Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps

Food security is a pressing global concern, particularly highlighted by the United Nations Sustainable Development Goal 2 (SDG 2), which focuses on enhancing the productivity and incomes of smallholder farmers. In the Middle East and North Africa (MENA) region, horticultural crops are increasingly t...

Full description

Autores:
Buchaillot, Ma. Luisa
Fernandez-Gallego, Jose A
Mahmoudi, Henda
Thushar, Sumitha
Aljanaahi, Amna Abdulnoor
Kosimov, Sherzod
Hammami, Zied
Al Jabri, Ghazi
Puente, Alexandra La Cruz
Akl, Alexi
Trillas, M. Isabel
Araus, Jose Luis
Kefauver, Shawn C.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/6056
Acceso en línea:
https://hdl.handle.net/20.500.12313/6056
https://sciencedirect.unibague.elogim.com/science/article/pii/S1574954124004424
Palabra clave:
Cultivos hortículas - Trastornos
Data collection
Deep learning
Horticultural crops
MENA
Mobile app
SDG 17
SDG 2
Rights
openAccess
License
© 2024 The Authors
id UNIBAGUE2_6c1cacdf63b18296364f6fd7916796dc
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/6056
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps
title Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps
spellingShingle Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps
Cultivos hortículas - Trastornos
Data collection
Deep learning
Horticultural crops
MENA
Mobile app
SDG 17
SDG 2
title_short Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps
title_full Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps
title_fullStr Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps
title_full_unstemmed Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps
title_sort Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps
dc.creator.fl_str_mv Buchaillot, Ma. Luisa
Fernandez-Gallego, Jose A
Mahmoudi, Henda
Thushar, Sumitha
Aljanaahi, Amna Abdulnoor
Kosimov, Sherzod
Hammami, Zied
Al Jabri, Ghazi
Puente, Alexandra La Cruz
Akl, Alexi
Trillas, M. Isabel
Araus, Jose Luis
Kefauver, Shawn C.
dc.contributor.author.none.fl_str_mv Buchaillot, Ma. Luisa
Fernandez-Gallego, Jose A
Mahmoudi, Henda
Thushar, Sumitha
Aljanaahi, Amna Abdulnoor
Kosimov, Sherzod
Hammami, Zied
Al Jabri, Ghazi
Puente, Alexandra La Cruz
Akl, Alexi
Trillas, M. Isabel
Araus, Jose Luis
Kefauver, Shawn C.
dc.subject.armarc.none.fl_str_mv Cultivos hortículas - Trastornos
topic Cultivos hortículas - Trastornos
Data collection
Deep learning
Horticultural crops
MENA
Mobile app
SDG 17
SDG 2
dc.subject.proposal.eng.fl_str_mv Data collection
Deep learning
Horticultural crops
MENA
Mobile app
SDG 17
SDG 2
description Food security is a pressing global concern, particularly highlighted by the United Nations Sustainable Development Goal 2 (SDG 2), which focuses on enhancing the productivity and incomes of smallholder farmers. In the Middle East and North Africa (MENA) region, horticultural crops are increasingly threatened by pests and diseases, exacerbated by climate change. Local farmers often lack the necessary expertise to effectively manage these issues, resulting in significant reductions in both yield and quality of their crops. This study seeks to develop an accessible mobile crop diagnosis application. By utilizing machine learning and deep learning technologies, the app is designed to help MENA farmers quickly and accurately identify and treat crop disorders. We used Open Data Kit (ODK) to gather a large dataset of crop images required to train deep learning models. These models, built on open-source deep learning architectures, were designed to classify 21 different leaf disorders, including diseases, pests, and nutritional deficiencies. The system was implemented in both a web app and an Android mobile app. Our deep learning models demonstrated an overall accuracy of 94 % in diagnosing plant disorders. The app, Doctor Nabat, includes a decision support system that offers treatment options in the three primary languages spoken in the MENA region. Doctor Nabat is an effective and scalable tool for enhancing crop management in the MENA region, promoting food security by minimizing crop losses through improved pest and disease diagnosis and treatment strategies.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-12
dc.date.accessioned.none.fl_str_mv 2025-11-28T21:59:02Z
dc.date.available.none.fl_str_mv 2025-11-28T21:59:02Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Buchaillot, M., Fernandez-Gallego, J., Mahmoudi, H., Thushar, S., Aljanaahi, A., Kosimov, S., Hammami, Z., Al Jabri, G., Puente, A., Akl, A ., Trillas, M., Araus, J. Kefauver, S. (2024). Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps. Ecological Informatics, 84. DOI: 10.1016/j.ecoinf.2024.102900.
dc.identifier.doi.none.fl_str_mv 10.1016/j.ecoinf.2024.102900
dc.identifier.issn.none.fl_str_mv 15749541
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/6056
dc.identifier.url.none.fl_str_mv https://sciencedirect.unibague.elogim.com/science/article/pii/S1574954124004424
identifier_str_mv Buchaillot, M., Fernandez-Gallego, J., Mahmoudi, H., Thushar, S., Aljanaahi, A., Kosimov, S., Hammami, Z., Al Jabri, G., Puente, A., Akl, A ., Trillas, M., Araus, J. Kefauver, S. (2024). Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps. Ecological Informatics, 84. DOI: 10.1016/j.ecoinf.2024.102900.
