Digital image correlation analyses of masonry infilled frame: Uncertainty-based mesh refinement and damage quantification

Masonry walls are subjected to cyclic lateral loads to study damage caused by earthquakes. Imaging techniques are useful to quantify crack networks in such tests, where preferential locations for their initiation are not present. However, detecting small cracks in large structures is challenging. It...

Full description

Autores:
Sciuti, Vinicius Fiocco
Vargas, Rafael
Guerrero, Néstor
Marante, María Eugenia
Hild, François
Tipo de recurso:
Article of investigation
Fecha de publicación:
2025
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5575
Acceso en línea:
https://hdl.handle.net/20.500.12313/5575
https://journals.sagepub.com/doi/full/10.1177/10812865231174840
Palabra clave:
Mampostería - Imágenes digitales
Adapted mesh
Crack opening displacement
Digital image correlation (DIC)
Full-scale experiment
Mechanical regularization
Rights
openAccess
License
© The Author(s) 2023.
id UNIBAGUE2_6a3b55e07ad65a829bf6d1e18a376bb8
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5575
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Digital image correlation analyses of masonry infilled frame: Uncertainty-based mesh refinement and damage quantification
title Digital image correlation analyses of masonry infilled frame: Uncertainty-based mesh refinement and damage quantification
spellingShingle Digital image correlation analyses of masonry infilled frame: Uncertainty-based mesh refinement and damage quantification
Mampostería - Imágenes digitales
Adapted mesh
Crack opening displacement
Digital image correlation (DIC)
Full-scale experiment
Mechanical regularization
title_short Digital image correlation analyses of masonry infilled frame: Uncertainty-based mesh refinement and damage quantification
title_full Digital image correlation analyses of masonry infilled frame: Uncertainty-based mesh refinement and damage quantification
title_fullStr Digital image correlation analyses of masonry infilled frame: Uncertainty-based mesh refinement and damage quantification
title_full_unstemmed Digital image correlation analyses of masonry infilled frame: Uncertainty-based mesh refinement and damage quantification
title_sort Digital image correlation analyses of masonry infilled frame: Uncertainty-based mesh refinement and damage quantification
dc.creator.fl_str_mv Sciuti, Vinicius Fiocco
Vargas, Rafael
Guerrero, Néstor
Marante, María Eugenia
Hild, François
dc.contributor.author.none.fl_str_mv Sciuti, Vinicius Fiocco
Vargas, Rafael
Guerrero, Néstor
Marante, María Eugenia
Hild, François
dc.subject.armarc.none.fl_str_mv Mampostería - Imágenes digitales
topic Mampostería - Imágenes digitales
Adapted mesh
Crack opening displacement
Digital image correlation (DIC)
Full-scale experiment
Mechanical regularization
dc.subject.proposal.eng.fl_str_mv Adapted mesh
Crack opening displacement
Digital image correlation (DIC)
Full-scale experiment
Mechanical regularization
description Masonry walls are subjected to cyclic lateral loads to study damage caused by earthquakes. Imaging techniques are useful to quantify crack networks in such tests, where preferential locations for their initiation are not present. However, detecting small cracks in large structures is challenging. It is shown that finite element (FE)-based digital image correlation (DIC) can detect and quantify cracks by combining optical and mechanical information of a cyclic shear experiment performed on a full-size masonry wall. Pixel-wise gray-level residuals and elementary crack opening displacement fields are the key quantities of the proposed framework. Detection criteria based on standard uncertainties guided the application of new DIC strategies (i.e., mechanical regularization, mesh adaption, and damage). Two damage regimes were quantified. Zigzagged cracks were first formed, for which their opening displacements were on average less than 0.5 mm with very limited damage. They were followed by sliding shear cracks, whose mean opening displacements varied between 1 and 3 mm, and damage developed in a more gradual and extended way. Such rich full-field data set may be used for validating damage models up to full-scale simulations.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-08-29T22:42:45Z
