Structure and photoluminescence properties of PbO–Bi2O3–Ga2O3 glass-ceramics containing silver nanoparticles, free lead and bismuth ions

We report the synthesis, structural characterization, and optical properties of PbO–Bi2O3–Ga2O3 glass-ceramics (GCs) containing PbO and Bi2O3 crystallites, free lead (Pb2+) and bismuth (Bi3+) ions, and silver nanoparticles (Ag-NPs). The samples were prepared by applying the melt-quenching method fol...

Full description

Autores:
Naranjo-Riaño, Luz Patricia
Oliveira, Nathália T.C.
Gonzáles Lastra, Jorge Enrique
Kassab, Luciana R.P.de Araújo, Cid B.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5577
Acceso en línea:
https://hdl.handle.net/20.500.12313/5577
https://www.sciencedirect.com/science/article/pii/S0925346723005013
Palabra clave:
Vidrio-cerámicas PbO Bi O–Ga O3 - Estructuras
Vidrio-cerámicas PbO Bi O–Ga O3 - Propiedades
Heavy metal oxide glass-ceramics
Luminescent Pb2+ and Bi3+ ions
PbO and Bi2O3 crystals
Silver nanoparticles
Rights
closedAccess
License
© 2023 Elsevier B.V.
id UNIBAGUE2_66f8ec0683b46af6595b18c3aa535918
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5577
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Structure and photoluminescence properties of PbO–Bi2O3–Ga2O3 glass-ceramics containing silver nanoparticles, free lead and bismuth ions
title Structure and photoluminescence properties of PbO–Bi2O3–Ga2O3 glass-ceramics containing silver nanoparticles, free lead and bismuth ions
spellingShingle Structure and photoluminescence properties of PbO–Bi2O3–Ga2O3 glass-ceramics containing silver nanoparticles, free lead and bismuth ions
Vidrio-cerámicas PbO Bi O–Ga O3 - Estructuras
Vidrio-cerámicas PbO Bi O–Ga O3 - Propiedades
Heavy metal oxide glass-ceramics
Luminescent Pb2+ and Bi3+ ions
PbO and Bi2O3 crystals
Silver nanoparticles
title_short Structure and photoluminescence properties of PbO–Bi2O3–Ga2O3 glass-ceramics containing silver nanoparticles, free lead and bismuth ions
title_full Structure and photoluminescence properties of PbO–Bi2O3–Ga2O3 glass-ceramics containing silver nanoparticles, free lead and bismuth ions
title_fullStr Structure and photoluminescence properties of PbO–Bi2O3–Ga2O3 glass-ceramics containing silver nanoparticles, free lead and bismuth ions
title_full_unstemmed Structure and photoluminescence properties of PbO–Bi2O3–Ga2O3 glass-ceramics containing silver nanoparticles, free lead and bismuth ions
title_sort Structure and photoluminescence properties of PbO–Bi2O3–Ga2O3 glass-ceramics containing silver nanoparticles, free lead and bismuth ions
dc.creator.fl_str_mv Naranjo-Riaño, Luz Patricia
Oliveira, Nathália T.C.
Gonzáles Lastra, Jorge Enrique
Kassab, Luciana R.P.de Araújo, Cid B.
dc.contributor.author.none.fl_str_mv Naranjo-Riaño, Luz Patricia
Oliveira, Nathália T.C.
Gonzáles Lastra, Jorge Enrique
Kassab, Luciana R.P.de Araújo, Cid B.
dc.subject.armarc.none.fl_str_mv Vidrio-cerámicas PbO Bi O–Ga O3 - Estructuras
Vidrio-cerámicas PbO Bi O–Ga O3 - Propiedades
topic Vidrio-cerámicas PbO Bi O–Ga O3 - Estructuras
Vidrio-cerámicas PbO Bi O–Ga O3 - Propiedades
Heavy metal oxide glass-ceramics
Luminescent Pb2+ and Bi3+ ions
PbO and Bi2O3 crystals
Silver nanoparticles
dc.subject.proposal.eng.fl_str_mv Heavy metal oxide glass-ceramics
Luminescent Pb2+ and Bi3+ ions
PbO and Bi2O3 crystals
Silver nanoparticles
description We report the synthesis, structural characterization, and optical properties of PbO–Bi2O3–Ga2O3 glass-ceramics (GCs) containing PbO and Bi2O3 crystallites, free lead (Pb2+) and bismuth (Bi3+) ions, and silver nanoparticles (Ag-NPs). The samples were prepared by applying the melt-quenching method followed by suitable heat-treatment of the samples. Transmission Electron Microscopy, X-ray diffraction, linear optical absorption, and photoluminescence (PL) were the techniques applied to characterize the samples. When the samples were excited at 330 nm a large PL intensity, due to the Pb2+ and Bi3+, is observed. Moreover, large PL intensity enhancement of about 1000% for the samples containing Ag-NPs is observed in comparison with the PL intensity from the samples without Ag-NPs. This is the first time that this behavior is reported for a GCs based on heavy-metal oxides. The potential of this class of materials for photonic applications is discussed.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-07
dc.date.accessioned.none.fl_str_mv 2025-08-29T22:56:43Z
dc.date.available.none.fl_str_mv 2025-08-29T22:56:43Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Naranjo-Riaño, L., Oliveira, N., Echeverry, C., Kassab, L. y de Araújo, C. (2023). Structure and photoluminescence properties of PbO–Bi2O3–Ga2O3 glass-ceramics containing silver nanoparticles, free lead and bismuth ions. Optical Materials, 141. DOI: 10.1016/j.optmat.2023.113929
dc.identifier.doi.none.fl_str_mv 10.1016/j.optmat.2023.113929