10.1016/j.ecoinf.2024.102900
15749541
url https://hdl.handle.net/20.500.12313/6056
https://sciencedirect.unibague.elogim.com/science/article/pii/S1574954124004424
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationvolume.none.fl_str_mv 84
dc.relation.ispartofjournal.none.fl_str_mv Ecological Informatics
dc.relation.references.none.fl_str_mv Aqeel-Ur-Rehman, Abbasi A.Z., Islam, N., Shaikh, Z.A., 2014. A review of wireless sensors and networks’ applications in agriculture. Comput. Stand. Interf. 36, 263–270. https://doi.org/10.1016/j.csi.2011.03.004.
Arivazhagan, S., Shebiah, R.N., Ananthi, S., Vishnu Varthini, S., 2013. Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agric. Eng. Int. CIGR J. 15, 211–217. A
Arnal Barbedo, J.G., 2019. Plant disease identification from individual lesions and spots using deep learning. Biosyst. Eng. 180, 96–107. https://doi.org/10.1016/j. biosystemseng.2019.02.002
Asani, E.O., Osadeyi, Y.P., Adegun, A.A., Viriri, S., Ayoola, J.A., Kolawole, E.A., 2023. mPD-APP: a mobile-enabled plant diseases diagnosis application using convolutional neural network toward the attainment of a food secure world. Front. Artific. Intellig. 6. https://doi.org/10.3389/frai.2023.1227950.
Atila, Ü., Uçar, M., Akyol, K., Uçar, E., 2021. Plant leaf disease classification using EfficientNet deep learning model. Ecol. Inform. 61, 101182. https://doi.org/ 10.1016/j.ecoinf.2020.101182.
Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., L¨ aderach, P., Anzueto, F., Hruska, A.J., Morales, C., 2015. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Secur. 7, 303–321. https://doi.org/10.1007/s12571-015-0446-9
Ayoola, J., Ayoola, G., Okike, I., Dashiell, K., Ogbodo, J., 2016. A policy situation analysis for achieving the SDG2 (Zero Hunger) targets in selected states of Nigeria. 30th Int. Conf. Agric. Econ. 1, 1–21.
Balafoutis, A., Beck, B., Fountas, S., Vangeyte, J., Van Der Wal, T., Soto, I., Gomez- ´ Barbero, M., Barnes, A., Eory, V., 2017. Precision agriculture technologies positively contributing to ghg emissions mitigation, farm productivity and economics. Sustain 9, 1–28. https://doi.org/10.3390/su9081339.
Barbedo, J.G.A., 2018. Factors influencing the use of deep learning for plant disease recognition. Biosyst. Eng. 172, 84–91. https://doi.org/10.1016/j. biosystemseng.2018.05.013
Barbedo, J.G.A., Koenigkan, L.V., Halfeld-Vieira, B.A., Costa, R.V., Nechet, K.L., Godoy, C.V., Junior, M.L., Patricio, F.R.A., Talamini, V., Chitarra, L.G., Oliveira, S.A. S., Ishida, A.K.N., Fernandes, J.M.C., Santos, T.T., Cavalcanti, F.R., Terao, D., Angelotti, F., 2018. Annotated plant pathology databases for image-based detection and recognition of diseases. IEEE Lat. Am. Trans. 16, 1749–1757. https://doi.org/ 10.1109/TLA.2018.8444395
Bierman, A., LaPlumm, T., Cadle-Davidson, L., Gadoury, D., Martinez, D., Sapkota, S., Rea, M., 2019. A high-throughput phenotyping system using machine vision to quantify severity of grapevine powdery mildew. Plant Phenom. 2019. https://doi. org/10.34133/2019/9209727.
Brahimi, M., Boukhalfa, K., Moussaoui, A., 2017. Deep learning for Tomato Diseases: classification and symptoms visualization. Appl. Artif. Intell. 31, 299–315. https:// doi.org/10.1080/08839514.2017.1315516
Brown, M.E., 2021. Metrics to accelerate private sector investment in sustainable development goal 2—zero hunger. Sustain 13, 4–9. https://doi.org/10.3390/ su13115967.
Christakakis, P., Papadopoulou, G., Mikos, G., Kalogiannidis, N., Ioannidis, D., Tzovaras, D., Pechlivani, E.M., 2024. Smartphone-based citizen science tool for plant disease and insect pest detection using artificial intelligence. Technologies 12 (7). https://doi.org/10.3390/technologies12070101
Chuanlei, Z., Shanwen, Z., Jucheng, Y., Yancui, S., Jia, C., 2017. Apple leaf disease identification using genetic algorithm and correlation based feature selection method. Int. J. Agric. Biol. Eng. 10, 74–83. https://doi.org/10.3965/j. ijabe.20171002.2166
Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., Traore, D., 2019. Deep neural networks with transfer learning in millet crop images. Comput. Ind. 108, 115–120. https://doi. org/10.1016/j.compind.2019.02.003
Cruz, A.C., Luvisi, A., De Bellis, L., Ampatzidis, Y., 2017. X-FIDO: an effective application for detecting olive quick decline syndrome with deep learning and data fusion. Front. Plant Sci. 8, 1–12. https://doi.org/10.3389/fpls.2017.01741
DeChant, C., Wiesner-Hanks, T., Chen, S., Stewart, E.L., Yosinski, J., Gore, M.A., Nelson, R.J., Lipson, H., 2017. Automated identification of northern leaf blightinfected maize plants from field imagery using deep learning. Phytopathology 107, 1426–1432. https://doi.org/10.1094/PHYTO-11-16-0417-R
Dhakal, A., Shakya, S., 2018. Image-based plant disease detection with deep learning. Int. J. Comput. Trends Technol. 61, 26–29. https://doi.org/10.14445/22312803/ ijctt-v61p105.
