Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps
Food security is a pressing global concern, particularly highlighted by the United Nations Sustainable Development Goal 2 (SDG 2), which focuses on enhancing the productivity and incomes of smallholder farmers. In the Middle East and North Africa (MENA) region, horticultural crops are increasingly t...
- Autores:
-
Buchaillot, Ma. Luisa
Fernandez-Gallego, Jose A
Mahmoudi, Henda
Thushar, Sumitha
Aljanaahi, Amna Abdulnoor
Kosimov, Sherzod
Hammami, Zied
Al Jabri, Ghazi
Puente, Alexandra La Cruz
Akl, Alexi
Trillas, M. Isabel
Araus, Jose Luis
Kefauver, Shawn C.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/6056
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/6056
https://sciencedirect.unibague.elogim.com/science/article/pii/S1574954124004424
- Palabra clave:
- Cultivos hortículas - Trastornos
Data collection
Deep learning
Horticultural crops
MENA
Mobile app
SDG 17
SDG 2
- Rights
- openAccess
- License
- © 2024 The Authors
| id |
UNIBAGUE2_6c1cacdf63b18296364f6fd7916796dc |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/6056 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps |
| title |
Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps |
| spellingShingle |
Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps Cultivos hortículas - Trastornos Data collection Deep learning Horticultural crops MENA Mobile app SDG 17 SDG 2 |
| title_short |
Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps |
| title_full |
Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps |
| title_fullStr |
Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps |
| title_full_unstemmed |
Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps |
| title_sort |
Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps |
| dc.creator.fl_str_mv |
Buchaillot, Ma. Luisa Fernandez-Gallego, Jose A Mahmoudi, Henda Thushar, Sumitha Aljanaahi, Amna Abdulnoor Kosimov, Sherzod Hammami, Zied Al Jabri, Ghazi Puente, Alexandra La Cruz Akl, Alexi Trillas, M. Isabel Araus, Jose Luis Kefauver, Shawn C. |
| dc.contributor.author.none.fl_str_mv |
Buchaillot, Ma. Luisa Fernandez-Gallego, Jose A Mahmoudi, Henda Thushar, Sumitha Aljanaahi, Amna Abdulnoor Kosimov, Sherzod Hammami, Zied Al Jabri, Ghazi Puente, Alexandra La Cruz Akl, Alexi Trillas, M. Isabel Araus, Jose Luis Kefauver, Shawn C. |
| dc.subject.armarc.none.fl_str_mv |
Cultivos hortículas - Trastornos |
| topic |
Cultivos hortículas - Trastornos Data collection Deep learning Horticultural crops MENA Mobile app SDG 17 SDG 2 |
| dc.subject.proposal.eng.fl_str_mv |
Data collection Deep learning Horticultural crops MENA Mobile app SDG 17 SDG 2 |
| description |
Food security is a pressing global concern, particularly highlighted by the United Nations Sustainable Development Goal 2 (SDG 2), which focuses on enhancing the productivity and incomes of smallholder farmers. In the Middle East and North Africa (MENA) region, horticultural crops are increasingly threatened by pests and diseases, exacerbated by climate change. Local farmers often lack the necessary expertise to effectively manage these issues, resulting in significant reductions in both yield and quality of their crops. This study seeks to develop an accessible mobile crop diagnosis application. By utilizing machine learning and deep learning technologies, the app is designed to help MENA farmers quickly and accurately identify and treat crop disorders. We used Open Data Kit (ODK) to gather a large dataset of crop images required to train deep learning models. These models, built on open-source deep learning architectures, were designed to classify 21 different leaf disorders, including diseases, pests, and nutritional deficiencies. The system was implemented in both a web app and an Android mobile app. Our deep learning models demonstrated an overall accuracy of 94 % in diagnosing plant disorders. The app, Doctor Nabat, includes a decision support system that offers treatment options in the three primary languages spoken in the MENA region. Doctor Nabat is an effective and scalable tool for enhancing crop management in the MENA region, promoting food security by minimizing crop losses through improved pest and disease diagnosis and treatment strategies. |
| publishDate |
2024 |
| dc.date.issued.none.fl_str_mv |
2024-12 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-28T21:59:02Z |
| dc.date.available.none.fl_str_mv |
2025-11-28T21:59:02Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
Buchaillot, M., Fernandez-Gallego, J., Mahmoudi, H., Thushar, S., Aljanaahi, A., Kosimov, S., Hammami, Z., Al Jabri, G., Puente, A., Akl, A ., Trillas, M., Araus, J. Kefauver, S. (2024). Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps. Ecological Informatics, 84. DOI: 10.1016/j.ecoinf.2024.102900. |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.ecoinf.2024.102900 |
| dc.identifier.issn.none.fl_str_mv |