dc.identifier.issn.none.fl_str_mv 09253467
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5577
dc.identifier.url.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0925346723005013
identifier_str_mv Naranjo-Riaño, L., Oliveira, N., Echeverry, C., Kassab, L. y de Araújo, C. (2023). Structure and photoluminescence properties of PbO–Bi2O3–Ga2O3 glass-ceramics containing silver nanoparticles, free lead and bismuth ions. Optical Materials, 141. DOI: 10.1016/j.optmat.2023.113929
10.1016/j.optmat.2023.113929
09253467
url https://hdl.handle.net/20.500.12313/5577
https://www.sciencedirect.com/science/article/pii/S0925346723005013
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationstartpage.none.fl_str_mv 113929 CODEN OMATE Authors (5) Naranjo-Riaño, Luz Patricia a Send mail to Naranjo-Riaño L.P. Oliveira, Nathália T.C. b Echeverry, Camilo E. c Kassab, Luciana R.P. d de Araújo, Cid B. b,e Author affiliations (5) a Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67 B/Ambalá, Ibagué, Colombia b Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, PE, Recife, 50740-560, Brazil c Departamento de Física, Universidade Federal do Ceara, CE, Fortaleza, Brazil d Faculdade de Tecnologia de São Paulo, CEETEPS/UNESP, SP, São Paulo, 01124-060, Brazil e Departamento de Física, Universidade Federal de Pernambuco, PE, Recife, 50670-901, Brazil 3 48th percentile Citations Set citation alert 0.41 FWCI More information about Field-Weighted Citation Impact Full text Export Save to list Save to list functionality is only available if you are signed in and subscribed DocumentImpactCited by (3)References (42)Similar documents Abstract We report the synthesis, structural characterization, and optical properties of PbO–Bi2O3–Ga2O3 glass-ceramics (GCs) containing PbO and Bi2O3 crystallites, free lead (Pb2+) and bismuth (Bi3+) ions, and silver nanoparticles (Ag-NPs). The samples were prepared by applying the melt-quenching method followed by suitable heat-treatment of the samples. Transmission Electron Microscopy, X-ray diffraction, linear optical absorption, and photoluminescence (PL) were the techniques applied to characterize the samples. When the samples were excited at 330 nm a large PL intensity, due to the Pb2+ and Bi3+, is observed. Moreover, large PL intensity enhancement of about 1000% for the samples containing Ag-NPs is observed in comparison with the PL intensity from the samples without Ag-NPs. This is the first time that this behavior is reported for a GCs based on heavy-metal oxides. The potential of this class of materials for photonic applications is discussed. © 2023 Elsevier B.V. Author keywords Heavy metal oxide glass-ceramics; Luminescent Pb2+ and Bi3+ ions; PbO and Bi2O3 crystals; Silver nanoparticles Indexed keywords Engineering controlled terms Bismuth; Bismuth compounds; Crystal structure; Gallium compounds; Glass ceramics; High resolution transmission electron microscopy; Ions; Lead oxide; Light absorption; Metal nanoparticles; Optical properties; Photoluminescence; Synthesis (chemical) Engineering uncontrolled terms Bismuth ion; Glass-ceramics; Heavy metal oxide glass; Heavy metal oxide glass-ceramic; Lead ions; Luminescent pb2+ and bi3+ ion; PbO and bi2O3 crystal; Photoluminescence intensities; Photoluminescence properties; Structure property Engineering main heading Silver nanoparticles Reaxys Chemistry database information Reaxys is designed to support chemistry researchers at every stage with the ability to investigated chemistry related research topics in peer-reviewed literature, patents and substance databases. Reaxys retrieves substances, substance properties, reaction and synthesis data. Substances Pt View detailsExpand Substance platinum Powered by Learn about Reaxys chemistry database information Funding details Details about financial support for research, including funding sources and grant numbers as provided in academic publications. Funding sponsor Funding number Acronym UFRPE Coordenação de Aperfeiçoamento de Pessoal de Nível Superior See opportunities by CAPES See opportunities (opens in new window) 465.763/2014 CAPES Coordenação de Aperfeiçoamento de Pessoal de Nível Superior See opportunities by CAPES See opportunities (opens in new window) CAPES Conselho Nacional de Desenvolvimento Científico e Tecnológico See opportunities by CNPq See opportunities (opens in new window) CNPq Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco See opportunities by FACEPE See opportunities (opens in new window) FACEPE Universidad del Valle See opportunities by Univalle See opportunities (opens in new window) Univalle Universidad de Ibagué See opportunities See opportunities (opens in new window) 15-342-INT Universidad de Ibagué See opportunities See opportunities (opens in new window) Funding text 1 L. P. Naranjo acknowledges the financial support by Universidad de Ibagué (Colombia) (Project: 15-342-INT). The