Dutot, M., Nelson, L.M., Tyson, R.C., 2013. Predicting the spread of postharvest disease in stored fruit, with application to apples. Postharvest Biol. Technol. 85, 45–56. https://doi.org/10.1016/j.postharvbio.2013.04.003
El-Helly, M., Rafea, A.A., El-Gammal, S., 2003. An Integrated Image Processing System for Leaf Disease Detection and Diagnosis. IICAI, pp. 1182–1195.
FAO, 2018. The Middle East and North Africa: prospects and challenges. In: OECD-FAO Agricultural Outlook 2018–2027, pp. 67–107. https://doi.org/10.1787/agr_outlook2018-5-en
Farjon, G., Krikeb, O., Hillel, A.B., Alchanatis, V., 2020. Detection and counting of flowers on apple trees for better chemical thinning decisions. Precis. Agric. 21, 503–521. https://doi.org/10.1007/s11119-019-09679-1.
Ferentinos, K.P., 2018. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318. https://doi.org/10.1016/j. compag.2018.01.009.
Finger, R., Swinton, S.M., El Benni, N., Walter, A., 2019. Precision farming at the nexus of agricultural production and the environment. Ann. Rev. Resour. Econ. 11, 313–335. https://doi.org/10.1146/annurev-resource-100518-093929.
Fountas, S., Carli, G., Sørensen, C.G., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., Liakos, B., Canavari, M., Wiebensohn, J., Tisserye, B., 2015. Farm management information systems: current situation and future perspectives. Comput. Electron. Agric. 115, 40–50. https://doi.org/10.1016/j.compag.2015.05.011
Foysal, A.H., Ahmed, F., Haque, Z., 2013. Multi-Class Plant Leaf Disease Detection: A CNN-based Approach with Mobile App Integration.
He, K., Zhang, X., Shaoqing, R., Sun, J., 2016. Deep residual learning for image recognition. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 770–778.
Hughes, D.P., Salathe, M., 2015. An Open Access Repository of Images on Plant Health to Enable the Development of Mobile Disease Diagnostics.
Humphreys, D., Singer, B., Lawlor, K., Smith, R., Budds, J., Gabay, M., Bhagwat, S., de Jong, W., Newing, H., Cross, C., Satyal, P., 2019. SDG 17: partnerships for the goalsFocus on forest finance and partnerships. In: Sustainable Development Goals: Their Impacts on Forests and People. https://doi.org/10.1017/9781108765015.019
Islam, M., Dinh, A., Wahid, K., Bhowmik, P., 2017. Detection of potato diseases using image segmentation and multiclass support vector machine. Can. Conf. Electr. Comput. Eng. 8–11. https://doi.org/10.1109/CCECE.2017.7946594
Johannes, A., Picon, A., Alvarez-Gila, A., Echazarra, J., Rodriguez-Vaamonde, S., Navajas, A.D., Ortiz-Barredo, A., 2017. Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Comput. Electron. Agric. 138, 200–209. https://doi.org/10.1016/j.compag.2017.04.013.
Joshi, R.C., Kaushik, M., Dutta, M.K., Srivastava, A., Choudhary, N., 2021. VirLeafNet: Automatic analysis and viral disease diagnosis using deep-learning in Vigna mungo plant. Ecol. Inform. 61, 101197. https://doi.org/10.1016/j.ecoinf.2020.101197.
Kaloxylos, A., Eigenmann, R., Teye, F., Politopoulou, Z., Wolfert, S., Shrank, C., Dillinger, M., Lampropoulou, I., Antoniou, E., Pesonen, L., Nicole, H., Thomas, F., Alonistioti, N., Kormentzas, G., 2012. Farm management systems and the Future Internet era. Comput. Electron. Agric. 89, 130–144. https://doi.org/10.1016/j. compag.2012.09.002.
Kehs, A., Mccloskey, P., Chelal, J., Morr, D., Amakove, S., Mayieka, J., Ntango, G., Nyongesa, K., Pamba, L., Mugo, J., Tsuma, M., Onyango, W., Hughes, D., 2019. From village to globe : A dynamic real-time map of African fields through PlantVillage. K
Kernecker, M., Knierim, A., Wurbs, A., Kraus, T., Borges, F., 2020. Experience versus expectation: farmers’ perceptions of smart farming technologies for cropping systems across Europe. Precis. Agric. 21, 34–50. https://doi.org/10.1007/s11119- 019-09651-z
Kirk, D.B., Wen-Mei, W.H., 2016. Programming Massively Parallel Processors: A Handson Approach. Morgan Kaufmann.
Kitchen, N.R., 2008. Emerging technologies for real-time and integrated agriculture decisions. Comput. Electron. Agric. 61, 1–3. https://doi.org/10.1016/j. compag.2007.06.007
Krizhevsky, B.A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90.
Kumar, S.A., Ilango, P., 2018. The impact of wireless sensor network in the field of precision agriculture: a review. Wirel. Pers. Commun. 98, 685–698. https://doi.org/ 10.1007/s11277-017-4890-z.
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2323. https://doi.org/10.1109/ 5.726791
Lee, B.X., Kjaerulf, F., Turner, S., Cohen, L., Donnelly, P.D., Muggah, R., Davis, R., Realini, A., Kieselbach, B., MacGregor, L.S., Waller, I., Gordon, R., MoloneyKitts, M., Lee, G., Gilligan, J., 2016. Transforming our world: implementing the 2030 agenda through sustainable development goal indicators. J. Public Health Policy 37, S13–S31. https://doi.org/10.1057/s41271-016-0002-7.