15749541 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/6056 |
| dc.identifier.url.none.fl_str_mv |
https://sciencedirect.unibague.elogim.com/science/article/pii/S1574954124004424 |
| identifier_str_mv |
Buchaillot, M., Fernandez-Gallego, J., Mahmoudi, H., Thushar, S., Aljanaahi, A., Kosimov, S., Hammami, Z., Al Jabri, G., Puente, A., Akl, A ., Trillas, M., Araus, J. Kefauver, S. (2024). Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps. Ecological Informatics, 84. DOI: 10.1016/j.ecoinf.2024.102900. 10.1016/j.ecoinf.2024.102900 15749541 |
| url |
https://hdl.handle.net/20.500.12313/6056 https://sciencedirect.unibague.elogim.com/science/article/pii/S1574954124004424 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationvolume.none.fl_str_mv |
84 |
| dc.relation.ispartofjournal.none.fl_str_mv |
Ecological Informatics |
| dc.relation.references.none.fl_str_mv |
Aqeel-Ur-Rehman, Abbasi A.Z., Islam, N., Shaikh, Z.A., 2014. A review of wireless sensors and networks’ applications in agriculture. Comput. Stand. Interf. 36, 263–270. https://doi.org/10.1016/j.csi.2011.03.004. Arivazhagan, S., Shebiah, R.N., Ananthi, S., Vishnu Varthini, S., 2013. Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agric. Eng. Int. CIGR J. 15, 211–217. A Arnal Barbedo, J.G., 2019. Plant disease identification from individual lesions and spots using deep learning. Biosyst. Eng. 180, 96–107. https://doi.org/10.1016/j. biosystemseng.2019.02.002 Asani, E.O., Osadeyi, Y.P., Adegun, A.A., Viriri, S., Ayoola, J.A., Kolawole, E.A., 2023. mPD-APP: a mobile-enabled plant diseases diagnosis application using convolutional neural network toward the attainment of a food secure world. Front. Artific. Intellig. 6. https://doi.org/10.3389/frai.2023.1227950. Atila, Ü., Uçar, M., Akyol, K., Uçar, E., 2021. Plant leaf disease classification using EfficientNet deep learning model. Ecol. Inform. 61, 101182. https://doi.org/ 10.1016/j.ecoinf.2020.101182. Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., L¨ aderach, P., Anzueto, F., Hruska, A.J., Morales, C., 2015. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Secur. 7, 303–321. https://doi.org/10.1007/s12571-015-0446-9 Ayoola, J., Ayoola, G., Okike, I., Dashiell, K., Ogbodo, J., 2016. A policy situation analysis for achieving the SDG2 (Zero Hunger) targets in selected states of Nigeria. 30th Int. Conf. Agric. Econ. 1, 1–21. Balafoutis, A., Beck, B., Fountas, S., Vangeyte, J., Van Der Wal, T., Soto, I., Gomez- ´ Barbero, M., Barnes, A., Eory, V., 2017. Precision agriculture technologies positively contributing to ghg emissions mitigation, farm productivity and economics. Sustain 9, 1–28. https://doi.org/10.3390/su9081339. Barbedo, J.G.A., 2018. Factors influencing the use of deep learning for plant disease recognition. Biosyst. Eng. 172, 84–91. https://doi.org/10.1016/j. biosystemseng.2018.05.013 Barbedo, J.G.A., Koenigkan, L.V., Halfeld-Vieira, B.A., Costa, R.V., Nechet, K.L., Godoy, C.V., Junior, M.L., Patricio, F.R.A., Talamini, V., Chitarra, L.G., Oliveira, S.A. S., Ishida, A.K.N., Fernandes, J.M.C., Santos, T.T., Cavalcanti, F.R., Terao, D., Angelotti, F., 2018. Annotated plant pathology databases for image-based detection and recognition of diseases. IEEE Lat. Am. Trans. 16, 1749–1757. https://doi.org/ 10.1109/TLA.2018.8444395 Bierman, A., LaPlumm, T., Cadle-Davidson, L., Gadoury, D., Martinez, D., Sapkota, S., Rea, M., 2019. A high-throughput phenotyping system using machine vision to quantify severity of grapevine powdery mildew. Plant Phenom. 2019. https://doi. org/10.34133/2019/9209727. Brahimi, M., Boukhalfa, K., Moussaoui, A., 2017. Deep learning for Tomato Diseases: classification and symptoms visualization. Appl. Artif. Intell. 31, 299–315. https:// doi.org/10.1080/08839514.2017.1315516 Brown, M.E., 2021. Metrics to accelerate private sector investment in sustainable development goal 2—zero hunger. Sustain 13, 4–9. https://doi.org/10.3390/ su13115967. Christakakis, P., Papadopoulou, G., Mikos, G., Kalogiannidis, N., Ioannidis, D., Tzovaras, D., Pechlivani, E.M., 2024. Smartphone-based citizen science tool for plant disease and insect pest detection using artificial intelligence. Technologies 12 (7). https://doi.org/10.3390/technologies12070101 Chuanlei, Z., Shanwen, Z., Jucheng, Y., Yancui, S., Jia, C., 2017. Apple leaf disease identification using genetic algorithm and correlation based feature selection method. Int. J. Agric. Biol. Eng. 10, 74–83. https://doi.org/10.3965/j. ijabe.20171002.2166 Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., Traore, D., 2019. Deep neural networks with transfer learning in millet crop images. Comput. Ind. 108, 115–120. https://doi. org/10.1016/j.compind.2019.02.003 Cruz, A.C., Luvisi, A., De Bellis, L., Ampatzidis, Y., 2017. X-FIDO: an effective application for detecting olive quick decline syndrome with deep learning and data fusion. Front. Plant Sci. 8, 1–12. https://doi.org/10.3389/fpls.2017.01741 DeChant, C., Wiesner-Hanks, T., Chen, S., Stewart, E.L., Yosinski, J., Gore, M.A., Nelson, R.J., Lipson, H., 2017. Automated identification of northern leaf blightinfected maize plants from field imagery using deep learning. Phytopathology 107, 1426–1432. https://doi.org/10.1094/PHYTO-11-16-0417-R Dhakal, A., Shakya, S., 2018. Image-based plant disease detection with deep learning. Int. J. Comput. Trends Technol. 