Optimal design of leaf springs for vehicle suspensions under cyclic conditions

The suspension systems are designed to provide good performance in terms of comfort and maneuverability and to satisfy other requirements such as fatigue strength. This study focuses on the leaf springs, a classic mechanism; leaf springs are still being extensively used in several types of vehicles...

Full description

Autores:
Mantilla, David
Arzola, Nelson
Araque, Oscar
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5563
Acceso en línea:
https://www.scielo.cl/scielo.php?pid=S0718-33052022000100023&script=sci_abstract&tlng=pt
Palabra clave:
Resortes de ballestas - Vehículos de carga cíclica
Vehículos de carga cíclica - Resortes de ballestas
Suspensiones de vehículos - Resortes de ballestas
Leaf spring
Multibody system MBS + finite element method FEM
Optimization
Vehicle suspension
Vehicular dynamics
Rights
openAccess
License
© 2022, Universidad de Tarapaca. All rights reserved.
id UNIBAGUE2_6e988496feaed255e0a37792d9f05250
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5563
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Optimal design of leaf springs for vehicle suspensions under cyclic conditions
dc.title.translated.none.fl_str_mv Diseño óptimo de resortes de ballesta para suspensiones de vehículo sometidas a condiciones de carga cíclica
title Optimal design of leaf springs for vehicle suspensions under cyclic conditions
spellingShingle Optimal design of leaf springs for vehicle suspensions under cyclic conditions
Resortes de ballestas - Vehículos de carga cíclica
Vehículos de carga cíclica - Resortes de ballestas
Suspensiones de vehículos - Resortes de ballestas
Leaf spring
Multibody system MBS + finite element method FEM
Optimization
Vehicle suspension
Vehicular dynamics
title_short Optimal design of leaf springs for vehicle suspensions under cyclic conditions
title_full Optimal design of leaf springs for vehicle suspensions under cyclic conditions
title_fullStr Optimal design of leaf springs for vehicle suspensions under cyclic conditions
title_full_unstemmed Optimal design of leaf springs for vehicle suspensions under cyclic conditions
title_sort Optimal design of leaf springs for vehicle suspensions under cyclic conditions
dc.creator.fl_str_mv Mantilla, David
Arzola, Nelson
Araque, Oscar
dc.contributor.author.none.fl_str_mv Mantilla, David
Arzola, Nelson
Araque, Oscar
dc.subject.armarc.none.fl_str_mv Resortes de ballestas - Vehículos de carga cíclica
Vehículos de carga cíclica - Resortes de ballestas
Suspensiones de vehículos - Resortes de ballestas
topic Resortes de ballestas - Vehículos de carga cíclica
Vehículos de carga cíclica - Resortes de ballestas
Suspensiones de vehículos - Resortes de ballestas
Leaf spring
Multibody system MBS + finite element method FEM
Optimization
Vehicle suspension
Vehicular dynamics
dc.subject.proposal.eng.fl_str_mv Leaf spring
Multibody system MBS + finite element method FEM
Optimization
Vehicle suspension
Vehicular dynamics
description The suspension systems are designed to provide good performance in terms of comfort and maneuverability and to satisfy other requirements such as fatigue strength. This study focuses on the leaf springs, a classic mechanism; leaf springs are still being extensively used in several types of vehicles because of their high load capacity and low manufacturing and maintenance costs. Its dynamic behavior assesses stationary nonlinear preload state components to provide considerable added value to this suspension type. This assessment considers the contact condition of the suspension’s components and the large deflections and tightening torques observed in the whole assembly. Furthermore, the components of the non-suspended mass subsystems, such as tires, shock absorbers, and stabilizer bars, are characterized