dc.date.available.none.fl_str_mv 2025-08-29T22:42:45Z
dc.date.issued.none.fl_str_mv 2025-01
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Sciuti, V., Vargas, R., Guerrero, N., Marante, M. y Hild, F. (2025). Digital image correlation analyses of masonry infilled frame: Uncertainty-based mesh refinement and damage quantification. Mathematics and Mechanics of Solids, 30(1), 93 - 115. DOI: 10.1177/10812865231174840
dc.identifier.doi.none.fl_str_mv 10.1177/10812865231174840
dc.identifier.eissn.none.fl_str_mv 17413028
dc.identifier.issn.none.fl_str_mv 10812865
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5575
dc.identifier.url.none.fl_str_mv https://journals.sagepub.com/doi/full/10.1177/10812865231174840
identifier_str_mv Sciuti, V., Vargas, R., Guerrero, N., Marante, M. y Hild, F. (2025). Digital image correlation analyses of masonry infilled frame: Uncertainty-based mesh refinement and damage quantification. Mathematics and Mechanics of Solids, 30(1), 93 - 115. DOI: 10.1177/10812865231174840
10.1177/10812865231174840
17413028
10812865
url https://hdl.handle.net/20.500.12313/5575
https://journals.sagepub.com/doi/full/10.1177/10812865231174840
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 115
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 93
dc.relation.citationvolume.none.fl_str_mv 30
dc.relation.ispartofjournal.none.fl_str_mv Mathematics and Mechanics of Solids
dc.relation.references.none.fl_str_mv Janaraj T and Dhanasekar M. Finite element analysis of the in-plane shear behaviour of masonry panels confined with reinforced grouted cores. Construction and Building Materials 2014; 65: 495–506.
Yacila J, Camata G, Salsavilca J et al. Pushover analysis of confined masonry walls using a 3d macro-modelling approach. Engineering Structures 2019; 201: 109731.
Ahmed A and Shahzada K. Seismic vulnerability assessment of confined masonry structures by macro-modeling approach. Structures 2020; 27: 639–649.
Korswagen PA, Longo M and Rots JG. High-resolution monitoring of the initial development of cracks in experimental masonry shear walls and their reproduction in finite element models. Engineering Structures 2020; 211: 110365.
Asociaci´on Colombiana de Ingenier´ıa S´ısmica, Titulo A - Requisitos Generales de Dise˜no y Construcci´on Sismo Resistente, Nsr-10, vol. Titulo A, pp. 1–174, 2010.
Asociaci´on Colombiana de Ingenier´ıa S´ısmica, Titulo E - Casas de uno y dos pisos, Nsr-10, pp. 1–46, 2010.
SENCICO, NTE E.030 de dise˜no sismorresistente de edificios del Per´u, 2003.
Ministerio de Vivienda, Norma Tecnica E.070. Alba˜niler´ıa, Rne, pp. 297-299, 2006.
FODENORCA, Construcciones sismorresistentes. Parte 1: Requisitos (2da. Revisi´on), 2019.
FODENORCA, An´alisis, dise˜no y construcci´on de edificaciones de mamposter´ıa estructural, vol. 8, no. 5, Caracas, 2019.
Asteris PG, Antoniou ST, Sophianopoulos DS et al. Mathematical Macromodeling of Infilled Frames: State of the Art. Journal of Structural Engineering 2011; 137(12): 1508– 1517.
Guerrero N, Martinez M, Picon R et al. Experimental analysis of masonry infilled frames using digital image correlation. Materials and structures 2014; 47(5): 873–884.
Asteris P, Kyriazopoulos A and Vouthounis P. The state-of-theart in infilled frames numerical models. In Proceedings of the Structural Engineering World Congress (SEWC2002), volume Paper No. T1-2-c2. Yokohama (Japan).
Petry S and Beyer K. Limit states of modern unreinforced clay brick masonry walls subjected to in-plane loading. Bulletin of earthquake engineering 2015; 13(4): 1073–1095.