61, 26–29. https://doi.org/10.14445/22312803/ ijctt-v61p105. Dutot, M., Nelson, L.M., Tyson, R.C., 2013. Predicting the spread of postharvest disease in stored fruit, with application to apples. Postharvest Biol. Technol. 85, 45–56. https://doi.org/10.1016/j.postharvbio.2013.04.003 El-Helly, M., Rafea, A.A., El-Gammal, S., 2003. An Integrated Image Processing System for Leaf Disease Detection and Diagnosis. IICAI, pp. 1182–1195. FAO, 2018. The Middle East and North Africa: prospects and challenges. In: OECD-FAO Agricultural Outlook 2018–2027, pp. 67–107. https://doi.org/10.1787/agr_outlook2018-5-en Farjon, G., Krikeb, O., Hillel, A.B., Alchanatis, V., 2020. Detection and counting of flowers on apple trees for better chemical thinning decisions. Precis. Agric. 21, 503–521. https://doi.org/10.1007/s11119-019-09679-1. Ferentinos, K.P., 2018. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318. https://doi.org/10.1016/j. compag.2018.01.009. Finger, R., Swinton, S.M., El Benni, N., Walter, A., 2019. Precision farming at the nexus of agricultural production and the environment. Ann. Rev. Resour. Econ. 11, 313–335. https://doi.org/10.1146/annurev-resource-100518-093929. Fountas, S., Carli, G., Sørensen, C.G., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., Liakos, B., Canavari, M., Wiebensohn, J., Tisserye, B., 2015. Farm management information systems: current situation and future perspectives. Comput. Electron. Agric. 115, 40–50. https://doi.org/10.1016/j.compag.2015.05.011 Foysal, A.H., Ahmed, F., Haque, Z., 2013. Multi-Class Plant Leaf Disease Detection: A CNN-based Approach with Mobile App Integration. He, K., Zhang, X., Shaoqing, R., Sun, J., 2016. Deep residual learning for image recognition. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 770–778. Hughes, D.P., Salathe, M., 2015. An Open Access Repository of Images on Plant Health to Enable the Development of Mobile Disease Diagnostics. Humphreys, D., Singer, B., Lawlor, K., Smith, R., Budds, J., Gabay, M., Bhagwat, S., de Jong, W., Newing, H., Cross, C., Satyal, P., 2019. SDG 17: partnerships for the goalsFocus on forest finance and partnerships. In: Sustainable Development Goals: Their Impacts on Forests and People. https://doi.org/10.1017/9781108765015.019 Islam, M., Dinh, A., Wahid, K., Bhowmik, P., 2017. Detection of potato diseases using image segmentation and multiclass support vector machine. Can. Conf. Electr. Comput. Eng. 8–11. https://doi.org/10.1109/CCECE.2017.7946594 Johannes, A., Picon, A., Alvarez-Gila, A., Echazarra, J., Rodriguez-Vaamonde, S., Navajas, A.D., Ortiz-Barredo, A., 2017. Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Comput. Electron. Agric. 138, 200–209. https://doi.org/10.1016/j.compag.2017.04.013. Joshi, R.C., Kaushik, M., Dutta, M.K., Srivastava, A., Choudhary, N., 2021. VirLeafNet: Automatic analysis and viral disease diagnosis using deep-learning in Vigna mungo plant. Ecol. Inform. 61, 101197. https://doi.org/10.1016/j.ecoinf.2020.101197. Kaloxylos, A., Eigenmann, R., Teye, F., Politopoulou, Z., Wolfert, S., Shrank, C., Dillinger, M., Lampropoulou, I., Antoniou, E., Pesonen, L., Nicole, H., Thomas, F., Alonistioti, N., Kormentzas, G., 2012. Farm management systems and the Future Internet era. Comput. Electron. Agric. 89, 130–144. https://doi.org/10.1016/j. compag.2012.09.002. Kehs, A., Mccloskey, P., Chelal, J., Morr, D., Amakove, S., Mayieka, J., Ntango, G., Nyongesa, K., Pamba, L., Mugo, J., Tsuma, M., Onyango, W., Hughes, D., 2019. From village to globe : A dynamic real-time map of African fields through PlantVillage. K Kernecker, M., Knierim, A., Wurbs, A., Kraus, T., Borges, F., 2020. Experience versus expectation: farmers’ perceptions of smart farming technologies for cropping systems across Europe. Precis. Agric. 21, 34–50. https://doi.org/10.1007/s11119- 019-09651-z Kirk, D.B., Wen-Mei, W.H., 2016. Programming Massively Parallel Processors: A Handson Approach. Morgan Kaufmann. Kitchen, N.R., 2008. Emerging technologies for real-time and integrated agriculture decisions. Comput. Electron. Agric. 61, 1–3. https://doi.org/10.1016/j. compag.2007.06.007 Krizhevsky, B.A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90. Kumar, S.A., Ilango, P., 2018. The impact of wireless sensor network in the field of precision agriculture: a review. Wirel. Pers. Commun. 98, 685–698. https://doi.org/ 10.1007/s11277-017-4890-z. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2323. https://doi.org/10.1109/ 5.726791 Lee, B.X., Kjaerulf, F., Turner, S., Cohen, L., Donnelly, P.D., Muggah, R., Davis, R., Realini, A., Kieselbach, B., MacGregor, L.S., Waller, I., Gordon, R., MoloneyKitts, M., Lee, G., Gilligan, J., 2016. Transforming our world: implementing the 2030 agenda through sustainable development goal indicators. J. Public Health Policy 37, S13–S31. https://doi.org/10.1057/s41271-016-0002-7. Lewis, T., 1998. Evolution of farm management information systems. Comput. Electron. Agric. 19, 233–248. https://doi.org/10.1016/S0168-1699(97)00040-9 Liu, J., Wang, X., 2021. Plant diseases and pests detection based on deep learning: a review. In: Plant Methods, 17, Issue 1. BioMed Central Ltd. https://doi.org/10.1186/ s13007-021-00722-9. Liu, B., Zhang, Y., He, D.J., Li, Y., 2018. Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry (Basel). 10. https://doi.org/ 10.3390/sym10010011. Ma, J., Du, K., Zheng, F., Zhang, L., Gong, Z., Sun, Z., 2018. A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network. Comput. Electron. Agric. 154, 18–24. https://doi.org/10.1016/j. compag.2018.08.048 Mahan, J.R., Yeater, K.M., 2008. Agricultural applications of a low-cost infrared thermometer. Comput. Electron. Agric. 64, 262–267. https://doi.org/10.1016/j. compag.2008.05.017. Mahlein, A.K., Rumpf, T., Welke, P., Dehne, H.W., Plümer, L., Steiner, U., Oerke, E.C., 2013. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 128, 21–30. https://doi.org/10.1016/j.rse.2012.09.019 Marsland, S., 2011. Machine learning: an algorithmic perspective. Chapman and Hall/ CRC. Mohanty, S.P., Hughes, D.P., Salath´e, M., 2016. Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 1–10. https://doi.org/10.3389/ fpls.2016.01419 Oerke, E.C., 2006. Crop losses to pests. J. Agric. Sci. 144, 31–43. https://doi.org/ 10.1017/S0021859605005708. Otekunrin, Olutosin A., Otekunrin, Oluwaseun A., Momoh, S., Ayinde, I.A., 2019. How far has Africa gone in achieving the zero hunger target? Evidence from Nigeria. Glob. Food Sec. 22, 1–12. https://doi.org/10.1016/j.gfs.2019.08.001. Ozguven, M.M., Adem, K., 2019. Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms. Phys. A Stat. Mech. its Appl. 535, 122537. https://doi.org/10.1016/j.physa.2019.122537. Patrício, D.I., Rieder, R., 2018. Computer vision and artificial intelligence in precision agriculture for grain crops: a systematic review. Comput. Electron. Agric. 153, 69–81. https://doi.org/10.1016/j.compag.2018.08.001. Polo, J., Hornero, G., Duijneveld, C., García, A., Casas, O., 2015. Design of a low-cost Wireless Sensor Network with UAV mobile node for agricultural applications. Comput. Electron. Agric. 119, 19–32. https://doi.org/10.1016/j. compag.2015.09.024 Qin, F., Liu, D., Sun, B., Ruan, L., Ma, Z., Wang, H., 2016. Identification of alfalfa leaf diseases using image recognition technology. PLoS One 11, 1–26. https://doi.org/ 10.1371/journal.pone.0168274. Rajan, P., Radhakrishnan, B., Padma Suresh, L., 2017. Detection and classification of pests from crop images using Support Vector Machine. In: Proc. IEEE Int. Conf. Emerg. Technol. Trends Comput. Commun. Electr. Eng. ICETT, 2016. https://doi. org/10.1109/ICETT.2016.7873750. Russell, S., Norvig, P., 2010. Intelligence artificielle: Avec plus de 500 exercices. Pearson Education France. Saikawa, T., Cap, Q.H., Kagiwada, S., Uga, H., Iyatomi, H., 2019. AOP: an anti-overfitting pretreatment for practical image-based plant diagnosis. In: Proc. - 2019 IEEE Int. Conf. Big Data, Big Data 2019, pp. 5177–5182. https://doi.org/10.1109/ BigData47090.2019.9006567. Savary, S., Willocquet, L., 2014. Simulation modeling in botanical epidemiology and crop loss analysis. Plant Heal. Instr. https://doi.org/10.1094/phi-a-2014-0314-01. Siddiqua, A., Kabir, M.A., Ferdous, T., Ali, I.B., Weston, L.A., 2022. Evaluating plant disease detection mobile applications: quality and limitations. Agronomy 12. https://doi.org/10.3390/agronomy12081869. Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. In: 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc, pp. 1–14. S Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., Stefanovic, D., 2016. Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016. https://doi.org/10.1155/2016/3289801. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 07–12-June, pp. 1–9. https://doi. org/10.1109/CVPR.2015.7298594 Tani, H., Kotani, R., Kagiwada, S., Uga, H., Iyatomi, H., 2018. Diagnosis of multiple cucumber infections with convolutional neural networks. In: Proc. - Appl. Imag. Pattern Recognit. Work. 2018-Octob, 13–16. https://doi.org/10.1109/ AIPR.2018.8707385. Tanumihardjo, S.A., McCulley, L., Roh, R., Lopez-Ridaura, S., Palacios-Rojas, N., Gunaratna, N.S., 2020. Maize agro-food systems to ensure food and nutrition security in reference to the Sustainable Development Goals. Glob. Food Sec. 25, 100327. https://doi.org/10.1016/j.gfs.2019.100327. Wang, N., Zhang, N., Wang, M., 2006. Wireless sensors in agriculture and food industry - Recent development and future perspective. Comput. Electron. Agric. 50, 1–14. https://doi.org/10.1016/j.compag.2005.09.003. Yuan, L., Huang, Y., Loraamm, R.W., Nie, C., Wang, J., Zhang, J., 2014. Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. F. Crop. Res. 156, 199–207. https://doi.org/10.1016/j.fcr.2013.11.012. Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 8689 LNCS, pp. 818–833. https://doi.org/10.1007/978-3-319- 10590-1_53. |