Lewis, T., 1998. Evolution of farm management information systems. Comput. Electron. Agric. 19, 233–248. https://doi.org/10.1016/S0168-1699(97)00040-9
Liu, J., Wang, X., 2021. Plant diseases and pests detection based on deep learning: a review. In: Plant Methods, 17, Issue 1. BioMed Central Ltd. https://doi.org/10.1186/ s13007-021-00722-9.
Liu, B., Zhang, Y., He, D.J., Li, Y., 2018. Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry (Basel). 10. https://doi.org/ 10.3390/sym10010011.
Ma, J., Du, K., Zheng, F., Zhang, L., Gong, Z., Sun, Z., 2018. A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network. Comput. Electron. Agric. 154, 18–24. https://doi.org/10.1016/j. compag.2018.08.048
Mahan, J.R., Yeater, K.M., 2008. Agricultural applications of a low-cost infrared thermometer. Comput. Electron. Agric. 64, 262–267. https://doi.org/10.1016/j. compag.2008.05.017.
Mahlein, A.K., Rumpf, T., Welke, P., Dehne, H.W., Plümer, L., Steiner, U., Oerke, E.C., 2013. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 128, 21–30. https://doi.org/10.1016/j.rse.2012.09.019
Marsland, S., 2011. Machine learning: an algorithmic perspective. Chapman and Hall/ CRC.
Mohanty, S.P., Hughes, D.P., Salath´e, M., 2016. Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 1–10. https://doi.org/10.3389/ fpls.2016.01419
Oerke, E.C., 2006. Crop losses to pests. J. Agric. Sci. 144, 31–43. https://doi.org/ 10.1017/S0021859605005708.
Otekunrin, Olutosin A., Otekunrin, Oluwaseun A., Momoh, S., Ayinde, I.A., 2019. How far has Africa gone in achieving the zero hunger target? Evidence from Nigeria. Glob. Food Sec. 22, 1–12. https://doi.org/10.1016/j.gfs.2019.08.001.
Ozguven, M.M., Adem, K., 2019. Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms. Phys. A Stat. Mech. its Appl. 535, 122537. https://doi.org/10.1016/j.physa.2019.122537.
Patrício, D.I., Rieder, R., 2018. Computer vision and artificial intelligence in precision agriculture for grain crops: a systematic review. Comput. Electron. Agric. 153, 69–81. https://doi.org/10.1016/j.compag.2018.08.001.
Polo, J., Hornero, G., Duijneveld, C., García, A., Casas, O., 2015. Design of a low-cost Wireless Sensor Network with UAV mobile node for agricultural applications. Comput. Electron. Agric. 119, 19–32. https://doi.org/10.1016/j. compag.2015.09.024
Qin, F., Liu, D., Sun, B., Ruan, L., Ma, Z., Wang, H., 2016. Identification of alfalfa leaf diseases using image recognition technology. PLoS One 11, 1–26. https://doi.org/ 10.1371/journal.pone.0168274.
Rajan, P., Radhakrishnan, B., Padma Suresh, L., 2017. Detection and classification of pests from crop images using Support Vector Machine. In: Proc. IEEE Int. Conf. Emerg. Technol. Trends Comput. Commun. Electr. Eng. ICETT, 2016. https://doi. org/10.1109/ICETT.2016.7873750.
Russell, S., Norvig, P., 2010. Intelligence artificielle: Avec plus de 500 exercices. Pearson Education France.
Saikawa, T., Cap, Q.H., Kagiwada, S., Uga, H., Iyatomi, H., 2019. AOP: an anti-overfitting pretreatment for practical image-based plant diagnosis. In: Proc. - 2019 IEEE Int. Conf. Big Data, Big Data 2019, pp. 5177–5182. https://doi.org/10.1109/ BigData47090.2019.9006567.
Savary, S., Willocquet, L., 2014. Simulation modeling in botanical epidemiology and crop loss analysis. Plant Heal. Instr. https://doi.org/10.1094/phi-a-2014-0314-01.
Siddiqua, A., Kabir, M.A., Ferdous, T., Ali, I.B., Weston, L.A., 2022. Evaluating plant disease detection mobile applications: quality and limitations. Agronomy 12. https://doi.org/10.3390/agronomy12081869.
Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. In: 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc, pp. 1–14. S
Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., Stefanovic, D., 2016. Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016. https://doi.org/10.1155/2016/3289801.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 07–12-June, pp. 1–9. https://doi. org/10.1109/CVPR.2015.7298594
Tani, H., Kotani, R., Kagiwada, S., Uga, H., Iyatomi, H., 2018. Diagnosis of multiple cucumber infections with convolutional neural networks. In: Proc. - Appl. Imag. Pattern Recognit. Work. 2018-Octob, 13–16. https://doi.org/10.1109/ AIPR.2018.8707385.
Tanumihardjo, S.A., McCulley, L., Roh, R., Lopez-Ridaura, S., Palacios-Rojas, N., Gunaratna, N.S., 2020. Maize agro-food systems to ensure food and nutrition security in reference to the Sustainable Development Goals. Glob. Food Sec. 25, 100327. https://doi.org/10.1016/j.gfs.2019.100327.
Wang, N., Zhang, N., Wang, M., 2006. Wireless sensors in agriculture and food industry - Recent development and future perspective. Comput. Electron. Agric. 50, 1–14. https://doi.org/10.1016/j.compag.2005.09.003.