Sutton M. Computer vision-based, noncontacting deformation measurements in mechanics: A generational transformation. Appl Mech Rev 2013; 65(AMR-13-1009): 050802.
K¨untz M, Jolin M, Bastien J et al. Digital image correlation analysis of crack behavior in a reinforced concrete beam during a load test. Canad J Civil Eng 2006; 33: 1418–1425.
Mousa MA, Yussof MM, Udi UJ et al. Application of digital image correlation in structural health monitoring of bridge infrastructures: A review. Infrastructures 2021; 6(12): 176.
Tung S, Shih M and Sung W. Development of digital image correlation method to analyse crack variations of masonry wall. Sadhana 2008; 33: 767–779.
Bui TT and Limam A. Out-of-plane behaviour of hollow concrete block masonry walls unstrengthened and strengthened with cfrp composite. Composites Part B: Engineering 2014; 67: 527–542.
Herbert D, Gardner D, Harbottle M et al. Uniform lateral load capacity of small-scale masonry wall panels. Materials and Structures 2014; 47: 805–818.
Vanniamparambil PA, Bolhassani M, Carmi R et al. A data fusion approach for progressive damage quantification in reinforced concrete masonry walls. Smart Materials and Structures 2013; 23(1): 015007.
Salmanpour AH, Mojsilovi´c N and Schwartz J. Displacement capacity of contemporary unreinforced masonry walls: An experimental study. Engineering Structures 2015; 89: 1–16.
Casolo S, Biolzi L, Carvelli V et al. Testing masonry blockwork panels for orthotropic shear strength. Construction and Building Materials 2019; 214: 74–92.
Stazi F, Serpilli M, Chiappini G et al. Experimental study of the mechanical behaviour of a new extruded earth block masonry. Construction and Building Materials 2020; 244: 118368.
Torres B, Varona FB, Baeza FJ et al. Study on retrofitted masonry elements under shear using digital image correlation. Sensors 2020; 20(7): 2122.
Elghazouli A, Bompa D, Mourad S et al. In-plane lateral cyclic behaviour of lime-mortar and clay-brick masonry walls in dry and wet conditions. Bulletin of Earthquake Engineering 2021; 19: 5525–5563.
Howlader M, Masia M and Griffith M. Digital image correlation for the analysis of in-plane tested unreinforced masonry walls. Structures 2021; 29: 427–445.
Ghorbani R, Matta F and Sutton M. Full-field deformation measurement and crack mapping on confined masonry walls using digital image correlation. Experimental Mechanics 2015; 55: 227–243.
Calder´on S, Sandoval C, Araya-Letelier G et al. Quasistatic testing of concrete masonry shear walls with different horizontal reinforcement schemes. Journal of Building Engineering 2021; 38: 102201.
Serpilli M, Stazi F and ans S Lenci GC. Earthen claddings in lightweight timber framed buildings: An experimental study on the influence of fir boards sheathing and gfrp jacketing. Construction and Building Materials 2021; 285: 122896.
Bolhassani M, Hamid A, Rajaram S et al. Failure analysis and damage detection of partially grouted masonry walls by enhancing deformation measurement using dic. Engineering Structures 2017; 134: 262–275.
Fedele R, Scaioni M, Barazzetti L et al. Delamination tests on cfrp-reinforced masonry pillars: Optical monitoring and mechanical modeling. Cement and Concrete Composites 2014; 45: 243–254.
Didier M, Abbiati G, Hefti F et al. Damage quantification in plastered unreinforced masonry walls using digital image correlation. In 10th Australasian masonry conference. pp. 14– 18.
Korswagen P, Longo M, Meulman E et al. Crack initiation and propagation in unreinforced masonry specimens subjected to repeated in-plane loading during light damage. Bulletin of Earthquake Engineering 2019; 17: 4651–4687.