work by the other authors was supported by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The work was performed in the framework of the National Institute of Photonics (INCT de Fotônica-INFO, 465.763/2014) project. We also acknowledge measurements of XRD and TEM performed in the Multiuser Center of the DF-UFPE, Universidad del Valle (Colombia) and the laboratory Cemupec - UFRPE. Funding text 2 L. P. Naranjo acknowledges the financial support by Universidad de Ibagué (Colombia) (Project: 15-342-INT). The work by the other authors was supported by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico ( CNPq ), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco ( FACEPE ) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior ( CAPES ). The work was performed in the framework of the National Institute of Photonics (INCT de Fotônica-INFO, 465.763/2014) project. We also acknowledge measurements of XRD and TEM performed in the Multiuser Center of the DF-UFPE, Universidad del Valle (Colombia) and the laboratory Cemupec - UFRPE. Corresponding authors Corresponding author L.P. Naranjo-Riaño Affiliation Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67 B/Ambalá, Ibagué, Colombia Email address patricia.naranjo@unibague.edu.co © Copyright 2023 Elsevier B.V., All rights reserved. Abstract Author keywords Indexed keywords
dc.relation.citationvolume.none.fl_str_mv 141
dc.relation.ispartofjournal.none.fl_str_mv Optical Materials
dc.relation.references.none.fl_str_mv A.J. Stevenson, H. Serier-Brault, P. Gredin, M. Mortier Fluoride materials for optical applications: single crystals, ceramics, glasses, and glass–ceramics J. Fluor. Chem., 132 (2011), pp. 1165-1173
A. Chiappini, L. Zur, F. Enrichi, B. Boulard, A. Lukowiak, G.C. Righini, M. Ferrari Glass ceramics for frequency conversion F. Enrichi, G.C. Righini (Eds.), Solar Cells and Light Management: Materials, Strategies and Sustainability, Elsevier Inc. (2020), pp. 391-414
D. Manzani, J.B. Souza-Junior, A.S. Reyna, M.L. Silva-Neto, J.E.Q. Bautista, S.J.L. Ribeiro, C.B. de Araújo Phosphotellurite glass and glass-ceramics with high TeO2 contents: thermal, structural, and optical properties Dalton Trans., 48 (2019), pp. 6261-6272
P. Patra, K. Annapurna Transparent tellurite glass-ceramics for photonic applications: a comprehensive review on crystalline phases and crystallization mechanisms Prog. Mater. Sci., 125 (2022), Article 100890
L.R.P. Kassab, L.C. Courrol, A.S. Morais, C.M.S.P. Mendes, S.H. Tatumi, N.U. Wetter, L. Gomes, V.L.R. Salvador Spectroscopic properties of lead fluoroborate and heavy metal oxide glasses doped with Yb3+ J. Non-Cryst. Solids, 304 (2002), pp. 233-238
L.R.P. Kassab, L.C. Courrol, R. Seragioli, N.U. Wetter, S.H. Tatumi, L. Gomes, N.I. Morimoto GeO2-PbO-Bi2O3 glasses doped with Yb3+ for laser applications J. Non-Cryst. Solids, 348 (2004), pp. 103-107
Glass nanocomposites: synthesis, properties and applications B. Karmakar, K. Rademann, A.L. Stepanov (Eds.), Micro & Nano Technologies Series, Elsevier, Amsterdam (2016)
W. Blanc, Y.G. Choi, X. Zhang, M. Nalin, K.A. Richardson, G.C. Righini, M. Ferrari, A. Jha, J. Massera, S. Jiang, J. Ballato, L. Petit The past, present and future of photonic glasses: a review in homage to the United Nations International Year of Glass 2022 Prog. Mater. Sci., 134 (2023), Article 101084
A.E. Souza, S.G. Antonio, S.J.L. Ribeiro, D.F. Franco, G. Galeani, T. Cardinal, M. Dussauze, M. Nalin Heavy metal oxide glass-ceramics containing luminescent gallium-garnets single crystals for photonic applications J. Alloys Compd., 864 (2021), Article 158804
O.L. Malta, P.A. Santa-Cruz, G.F. de Sá, F. Auzel Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials J. Lumin., 33 (1985), pp. 261-265
L.P. Naranjo, C.B. de Araújo, O.L. Malta, L.R.P. Kassab Enhancement of Pr3+ luminescence in PbO–GeO2 glasses containing silver nanoparticles Appl. Phys. Lett., 87 (2005), Article 241914
L.P. Naranjo, N.T.C. Oliveira, L.R.P. Kassab, C.B. de Araújo Optical properties of B2O3–CaF2 glass-ceramics doped with silver nanoparticles and praseodymium ions J. Lumin., 238 (2021), Article 118225
T. Som, B. Karmakar Enhancement of Er3+ upconverted luminescence in Er3+: Au-antimony glass dichroic nanocomposites containing hexagonal Au nanoparticles J. Opt. Soc. Am. B, 26 (2009), pp. B21-B27
Metal nanostructures for photonics L.R.P. Kassab, C.B. de Araújo (Eds.), Nanophotonics Series, Elsevier, Amsterdam (2019)
C.B. de Araújo, L.R.P. Kassab, D.M. da Silva Optical properties of glasses and glass-ceramics for optical amplifiers, photovoltaic devices, color displays, optical limiters, and Random Lasers Opt. Mater., 131 (2022), Article 112648
J. Pisarska, T. Goryczka, L. Żur, W. Pisarski Heavy metal glasses and transparent glass-ceramics: preparation, local structure and optical properties Opt. Appl., XLII (2012), pp. 381-386