according to the simplified models for reducing their computational cost. In addition, a commercial test vehicle is used for simulating the complete system using three-dimensional modeling for describing its most relevant components in terms of their mass and rigid connection. The vehicle is additionally analyzed using multibody system simulations (MBS) coupled with the finite element method (FEM) in an implicit nonlinear transient environment using the ANSYS APDL solver. This dynamic simulation is parameter-driven for obtaining the experimental design and determining the optimal suspension stiffness and damping features required for transporting suitable load sizes.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-03
dc.date.accessioned.none.fl_str_mv 2025-08-29T16:18:10Z
dc.date.available.none.fl_str_mv 2025-08-29T16:18:10Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Mantilla, D., Arzola, N. y Araque, O. (2022). Optimal design of leaf springs for vehicle suspensions under cyclic conditions. Ingeniare, 30(1), 23 - 36. DOI: 10.4067/S0718-33052022000100023
dc.identifier.doi.none.fl_str_mv 10.4067/S0718-33052022000100023
dc.identifier.eissn.none.fl_str_mv 07183305
dc.identifier.issn.none.fl_str_mv 07183291
dc.identifier.uri.none.fl_str_mv
dc.identifier.url.none.fl_str_mv https://www.scielo.cl/scielo.php?pid=S0718-33052022000100023&script=sci_abstract&tlng=pt
identifier_str_mv Mantilla, D., Arzola, N. y Araque, O. (2022). Optimal design of leaf springs for vehicle suspensions under cyclic conditions. Ingeniare, 30(1), 23 - 36. DOI: 10.4067/S0718-33052022000100023
10.4067/S0718-33052022000100023
07183305
07183291

url https://www.scielo.cl/scielo.php?pid=S0718-33052022000100023&script=sci_abstract&tlng=pt
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 36
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 23
dc.relation.citationvolume.none.fl_str_mv 30
dc.relation.ispartofjournal.none.fl_str_mv Ingeniare
dc.relation.references.none.fl_str_mv M. Chen-Xiao and P. Fang-Le. “Some aspects on the planning of complex underground roads for motor vehicles in Chinese cities”. Tunnelling and Underground Space Technology. Vol. 82, pp. 592-612. 2018.
V. Anchukov, A. Alyukov and S. Aliukov. “Stability and Control of Movement of the Truck with Automatic Differential Locking System”. Engineering Letters. Vol. 27, Nº 1. 2019.
J. Rocha-Hoyos, L.E Tipanluisa, Reina, W. Salvatore and C. Ayabaca. “Evaluación del Sistema de Tracción en un Vehículo Eléctrico Biplaza de Estructura Tubular”. Información tecnológica. Vol. 28 Nº 2, pp. 29-36. 2017. DOI:10.4067/S0718-07642017000200004
M. Guerrero Valenzuela, B. Hernandis Ortuño and B. Agudo Vicente. “Estudio comparativo de las acciones a considerar en el proceso de diseño conceptual desde la ingeniería y el diseño de productos”. Ingeniare. Revista chilena de ingeniería. Vol. 22 Nº 3, pp. 398- 411. 2014
K. Ashkan and P. Brian. “Rate-independent linear damping in vehicle suspension systems”. Journal of Sound and Vibration. Vol. 431, pp. 405-421. 2018.
M. Abdelkareem, L. Xu, M. Ali, A. Elagouz, J. Mi, S. Guo and L. Zuo. “Vibration energy harvesting in automotive suspension system: A detailed review”. Applied Energy. Vol. 229, pp. 672-699. 2018
C. Cai, Q. He, S. Zhu, S, W. Zhai and M. Wang. “Dynamic interaction of suspensiontype monorail vehicle and bridge”. Numerical simulation and experiment. Mechanical Systems and Signal Processing. Vol. 118, pp. 388-407. 2019
J. Lee. “Free vibration analysis of cylindrical helical springs by the pseudo spectral method”. Journal of Sound and Vibration. Vol. 302, pp. 185-196. 2007.
W. Guo, T. Shen, F. Wang, J. Ju, H. Wang, E. Song and Z. Zhou. “Research and application of dynamic stiffness of leaf spring”. Present in Proceedings of the FISITA 2012 World Automotive Congress. Vol. 10 Nº 198, pp. 105-120. 2012.