Calder´on S, Sandoval C, Inzunza E et al. Influence of a window-type opening on the shear response of partiallygrouted masonry shear walls. Engineering Structures 2019; 201: 109783.
Meriggi P, Caggegi C, Gabor A et al. Shear-compression tests on stone masonry walls strengthened with basalt textile reinforced mortar (trm). Construction and Building Materials 2022; 316: 125804.
Rezaie A, Achanta R, Godio M et al. Comparison of crack segmentation using digital image correlation measurements and deep learning. Construction and Building Materials 2020; 261: 120474.
Gehri N, Mata-Falc´on J and Kaufmann W. Automated crack detection and measurement based on digital image correlation. Construction and Building Materials 2020; 256: 119383.
Besnard G, Hild F and Roux S. “Finite-element” displacement fields analysis from digital images: Application to Portevin-Le Chatelier bands. Exp Mech 2006; 46: 789–803.
Hild F, Bouterf A and Roux S. Damage Measurements via DIC. International Journal of Fracture 2015; 191(1-2): 77–105.
Sciuti VF, Vargas R, Canto RB et al. Pyramidal Adaptive Meshing for Digital Image Correlation Dealing With Cracks. Engineering Fracture Mechanics 2021; 256: 107931.
Hild F and Roux S. Comparison of local and global approaches to digital image correlation. Experimental Mechanics 2012; 52(9): 1503–1519.
Standardization, Good Practices, and Uncertainty Qunatification Committee. A Good Practices Guide for Digital Image Correlation. International Digital Image Correlation Society (iDICs), 2018. URL idics.org/guide/.
EN 4861, Aerospace series - Metrological assessment procedure for kinematic fields measured by digital image correlation. European Committee for Standardization (CEN), 2020.
Sciuti VF, Hild F, Pandolfelli VC et al. Digital image correlation applied to in situ evaluation of surface cracks upon curing of MgO-containing refractory castables. Journal of the European Ceramic Society 2020; .
Guerrero N. An´alisis Te´orico-Experimental del Da˜no y del Pandeo Local en Estructuras de Ingenier´ıa Civil (in Spanish). PhD Thesis, University of Los Andes, Venezuela, 2007. 47.
Leclerc H, Neggers J, Mathieu F et al. Correli 3.0, 2015. IDDN.FR.001.520008.000.S.P.2015.000.31500.
Sciuti V, Hild F, Pandolfelli V et al. Digital Image Correlation applied to in situ evaluation of surface cracks upon curing of MgO-containing refractory castables. Journal of the European Ceramic Society 2021; 41(1).
Vakulenko A and Kachanov M. Continuum theory of medium with cracks. Isv AN SSSR, Mekh Tverdogo Tela 1971; 4: 159– 166.
R´ethor´e J, Roux S and Hild F. An extended and integrated digital image correlation technique applied to the analysis fractured samples. Eur J Comput Mech 2009; 18: 285–306.
Tomiˇcevi´c Z, Hild F and Roux S. Mechanics-aided digital image correlation. J Strain Analysis 2013; 48: 330–343.
Claire D, Hild F and Roux S. A finite element formulation to identify damage fields: The equilibrium gap method. Int J Num Meth Engng 2004; 61(2): 189–208.
Mendoza A, Neggers J, Hild F et al. Complete mechanical regularization applied to digital image and volume correlation. Computer Methods in Applied Mechanics and Engineering 2019; 355: 27–43.
Fries TP, Byfut A, Alizada A et al. Hanging nodes and xfem. International Journal for Numerical Methods in Engineering 2011; 86(4-5): 404–430.
Hild F, Raka B, Baudequin M et al. Multi-scale displacement field measurements of compressed mineral wool samples by digital image correlation. Appl Optics 2002; IP 41(32): 6815– 6828.
Hild F and Roux S. Digital image correlation. In Rastogi P and Hack E (eds.) Optical Methods for Solid Mechanics. A Full- Field Approach. Weinheim (Germany): Wiley-VCH, pp. 183– 228.