G.S. Maciel, N. Rakov, C.B. de Araújo, A.A. Lipovskii, D.K. Tagantsev Optical limiting behavior of a glass–ceramic containing sodium niobate crystallites Appl. Phys. Lett., 79 (2001), pp. 584-586
Q. Yang, L. Zhao, Z. Fang, Z. Yang, J.J. Cao, Y. Cai, D. Zhou, X. Yu, J. Qiu, X. Xu Transparent perovskite glass-ceramics for visual optical thermometry J. Rare Earths, 39 (2021), pp. 712-717
S. Labib Preparation, characterization, and photocatalytic properties of doped and undoped Bi2O3 J. Saudi Chem. Soc., 21 (2017), pp. 664-672
N. Nurmalasari, Y. Yulizar, D.O.B. Apriandanu Bi2O3 nanoparticles: synthesis, characterizations, and photocatalytic activity Mater. Sci. Eng., A, 763 (2020), Article 012036
L.C. Chen, S.M. Zhang, Z.S. Wu, Z.J. Zhang, H.X. Dang Preparation of PbS-type PbO nanocrystals in a room-temperature ionic liquid Mater. Lett., 59 (2005), pp. 3119-3121
M.R. Dousti, R.J. Amjad Effect of silver nanoparticles on the upconversion and near-infrared emissions of Er3+:Yb3+ co-doped zinc tellurite glasses Measurement, 105 (2017), pp. 114-119
H. Fares, H. Elhouichet, B. Gelloz, M. Férid Silver nanoparticles enhanced luminescence properties of Er3+ doped tellurite glasses: effect of heat treatment J. Appl. Phys., 116 (2014), Article 123504
M.R. Dousti, G.Y. Poirier, R.J. Amjad, A.S.S. de Camargo Luminescence quenching versus enhancement in WO3-NaPO3 glasses doped with trivalent rare earth ions and containing silver nanoparticles Opt. Mater., 60 (2016), pp. 331-340
I. Soltani, S. Hraiech, K. Horchani-Naifer, H. Elhouichet, B. Gelloz, M. Férid Growth of silver nanoparticles stimulate spectroscopic properties of Er3+ doped phosphate glasses: heat treatment effect J. Alloys Compd., 686 (2016), pp. 556-563
V.P.P. de Campos, L.R.P. Kassab, T.A.A. de Assumpção, D.S. da Silva, C.B. de Araújo Infrared-to-visible upconversion emission im Er3+ doped TeO2-WO3-Bi2O3 glasses with silver nanoparticles J. Appl. Phys., 112 (2012), Article 063519
L.R.P. Kassab, D.M. Silva, J.A.M. Garcia, D.S. da Silva, C.B. de Araújo Silver nanoparticles enhanced photoluminescence of Nd3+ doped germanate glasses at 1064 nm Opt. Mater., 60 (2016), pp. 25-29
L.R.P. Kassab, R. de Almeida, D.M. da Silva, T.A.A. de Assumpção, C.B. de Araújo Enhanced luminescence of Tb3+/Eu3+ doped tellurium oxide glass containing silver nanostructures J. Appl. Phys., 105 (2009), Article 103505
B.H. Toby, R.B. Von Dreele GSAS-II: the genesis of a modern open-source all purpose crystallography software package J. Appl. Crystallogr., 46 (2013), pp. 544-549
J. Hou, C. Yang, Z. Wang, W. Zhou, S. Jiao, H. Zhu In situ synthesis of α and β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance Appl. Catal., B: Environmental, 142–143 (2013), pp. 504-511
L. Zhanga, F. Guoa, Xi Liua, J. Cuia, Y. Qiana Metastable PbO crystal grown through alcohol-thermal process J. Crystal., 280 (2005), pp. 575-580
M. Salavati-Niasari, F. Mohandes, F. Davar Preparation of PbO nanocrystals via decomposition of lead oxalate Polyhedron, 28 (2009), pp. 2263-2267
W.C. Wang, J. Yuan, D.D. Chen, Q. Qian, Q.Y. Zhang Enhanced broadband 1.8 μm emission in Bi/Tm3+ co-doped fluorogermanate glasses Opt. Mater. Express, 5 (2015), pp. 1250-1258
X. Guo, H.J. Li, L.B. Su, P.S. Yu, H.Y. Zhao, J.F. Liu, J. Xu Near-infrared broadband luminescence in Bi2O3-GeO2 binary glass system Laser Phys., 21 (2011), pp. 901-905
T.S. Hughes, Y. Ohishi Advanced bismuth-doped lead-germanate glass for broadband optical gain devices J. Opt. Soc. Am. B, 25 (2008), pp. 1380-1386
M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, Q. Zhang Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses Opt Express, 19 (2011), pp. 20799-20807
C.H. Kim, C.H. Pyun, H.C. Kim Luminescence of CaS:Bi Bull. Kor. Chem. Soc., 3 (1999), pp. 337-340
J. Versluys, D. Poelman, D. Wauters, R. L Van Meirhaeghe Photoluminescent and structural properties of CaS: Pb electron beam deposited thin films J. Phys. Condens. Matter, 13 (2001), pp. 5709-5716
L.R.P. Kassab, F.A. Bomfim, J.R. Martinelli, N.U. Wetter, J.J. Neto C. B. de Araújo, Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO-GeO2 glass containing silver nanoparticles Appl. Phys. B, 94 (2009), pp. 239-242
C.B. de Araújo, E.L. Falcão-Filho, A. Humeau, D. Guichaoua, G. Boudebs, L.P.R. Kassab Picosecond third-order of lead-oxide glasses in the infrared Appl. Phys. Lett., 87 (2005), Article 221904
V. Besse, A. Fortin, G. Boudebs, P.S. Valle, M. Nalin, C.B. de Araújo Picosecond nonlinearity of GeO2–Bi2O3–PbO–TiO2 glasses at 532 and 1064 nm Appl. Phys. B, 117 (2014), pp. 891-895
J.G. Câmara, D.M. da Silva, L.R.P. Kassab, M.L. Silva-Neto, G. Palacios, C.B. de Araújo Random lasing and replica symmetry breaking in GeO2-PbO-MgO glass–ceramics doped with neodymium Sci. Rep., 12 (2022), Article 19438
dc.rights.eng.fl_str_mv © 2023 Elsevier B.V.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv © 2023 Elsevier B.V.