J. Weber. “Automotive development processes”. Springer. First edition. Munich, Germany, pp. 321. 2014. E-ISBN: 978-3-642-01253-2.
Krypton. Grabcad.com. “Grabcad”. Date of visit: November 7, 2018. URL: https:// grabcad.com/library/iveco-6x4/files
Iveco. “Trakker Euro 4/5 Bodybuilder Construction”. Turin-Italy, Satiz B.U. Technical Publishing, 2021. Date of visit: November 5, 2021. URL: https://newibb. iveco.com/es/Pages/Ho me.aspx
T. Idebrant. “GrabCad”. Date of visit: November 7, 2018. URL: https://grabcad. com/ library / msg95al-731-maximo-xxl/files/ MSG95AL_731%20Maximo%20XXL.STEP.
Y. Zhang, H. Zhao and S. Lie. “A nonlinear multi-spring tire model for dynamic analysis of vehicle-bridge interaction system considering separation and road roughness”. Journal of Sound and Vibration. Vol. 436, pp. 112-137. 2018.
V. Subramaniyam, C. Kumar and S. Subramanian. “Analysis of Handling Performance of Hybrid Electric Vehicle”. IFAC. Vol. 51 Nº 1, pp. 190-195. 2018
K. Yang. “Modal and Transient Dynamic Analysis. In Basic Finite Element Method as Applied to Injury Biomechanics”. Elsevier Inc, pp.309-382. ISBN 978-0-12-809831-8. 2018.
M. Jenarthanan, S. Kumar, G. Venkatesh and S. Nishanthan. “Analysis of leaf spring using Carbon/Glass Epoxy and EN45 using ANSYS: A comparison”. Materials Today: Proceedings. Vol. 5 Nº 6, pp. 14512-14519. 2018.
C. Qian, W. Shi, Z. Chen, S. Yang and Q. Song. “Fatigue reliability design of composite leaf springs based on ply scheme optimization”. Composite Structures. Vol. 168, pp. 40-46. 2017.
D. Brouwer, J. Meijaard and J. Jonker. “Large deflection stiffness analysis of parallel prismatic leaf-spring flexures”. Precision engineering. Vol. 37 Nº 3, pp. 505-521. 2013.
M. Malikoutsakis, G. Savaidis, A. Savaidis, C. Ertelt and F. Schwaiger. “Design, analysis and multi-disciplinary optimization of highperformance front leaf springs”. Theoretical and Applied Fracture Mechanics. Vol. 83, pp. 42-50. 2016.
P. Solanki and A. Kaviti. “Design and computational Analysis of Semi-Elliptical and Parabolic Leaf Spring”. Materials Today: Proceedings. Vol. 5 Nº 9, pp. 19441-19455. 2018.
K. Ashwini and C. Rao. “Design and Analysis of Leaf Spring using Various Composites-An Overview”. Materials Today: Proceedings. Vol. 5 Nº 2, pp. 5716-5721. 2018.
T. Batu, H. G. Lemu and E. G. Michael. “Multi objective parametric optimization and composite material performance study for master leaf spring”. Materials Today: Proceeding. Vol. 45, pp. 5347-5353. 2021.
M. Duru , L. Kırkayak, A. Ceyhan and K. Kozan. “Fatigue life prediction of Z type leaf spring and new approach to verification method”. Procedia Engineering. Vol. 101, pp. 143-150. 2015.
B. Scuracchio, N. de Lima and C. Schön. “Role of residual stresses induced by double peening on fatigue durability of automotive leaf springs”. Materials & Design. Vol. 47, pp. 672-676. 2013.