Sciuti VF, Vargas R, Canto RB et al. Pyramidal adaptive meshing for Digital Image Correlation dealing with cracks. Engineering Fracture Mechanics 2021; 256: 107931.
Sciuti VF, Canto RB, Neggers J et al. On the benefits of correcting brightness and contrast in global digital image correlation: Monitoring cracks during curing and drying of a refractory castable. Optics and Lasers in Engineering 2020; 136: 106316.
dc.rights.eng.fl_str_mv © The Author(s) 2023.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv © The Author(s) 2023.
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SAGE Publications Inc.
dc.publisher.place.none.fl_str_mv Estados Unidos
publisher.none.fl_str_mv SAGE Publications Inc.
dc.source.none.fl_str_mv https://www.researchgate.net/publication/372619356_Digital_image_correlation_analyses_of_masonry_infilled_frame_Uncertainty-based_mesh_refinement_and_damage_quantification
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/c4614dc9-6781-4b0f-b7f7-2bce39740df3/download
https://repositorio.unibague.edu.co/bitstreams/acfdfa51-10fa-46b5-bd31-fdd9c386fb5a/download
https://repositorio.unibague.edu.co/bitstreams/7eaf076c-82c4-4a5b-a42e-02af73bdad61/download
https://repositorio.unibague.edu.co/bitstreams/fed03c01-73be-4b24-921e-04c3a0279939/download
bitstream.checksum.fl_str_mv aa6f56214174cad48f907fd6d94193f3
3c17b07b7700fe86158ce362c0d3570c
2fa3e590786b9c0f3ceba1b9656b7ac3
ade164591b36b944d72b01c9aec829b2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059979264458752
spelling Sciuti, Vinicius Fiocco3bd16dd5-d507-4e5c-9da0-ef8afa47a87d-1Vargas, Rafael840af6da-23f4-4bb1-b8c6-128341670e7f-1Guerrero, Néstor9b04d6cb-7990-4c4a-b69b-4d7a40d14cf5-1Marante, María Eugenia395c7fc6-c60f-4505-8627-914c313e77d0-1Hild, François96acc0e5-f9b5-4297-9e1e-c2d02aecec1b-12025-08-29T22:42:45Z2025-08-29T22:42:45Z2025-01Masonry walls are subjected to cyclic lateral loads to study damage caused by earthquakes. Imaging techniques are useful to quantify crack networks in such tests, where preferential locations for their initiation are not present. However, detecting small cracks in large structures is challenging. It is shown that finite element (FE)-based digital image correlation (DIC) can detect and quantify cracks by combining optical and mechanical information of a cyclic shear experiment performed on a full-size masonry wall. Pixel-wise gray-level residuals and elementary crack opening displacement fields are the key quantities of the proposed framework. Detection criteria based on standard uncertainties guided the application of new DIC strategies (i.e., mechanical regularization, mesh adaption, and damage). Two damage regimes were quantified. Zigzagged cracks were first formed, for which their opening displacements were on average less than 0.5 mm with very limited damage. They were followed by sliding shear cracks, whose mean opening displacements varied between 1 and 3 mm, and damage developed in a more gradual and extended way. Such rich full-field data set may be used for validating damage models up to full-scale simulations.application/pdfSciuti, V., Vargas, R., Guerrero, N., Marante, M. y Hild, F. (2025). Digital image correlation analyses of masonry infilled frame: Uncertainty-based mesh refinement and damage quantification. Mathematics and Mechanics of Solids, 30(1), 93 - 115. DOI: 10.1177/1081286523117484010.1177/108128652311748401741302810812865https://hdl.handle.net/20.500.12313/5575https://journals.sagepub.com/doi/full/10.1177/10812865231174840engSAGE Publications Inc.Estados Unidos11519330Mathematics and Mechanics of SolidsJanaraj T and Dhanasekar M. Finite element analysis of the in-plane shear behaviour of