http://purl.org/coar/access_right/c_14cb
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv closedAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.place.none.fl_str_mv Países bajos
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0925346723005013
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/60765e1e-8cb0-49a8-baf1-c8b0d76adad3/download
https://repositorio.unibague.edu.co/bitstreams/79afefdb-24ef-48d7-abb2-38cccc4cc0f1/download
https://repositorio.unibague.edu.co/bitstreams/3846c242-69a6-49b7-ace7-0e8d8585ccfa/download
https://repositorio.unibague.edu.co/bitstreams/67054ec9-cbc9-4478-9b73-c89a06fe3c62/download
bitstream.checksum.fl_str_mv 9d08cc56093d672950354e0495393315
e4a7a07d0f0bd90d10f2b47ad0af83af
2fa3e590786b9c0f3ceba1b9656b7ac3
37bb8e9b7fb5431ac140deed9e913b80
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059986792185856
spelling Naranjo-Riaño, Luz Patricia5b130667-a268-40c9-8c45-a2010bc7a963-1Oliveira, Nathália T.C.fd4bc6dc-b519-449c-afba-419232390417-1Gonzáles Lastra, Jorge Enriqueed90040e-29ce-464e-b066-9a655539390b600Kassab, Luciana R.P.de Araújo, Cid B.49932e27-f26e-48cf-8cfc-ff8a00019bec-12025-08-29T22:56:43Z2025-08-29T22:56:43Z2023-07We report the synthesis, structural characterization, and optical properties of PbO–Bi2O3–Ga2O3 glass-ceramics (GCs) containing PbO and Bi2O3 crystallites, free lead (Pb2+) and bismuth (Bi3+) ions, and silver nanoparticles (Ag-NPs). The samples were prepared by applying the melt-quenching method followed by suitable heat-treatment of the samples. Transmission Electron Microscopy, X-ray diffraction, linear optical absorption, and photoluminescence (PL) were the techniques applied to characterize the samples. When the samples were excited at 330 nm a large PL intensity, due to the Pb2+ and Bi3+, is observed. Moreover, large PL intensity enhancement of about 1000% for the samples containing Ag-NPs is observed in comparison with the PL intensity from the samples without Ag-NPs. This is the first time that this behavior is reported for a GCs based on heavy-metal oxides. The potential of this class of materials for photonic applications is discussed.application/pdfNaranjo-Riaño, L., Oliveira, N., Echeverry, C., Kassab, L. y de Araújo, C. (2023). Structure and photoluminescence properties of PbO–Bi2O3–Ga2O3 glass-ceramics containing silver nanoparticles, free lead and bismuth ions. Optical Materials, 141. DOI: 10.1016/j.optmat.2023.11392910.1016/j.optmat.2023.11392909253467https://hdl.handle.net/20.500.12313/5577https://www.sciencedirect.com/science/article/pii/S0925346723005013engElsevier B.V.Países bajos113929 CODEN OMATE Authors (5) Naranjo-Riaño, Luz Patricia a Send mail to Naranjo-Riaño L.P. Oliveira, Nathália T.C. b Echeverry, Camilo E. c Kassab, Luciana R.P. d de Araújo, Cid B. b,e Author affiliations (5) a Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67 B/Ambalá, Ibagué, Colombia b Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, PE, Recife, 50740-560, Brazil c Departamento de Física, Universidade Federal do Ceara, CE, Fortaleza, Brazil d Faculdade de Tecnologia de São Paulo, CEETEPS/UNESP, SP, São Paulo, 01124-060, Brazil e Departamento de Física, Universidade Federal de Pernambuco, PE, Recife, 50670-901, Brazil 3 48th percentile Citations Set citation alert 0.41 FWCI More information about Field-Weighted Citation Impact Full text Export Save to list Save to list functionality is only available if you are signed in and subscribed DocumentImpactCited by (3)References (42)Similar documents Abstract We report the synthesis, structural characterization, and optical properties of PbO–Bi2O3–Ga2O3 glass-ceramics (GCs) containing PbO and Bi2O3 crystallites, free lead (Pb2+) and bismuth (Bi3+) ions, and silver nanoparticles (Ag-NPs). The samples were prepared by applying the melt-quenching method followed by suitable heat-treatment of the samples. Transmission Electron Microscopy, X-ray diffraction, linear optical absorption, and photoluminescence (PL) were the techniques applied to characterize the samples. When the samples were excited at 330 nm a large PL intensity, due to the Pb2+ and Bi3+, is observed. Moreover, large PL intensity enhancement of about 1000% for the samples containing Ag-NPs is observed in comparison with the PL intensity from the samples without Ag-NPs. This is the first time that this behavior is reported for a GCs based on