J. Ke, Z. Wu, X. Chen and Z. Ying. “A review on material selection, design method and performance investigation of composite leaf springs”. Composite Structures. Vol. 226, 111277. 2019
C. Li, Y. Yuan, P. He, J. Yuan and H. Yu. “Improved equivalent mass-spring model for seismic response analysis of two-dimensional soil strata”. Soil Dynamics and Earthquake Engineering. Vol. 112, pp. 198-202. 2018.
Y. Zhang and Z. Hou. “A model updating method based on response surface models of reserved singular values”. Mechanical Systems and Signal Processing. Vol. 111, pp. 119-134. 2018.
dc.rights.eng.fl_str_mv © 2022, Universidad de Tarapaca. All rights reserved.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv © 2022, Universidad de Tarapaca. All rights reserved.
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Tarapaca
dc.publisher.place.none.fl_str_mv Chile
publisher.none.fl_str_mv Universidad de Tarapaca
dc.source.none.fl_str_mv https://www.scielo.cl/pdf/ingeniare/v30n1/0718-3305-ingeniare-30-01-23.pdf
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/33d10987-89ba-4169-bbe6-5f94a775bc0a/download
https://repositorio.unibague.edu.co/bitstreams/415ef03d-12db-48df-9312-743d2bf5b6af/download
https://repositorio.unibague.edu.co/bitstreams/428d91cb-c1c2-48f4-8f6d-e9e7a2a28b1c/download
https://repositorio.unibague.edu.co/bitstreams/7736dd41-aaf3-4ded-886e-a9e5d4af845c/download
bitstream.checksum.fl_str_mv 2fa3e590786b9c0f3ceba1b9656b7ac3
eb2252e013a1e1d0d2f96cce0cedb8ec
38638d1cbf4ae8ddd89bc892406f78d6
432cfa1a16010ce32ad6492bb3b9f851
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059969397358592
spelling Mantilla, Davidd2f0c369-7949-400a-a0c0-cbbf83036e5c-1Arzola, Nelson98a2f36b-b5ae-4397-93f0-cf08f3f4ad9c-1Araque, Oscaredc2c29e-176c-4dde-a414-bf83fddfa5d1-12025-08-29T16:18:10Z2025-08-29T16:18:10Z2022-03The suspension systems are designed to provide good performance in terms of comfort and maneuverability and to satisfy other requirements such as fatigue strength. This study focuses on the leaf springs, a classic mechanism; leaf springs are still being extensively used in several types of vehicles because of their high load capacity and low manufacturing and maintenance costs. Its dynamic behavior assesses stationary nonlinear preload state components to provide considerable added value to this suspension type. This assessment considers the contact condition of the suspension’s components and the large deflections and tightening torques observed in the whole assembly. Furthermore, the components of the non-suspended mass subsystems, such as tires, shock absorbers, and stabilizer bars, are characterized according to the simplified models for reducing their computational cost. In addition, a commercial test vehicle is used for simulating the complete system using three-dimensional modeling for describing its most relevant components in terms of their mass and rigid connection. The vehicle is additionally analyzed using multibody system simulations (MBS) coupled with the finite element method (FEM) in an implicit nonlinear transient environment using the ANSYS APDL solver. This dynamic simulation is parameter-driven for obtaining the experimental design and determining the optimal suspension stiffness and damping features required for transporting suitable load sizes.application/pdfMantilla, D., Arzola, N. y Araque, O. (2022). Optimal design of leaf springs for vehicle suspensions under cyclic conditions. Ingeniare, 30(1), 23 - 36. DOI: 10.4067/S0718-3305202200010002310.4067/S0718-330520220001000230718330507183291https://www.scielo.cl/scielo.php?pid=S0718-33052022000100023&script=sci_abstract&tlng=ptengUniversidad de TarapacaChile3612330IngeniareM. Chen-Xiao and P. Fang-Le. “Some aspects on the planning of complex underground roads for motor vehicles in Chinese cities”. Tunnelling and Underground Space Technology. Vol. 82, pp. 592-612. 