as a potential measure to decrease coastal erosion and flooding under extreme storm conditions. Ocean Coast. Manag. 2019, 188, 105075.Ettinger, S.; Mounaud, L.; Magill, C.; Yao-Lafourcade, A.-F.; Thouret, J.-C.; Manville, V.; Negulescu, C.; Zuccaro, G.; De Gregorio, D.; Nardone, S.; et al. Building vulnerability to hydro-geomorphic hazards: Estimating damage probability from qualitative vulnerability assessment using logistic regression. J. Hydrol. 2016, 541, 563–581.Laudan, J.; Rözer, V.; Sieg, T.; Vogel, K.; Thieken, A.H. Damage assessment in Braunsbach 2016: Data collection and analysis for an improved understanding of damaging processes during flash floods. Nat. Hazards Earth Syst. Sci. 2017, 17, 2163–2179.Guidolin, M.; Chen, A.S.; Ghimire, B.; Keedwell, E.C.; Djordjević, S.; Savić, D.A. A weighted cellular automata 2D inundation model for rapid flood analysis. Environ. Model. Softw. 2016, 84, 378–394.Van Westen, C.J. Remote Sensing and GIS for Natural Hazards Assessment and Disaster Risk Management. In Treatise on Geomorphology; Academic Press: Cambridge, MA, USA, 2013; Volume 3, pp. 259–298Hendrawan, V.S.A.; Komori, D. Developing flood vulnerability curve for rice crop using remote sensing and hydrodynamic modeling. Int. J. Disaster Risk Reduct. 2021, 54, 102058.Karagiorgos, K.; Thaler, T.; Hübl, J.; Maris, F.; Fuchs, S. Multi-vulnerability analysis for flash flood risk management. Nat. Hazards 2016, 82, 63–87.Bankoff. Mapping Vulnerability: Disasters, Development and People, Earthscan, 1st ed.; Taylor & Francis: London, UK, 2004.Gabel, F. Chancen dynamischer Konzeptionen von Vulnerabilität für den Katastrophenschutz. In Resilienz im Katastrophenfall Konzepte zur Stärkung von Pflege- und Hilfsbedürftigen im Bevölkerungsschutz; Marco Krüger, Matthias Max—Bielefeld Transcr: Gnoien, Germany, 2019; pp. 77–96.Malik, S.; Pal, S.C.; Sattar, A.; Singh, S.K.; Das, B.; Chakrabortty, R.; Mohammad, P. Trend of extreme rainfall events using suitable Global Circulation Model to combat the water logging condition in Kolkata Metropolitan Area. Urban Clim. 2020, 32, 100599.Blöschl, G. Three hypotheses on changing river flood hazards. Hydrol. Earth Syst. Sci. 2022, 26, 5015–5033Messner, V.; Meyer, F. Flood Damage, Vulnerability and Risk Perception—Challenges for Flood Damage Research; Springer: Berlin/Heidelberg, Germany, 2005.Liu, J.; Shi, Z.; Wang, D. Measuring and mapping the flood vulnerability based on land-use patterns: A case study of Beijing, China. Nat. Hazards 2016, 83, 1545–1565.Wu, F.; Sun, Y.; Sun, Z.; Wu, S.; Zhang, Q. Assessing agricultural system vulnerability to floods: A hybrid approach using emergy and a landscape fragmentation index. Ecol. Indic. 2019, 105, 337–346.Caldas, A.M.; Pissarra, T.C.T.; Costa, R.C.A.; Neto, F.C.R.; Zanata, M.; da Parahyba, R.B.V.; Fernandes, L.F.S.; Pacheco, F.A.L. Flood Vulnerability, Environmental Land Use Conflicts, and Conservation of Soil and Water: A Study in the Batatais SP Municipality, Brazil. Water 2018, 10, 1357.USDA-SCS. Section 4: Hidrology. In National Engineering Handbook; Soil Conservation Service; United States Department of Agriculture: Washington, DC, USA, 1972; p. 127.Peña, L.E.; Barrios, M.; Francés, F. Flood quantiles scaling with upper soil hydraulic properties for different land uses at catchment scale. J. Hydrol. 2016, 541, 1258–1272.Saxton, K.E.; Rawls, W.J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578.Soil Survey Staff. Soil Taxonomy, 2nd ed.; U.S. Government Printing Office: Washington, DC, USA, 1999.United States Departament of Agriculture. Keys to Soil Taxonomy; SMSS Technical monograph No. 19; Pocahontas Press, Inc.: Blacksburg, VA, USA, 1992.Francés, F.; Vélez, J.I.; Vélez, J.J. Split-parameter structure for the automatic calibration of distributed hydrological models. J. Hydrol. 2007, 332, 226–240.Medici, C.; Butturini, A.; Bernal, S.; Vázquez, E.; Sabater, F.; Vélez, J.I.; Francés, F. Modelling the non-linear hydrological behaviour of a small Mediterranean forested catchment. Hydrol. Process. 2008, 22, 3814–3828Salazar, S.; Francés, F.; Komma, J.; Blume, T.; Francke, T.; Bronstert, A.; Bloschl, G. A comparative analysis of the effectiveness of flood management measures based on the concept of “retaining water in the landscape” in different European hydro-climatic regions. Nat. Hazards Earth Syst. Sci. 2012, 12, 3287–3306Francésa, F.; Bussib, G. Análisis del impacto del cambio climático en el ciclo de sedimentos de la cuenca del río Ésera (España) mediante un modelo hidrológico distribuido. Rev. Iberoam. Ribagua 2014, 1, 14–25.Siswanto, S.Y.; Francés, F. How land use/land cover changes can affect water, flooding and sedimentation in a tropical watershed: A case study using distributed modeling in the Upper Citarum watershed, Indonesia. Environ. Earth Sci. 2019, 78, 550.Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216.Bozzi, S.; Passoni, G.; Bernardara, P.; Goutal, N.; Arnaud, A. Roughness and Discharge Uncertainty in 1D Water Level Calculations. Environ. Model. Assess. 2014, 20, 343–353.Liu, J.; Shi, Z.; Tan, X. Measuring the dynamic evolution of road network vulnerability to floods: A case study of Wuhan, China. Travel Behav. Soc. 2020, 23, 13–24.Ologunorisa, T.E. An assessment of flood vulnerability zones in the Niger delta, Nigeria. Int. J. Environ. Stud. 2004, 61, 31–38.Sokal, R.R.; Michener, C.D. A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 1958, 38, 1409–1438.Huang, L.; Wang, G.; Wang, Y.; Blanzieri, E.; Su, C. Link Clustering with Extended Link Similarity and EQ Evaluation Division. PLoS ONE 2013, 8, e66005.Xu, H.; Ma, C.; Lian, J.; Xu, K.; Chaima, E. Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China. J. Hydrol. 2018, 563, 975–986.Burlando, P.; Rosso, R. Scaling and muitiscaling models of depth-duration-frequency curves for storm precipitation. J. Hydrol. 1996, 187, 45–64.Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900.Kundu, S.; Khare, D.; Mondal, A. Individual and combined impacts of future climate and land use changes on the water balance. Ecol. Eng. 2017, 105, 42–57.Marshall, M.R.; Ballard, C.E.; Frogbrook, Z.L.; Solloway, I.; McIntyre, N.; Reynolds, B.; Wheater, H.S. The impact of rural land management changes on soil hydraulic properties and runoff processes: Results from experimental plots in upland UK. Hydrol. Process. 2014, 28, 2617–2629GEOTEC. Estudio de Amenazas Naturales, Vulnerabilidad y Escenarios de Riesgo en los Centros Poblados de Villarestrepo, Llanitos, Juntas, Pastales, Pico de Oro, Bocatoma Combeima y Cay, por Flujos Torrenciales en las Microcuencas del Río Combeima; Geotec Group—Alcaldía de Ibagué—Cortolima: Ibagué, Colombia, 2007.Alaoui, A.; Rogger, M.; Peth, S.; Blöschl, G. Does soil compaction increase floods? A review. J. Hydrol. 2018, 557, 631–642Odunuga, S.; Adegun, O.; Raji, S.A.; Udofia, S. Changes in flood risk in Lower Niger–Benue catchments. Proc. Int. Assoc. Hydrol. Sci. 2015, 370, 97–102.Jobe, A.; Kalra, A.; Ibendahl, E. Conservation Reserve Program effects on floodplain land cover management. J. Environ. Manag. 2018, 214, 305–314.Horton, A.J.; Nygren, A.; Diaz-Perera, M.A.; Kummu, M. Flood severity along the Usumacinta River, Mexico: Identifying the anthropogenic signature of tropical forest conversion. J. Hydrol. X 2020, 10, 100072.Andréassian, V. Waters and forests: From historical controversy to scientific debate. J. Hydrol. 2004, 291, 1–27.Tanir, T.; Sumi, S.J.; Lima, A.D.S.D.; Coelho, G.D.A.; Uzun, S.; Cassalho, F.; Ferreira, C.M. Multi-scale comparison of urban socio-economic vulnerability in the Washington, DC metropolitan region resulting from compound flooding. Int. J. Disaster Risk Reduct. 2021, 61, 102362.Czech, W.; Radecki-Pawlik, A.; Wyżga, B.; Hajdukiewicz, H. Modelling the flooding capacity of a Polish Carpathian river: A comparison of constrained and free channel conditions. Geomorphology 2016, 272, 32–42McEachran, Z.P.; Karwan, D.L.; Sebestyen, S.D.; Slesak, R.A.; Ng, G.-H.C. Nonstationary flood-frequency analysis to assess effects of harvest and cover type conversion on peak flows at the Marcell Experimental Forest, Minnesota, USA. J. Hydrol. 2021, 596, 126054.Zhao, L.; Liu, F. Land-use planning adaptation in response to SLR based on a vulnerability analysis. Ocean Coast. Manag. 2020, 196, 105297.Rahman, M.; Ningsheng, C.; Mahmud, G.I.; Islam, M.; Pourghasemi, H.R.; Ahmad, H.; Habumugisha, J.M.; Washakh, R.M.A.; Alam, M.; Liu, E.; et al. Flooding and its relationship with land cover change, population growth, and road density. Geosci. Front. 2021, 12, 101224.© 2023 by the authors.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.mdpi.com/2073-4441/15/6/1214Infiltración del SueloFlujo de los Ríos - VelocidadFlood assessmenthydraulic soil propertiesLand-use evolutionPhysical vulnerabilityScaling behaviorUse of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change ScenariosArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain5990https://repositorio.unibague.edu.co/bitstreams/a30a4999-e505-44f9-a788-11de76cd04f4/download97823b9c5f09f4e99ceebd5cbb5e3585MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg27299https://repositorio.unibague.edu.co/bitstreams/81f1342d-f302-4df6-b18d-cca556f053fe/download9c23fc7818c6074e31a98f8d89440319MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/25d324ce-8f6f-4214-adf0-7c0c6cd12127/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf158236https://repositorio.unibague.edu.co/bitstreams/161a8281-e6fe-46f2-b15d-6385163703d1/download5c618e81f8ea5ddc582dd02f639ddfddMD5220.500.12313/5567oai:repositorio.unibague.edu.co:20.500.12313/55672025-08-30 03:02:22.162https://creativecommons.org/licenses/by-nc/4.0/© 2023 by the authors.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
