Predictive Modeling of Vickers Hardness Using Machine Learning Techniques on D2 Steel with Various Treatments

Hardness is one of the most crucial mechanical properties, serving as a key indicator of a material’s suitability for specific applications and its resistance to fracturing or deformation under operational conditions. Machine learning techniques have emerged as valuable tools for swiftly and accurat...

Full description

Autores:
Ortega-Portilla, Carolina
Mambuscay, Claudia Lorena
Piamba Jiménez, Jeferson Fernando
Forero Vargas, Manuel Guillermo
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5915
Acceso en línea:
https://doi.org/ 10.3390/ma17102235
https://hdl.handle.net/20.500.12313/5915
https://www.mdpi.com/1996-1944/17/10/2235
Palabra clave:
Dureza Vickers - Modelado predictivo
Acero D2 - Aprendizaje automático
Coating
Indentation imprint
Machine learning
Regression
Titanium Niobium Nitride (TiNbN)
Vickers hardness
Rights
openAccess
License
© 2024 by the authors.
id UNIBAGUE2_725b9a1d05089662f98706247294979a
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5915
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Predictive Modeling of Vickers Hardness Using Machine Learning Techniques on D2 Steel with Various Treatments
title Predictive Modeling of Vickers Hardness Using Machine Learning Techniques on D2 Steel with Various Treatments
spellingShingle Predictive Modeling of Vickers Hardness Using Machine Learning Techniques on D2 Steel with Various Treatments
Dureza Vickers - Modelado predictivo
Acero D2 - Aprendizaje automático
Coating
Indentation imprint
Machine learning
Regression
Titanium Niobium Nitride (TiNbN)
Vickers hardness
title_short Predictive Modeling of Vickers Hardness Using Machine Learning Techniques on D2 Steel with Various Treatments
title_full Predictive Modeling of Vickers Hardness Using Machine Learning Techniques on D2 Steel with Various Treatments
title_fullStr Predictive Modeling of Vickers Hardness Using Machine Learning Techniques on D2 Steel with Various Treatments
title_full_unstemmed Predictive Modeling of Vickers Hardness Using Machine Learning Techniques on D2 Steel with Various Treatments
title_sort Predictive Modeling of Vickers Hardness Using Machine Learning Techniques on D2 Steel with Various Treatments
dc.creator.fl_str_mv Ortega-Portilla, Carolina
Mambuscay, Claudia Lorena
Piamba Jiménez, Jeferson Fernando
Forero Vargas, Manuel Guillermo
dc.contributor.author.none.fl_str_mv Ortega-Portilla, Carolina
Mambuscay, Claudia Lorena
Piamba Jiménez, Jeferson Fernando
Forero Vargas, Manuel Guillermo
dc.subject.armarc.none.fl_str_mv Dureza Vickers - Modelado predictivo
Acero D2 - Aprendizaje automático
topic Dureza Vickers - Modelado predictivo
Acero D2 - Aprendizaje automático
Coating
Indentation imprint
Machine learning
Regression
Titanium Niobium Nitride (TiNbN)
Vickers hardness
dc.subject.proposal.eng.fl_str_mv Coating
Indentation imprint
Machine learning
Regression
Titanium Niobium Nitride (TiNbN)
Vickers hardness
description Hardness is one of the most crucial mechanical properties, serving as a key indicator of a material’s suitability for specific applications and its resistance to fracturing or deformation under operational conditions. Machine learning techniques have emerged as valuable tools for swiftly and accurately predicting material behavior. In this study, regression methods including decision trees, adaptive boosting, extreme gradient boosting, and random forest were employed to forecast Vickers hardness values based solely on scanned monochromatic images of indentation imprints, eliminating the need for diagonal measurements. The dataset comprised 54 images of D2 steel in various states, including commercial, quenched, tempered, and coated with Titanium Niobium Nitride (TiNbN). Due to the