Yuan, L., Huang, Y., Loraamm, R.W., Nie, C., Wang, J., Zhang, J., 2014. Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. F. Crop. Res. 156, 199–207. https://doi.org/10.1016/j.fcr.2013.11.012.
Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 8689 LNCS, pp. 818–833. https://doi.org/10.1007/978-3-319- 10590-1_53.
dc.rights.eng.fl_str_mv © 2024 The Authors
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv © 2024 The Authors
http://purl.org/coar/access_right/c_abf2
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.place.none.fl_str_mv Países bajos
publisher.none.fl_str_mv Elsevier B.V.
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/29a2ddc0-4a15-4cae-b1b0-cf5126ee3822/download
https://repositorio.unibague.edu.co/bitstreams/8185d85e-b647-4009-99fe-4813ef3c2b5f/download
https://repositorio.unibague.edu.co/bitstreams/5822a43f-56da-45ed-bfa7-f64532ed701f/download
https://repositorio.unibague.edu.co/bitstreams/a0bf3866-1ae2-47e2-b728-cc1981846c08/download
bitstream.checksum.fl_str_mv 2fa3e590786b9c0f3ceba1b9656b7ac3
a17d3386a0f645492b63acef98c5ce2f
b64b27164ae6bae8b3c2eb9c4db177cf
e61fdf5b016632f4ed15d9150a25f377
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059983063449600
spelling Buchaillot, Ma. Luisaa3d6aadf-1d90-409f-8675-733309261850-1Fernandez-Gallego, Jose A607b6baa-5d34-493a-abac-60953121c170-1Mahmoudi, Hendaee151e14-de42-4f6c-8ecf-de758d0e9e5d-1Thushar, Sumithaf660a66f-8bf4-4280-9831-0b115fb0d217-1Aljanaahi, Amna Abdulnoor0f19e183-074c-47e0-9642-67729f7dee4d-1Kosimov, Sherzoddcca7ef1-cc2a-4b49-92de-ed2222536862-1Hammami, Zied1cb98018-0728-4f98-887c-0c04cb2f0231-1Al Jabri, Ghazi4e24e1f6-a263-4ea4-b1e1-58368769b0b2-1Puente, Alexandra La Cruz4086fc38-14c2-4958-971e-7330bf0b747a-1Akl, Alexi7fbc9f8b-2976-4889-86af-512feba19d0e-1Trillas, M. Isabel88a6e1c3-d995-43e4-a84d-a44b343c66ef-1Araus, Jose Luis13489375-7128-4b65-8eb7-7a949a30f5d8-1Kefauver, Shawn C.76890592-b3e0-4e2d-8c37-f79eadf96e68-12025-11-28T21:59:02Z2025-11-28T21:59:02Z2024-12Food security is a pressing global concern, particularly highlighted by the United Nations Sustainable Development Goal 2 (SDG 2), which focuses on enhancing the productivity and incomes of smallholder farmers. In the Middle East and North Africa (MENA) region, horticultural crops are increasingly threatened by pests and diseases, exacerbated by climate change. Local farmers often lack the necessary expertise to effectively manage these issues, resulting in significant reductions in both yield and quality of their crops. This study seeks to develop an accessible mobile crop diagnosis application. By utilizing machine learning and deep learning technologies, the app is designed to help MENA farmers quickly and accurately identify and treat crop disorders. We used Open Data Kit (ODK) to gather a large dataset of crop images required to train deep learning models. These models, built on open-source deep learning architectures, were designed to classify 21 different leaf disorders, including diseases, pests, and nutritional deficiencies. The system was implemented in both a web app and an Android mobile app. Our deep learning models demonstrated an overall accuracy of 94 % in diagnosing plant disorders. The app, Doctor Nabat, includes a decision support system that offers treatment options in the three primary languages spoken in the MENA region. Doctor Nabat is an effective and scalable tool for enhancing crop management in the MENA region, promoting food security by minimizing crop losses through improved pest and disease diagnosis and treatment strategies.application/pdfBuchaillot, M., Fernandez-Gallego, J., Mahmoudi, H., Thushar, S., Aljanaahi, A., Kosimov, S., Hammami, Z., Al Jabri, G., Puente, A., Akl, A ., Trillas, M., Araus, J. Kefauver, S. (2024). Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps. Ecological Informatics, 84. DOI: 10.1016/j.ecoinf.2024.102900.10.1016/j.ecoinf.2024.10290015749541https://hdl.handle.net/20.500.12313/6056https://sciencedirect.unibague.elogim.com/science/article/pii/S1574954124004424engElsevier B.V.Países bajos84Ecological InformaticsAqeel-Ur-Rehman, Abbasi A.Z., Islam, N., Shaikh, Z.A., 2014. A review of wireless sensors and networks’ applications in agriculture. Comput. Stand. Interf. 36, 263–270. https://doi.org/10.1016/j.csi.2011.03.004.Arivazhagan, S., Shebiah, R.N., Ananthi, S., Vishnu Varthini, S., 2013. Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agric. Eng. Int. CIGR J. 15, 211–217. AArnal Barbedo, J.G., 2019. Plant disease identification from individual lesions and spots using deep learning. Biosyst. Eng. 180, 96–107. https://doi.org/10.1016/j. biosystemseng.2019.02.002Asani, E.O., Osadeyi, Y.P., Adegun, A.A., Viriri, S., Ayoola, J.A., Kolawole, E.A., 2023. mPD-APP: a mobile-enabled plant diseases diagnosis application using convolutional neural network toward the attainment of a food secure world. Front. Artific. Intellig. 