heavy-metal oxides. The potential of this class of materials for photonic applications is discussed. © 2023 Elsevier B.V. Author keywords Heavy metal oxide glass-ceramics; Luminescent Pb2+ and Bi3+ ions; PbO and Bi2O3 crystals; Silver nanoparticles Indexed keywords Engineering controlled terms Bismuth; Bismuth compounds; Crystal structure; Gallium compounds; Glass ceramics; High resolution transmission electron microscopy; Ions; Lead oxide; Light absorption; Metal nanoparticles; Optical properties; Photoluminescence; Synthesis (chemical) Engineering uncontrolled terms Bismuth ion; Glass-ceramics; Heavy metal oxide glass; Heavy metal oxide glass-ceramic; Lead ions; Luminescent pb2+ and bi3+ ion; PbO and bi2O3 crystal; Photoluminescence intensities; Photoluminescence properties; Structure property Engineering main heading Silver nanoparticles Reaxys Chemistry database information Reaxys is designed to support chemistry researchers at every stage with the ability to investigated chemistry related research topics in peer-reviewed literature, patents and substance databases. Reaxys retrieves substances, substance properties, reaction and synthesis data. Substances Pt View detailsExpand Substance platinum Powered by Learn about Reaxys chemistry database information Funding details Details about financial support for research, including funding sources and grant numbers as provided in academic publications. Funding sponsor Funding number Acronym UFRPE Coordenação de Aperfeiçoamento de Pessoal de Nível Superior See opportunities by CAPES See opportunities (opens in new window) 465.763/2014 CAPES Coordenação de Aperfeiçoamento de Pessoal de Nível Superior See opportunities by CAPES See opportunities (opens in new window) CAPES Conselho Nacional de Desenvolvimento Científico e Tecnológico See opportunities by CNPq See opportunities (opens in new window) CNPq Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco See opportunities by FACEPE See opportunities (opens in new window) FACEPE Universidad del Valle See opportunities by Univalle See opportunities (opens in new window) Univalle Universidad de Ibagué See opportunities See opportunities (opens in new window) 15-342-INT Universidad de Ibagué See opportunities See opportunities (opens in new window) Funding text 1 L. P. Naranjo acknowledges the financial support by Universidad de Ibagué (Colombia) (Project: 15-342-INT). The work by the other authors was supported by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The work was performed in the framework of the National Institute of Photonics (INCT de Fotônica-INFO, 465.763/2014) project. We also acknowledge measurements of XRD and TEM performed in the Multiuser Center of the DF-UFPE, Universidad del Valle (Colombia) and the laboratory Cemupec - UFRPE. Funding text 2 L. P. Naranjo acknowledges the financial support by Universidad de Ibagué (Colombia) (Project: 15-342-INT). The work by the other authors was supported by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico ( CNPq ), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco ( FACEPE ) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior ( CAPES ). The work was performed in the framework of the National Institute of Photonics (INCT de Fotônica-INFO, 465.763/2014) project. We also acknowledge measurements of XRD and TEM performed in the Multiuser Center of the DF-UFPE, Universidad del Valle (Colombia) and the laboratory Cemupec - UFRPE. Corresponding authors Corresponding author L.P. Naranjo-Riaño Affiliation Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67 B/Ambalá, Ibagué, Colombia Email address patricia.naranjo@unibague.edu.co © Copyright 2023 Elsevier B.V., All rights reserved. Abstract Author keywords Indexed keywords141Optical MaterialsA.J. Stevenson, H. Serier-Brault, P. Gredin, M. Mortier Fluoride materials for optical applications: single crystals, ceramics, glasses, and glass–ceramics J. Fluor. Chem., 132 (2011), pp. 1165-1173A. Chiappini, L. Zur, F. Enrichi, B. Boulard, A. Lukowiak, G.C. Righini, M. Ferrari Glass ceramics for frequency conversion F. Enrichi, G.C. Righini (Eds.), Solar Cells and Light Management: Materials, Strategies and Sustainability, Elsevier Inc. (2020), pp. 391-414D. Manzani, J.B. Souza-Junior, A.S. Reyna, M.L. Silva-Neto, J.E.Q. Bautista, S.J.L. Ribeiro, C.B. de Araújo Phosphotellurite glass and glass-ceramics with high TeO2 