limited number of images, non-deep machine learning techniques were utilized. The Random Forest technique exhibited superior performance, achieving a Root Mean Square Error (RMSE) of 0.95, Mean Absolute Error (MAE) of 0.12, and Coefficient of Determination ((Formula presented.)) ≈ 1, surpassing the other methods considered in this study. These results suggest that employing machine learning algorithms for predicting Vickers hardness from scanned images offers a promising avenue for rapid and accurate material assessment, potentially streamlining quality control processes in industrial settings.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-05
dc.date.accessioned.none.fl_str_mv 2025-11-06T20:23:59Z
dc.date.available.none.fl_str_mv 2025-11-06T20:23:59Z
dc.type.none.fl_str_mv Artículo de periódico
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Mambuscay, C.L.; Ortega-Portilla, C.; Piamba, J.F.; Forero, M.G. Predictive Modeling of Vickers Hardness Using Machine Learning Techniques on D2 Steel with Various Treatments. Materials 2024, 17, 2235. https://doi.org/ 10.3390/ma17102235
dc.identifier.doi.none.fl_str_mv https://doi.org/ 10.3390/ma17102235
dc.identifier.issn.none.fl_str_mv 19961944
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5915
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/1996-1944/17/10/2235
identifier_str_mv Mambuscay, C.L.; Ortega-Portilla, C.; Piamba, J.F.; Forero, M.G. Predictive Modeling of Vickers Hardness Using Machine Learning Techniques on D2 Steel with Various Treatments. Materials 2024, 17, 2235. https://doi.org/ 10.3390/ma17102235
19961944
url https://doi.org/ 10.3390/ma17102235
https://hdl.handle.net/20.500.12313/5915
https://www.mdpi.com/1996-1944/17/10/2235
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationissue.none.fl_str_mv 10
dc.relation.citationvolume.none.fl_str_mv 17
dc.relation.ispartofjournal.none.fl_str_mv Materials
dc.relation.references.none.fl_str_mv Albella, J.M. Láminas Delgadas y Recubrimientos. Preparación, Propiedades y Aplicaciones; Consejo Superior de Investigaciones Científicas: Madrid, Spain, 2003; p. 704.
Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings 2018, 8, 402.
Ohkubo, I.; Hou, Z.; Lee, J.; Aizawa, T.; Lippmaa, M.; Chikyow, T.; Tsuda, K.; Mori, T. Realization of closed-loop optimization of epitaxial titanium nitride thin-film growth via machine learning. Mater. Today Phys. 2021, 16, 100296.
Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.D. Machine learning in manufacturing: Advantages, challenges, and applications. Prod. Manuf. Res. 2016, 4, 23–45
Lenz, B.; Hasselbruch, H.; Mehner, A. Automated evaluation of Rockwell adhesion tests for PVD coatings using convolutional neural networks. Surf. Coat. Technol. 2020, 385, 125365
Martins, L.A.; Pádua, F.L.; Almeida, P.E. Automatic detection of surface defects on rolled steel using Computer Vision and Artificial Neural Networks. In Proceedings of the IECON Proceedings (Industrial Electronics Conference), Glendale, AZ, USA, 7–10 November 2010; pp. 1081–1086.
Dobrzański, L.; Staszuk, M.; Honysz, R. Application of artificial intelligence methods in PVD and CVD coatings properties modelling. Arch. Mater. Sci. Eng. 2012, 58, 152–157
Mohamad, M.A.; Ali, N.A.; Haron, H. Computational Intelligence Approach for Predicting the Hardness Performances in Titanium Aluminium Nitride (TiA1N) Coating Process. Int. J. Artif. Intell. Expert Syst. 2014, 5, 1–14.
Wen, C.; Zhang, Y.; Wang, C.; Xue, D.; Bai, Y.; Antonov, S.; Dai, L.; Lookman, T.; Su, Y. Machine learning assisted design of high entropy alloys with desired property. Acta Mater. 2019, 170, 109–117.
Polanco, J.D.; Jacanamejoy-Jamioy, C.; Mambuscay, C.L.; Piamba, J.F.; Forero, M.G. Automatic Method for Vickers Hardness Estimation by Image Processing. J. Imaging 2023, 9, 8.