masonry panels confined with reinforced grouted cores. Construction and Building Materials 2014; 65: 495–506.Yacila J, Camata G, Salsavilca J et al. Pushover analysis of confined masonry walls using a 3d macro-modelling approach. Engineering Structures 2019; 201: 109731.Ahmed A and Shahzada K. Seismic vulnerability assessment of confined masonry structures by macro-modeling approach. Structures 2020; 27: 639–649.Korswagen PA, Longo M and Rots JG. High-resolution monitoring of the initial development of cracks in experimental masonry shear walls and their reproduction in finite element models. Engineering Structures 2020; 211: 110365.Asociaci´on Colombiana de Ingenier´ıa S´ısmica, Titulo A - Requisitos Generales de Dise˜no y Construcci´on Sismo Resistente, Nsr-10, vol. Titulo A, pp. 1–174, 2010.Asociaci´on Colombiana de Ingenier´ıa S´ısmica, Titulo E - Casas de uno y dos pisos, Nsr-10, pp. 1–46, 2010.SENCICO, NTE E.030 de dise˜no sismorresistente de edificios del Per´u, 2003.Ministerio de Vivienda, Norma Tecnica E.070. Alba˜niler´ıa, Rne, pp. 297-299, 2006.FODENORCA, Construcciones sismorresistentes. Parte 1: Requisitos (2da. Revisi´on), 2019.FODENORCA, An´alisis, dise˜no y construcci´on de edificaciones de mamposter´ıa estructural, vol. 8, no. 5, Caracas, 2019.Asteris PG, Antoniou ST, Sophianopoulos DS et al. Mathematical Macromodeling of Infilled Frames: State of the Art. Journal of Structural Engineering 2011; 137(12): 1508– 1517.Guerrero N, Martinez M, Picon R et al. Experimental analysis of masonry infilled frames using digital image correlation. Materials and structures 2014; 47(5): 873–884.Asteris P, Kyriazopoulos A and Vouthounis P. The state-of-theart in infilled frames numerical models. In Proceedings of the Structural Engineering World Congress (SEWC2002), volume Paper No. T1-2-c2. Yokohama (Japan).Petry S and Beyer K. Limit states of modern unreinforced clay brick masonry walls subjected to in-plane loading. Bulletin of earthquake engineering 2015; 13(4): 1073–1095.Sutton M. Computer vision-based, noncontacting deformation measurements in mechanics: A generational transformation. Appl Mech Rev 2013; 65(AMR-13-1009): 050802.K¨untz M, Jolin M, Bastien J et al. Digital image correlation analysis of crack behavior in a reinforced concrete beam during a load test. Canad J Civil Eng 2006; 33: 1418–1425.Mousa MA, Yussof MM, Udi UJ et al. Application of digital image correlation in structural health monitoring of bridge infrastructures: A review. Infrastructures 2021; 6(12): 176.Tung S, Shih M and Sung W. Development of digital image correlation method to analyse crack variations of masonry wall. Sadhana 2008; 33: 767–779.Bui TT and Limam A. Out-of-plane behaviour of hollow concrete block masonry walls unstrengthened and strengthened with cfrp composite. Composites Part B: Engineering 2014; 67: 527–542.Herbert D, Gardner D, Harbottle M et al. Uniform lateral load capacity of small-scale masonry wall panels. Materials and Structures 2014; 47: 805–818.Vanniamparambil PA, Bolhassani M, Carmi R et al. A data fusion approach for progressive damage quantification in reinforced concrete masonry walls. Smart Materials and Structures 2013; 23(1): 015007.Salmanpour AH, Mojsilovi´c N and Schwartz J. Displacement capacity of contemporary unreinforced masonry walls: An experimental study. Engineering Structures 2015; 89: 1–16.Casolo S, Biolzi L, Carvelli V et al. Testing masonry blockwork panels for orthotropic shear strength. Construction and Building Materials 2019; 214: 74–92.Stazi F, Serpilli M, Chiappini G et al. Experimental study of the mechanical behaviour of a new extruded earth block masonry. Construction and Building Materials 