contents: thermal, structural, and optical properties Dalton Trans., 48 (2019), pp. 6261-6272P. Patra, K. Annapurna Transparent tellurite glass-ceramics for photonic applications: a comprehensive review on crystalline phases and crystallization mechanisms Prog. Mater. Sci., 125 (2022), Article 100890L.R.P. Kassab, L.C. Courrol, A.S. Morais, C.M.S.P. Mendes, S.H. Tatumi, N.U. Wetter, L. Gomes, V.L.R. Salvador Spectroscopic properties of lead fluoroborate and heavy metal oxide glasses doped with Yb3+ J. Non-Cryst. Solids, 304 (2002), pp. 233-238L.R.P. Kassab, L.C. Courrol, R. Seragioli, N.U. Wetter, S.H. Tatumi, L. Gomes, N.I. Morimoto GeO2-PbO-Bi2O3 glasses doped with Yb3+ for laser applications J. Non-Cryst. Solids, 348 (2004), pp. 103-107Glass nanocomposites: synthesis, properties and applications B. Karmakar, K. Rademann, A.L. Stepanov (Eds.), Micro & Nano Technologies Series, Elsevier, Amsterdam (2016)W. Blanc, Y.G. Choi, X. Zhang, M. Nalin, K.A. Richardson, G.C. Righini, M. Ferrari, A. Jha, J. Massera, S. Jiang, J. Ballato, L. Petit The past, present and future of photonic glasses: a review in homage to the United Nations International Year of Glass 2022 Prog. Mater. Sci., 134 (2023), Article 101084A.E. Souza, S.G. Antonio, S.J.L. Ribeiro, D.F. Franco, G. Galeani, T. Cardinal, M. Dussauze, M. Nalin Heavy metal oxide glass-ceramics containing luminescent gallium-garnets single crystals for photonic applications J. Alloys Compd., 864 (2021), Article 158804O.L. Malta, P.A. Santa-Cruz, G.F. de Sá, F. Auzel Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials J. Lumin., 33 (1985), pp. 261-265L.P. Naranjo, C.B. de Araújo, O.L. Malta, L.R.P. Kassab Enhancement of Pr3+ luminescence in PbO–GeO2 glasses containing silver nanoparticles Appl. Phys. Lett., 87 (2005), Article 241914L.P. Naranjo, N.T.C. Oliveira, L.R.P. Kassab, C.B. de Araújo Optical properties of B2O3–CaF2 glass-ceramics doped with silver nanoparticles and praseodymium ions J. Lumin., 238 (2021), Article 118225T. Som, B. Karmakar Enhancement of Er3+ upconverted luminescence in Er3+: Au-antimony glass dichroic nanocomposites containing hexagonal Au nanoparticles J. Opt. Soc. Am. B, 26 (2009), pp. B21-B27Metal nanostructures for photonics L.R.P. Kassab, C.B. de Araújo (Eds.), Nanophotonics Series, Elsevier, Amsterdam (2019)C.B. de Araújo, L.R.P. Kassab, D.M. da Silva Optical properties of glasses and glass-ceramics for optical amplifiers, photovoltaic devices, color displays, optical limiters, and Random Lasers Opt. Mater., 131 (2022), Article 112648J. Pisarska, T. Goryczka, L. Żur, W. Pisarski Heavy metal glasses and transparent glass-ceramics: preparation, local structure and optical properties Opt. Appl., XLII (2012), pp. 381-386G.S. Maciel, N. Rakov, C.B. de Araújo, A.A. Lipovskii, D.K. Tagantsev Optical limiting behavior of a glass–ceramic containing sodium niobate crystallites Appl. Phys. Lett., 79 (2001), pp. 584-586Q. Yang, L. Zhao, Z. Fang, Z. Yang, J.J. Cao, Y. Cai, D. Zhou, X. Yu, J. Qiu, X. Xu Transparent perovskite glass-ceramics for visual optical thermometry J. Rare Earths, 39 (2021), pp. 712-717S. Labib Preparation, characterization, and photocatalytic properties of doped and undoped Bi2O3 J. Saudi Chem. Soc., 21 (2017), pp. 664-672N. Nurmalasari, Y. Yulizar, D.O.B. Apriandanu Bi2O3 nanoparticles: synthesis, characterizations, and photocatalytic activity Mater. Sci. Eng., A, 763 (2020), Article 012036L.C. Chen, S.M. Zhang, Z.S. Wu, Z.J. Zhang, H.X. Dang Preparation of PbS-type PbO nanocrystals in a room-temperature ionic liquid Mater. Lett., 59 (2005), pp. 3119-3121M.R. Dousti, R.J. Amjad Effect of silver nanoparticles on the upconversion and near-infrared emissions of Er3+:Yb3+ co-doped zinc tellurite glasses Measurement, 105 (2017), pp. 114-119H. Fares, H. Elhouichet, B. Gelloz, M. Férid Silver nanoparticles enhanced luminescence properties of Er3+ doped tellurite glasses: effect of heat treatment J. Appl. Phys., 116 (2014), Article 123504M.R. Dousti, G.Y. Poirier, R.J. Amjad, A.S.S. de Camargo Luminescence quenching versus enhancement in WO3-NaPO3 glasses doped with trivalent rare earth ions and containing silver nanoparticles Opt. Mater., 60 (2016), pp. 331-340I. Soltani, S. Hraiech, K. Horchani-Naifer, H. Elhouichet, B. Gelloz, M. Férid Growth of silver nanoparticles stimulate spectroscopic properties of Er3+ doped phosphate glasses: heat treatment