ASTM E92-17; Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2017; pp. 1–27.
El-Garaihy, W.H.; Alateyah, A.I.; Shaban, M.; Alsharekh, M.F.; Alsunaydih, F.N.; El-Sanabary, S.; Kouta, H.; El-Taybany, Y.; Salem, H.G. A Comparative Study of a Machine Learning Approach and Response Surface Methodology for Optimizing the HPT Processing Parameters of AA6061/SiCp Composites. J. Manuf. Mater. Process. 2023, 7, 148.
Fu, K.; Zhu, D.; Zhang, Y.; Zhang, C.; Wang, X.; Wang, C.; Jiang, T.; Mao, F.; Zhang, C.; Meng, X.; et al. Predictive Modeling of Tensile Strength in Aluminum Alloys via Machine Learning. Materials 2023, 16, 7236.
Dovale-Farelo, V.; Tavadze, P.; Lang, L.; Bautista-Hernandez, A.; Romero, A.H. Vickers hardness prediction from machine learning methods. Sci. Rep. 2022, 12, 22475.
Jeon, J.; Seo, N.; Son, S.B.; Lee, S.J.; Jung, M. Application of machine learning algorithms and shap for prediction and feature analysis of tempered martensite hardness in low-alloy steels. Metals 2021, 11, 1159
Swetlana, S.; Khatavkar, N.; Singh, A.K. Development of Vickers hardness prediction models via microstructural analysis and machine learning. J. Mater. Sci. 2020, 55, 15845–15856.
Privezentsev, D.G.; Zhiznyakov, A.L.; Kulkov, Y.Y. Automation of measuring microhardness of materials using metal-graphic images. In Proceedings of the 2019 International Russian Automation Conference, RusAutoCon 2019, Sochi, Russia, 8–14 September 2019; pp. 1–5.
Tanaka, Y.; Seino, Y.; Hattori, K. Automated Vickers hardness measurement using convolutional neural networks. Int. J. Adv. Manuf. Technol. 2020, 109, 1345–1355.
Buitrago Diaz, J.C.; Ortega-Portilla, C.; Mambuscay, C.L.; Piamba, J.F.; Forero, M.G. Determination of Vickers Hardness in D2 Steel and TiNbN Coating Using Convolutional Neural Networks. Metals 2023, 13, 1391
Gonzalez-Carmona, J.M.; Mambuscay, C.L.; Ortega-Portilla, C.; Hurtado-Macias, A.; Piamba, J.F. TiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting Conditions. Materials 2023, 16, 4531
Loh, W.Y. Classification and regression trees. In Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 1.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors). Ann. Stat. 2000, 28, 337–407.
Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, San Francisco, CA, USA, 13–17 August 2016.
Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32
dc.rights.none.fl_str_mv © 2024 by the authors.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv © 2024 by the authors.