2020; 244: 118368.Torres B, Varona FB, Baeza FJ et al. Study on retrofitted masonry elements under shear using digital image correlation. Sensors 2020; 20(7): 2122.Elghazouli A, Bompa D, Mourad S et al. In-plane lateral cyclic behaviour of lime-mortar and clay-brick masonry walls in dry and wet conditions. Bulletin of Earthquake Engineering 2021; 19: 5525–5563.Howlader M, Masia M and Griffith M. Digital image correlation for the analysis of in-plane tested unreinforced masonry walls. Structures 2021; 29: 427–445.Ghorbani R, Matta F and Sutton M. Full-field deformation measurement and crack mapping on confined masonry walls using digital image correlation. Experimental Mechanics 2015; 55: 227–243.Calder´on S, Sandoval C, Araya-Letelier G et al. Quasistatic testing of concrete masonry shear walls with different horizontal reinforcement schemes. Journal of Building Engineering 2021; 38: 102201.Serpilli M, Stazi F and ans S Lenci GC. Earthen claddings in lightweight timber framed buildings: An experimental study on the influence of fir boards sheathing and gfrp jacketing. Construction and Building Materials 2021; 285: 122896.Bolhassani M, Hamid A, Rajaram S et al. Failure analysis and damage detection of partially grouted masonry walls by enhancing deformation measurement using dic. Engineering Structures 2017; 134: 262–275.Fedele R, Scaioni M, Barazzetti L et al. Delamination tests on cfrp-reinforced masonry pillars: Optical monitoring and mechanical modeling. Cement and Concrete Composites 2014; 45: 243–254.Didier M, Abbiati G, Hefti F et al. Damage quantification in plastered unreinforced masonry walls using digital image correlation. In 10th Australasian masonry conference. pp. 14– 18.Korswagen P, Longo M, Meulman E et al. Crack initiation and propagation in unreinforced masonry specimens subjected to repeated in-plane loading during light damage. Bulletin of Earthquake Engineering 2019; 17: 4651–4687.Calder´on S, Sandoval C, Inzunza E et al. Influence of a window-type opening on the shear response of partiallygrouted masonry shear walls. Engineering Structures 2019; 201: 109783.Meriggi P, Caggegi C, Gabor A et al. Shear-compression tests on stone masonry walls strengthened with basalt textile reinforced mortar (trm). Construction and Building Materials 2022; 316: 125804.Rezaie A, Achanta R, Godio M et al. Comparison of crack segmentation using digital image correlation measurements and deep learning. Construction and Building Materials 2020; 261: 120474.Gehri N, Mata-Falc´on J and Kaufmann W. Automated crack detection and measurement based on digital image correlation. Construction and Building Materials 2020; 256: 119383.Besnard G, Hild F and Roux S. “Finite-element” displacement fields analysis from digital images: Application to Portevin-Le Chatelier bands. Exp Mech 2006; 46: 789–803.Hild F, Bouterf A and Roux S. Damage Measurements via DIC. International Journal of Fracture 2015; 191(1-2): 77–105.Sciuti VF, Vargas R, Canto RB et al. Pyramidal Adaptive Meshing for Digital Image Correlation Dealing With Cracks. Engineering Fracture Mechanics 2021; 256: 107931.Hild F and Roux S. Comparison of local and global approaches to digital image correlation. Experimental Mechanics 2012; 52(9): 1503–1519.Standardization, Good Practices, and Uncertainty Qunatification Committee. A Good Practices Guide for Digital Image Correlation. International Digital Image Correlation Society (iDICs), 2018. URL idics.org/guide/.EN 4861, Aerospace series - Metrological assessment procedure for kinematic fields measured by digital image correlation. European Committee for Standardization (CEN), 2020.Sciuti VF, Hild F, Pandolfelli VC et al. Digital image correlation applied to in situ evaluation of surface cracks upon curing of MgO-containing refractory castables. Journal of the European Ceramic Society 2020; .Guerrero N. An´alisis Te´orico-Experimental del Da˜no y del Pandeo Local en Estructuras de Ingenier´ıa Civil (in Spanish). PhD Thesis, University of Los Andes, Venezuela, 2007. 