| dc.rights.eng.fl_str_mv |
© 2024 The Authors |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.license.none.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| rights_invalid_str_mv |
© 2024 The Authors http://purl.org/coar/access_right/c_abf2 Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier B.V. |
| dc.publisher.place.none.fl_str_mv |
Países bajos |
| publisher.none.fl_str_mv |
Elsevier B.V. |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/29a2ddc0-4a15-4cae-b1b0-cf5126ee3822/download https://repositorio.unibague.edu.co/bitstreams/8185d85e-b647-4009-99fe-4813ef3c2b5f/download https://repositorio.unibague.edu.co/bitstreams/5822a43f-56da-45ed-bfa7-f64532ed701f/download https://repositorio.unibague.edu.co/bitstreams/a0bf3866-1ae2-47e2-b728-cc1981846c08/download |
| bitstream.checksum.fl_str_mv |
2fa3e590786b9c0f3ceba1b9656b7ac3 a17d3386a0f645492b63acef98c5ce2f b64b27164ae6bae8b3c2eb9c4db177cf e61fdf5b016632f4ed15d9150a25f377 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059983063449600 |
| spelling |
Buchaillot, Ma. Luisaa3d6aadf-1d90-409f-8675-733309261850-1Fernandez-Gallego, Jose A607b6baa-5d34-493a-abac-60953121c170-1Mahmoudi, Hendaee151e14-de42-4f6c-8ecf-de758d0e9e5d-1Thushar, Sumithaf660a66f-8bf4-4280-9831-0b115fb0d217-1Aljanaahi, Amna Abdulnoor0f19e183-074c-47e0-9642-67729f7dee4d-1Kosimov, Sherzoddcca7ef1-cc2a-4b49-92de-ed2222536862-1Hammami, Zied1cb98018-0728-4f98-887c-0c04cb2f0231-1Al Jabri, Ghazi4e24e1f6-a263-4ea4-b1e1-58368769b0b2-1Puente, Alexandra La Cruz4086fc38-14c2-4958-971e-7330bf0b747a-1Akl, Alexi7fbc9f8b-2976-4889-86af-512feba19d0e-1Trillas, M. Isabel88a6e1c3-d995-43e4-a84d-a44b343c66ef-1Araus, Jose Luis13489375-7128-4b65-8eb7-7a949a30f5d8-1Kefauver, Shawn C.76890592-b3e0-4e2d-8c37-f79eadf96e68-12025-11-28T21:59:02Z2025-11-28T21:59:02Z2024-12Food security is a pressing global concern, particularly highlighted by the United Nations Sustainable Development Goal 2 (SDG 2), which focuses on enhancing the productivity and incomes of smallholder farmers. In the Middle East and North Africa (MENA) region, horticultural crops are increasingly threatened by pests and diseases, exacerbated by climate change. Local farmers often lack the necessary expertise to effectively manage these issues, resulting in significant reductions in both yield and quality of their crops. This study seeks to develop an accessible mobile crop diagnosis application. By utilizing machine learning and deep learning technologies, the app is designed to help MENA farmers quickly and accurately identify and treat crop disorders. We used Open Data Kit (ODK) to gather a large dataset of crop images required to train deep learning models. These models, built on open-source deep learning architectures, were designed to classify 21 different leaf disorders, including diseases, pests, and nutritional deficiencies. The system was implemented in both a web app and an Android mobile app. Our deep learning models demonstrated an overall accuracy of 94 % in diagnosing plant disorders. The app, Doctor Nabat, includes a decision support system that offers treatment options in the three primary languages spoken in the MENA region. Doctor Nabat is an effective and scalable tool for enhancing crop management in the MENA region, promoting food security by minimizing crop losses through improved pest and disease diagnosis and treatment strategies.application/pdfBuchaillot, M., Fernandez-Gallego, J., Mahmoudi, H., Thushar, S., Aljanaahi, A., Kosimov, S., Hammami, Z., Al Jabri, G., Puente, A., Akl, A ., Trillas, M., Araus, J. Kefauver, S. (2024). Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile apps. Ecological Informatics, 84. DOI: 10.1016/j.ecoinf.2024.102900.10.1016/j.ecoinf.2024.10290015749541https://hdl.handle.net/20.500.12313/6056https://sciencedirect.unibague.elogim.com/science/article/pii/S1574954124004424engElsevier B.V.Países bajos84Ecological InformaticsAqeel-Ur-Rehman, Abbasi A.Z., Islam, N., Shaikh, Z.A., 2014. A review of wireless sensors and networks’ applications in agriculture. Comput. Stand. Interf. 36, 263–270. https://doi.org/10.1016/j.csi.2011.03.004.Arivazhagan, S., Shebiah, R.N., Ananthi, S., Vishnu Varthini, S., 2013. Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agric. Eng. Int. CIGR J. 15, 211–217. AArnal Barbedo, J.G., 2019. Plant disease identification from individual lesions and spots using deep learning. Biosyst. Eng. 180, 96–107. https://doi.org/10.1016/j. biosystemseng.2019.02.002Asani, E.O., Osadeyi, Y.P., Adegun, A.A., Viriri, S., Ayoola, J.A., Kolawole, E.A., 2023. mPD-APP: a mobile-enabled plant diseases diagnosis application using convolutional neural network toward the attainment of a food secure world. Front. Artific. Intellig. 