http://purl.org/coar/access_right/c_abf2
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.place.none.fl_str_mv Suiza
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/9f237d4c-0cfc-4843-b84b-08961b8148ba/download
https://repositorio.unibague.edu.co/bitstreams/1b5bf0ec-f55f-4814-bec2-649a17f4fb83/download
https://repositorio.unibague.edu.co/bitstreams/dcebbbd3-0577-479a-a95b-7df5b701355a/download
https://repositorio.unibague.edu.co/bitstreams/83072559-d4fd-4c99-9146-7f0fdcaa8332/download
bitstream.checksum.fl_str_mv 773df21f77f656387353417dc2c69473
14ab23937942e99c969dcb9522df7a55
2fa3e590786b9c0f3ceba1b9656b7ac3
d7e80400f297728c2b1d8580d50d7ce3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059956527136768
spelling Ortega-Portilla, Carolina782a067f-b121-4e48-9d99-bd4b890c5268-1Mambuscay, Claudia Lorena9aecdb75-6d0d-48bf-8249-26f370774c41-1Piamba Jiménez, Jeferson Fernando2542324e-59b6-44cb-8577-2da79c47599a600Forero Vargas, Manuel Guillermo816a18a4-450c-4a3e-8275-84beb65a90ec6002025-11-06T20:23:59Z2025-11-06T20:23:59Z2024-05Hardness is one of the most crucial mechanical properties, serving as a key indicator of a material’s suitability for specific applications and its resistance to fracturing or deformation under operational conditions. Machine learning techniques have emerged as valuable tools for swiftly and accurately predicting material behavior. In this study, regression methods including decision trees, adaptive boosting, extreme gradient boosting, and random forest were employed to forecast Vickers hardness values based solely on scanned monochromatic images of indentation imprints, eliminating the need for diagonal measurements. The dataset comprised 54 images of D2 steel in various states, including commercial, quenched, tempered, and coated with Titanium Niobium Nitride (TiNbN). Due to the limited number of images, non-deep machine learning techniques were utilized. The Random Forest technique exhibited superior performance, achieving a Root Mean Square Error (RMSE) of 0.95, Mean Absolute Error (MAE) of 0.12, and Coefficient of Determination ((Formula presented.)) ≈ 1, surpassing the other methods considered in this study. These results suggest that employing machine learning algorithms for predicting Vickers hardness from scanned images offers a promising avenue for rapid and accurate material assessment, potentially streamlining quality control processes in industrial settings.application/pdfMambuscay, C.L.; Ortega-Portilla, C.; Piamba, J.F.; Forero, M.G. Predictive Modeling of Vickers Hardness Using Machine Learning Techniques on D2 Steel with Various Treatments. Materials 2024, 17, 2235. https://doi.org/ 10.3390/ma17102235https://doi.org/ 10.3390/ma1710223519961944https://hdl.handle.net/20.500.12313/5915https://www.mdpi.com/1996-1944/17/10/2235engMultidisciplinary Digital Publishing Institute (MDPI)Suiza1017MaterialsAlbella, J.M. Láminas Delgadas y Recubrimientos. Preparación, Propiedades y Aplicaciones; Consejo Superior de Investigaciones Científicas: Madrid, Spain, 2003; p. 704.Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings 2018, 8, 402.Ohkubo, I.; Hou, Z.; Lee, J.; Aizawa, T.; Lippmaa, M.; Chikyow, T.; Tsuda, K.; Mori, T. Realization of closed-loop optimization of epitaxial titanium nitride thin-film growth via machine learning. Mater. Today Phys. 2021, 16, 100296.Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.D. Machine learning in manufacturing: Advantages, challenges, and applications. Prod. Manuf. Res. 2016, 4, 23–45Lenz, B.; Hasselbruch, H.; Mehner, A. Automated evaluation of Rockwell adhesion tests for PVD coatings using convolutional neural networks. Surf. Coat. Technol. 2020, 385, 125365Martins, L.A.; Pádua, F.L.; Almeida, P.E. Automatic detection of surface defects on rolled steel using Computer Vision and Artificial Neural Networks. In Proceedings of the IECON Proceedings (Industrial Electronics Conference), Glendale, AZ, USA, 7–10 November 2010; pp. 1081–1086.Dobrzański, L.; Staszuk, M.; Honysz, R. Application of artificial intelligence methods in PVD and CVD coatings properties modelling. Arch. Mater. Sci. Eng. 2012, 58, 152–157Mohamad, M.A.; Ali, N.A.; Haron, H. Computational Intelligence Approach for Predicting the Hardness Performances in Titanium Aluminium Nitride (TiA1N) Coating Process. Int. J. Artif. Intell. Expert Syst. 2014, 5, 1–14.Wen, C.; Zhang, Y.; Wang, C.; Xue, D.; Bai, Y.; Antonov, S.; Dai, L.; Lookman, T.; Su, Y. Machine learning assisted design of high entropy alloys with desired property. Acta Mater. 