47.Leclerc H, Neggers J, Mathieu F et al. Correli 3.0, 2015. IDDN.FR.001.520008.000.S.P.2015.000.31500.Sciuti V, Hild F, Pandolfelli V et al. Digital Image Correlation applied to in situ evaluation of surface cracks upon curing of MgO-containing refractory castables. Journal of the European Ceramic Society 2021; 41(1).Vakulenko A and Kachanov M. Continuum theory of medium with cracks. Isv AN SSSR, Mekh Tverdogo Tela 1971; 4: 159– 166.R´ethor´e J, Roux S and Hild F. An extended and integrated digital image correlation technique applied to the analysis fractured samples. Eur J Comput Mech 2009; 18: 285–306.Tomiˇcevi´c Z, Hild F and Roux S. Mechanics-aided digital image correlation. J Strain Analysis 2013; 48: 330–343.Claire D, Hild F and Roux S. A finite element formulation to identify damage fields: The equilibrium gap method. Int J Num Meth Engng 2004; 61(2): 189–208.Mendoza A, Neggers J, Hild F et al. Complete mechanical regularization applied to digital image and volume correlation. Computer Methods in Applied Mechanics and Engineering 2019; 355: 27–43.Fries TP, Byfut A, Alizada A et al. Hanging nodes and xfem. International Journal for Numerical Methods in Engineering 2011; 86(4-5): 404–430.Hild F, Raka B, Baudequin M et al. Multi-scale displacement field measurements of compressed mineral wool samples by digital image correlation. Appl Optics 2002; IP 41(32): 6815– 6828.Hild F and Roux S. Digital image correlation. In Rastogi P and Hack E (eds.) Optical Methods for Solid Mechanics. A Full- Field Approach. Weinheim (Germany): Wiley-VCH, pp. 183– 228.Sciuti VF, Vargas R, Canto RB et al. Pyramidal adaptive meshing for Digital Image Correlation dealing with cracks. Engineering Fracture Mechanics 2021; 256: 107931.Sciuti VF, Canto RB, Neggers J et al. On the benefits of correcting brightness and contrast in global digital image correlation: Monitoring cracks during curing and drying of a refractory castable. Optics and Lasers in Engineering 2020; 136: 106316.© The Author(s) 2023.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.researchgate.net/publication/372619356_Digital_image_correlation_analyses_of_masonry_infilled_frame_Uncertainty-based_mesh_refinement_and_damage_quantificationMampostería - Imágenes digitalesAdapted meshCrack opening displacementDigital image correlation (DIC)Full-scale experimentMechanical regularizationDigital image correlation analyses of masonry infilled frame: Uncertainty-based mesh refinement and damage quantificationArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain7366https://repositorio.unibague.edu.co/bitstreams/c4614dc9-6781-4b0f-b7f7-2bce39740df3/downloadaa6f56214174cad48f907fd6d94193f3MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg19125https://repositorio.unibague.edu.co/bitstreams/acfdfa51-10fa-46b5-bd31-fdd9c386fb5a/download3c17b07b7700fe86158ce362c0d3570cMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/7eaf076c-82c4-4a5b-a42e-02af73bdad61/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf426113https://repositorio.unibague.edu.co/bitstreams/fed03c01-73be-4b24-921e-04c3a0279939/downloadade164591b36b944d72b01c9aec829b2MD5220.500.12313/5575oai:repositorio.unibague.edu.co:20.500.12313/55752025-09-12 12:01:01.034https://creativecommons.org/licenses/by-nc/4.0/© The Author(s) 2023.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=