6. https://doi.org/10.3389/frai.2023.1227950.Atila, Ü., Uçar, M., Akyol, K., Uçar, E., 2021. Plant leaf disease classification using EfficientNet deep learning model. Ecol. Inform. 61, 101182. https://doi.org/ 10.1016/j.ecoinf.2020.101182.Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., L¨ aderach, P., Anzueto, F., Hruska, A.J., Morales, C., 2015. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Secur. 7, 303–321. https://doi.org/10.1007/s12571-015-0446-9Ayoola, J., Ayoola, G., Okike, I., Dashiell, K., Ogbodo, J., 2016. A policy situation analysis for achieving the SDG2 (Zero Hunger) targets in selected states of Nigeria. 30th Int. Conf. Agric. Econ. 1, 1–21.Balafoutis, A., Beck, B., Fountas, S., Vangeyte, J., Van Der Wal, T., Soto, I., Gomez- ´ Barbero, M., Barnes, A., Eory, V., 2017. Precision agriculture technologies positively contributing to ghg emissions mitigation, farm productivity and economics. Sustain 9, 1–28. https://doi.org/10.3390/su9081339.Barbedo, J.G.A., 2018. Factors influencing the use of deep learning for plant disease recognition. Biosyst. Eng. 172, 84–91. https://doi.org/10.1016/j. biosystemseng.2018.05.013Barbedo, J.G.A., Koenigkan, L.V., Halfeld-Vieira, B.A., Costa, R.V., Nechet, K.L., Godoy, C.V., Junior, M.L., Patricio, F.R.A., Talamini, V., Chitarra, L.G., Oliveira, S.A. S., Ishida, A.K.N., Fernandes, J.M.C., Santos, T.T., Cavalcanti, F.R., Terao, D., Angelotti, F., 2018. Annotated plant pathology databases for image-based detection and recognition of diseases. IEEE Lat. Am. Trans. 16, 1749–1757. https://doi.org/ 10.1109/TLA.2018.8444395Bierman, A., LaPlumm, T., Cadle-Davidson, L., Gadoury, D., Martinez, D., Sapkota, S., Rea, M., 2019. A high-throughput phenotyping system using machine vision to quantify severity of grapevine powdery mildew. Plant Phenom. 2019. https://doi. org/10.34133/2019/9209727.Brahimi, M., Boukhalfa, K., Moussaoui, A., 2017. Deep learning for Tomato Diseases: classification and symptoms visualization. Appl. Artif. Intell. 31, 299–315. https:// doi.org/10.1080/08839514.2017.1315516Brown, M.E., 2021. Metrics to accelerate private sector investment in sustainable development goal 2—zero hunger. Sustain 13, 4–9. https://doi.org/10.3390/ su13115967.Christakakis, P., Papadopoulou, G., Mikos, G., Kalogiannidis, N., Ioannidis, D., Tzovaras, D., Pechlivani, E.M., 2024. Smartphone-based citizen science tool for plant disease and insect pest detection using artificial intelligence. Technologies 12 (7). https://doi.org/10.3390/technologies12070101Chuanlei, Z., Shanwen, Z., Jucheng, Y., Yancui, S., Jia, C., 2017. Apple leaf disease identification using genetic algorithm and correlation based feature selection method. Int. J. Agric. Biol. Eng. 10, 74–83. https://doi.org/10.3965/j. ijabe.20171002.2166Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., Traore, D., 2019. Deep neural networks with transfer learning in millet crop images. Comput. Ind. 108, 115–120. https://doi. org/10.1016/j.compind.2019.02.003Cruz, A.C., Luvisi, A., De Bellis, L., Ampatzidis, Y., 2017. X-FIDO: an effective application for detecting olive quick decline syndrome with deep learning and data fusion. Front. Plant Sci. 8, 1–12. https://doi.org/10.3389/fpls.2017.01741DeChant, C., Wiesner-Hanks, T., Chen, S., Stewart, E.L., Yosinski, J., Gore, M.A., Nelson, R.J., Lipson, H., 2017. Automated identification of northern leaf blightinfected maize plants from field imagery using deep learning. Phytopathology 107, 1426–1432. https://doi.org/10.1094/PHYTO-11-16-0417-RDhakal, A., Shakya, S., 2018. Image-based plant disease detection with deep learning. Int. J. Comput. Trends Technol. 61, 26–29. https://doi.org/10.14445/22312803/ ijctt-v61p105.Dutot, M., Nelson, L.M., Tyson, R.C., 2013. Predicting the spread of postharvest disease in stored fruit, with application to apples. Postharvest Biol. Technol. 85, 45–56. https://doi.org/10.1016/j.postharvbio.2013.04.003El-Helly, M., Rafea, A.A., El-Gammal, S., 2003. An Integrated Image Processing System for Leaf Disease Detection and Diagnosis. IICAI, pp. 1182–1195.FAO, 2018. The Middle East and North Africa: prospects and challenges. In: OECD-FAO Agricultural Outlook 2018–2027, pp. 67–107. https://doi.org/10.1787/agr_outlook2018-5-enFarjon, G., Krikeb, O., Hillel, A.B., Alchanatis, V., 2020. Detection and counting of flowers on apple trees for better chemical thinning decisions. Precis. Agric. 21, 503–521. https://doi.org/10.1007/s11119-019-09679-1.Ferentinos, K.P., 2018. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318. https://doi.org/10.1016/j. compag.2018.01.009.Finger, R., Swinton, S.M., El Benni, N., Walter, A., 2019. Precision farming at the nexus of agricultural production and the environment. Ann. Rev. Resour. Econ. 11, 313–335. https://doi.org/10.1146/annurev-resource-100518-093929.Fountas, S., Carli, G., Sørensen, C.G., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., Liakos, B., Canavari, M., Wiebensohn, J., Tisserye, B., 2015. Farm management information systems: current situation and future perspectives. Comput. Electron. Agric. 