2019, 170, 109–117.Polanco, J.D.; Jacanamejoy-Jamioy, C.; Mambuscay, C.L.; Piamba, J.F.; Forero, M.G. Automatic Method for Vickers Hardness Estimation by Image Processing. J. Imaging 2023, 9, 8.ASTM E92-17; Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2017; pp. 1–27.El-Garaihy, W.H.; Alateyah, A.I.; Shaban, M.; Alsharekh, M.F.; Alsunaydih, F.N.; El-Sanabary, S.; Kouta, H.; El-Taybany, Y.; Salem, H.G. A Comparative Study of a Machine Learning Approach and Response Surface Methodology for Optimizing the HPT Processing Parameters of AA6061/SiCp Composites. J. Manuf. Mater. Process. 2023, 7, 148.Fu, K.; Zhu, D.; Zhang, Y.; Zhang, C.; Wang, X.; Wang, C.; Jiang, T.; Mao, F.; Zhang, C.; Meng, X.; et al. Predictive Modeling of Tensile Strength in Aluminum Alloys via Machine Learning. Materials 2023, 16, 7236.Dovale-Farelo, V.; Tavadze, P.; Lang, L.; Bautista-Hernandez, A.; Romero, A.H. Vickers hardness prediction from machine learning methods. Sci. Rep. 2022, 12, 22475.Jeon, J.; Seo, N.; Son, S.B.; Lee, S.J.; Jung, M. Application of machine learning algorithms and shap for prediction and feature analysis of tempered martensite hardness in low-alloy steels. Metals 2021, 11, 1159Swetlana, S.; Khatavkar, N.; Singh, A.K. Development of Vickers hardness prediction models via microstructural analysis and machine learning. J. Mater. Sci. 2020, 55, 15845–15856.Privezentsev, D.G.; Zhiznyakov, A.L.; Kulkov, Y.Y. Automation of measuring microhardness of materials using metal-graphic images. In Proceedings of the 2019 International Russian Automation Conference, RusAutoCon 2019, Sochi, Russia, 8–14 September 2019; pp. 1–5.Tanaka, Y.; Seino, Y.; Hattori, K. Automated Vickers hardness measurement using convolutional neural networks. Int. J. Adv. Manuf. Technol. 2020, 109, 1345–1355.Buitrago Diaz, J.C.; Ortega-Portilla, C.; Mambuscay, C.L.; Piamba, J.F.; Forero, M.G. Determination of Vickers Hardness in D2 Steel and TiNbN Coating Using Convolutional Neural Networks. Metals 2023, 13, 1391Gonzalez-Carmona, J.M.; Mambuscay, C.L.; Ortega-Portilla, C.; Hurtado-Macias, A.; Piamba, J.F. TiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting Conditions. Materials 2023, 16, 4531Loh, W.Y. Classification and regression trees. In Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 1.Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors). Ann. Stat. 2000, 28, 337–407.Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, San Francisco, CA, USA, 13–17 August 2016.Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32© 2024 by the authors.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/Dureza Vickers - Modelado predictivoAcero D2 - Aprendizaje automáticoCoatingIndentation imprintMachine learningRegressionTitanium Niobium Nitride (TiNbN)Vickers hardnessPredictive Modeling of Vickers Hardness Using Machine Learning Techniques on D2 Steel with Various TreatmentsArtículo de periódicohttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain4238https://repositorio.unibague.edu.co/bitstreams/9f237d4c-0cfc-4843-b84b-08961b8148ba/download773df21f77f656387353417dc2c69473MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg25623https://repositorio.unibague.edu.co/bitstreams/1b5bf0ec-f55f-4814-bec2-649a17f4fb83/download14ab23937942e99c969dcb9522df7a55MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/dcebbbd3-0577-479a-a95b-7df5b701355a/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf88233https://repositorio.unibague.edu.co/bitstreams/83072559-d4fd-4c99-9146-7f0fdcaa8332/downloadd7e80400f297728c2b1d8580d50d7ce3MD5220.500.12313/5915oai:repositorio.unibague.edu.co:20.500.12313/59152025-11-07 03:01:26.861https://creativecommons.org/licenses/by/4.0/© 2024 by the authors.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=