effect J. Alloys Compd., 686 (2016), pp. 556-563V.P.P. de Campos, L.R.P. Kassab, T.A.A. de Assumpção, D.S. da Silva, C.B. de Araújo Infrared-to-visible upconversion emission im Er3+ doped TeO2-WO3-Bi2O3 glasses with silver nanoparticles J. Appl. Phys., 112 (2012), Article 063519L.R.P. Kassab, D.M. Silva, J.A.M. Garcia, D.S. da Silva, C.B. de Araújo Silver nanoparticles enhanced photoluminescence of Nd3+ doped germanate glasses at 1064 nm Opt. Mater., 60 (2016), pp. 25-29L.R.P. Kassab, R. de Almeida, D.M. da Silva, T.A.A. de Assumpção, C.B. de Araújo Enhanced luminescence of Tb3+/Eu3+ doped tellurium oxide glass containing silver nanostructures J. Appl. Phys., 105 (2009), Article 103505B.H. Toby, R.B. Von Dreele GSAS-II: the genesis of a modern open-source all purpose crystallography software package J. Appl. Crystallogr., 46 (2013), pp. 544-549J. Hou, C. Yang, Z. Wang, W. Zhou, S. Jiao, H. Zhu In situ synthesis of α and β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance Appl. Catal., B: Environmental, 142–143 (2013), pp. 504-511L. Zhanga, F. Guoa, Xi Liua, J. Cuia, Y. Qiana Metastable PbO crystal grown through alcohol-thermal process J. Crystal., 280 (2005), pp. 575-580M. Salavati-Niasari, F. Mohandes, F. Davar Preparation of PbO nanocrystals via decomposition of lead oxalate Polyhedron, 28 (2009), pp. 2263-2267W.C. Wang, J. Yuan, D.D. Chen, Q. Qian, Q.Y. Zhang Enhanced broadband 1.8 μm emission in Bi/Tm3+ co-doped fluorogermanate glasses Opt. Mater. Express, 5 (2015), pp. 1250-1258X. Guo, H.J. Li, L.B. Su, P.S. Yu, H.Y. Zhao, J.F. Liu, J. Xu Near-infrared broadband luminescence in Bi2O3-GeO2 binary glass system Laser Phys., 21 (2011), pp. 901-905T.S. Hughes, Y. Ohishi Advanced bismuth-doped lead-germanate glass for broadband optical gain devices J. Opt. Soc. Am. B, 25 (2008), pp. 1380-1386M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, Q. Zhang Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses Opt Express, 19 (2011), pp. 20799-20807C.H. Kim, C.H. Pyun, H.C. Kim Luminescence of CaS:Bi Bull. Kor. Chem. Soc., 3 (1999), pp. 337-340J. Versluys, D. Poelman, D. Wauters, R. L Van Meirhaeghe Photoluminescent and structural properties of CaS: Pb electron beam deposited thin films J. Phys. Condens. Matter, 13 (2001), pp. 5709-5716L.R.P. Kassab, F.A. Bomfim, J.R. Martinelli, N.U. Wetter, J.J. Neto C. B. de Araújo, Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO-GeO2 glass containing silver nanoparticles Appl. Phys. B, 94 (2009), pp. 239-242C.B. de Araújo, E.L. Falcão-Filho, A. Humeau, D. Guichaoua, G. Boudebs, L.P.R. Kassab Picosecond third-order of lead-oxide glasses in the infrared Appl. Phys. Lett., 87 (2005), Article 221904V. Besse, A. Fortin, G. Boudebs, P.S. Valle, M. Nalin, C.B. de Araújo Picosecond nonlinearity of GeO2–Bi2O3–PbO–TiO2 glasses at 532 and 1064 nm Appl. Phys. B, 117 (2014), pp. 891-895J.G. Câmara, D.M. da Silva, L.R.P. Kassab, M.L. Silva-Neto, G. Palacios, C.B. de Araújo Random lasing and replica symmetry breaking in GeO2-PbO-MgO glass–ceramics doped with neodymium Sci. Rep., 12 (2022), Article 19438© 2023 Elsevier B.V.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.sciencedirect.com/science/article/pii/S0925346723005013Vidrio-cerámicas PbO Bi O–Ga O3 - EstructurasVidrio-cerámicas PbO Bi O–Ga O3 - PropiedadesHeavy metal oxide glass-ceramicsLuminescent Pb2+ and Bi3+ ionsPbO and Bi2O3 crystalsSilver nanoparticlesStructure and photoluminescence properties of PbO–Bi2O3–Ga2O3 glass-ceramics containing silver nanoparticles, free lead and bismuth ionsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain1859https://repositorio.unibague.edu.co/bitstreams/60765e1e-8cb0-49a8-baf1-c8b0d76adad3/download9d08cc56093d672950354e0495393315MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg19280https://repositorio.unibague.edu.co/bitstreams/79afefdb-24ef-48d7-abb2-38cccc4cc0f1/downloade4a7a07d0f0bd90d10f2b47ad0af83afMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/3846c242-69a6-49b7-ace7-0e8d8585ccfa/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf131321https://repositorio.unibague.edu.co/bitstreams/67054ec9-cbc9-4478-9b73-c89a06fe3c62/download37bb8e9b7fb5431ac140deed9e913b80MD5220.500.12313/5577oai:repositorio.unibague.edu.co:20.500.12313/55772025-09-12 12:00:06.998https://creativecommons.org/licenses/by-nc/4.0/© 2023 Elsevier B.V.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=