2018.V. Anchukov, A. Alyukov and S. Aliukov. “Stability and Control of Movement of the Truck with Automatic Differential Locking System”. Engineering Letters. Vol. 27, Nº 1. 2019.J. Rocha-Hoyos, L.E Tipanluisa, Reina, W. Salvatore and C. Ayabaca. “Evaluación del Sistema de Tracción en un Vehículo Eléctrico Biplaza de Estructura Tubular”. Información tecnológica. Vol. 28 Nº 2, pp. 29-36. 2017. DOI:10.4067/S0718-07642017000200004M. Guerrero Valenzuela, B. Hernandis Ortuño and B. Agudo Vicente. “Estudio comparativo de las acciones a considerar en el proceso de diseño conceptual desde la ingeniería y el diseño de productos”. Ingeniare. Revista chilena de ingeniería. Vol. 22 Nº 3, pp. 398- 411. 2014K. Ashkan and P. Brian. “Rate-independent linear damping in vehicle suspension systems”. Journal of Sound and Vibration. Vol. 431, pp. 405-421. 2018.M. Abdelkareem, L. Xu, M. Ali, A. Elagouz, J. Mi, S. Guo and L. Zuo. “Vibration energy harvesting in automotive suspension system: A detailed review”. Applied Energy. Vol. 229, pp. 672-699. 2018C. Cai, Q. He, S. Zhu, S, W. Zhai and M. Wang. “Dynamic interaction of suspensiontype monorail vehicle and bridge”. Numerical simulation and experiment. Mechanical Systems and Signal Processing. Vol. 118, pp. 388-407. 2019J. Lee. “Free vibration analysis of cylindrical helical springs by the pseudo spectral method”. Journal of Sound and Vibration. Vol. 302, pp. 185-196. 2007.W. Guo, T. Shen, F. Wang, J. Ju, H. Wang, E. Song and Z. Zhou. “Research and application of dynamic stiffness of leaf spring”. Present in Proceedings of the FISITA 2012 World Automotive Congress. Vol. 10 Nº 198, pp. 105-120. 2012.J. Weber. “Automotive development processes”. Springer. First edition. Munich, Germany, pp. 321. 2014. E-ISBN: 978-3-642-01253-2.Krypton. Grabcad.com. “Grabcad”. Date of visit: November 7, 2018. URL: https:// grabcad.com/library/iveco-6x4/filesIveco. “Trakker Euro 4/5 Bodybuilder Construction”. Turin-Italy, Satiz B.U. Technical Publishing, 2021. Date of visit: November 5, 2021. URL: https://newibb. iveco.com/es/Pages/Ho me.aspxT. Idebrant. “GrabCad”. Date of visit: November 7, 2018. URL: https://grabcad. com/ library / msg95al-731-maximo-xxl/files/ MSG95AL_731%20Maximo%20XXL.STEP.Y. Zhang, H. Zhao and S. Lie. “A nonlinear multi-spring tire model for dynamic analysis of vehicle-bridge interaction system considering separation and road roughness”. Journal of Sound and Vibration. Vol. 436, pp. 112-137. 2018.V. Subramaniyam, C. Kumar and S. Subramanian. “Analysis of Handling Performance of Hybrid Electric Vehicle”. IFAC. Vol. 51 Nº 1, pp. 190-195. 2018K. Yang. “Modal and Transient Dynamic Analysis. In Basic Finite Element Method as Applied to Injury Biomechanics”. Elsevier Inc, pp.309-382. ISBN 978-0-12-809831-8. 2018.M. Jenarthanan, S. Kumar, G. Venkatesh and S. Nishanthan. “Analysis of leaf spring using Carbon/Glass Epoxy and EN45 using ANSYS: A comparison”. Materials Today: Proceedings. Vol. 5 Nº 6, pp. 14512-14519. 2018.C. Qian, W. Shi, Z. Chen, S. Yang and Q. Song. “Fatigue reliability design of composite leaf springs based on ply scheme optimization”. Composite Structures. Vol. 168, pp. 40-46. 