6. https://doi.org/10.3389/frai.2023.1227950.Atila, Ü., Uçar, M., Akyol, K., Uçar, E., 2021. Plant leaf disease classification using EfficientNet deep learning model. Ecol. Inform. 61, 101182. https://doi.org/ 10.1016/j.ecoinf.2020.101182.Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., L¨ aderach, P., Anzueto, F., Hruska, A.J., Morales, C., 2015. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Secur. 7, 303–321. https://doi.org/10.1007/s12571-015-0446-9Ayoola, J., Ayoola, G., Okike, I., Dashiell, K., Ogbodo, J., 2016. A policy situation analysis for achieving the SDG2 (Zero Hunger) targets in selected states of Nigeria. 30th Int. Conf. Agric. Econ. 1, 1–21.Balafoutis, A., Beck, B., Fountas, S., Vangeyte, J., Van Der Wal, T., Soto, I., Gomez- ´ Barbero, M., Barnes, A., Eory, V., 2017. Precision agriculture technologies positively contributing to ghg emissions mitigation, farm productivity and economics. Sustain 9, 1–28. https://doi.org/10.3390/su9081339.Barbedo, J.G.A., 2018. Factors influencing the use of deep learning for plant disease recognition. Biosyst. Eng. 172, 84–91. https://doi.org/10.1016/j. biosystemseng.2018.05.013Barbedo, J.G.A., Koenigkan, L.V., Halfeld-Vieira, B.A., Costa, R.V., Nechet, K.L., Godoy, C.V., Junior, M.L., Patricio, F.R.A., Talamini, V., Chitarra, L.G., Oliveira, S.A. S., Ishida, A.K.N., Fernandes, J.M.C., Santos, T.T., Cavalcanti, F.R., Terao, D., Angelotti, F., 2018. Annotated plant pathology databases for image-based detection and recognition of diseases. IEEE Lat. Am. Trans. 16, 1749–1757. https://doi.org/ 10.1109/TLA.2018.8444395Bierman, A., LaPlumm, T., Cadle-Davidson, L., Gadoury, D., Martinez, D., Sapkota, S., Rea, M., 2019. A high-throughput phenotyping system using machine vision to quantify severity of grapevine powdery mildew. Plant Phenom. 2019. https://doi. org/10.34133/2019/9209727.Brahimi, M., Boukhalfa, K., Moussaoui, A., 2017. Deep learning for Tomato Diseases: classification and symptoms visualization. Appl. Artif. Intell. 31, 299–315. https:// doi.org/10.1080/08839514.2017.1315516Brown, M.E., 2021. Metrics to accelerate private sector investment in sustainable development goal 2—zero hunger. Sustain 13, 4–9. https://doi.org/10.3390/ su13115967.Christakakis, P., Papadopoulou, G., Mikos, G., Kalogiannidis, N., Ioannidis, D., Tzovaras, D., Pechlivani, E.M., 2024. Smartphone-based citizen science tool for plant disease and insect pest detection using artificial intelligence. Technologies 12 (7). https://doi.org/10.3390/technologies12070101Chuanlei, Z., Shanwen, Z., Jucheng, Y., Yancui, S., Jia, C., 2017. Apple leaf disease identification using genetic algorithm and correlation based feature selection method. Int. J. Agric. Biol. Eng. 10, 74–83. https://doi.org/10.3965/j. ijabe.20171002.2166Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., Traore, D., 2019. Deep neural networks with transfer learning in millet crop images. Comput. Ind. 108, 115–120. https://doi. org/10.1016/j.compind.2019.02.003Cruz, A.C., Luvisi, A., De Bellis, L., Ampatzidis, Y., 2017. X-FIDO: an effective application for detecting olive quick decline syndrome with deep learning and data fusion. Front. Plant Sci. 8, 1–12. https://doi.org/10.3389/fpls.2017.01741DeChant, C., Wiesner-Hanks, T., Chen, S., Stewart, E.L., Yosinski, J., Gore, M.A., Nelson, R.J., Lipson, H., 2017. Automated identification of northern leaf blightinfected maize plants from field imagery using deep learning. Phytopathology 107, 1426–1432. https://doi.org/10.1094/PHYTO-11-16-0417-RDhakal, A., Shakya, S., 2018. Image-based plant disease detection with deep learning. Int. J. Comput. Trends Technol. 61, 26–29. https://doi.org/10.14445/22312803/ ijctt-v61p105.Dutot, M., Nelson, L.M., Tyson, R.C., 2013. Predicting the spread of postharvest disease in stored fruit, with application to apples. Postharvest Biol. Technol. 85, 45–56. https://doi.org/10.1016/j.postharvbio.2013.04.003El-Helly, M., Rafea, A.A., El-Gammal, S., 2003. An Integrated Image Processing System for Leaf Disease Detection and Diagnosis. IICAI, pp. 1182–1195.FAO, 2018. The Middle East and North Africa: prospects and challenges. In: OECD-FAO Agricultural Outlook 2018–2027, pp. 67–107. https://doi.org/10.1787/agr_outlook2018-5-enFarjon, G., Krikeb, O., Hillel, A.B., Alchanatis, V., 2020. Detection and counting of flowers on apple trees for better chemical thinning decisions. Precis. Agric. 21, 503–521. https://doi.org/10.1007/s11119-019-09679-1.Ferentinos, K.P., 2018. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318. https://doi.org/10.1016/j. compag.2018.01.009.Finger, R., Swinton, S.M., El Benni, N., Walter, A., 2019. Precision farming at the nexus of agricultural production and the environment. Ann. Rev. Resour. Econ. 11, 313–335. https://doi.org/10.1146/annurev-resource-100518-093929.Fountas, S., Carli, G., Sørensen, C.G., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., Liakos, B., Canavari, M., Wiebensohn, J., Tisserye, B., 2015. Farm management information systems: current situation and future perspectives. Comput. Electron. Agric. 115, 40–50. https://doi.org/10.1016/j.compag.2015.05.011Foysal, A.H., Ahmed, F., Haque, Z., 2013. Multi-Class Plant Leaf Disease Detection: A CNN-based Approach with Mobile App Integration.He, K., Zhang, X., Shaoqing, R., Sun, J., 2016. Deep residual learning for image recognition. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 770–778.Hughes, D.P., Salathe, M., 2015. An Open Access Repository of Images on Plant Health to Enable the Development of Mobile Disease Diagnostics.Humphreys, D., Singer, B., Lawlor, K., Smith, R., Budds, J., Gabay, M., Bhagwat, S., de Jong, W., Newing, H., Cross, C., Satyal, P., 2019. SDG 17: partnerships for the goalsFocus on forest finance and partnerships. In: Sustainable Development Goals: Their Impacts on Forests and People. https://doi.org/10.1017/9781108765015.019Islam, M., Dinh, A., Wahid, K., Bhowmik, P., 2017. Detection of potato diseases using image segmentation and multiclass support vector machine. Can. Conf. Electr. Comput. Eng. 8–11. https://doi.org/10.1109/CCECE.2017.7946594Johannes, A., Picon, A., Alvarez-Gila, A., Echazarra, J., Rodriguez-Vaamonde, S., Navajas, A.D., Ortiz-Barredo, A., 2017. Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Comput. Electron. Agric. 138, 200–209. https://doi.org/10.1016/j.compag.2017.04.013.Joshi, R.C., Kaushik, M., Dutta, M.K., Srivastava, A., Choudhary, N., 2021. VirLeafNet: Automatic analysis and viral disease diagnosis using deep-learning in Vigna mungo plant. Ecol. Inform. 61, 101197. https://doi.org/10.1016/j.ecoinf.2020.101197.Kaloxylos, A., Eigenmann, R., Teye, F., Politopoulou, Z., Wolfert, S., Shrank, C., Dillinger, M., Lampropoulou, I., Antoniou, E., Pesonen, L., Nicole, H., Thomas, F., Alonistioti, N., Kormentzas, G., 2012. Farm management systems and the Future Internet era. Comput. Electron. Agric. 89, 130–144. https://doi.org/10.1016/j. compag.2012.09.002.Kehs, A., Mccloskey, P., Chelal, J., Morr, D., Amakove, S., Mayieka, J., Ntango, G., Nyongesa, K., Pamba, L., Mugo, J., Tsuma, M., Onyango, W., Hughes, D., 2019. From village to globe : A dynamic real-time map of African fields through PlantVillage. KKernecker, M., Knierim, A., Wurbs, A., Kraus, T., Borges, F., 2020. Experience versus expectation: farmers’ perceptions of smart farming technologies for cropping systems across Europe. Precis. Agric. 21, 34–50. https://doi.org/10.1007/s11119- 019-09651-zKirk, D.B., Wen-Mei, W.H., 2016. Programming Massively Parallel Processors: A Handson Approach. Morgan Kaufmann.Kitchen, N.R., 2008. Emerging technologies for real-time and integrated agriculture decisions. Comput. Electron. Agric. 61, 1–3. https://doi.org/10.1016/j. compag.2007.06.007Krizhevsky, B.A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90.Kumar, S.A., Ilango, P., 2018. The impact of wireless sensor network in the field of precision agriculture: a review. Wirel. Pers. Commun. 98, 685–698. https://doi.org/ 10.1007/s11277-017-4890-z.LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2323. https://doi.org/10.1109/ 5.726791Lee, B.X., Kjaerulf, F., Turner, S., Cohen, L., Donnelly, P.D., Muggah, R., Davis, R., Realini, A., Kieselbach, B., MacGregor, L.S., Waller, I., Gordon, R., MoloneyKitts, M., Lee, G., Gilligan, J., 2016. Transforming our world: implementing the 2030 agenda through sustainable development goal indicators. J. Public Health Policy 37, S13–S31. https://doi.org/10.1057/s41271-016-0002-7.Lewis, T., 1998. Evolution of farm management information systems. Comput. Electron. Agric. 19, 233–248. https://doi.org/10.1016/S0168-1699(97)00040-9Liu, J., Wang, X., 2021. Plant diseases and pests detection based on deep learning: a review. In: Plant Methods, 17, Issue 1. BioMed Central Ltd. https://doi.org/10.1186/ s13007-021-00722-9.Liu, B., Zhang, Y., He, D.J., Li, Y., 2018. Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry (Basel). 10. https://doi.org/ 10.3390/sym10010011.Ma, J., Du, K., Zheng, F., Zhang, L., Gong, Z., Sun, Z., 2018. A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network. Comput. Electron. Agric. 154, 18–24. https://doi.org/10.1016/j. compag.2018.08.048Mahan, J.R., Yeater, K.M., 2008. Agricultural applications of a low-cost infrared thermometer. Comput. Electron. Agric. 64, 262–267. https://doi.org/10.1016/j. compag.2008.05.017.Mahlein, A.K., Rumpf, T., Welke, P., Dehne, H.W., Plümer, L., Steiner, U., Oerke, E.C., 2013. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 128, 21–30. https://doi.org/10.1016/j.rse.2012.09.019Marsland, S., 2011. Machine learning: an algorithmic perspective. Chapman and Hall/ CRC.Mohanty, S.P., Hughes, D.P., Salath´e, M., 2016. Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 1–10. https://doi.org/10.3389/ fpls.2016.01419Oerke, E.C., 2006. Crop losses to pests. J. Agric. Sci. 144, 31–43. https://doi.org/ 10.1017/S0021859605005708.Otekunrin, Olutosin A., Otekunrin, Oluwaseun A., Momoh, S., Ayinde, I.A., 2019. How far has Africa gone in achieving the zero hunger target? Evidence from Nigeria. Glob. Food Sec. 22, 1–12. https://doi.org/10.1016/j.gfs.2019.08.001.Ozguven, M.M., Adem, K., 2019. Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms. Phys. A Stat. Mech. its Appl. 535, 122537. https://doi.org/10.1016/j.physa.2019.122537.Patrício, D.I., Rieder, R., 2018. Computer vision and artificial intelligence in precision agriculture for grain crops: a systematic review. Comput. Electron. Agric. 153, 69–81. https://doi.org/10.1016/j.compag.2018.08.001.Polo, J., Hornero, G., Duijneveld, C., García, A., Casas, O., 2015. Design of a low-cost Wireless Sensor Network with UAV mobile node for agricultural applications. Comput. Electron. Agric. 119, 19–32. https://doi.org/10.1016/j. compag.2015.09.024Qin, F., Liu, D., Sun, B., Ruan, L., Ma, Z., Wang, H., 2016. Identification of alfalfa leaf diseases using image recognition technology. PLoS One 11, 1–26. https://doi.org/ 10.1371/journal.pone.0168274.Rajan, P., Radhakrishnan, B., Padma Suresh, L., 2017. Detection and classification of pests from crop images using Support Vector Machine. In: Proc. IEEE Int. Conf. Emerg. Technol. Trends Comput. Commun. Electr. Eng. ICETT, 2016. https://doi. org/10.1109/ICETT.2016.7873750.Russell, S., Norvig, P., 2010. Intelligence artificielle: Avec plus de 500 exercices. Pearson Education France.Saikawa, T., Cap, Q.H., Kagiwada, S., Uga, H., Iyatomi, H., 2019. AOP: an anti-overfitting pretreatment for practical image-based plant diagnosis. In: Proc. - 2019 IEEE Int. Conf. Big Data, Big Data 2019, pp. 5177–5182. https://doi.org/10.1109/ BigData47090.2019.9006567.Savary, S., Willocquet, L., 2014. Simulation modeling in botanical epidemiology and crop loss analysis. Plant Heal. Instr. https://doi.org/10.1094/phi-a-2014-0314-01.Siddiqua, A., Kabir, M.A., Ferdous, T., Ali, I.B., Weston, L.A., 2022. Evaluating plant disease detection mobile applications: quality and limitations. Agronomy 12. https://doi.org/10.3390/agronomy12081869.Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. In: 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc, pp. 1–14. SSladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., Stefanovic, D., 2016. Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016. https://doi.org/10.1155/2016/3289801.Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 07–12-June, pp. 1–9. https://doi. org/10.1109/CVPR.2015.7298594Tani, H., Kotani, R., Kagiwada, S., Uga, H., Iyatomi, H., 2018. Diagnosis of multiple cucumber infections with convolutional neural networks. In: Proc. - Appl. Imag. Pattern Recognit. Work. 2018-Octob, 13–16. https://doi.org/10.1109/ AIPR.2018.8707385.Tanumihardjo, S.A., McCulley, L., Roh, R., Lopez-Ridaura, S., Palacios-Rojas, N., Gunaratna, N.S., 2020. Maize agro-food systems to ensure food and nutrition security in reference to the Sustainable Development Goals. Glob. Food Sec. 25, 100327. https://doi.org/10.1016/j.gfs.2019.100327.Wang, N., Zhang, N., Wang, M., 2006. Wireless sensors in agriculture and food industry - Recent development and future perspective. Comput. Electron. Agric. 50, 1–14. https://doi.org/10.1016/j.compag.2005.09.003.Yuan, L., Huang, Y., Loraamm, R.W., Nie, C., Wang, J., Zhang, J., 2014. Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. F. Crop. Res. 156, 199–207. https://doi.org/10.1016/j.fcr.2013.11.012.Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 8689 LNCS, pp. 818–833. https://doi.org/10.1007/978-3-319- 10590-1_53.© 2024 The Authorsinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/Cultivos hortículas - TrastornosData collectionDeep learningHorticultural cropsMENAMobile appSDG 17SDG 2Framework for deep learning diagnosis of plant disorders in horticultural crops: From data collection tools to user-friendly web and mobile appsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/29a2ddc0-4a15-4cae-b1b0-cf5126ee3822/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf143919https://repositorio.unibague.edu.co/bitstreams/8185d85e-b647-4009-99fe-4813ef3c2b5f/downloada17d3386a0f645492b63acef98c5ce2fMD52TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain3185https://repositorio.unibague.edu.co/bitstreams/5822a43f-56da-45ed-bfa7-f64532ed701f/downloadb64b27164ae6bae8b3c2eb9c4db177cfMD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg23493https://repositorio.unibague.edu.co/bitstreams/a0bf3866-1ae2-47e2-b728-cc1981846c08/downloade61fdf5b016632f4ed15d9150a25f377MD5420.500.12313/6056oai:repositorio.unibague.edu.co:20.500.12313/60562025-11-29 03:02:09.2https://creativecommons.org/licenses/by/4.0/© 2024 The Authorshttps://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