115, 40–50. https://doi.org/10.1016/j.compag.2015.05.011Foysal, A.H., Ahmed, F., Haque, Z., 2013. Multi-Class Plant Leaf Disease Detection: A CNN-based Approach with Mobile App Integration.He, K., Zhang, X., Shaoqing, R., Sun, J., 2016. Deep residual learning for image recognition. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 770–778.Hughes, D.P., Salathe, M., 2015. An Open Access Repository of Images on Plant Health to Enable the Development of Mobile Disease Diagnostics.Humphreys, D., Singer, B., Lawlor, K., Smith, R., Budds, J., Gabay, M., Bhagwat, S., de Jong, W., Newing, H., Cross, C., Satyal, P., 2019. SDG 17: partnerships for the goalsFocus on forest finance and partnerships. In: Sustainable Development Goals: Their Impacts on Forests and People. https://doi.org/10.1017/9781108765015.019Islam, M., Dinh, A., Wahid, K., Bhowmik, P., 2017. Detection of potato diseases using image segmentation and multiclass support vector machine. Can. Conf. Electr. Comput. Eng. 8–11. https://doi.org/10.1109/CCECE.2017.7946594Johannes, A., Picon, A., Alvarez-Gila, A., Echazarra, J., Rodriguez-Vaamonde, S., Navajas, A.D., Ortiz-Barredo, A., 2017. Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Comput. Electron. Agric. 138, 200–209. https://doi.org/10.1016/j.compag.2017.04.013.Joshi, R.C., Kaushik, M., Dutta, M.K., Srivastava, A., Choudhary, N., 2021. VirLeafNet: Automatic analysis and viral disease diagnosis using deep-learning in Vigna mungo plant. Ecol. Inform. 61, 101197. https://doi.org/10.1016/j.ecoinf.2020.101197.Kaloxylos, A., Eigenmann, R., Teye, F., Politopoulou, Z., Wolfert, S., Shrank, C., Dillinger, M., Lampropoulou, I., Antoniou, E., Pesonen, L., Nicole, H., Thomas, F., Alonistioti, N., Kormentzas, G., 2012. Farm management systems and the Future Internet era. Comput. Electron. Agric. 89, 130–144. https://doi.org/10.1016/j. compag.2012.09.002.Kehs, A., Mccloskey, P., Chelal, J., Morr, D., Amakove, S., Mayieka, J., Ntango, G., Nyongesa, K., Pamba, L., Mugo, J., Tsuma, M., Onyango, W., Hughes, D., 2019. From village to globe : A dynamic real-time map of African fields through PlantVillage. KKernecker, M., Knierim, A., Wurbs, A., Kraus, T., Borges, F., 2020. Experience versus expectation: farmers’ perceptions of smart farming technologies for cropping systems across Europe. Precis. Agric. 21, 34–50. https://doi.org/10.1007/s11119- 019-09651-zKirk, D.B., Wen-Mei, W.H., 2016. Programming Massively Parallel Processors: A Handson Approach. Morgan Kaufmann.Kitchen, N.R., 2008. Emerging technologies for real-time and integrated agriculture decisions. Comput. Electron. Agric. 61, 1–3. https://doi.org/10.1016/j. compag.2007.06.007Krizhevsky, B.A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90.Kumar, S.A., Ilango, P., 2018. The impact of wireless sensor network in the field of precision agriculture: a review. Wirel. Pers. Commun. 98, 685–698. https://doi.org/ 10.1007/s11277-017-4890-z.LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2323. https://doi.org/10.1109/ 5.726791Lee, B.X., Kjaerulf, F., Turner, S., Cohen, L., Donnelly, P.D., Muggah, R., Davis, R., Realini, A., Kieselbach, B., MacGregor, L.S., Waller, I., Gordon, R., MoloneyKitts, M., Lee, G., Gilligan, J., 2016. Transforming our world: implementing the 2030 agenda through sustainable development goal indicators. J. Public Health Policy 37, S13–S31. https://doi.org/10.1057/s41271-016-0002-7.Lewis, T., 1998. Evolution of farm management information systems. Comput. Electron. Agric. 19, 233–248. https://doi.org/10.1016/S0168-1699(97)00040-9Liu, J., Wang, X., 2021. Plant diseases and pests detection based on deep learning: a review. In: Plant Methods, 17, Issue 1. BioMed Central Ltd. https://doi.org/10.1186/ s13007-021-00722-9.Liu, B., Zhang, Y., He, D.J., Li, Y., 2018. Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry (Basel). 10. https://doi.org/ 10.3390/sym10010011.Ma, J., Du, K., Zheng, F., Zhang, L., Gong, Z., Sun, Z., 2018. A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network. Comput. Electron. Agric. 154, 18–24. https://doi.org/10.1016/j. compag.2018.08.048Mahan, J.R., Yeater, K.M., 2008. Agricultural applications of a low-cost infrared thermometer. Comput. Electron. Agric. 64, 262–267. https://doi.org/10.1016/j. compag.2008.05.017.Mahlein, A.K., Rumpf, T., Welke, P., Dehne, H.W., Plümer, L., Steiner, U., Oerke, E.C., 2013. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 128, 21–30. https://doi.org/10.1016/j.rse.2012.09.019Marsland, S., 2011. Machine learning: an algorithmic perspective. Chapman and Hall/ CRC.Mohanty, S.P., Hughes, D.P., Salath´e, M., 2016. Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 1–10. https://doi.org/10.3389/ fpls.2016.01419Oerke, E.C., 2006. Crop losses to pests. J. Agric. Sci. 144, 31–43. https://doi.org/ 10.1017/S0021859605005708.Otekunrin, Olutosin A., Otekunrin, Oluwaseun A., Momoh, S., Ayinde, I.A., 2019. How far has Africa gone in achieving the zero hunger target? Evidence from Nigeria. Glob. Food Sec. 22, 1–12. https://doi.org/10.1016/j.gfs.2019.08.001.Ozguven, M.M., Adem, K., 2019. Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms. Phys. A Stat. Mech. its Appl. 535, 122537. https://doi.org/10.1016/j.physa.2019.122537.Patrício, D.I., Rieder, R., 2018. Computer vision and artificial intelligence in precision agriculture for grain crops: a systematic review. Comput. Electron. Agric. 153, 69–81. https://doi.org/10.1016/j.compag.2018.08.001.Polo, J., Hornero, G., Duijneveld, C., García, A., Casas, O., 2015. Design of a low-cost Wireless Sensor Network with UAV mobile node for agricultural applications. Comput. Electron. Agric. 119, 19–32. https://doi.org/10.1016/j. compag.2015.09.024Qin, F., Liu, D., Sun, B., Ruan, L., Ma, Z., Wang, H., 2016. Identification of alfalfa leaf diseases using image recognition technology. PLoS One 11, 1–26. https://doi.org/ 10.1371/journal.pone.0168274.Rajan, P., Radhakrishnan, B., Padma Suresh, L., 2017. Detection and classification of pests from crop images using Support Vector Machine. In: Proc. IEEE Int. Conf. Emerg. Technol. Trends Comput. Commun. Electr. Eng. ICETT, 2016. https://doi. org/10.1109/ICETT.2016.7873750.Russell, S., Norvig, P., 2010. Intelligence artificielle: Avec plus de 500 exercices. Pearson Education France.Saikawa, T., Cap, Q.H., Kagiwada, S., Uga, H., Iyatomi, H., 2019. AOP: an anti-overfitting pretreatment for practical image-based plant diagnosis. In: Proc. - 2019 IEEE Int. Conf. Big Data, Big Data 2019, pp. 5177–5182. https://doi.org/10.1109/ BigData47090.2019.9006567.Savary, S., Willocquet, L., 2014. Simulation modeling in botanical epidemiology and crop loss analysis. Plant Heal. Instr. https://doi.org/10.1094/phi-a-2014-0314-01.Siddiqua, A., Kabir, M.A., Ferdous, T., Ali, I.B., Weston, L.A., 2022. Evaluating plant disease detection mobile applications: quality and limitations. Agronomy 12. https://doi.org/10.3390/agronomy12081869.Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. In: 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc, pp. 1–14. SSladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., Stefanovic, D., 2016. Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016. https://doi.org/10.1155/2016/3289801.Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 07–12-June, pp. 1–9. https://doi. org/10.1109/CVPR.2015.7298594Tani, H., Kotani, R., Kagiwada, S., Uga, H., Iyatomi, H., 2018. Diagnosis of multiple cucumber infections with convolutional neural networks. In: Proc. - Appl. Imag. Pattern Recognit. Work. 2018-Octob, 13–16. https://doi.org/10.1109/ AIPR.2018.8707385.Tanumihardjo, S.A., McCulley, L., Roh, R., Lopez-Ridaura, S., Palacios-Rojas, N., Gunaratna, N.S., 2020. Maize agro-food systems to ensure food and nutrition security in reference to the Sustainable Development Goals. Glob. Food Sec. 25, 100327. https://doi.org/10.1016/j.gfs.2019.100327.Wang, N., Zhang, N., Wang, M., 2006. Wireless sensors in agriculture and food industry - Recent development and future perspective. Comput. Electron. Agric. 50, 1–14. https://doi.org/10.1016/j.compag.2005.09.003.Yuan, L., Huang, Y., Loraamm, R.W., Nie, C., Wang, J., Zhang, J., 2014. Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. F. Crop. Res. 156, 199–207. https://doi.org/10.1016/j.fcr.2013.11.012.Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 8689 LNCS, pp. 818–833. https://doi.org/10.1007/978-3-319- 10590-1_53.© 2024 The Authorsinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/Cultivos hortículas - TrastornosData collectionDeep learningHorticultural cropsMENAMobile appSDG 17SDG 2Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile appsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/29a2ddc0-4a15-4cae-b1b0-cf5126ee3822/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf143919https://repositorio.unibague.edu.co/bitstreams/8185d85e-b647-4009-99fe-4813ef3c2b5f/downloada17d3386a0f645492b63acef98c5ce2fMD52TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain3185https://repositorio.unibague.edu.co/bitstreams/5822a43f-56da-45ed-bfa7-f64532ed701f/downloadb64b27164ae6bae8b3c2eb9c4db177cfMD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg23493https://repositorio.unibague.edu.co/bitstreams/a0bf3866-1ae2-47e2-b728-cc1981846c08/downloade61fdf5b016632f4ed15d9150a25f377MD5420.500.12313/6056oai:repositorio.unibague.edu.co:20.500.12313/60562025-11-29 03:02:09.2https://creativecommons.org/licenses/by/4.0/© 2024 The Authorshttps://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=