2017.D. Brouwer, J. Meijaard and J. Jonker. “Large deflection stiffness analysis of parallel prismatic leaf-spring flexures”. Precision engineering. Vol. 37 Nº 3, pp. 505-521. 2013.M. Malikoutsakis, G. Savaidis, A. Savaidis, C. Ertelt and F. Schwaiger. “Design, analysis and multi-disciplinary optimization of highperformance front leaf springs”. Theoretical and Applied Fracture Mechanics. Vol. 83, pp. 42-50. 2016.P. Solanki and A. Kaviti. “Design and computational Analysis of Semi-Elliptical and Parabolic Leaf Spring”. Materials Today: Proceedings. Vol. 5 Nº 9, pp. 19441-19455. 2018.K. Ashwini and C. Rao. “Design and Analysis of Leaf Spring using Various Composites-An Overview”. Materials Today: Proceedings. Vol. 5 Nº 2, pp. 5716-5721. 2018.T. Batu, H. G. Lemu and E. G. Michael. “Multi objective parametric optimization and composite material performance study for master leaf spring”. Materials Today: Proceeding. Vol. 45, pp. 5347-5353. 2021.M. Duru , L. Kırkayak, A. Ceyhan and K. Kozan. “Fatigue life prediction of Z type leaf spring and new approach to verification method”. Procedia Engineering. Vol. 101, pp. 143-150. 2015.B. Scuracchio, N. de Lima and C. Schön. “Role of residual stresses induced by double peening on fatigue durability of automotive leaf springs”. Materials & Design. Vol. 47, pp. 672-676. 2013.J. Ke, Z. Wu, X. Chen and Z. Ying. “A review on material selection, design method and performance investigation of composite leaf springs”. Composite Structures. Vol. 226, 111277. 2019C. Li, Y. Yuan, P. He, J. Yuan and H. Yu. “Improved equivalent mass-spring model for seismic response analysis of two-dimensional soil strata”. Soil Dynamics and Earthquake Engineering. Vol. 112, pp. 198-202. 2018.Y. Zhang and Z. Hou. “A model updating method based on response surface models of reserved singular values”. Mechanical Systems and Signal Processing. Vol. 111, pp. 119-134. 2018.© 2022, Universidad de Tarapaca. All rights reserved.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.scielo.cl/pdf/ingeniare/v30n1/0718-3305-ingeniare-30-01-23.pdfResortes de ballestas - Vehículos de carga cíclicaVehículos de carga cíclica - Resortes de ballestasSuspensiones de vehículos - Resortes de ballestasLeaf springMultibody system MBS + finite element method FEMOptimizationVehicle suspensionVehicular dynamicsOptimal design of leaf springs for vehicle suspensions under cyclic conditionsDiseño óptimo de resortes de ballesta para suspensiones de vehículo sometidas a condiciones de carga cíclicaArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/33d10987-89ba-4169-bbe6-5f94a775bc0a/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain3487https://repositorio.unibague.edu.co/bitstreams/415ef03d-12db-48df-9312-743d2bf5b6af/downloadeb2252e013a1e1d0d2f96cce0cedb8ecMD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg21694https://repositorio.unibague.edu.co/bitstreams/428d91cb-c1c2-48f4-8f6d-e9e7a2a28b1c/download38638d1cbf4ae8ddd89bc892406f78d6MD54ORIGINALArtículo.pdfArtículo.pdfapplication/pdf35154https://repositorio.unibague.edu.co/bitstreams/7736dd41-aaf3-4ded-886e-a9e5d4af845c/download432cfa1a16010ce32ad6492bb3b9f851MD5220.500.12313/5563oai:repositorio.unibague.edu.co:20.500.12313/55632025-09-12 10:59:00.158https://creativecommons.org/licenses/by-nc/4.0/© 2022, Universidad de Tarapaca. All rights reserved.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=