Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone

This article describes the synthesis, characterization (1H NMR, 13C NMR, FT-IR, HRMS and XRD), UV-Vis absorption and fluorescence spectra, theoretical analysis, evaluation of nonlinear optical properties (NLO), thermal analysis and determination of the hemolytic capacity of the compound (E)-N-(4-(3(...

Full description

Autores:
Polo-Cuadrado, Efraín
Osorio, Edison
Acosta-Quiroga, Karen
Camargo-Ayala, Paola Andrea
Brito, Iván
Rodriguez, Jany
Alderete, Joel B.
Forero-Doria, Oscar
Blanco-Acuña, Edgard Fabián
Gutiérrez, Margarita
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5801
Acceso en línea:
https://hdl.handle.net/20.500.12313/5801
https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra00820k
Palabra clave:
Propiedades ópticas
Propiedades espectroscópicas no lineales
Melting point
Optical depth
Thermolysis
Rights
openAccess
License
© 2024 The Author(s).
id UNIBAGUE2_4bdcaa3fd7fd6959645746a78b391aa0
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5801
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone
title Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone
spellingShingle Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone
Propiedades ópticas
Propiedades espectroscópicas no lineales
Melting point
Optical depth
Thermolysis
title_short Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone
title_full Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone
title_fullStr Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone
title_full_unstemmed Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone
title_sort Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone
dc.creator.fl_str_mv Polo-Cuadrado, Efraín
Osorio, Edison
Acosta-Quiroga, Karen
Camargo-Ayala, Paola Andrea
Brito, Iván
Rodriguez, Jany
Alderete, Joel B.
Forero-Doria, Oscar
Blanco-Acuña, Edgard Fabián
Gutiérrez, Margarita
dc.contributor.author.none.fl_str_mv Polo-Cuadrado, Efraín
Osorio, Edison
Acosta-Quiroga, Karen
Camargo-Ayala, Paola Andrea
Brito, Iván
Rodriguez, Jany
Alderete, Joel B.
Forero-Doria, Oscar
Blanco-Acuña, Edgard Fabián
Gutiérrez, Margarita
dc.subject.armarc.none.fl_str_mv Propiedades ópticas
Propiedades espectroscópicas no lineales
topic Propiedades ópticas
Propiedades espectroscópicas no lineales
Melting point
Optical depth
Thermolysis
dc.subject.proposal.eng.fl_str_mv Melting point
Optical depth
Thermolysis
description This article describes the synthesis, characterization (1H NMR, 13C NMR, FT-IR, HRMS and XRD), UV-Vis absorption and fluorescence spectra, theoretical analysis, evaluation of nonlinear optical properties (NLO), thermal analysis and determination of the hemolytic capacity of the compound (E)-N-(4-(3(benzo[d][1,3]dioxol-5-yl)acryloyl)phenyl)quinoline-3-carboxamide (5). Radiological findings showed that compound 5 crystallized in space group Pca21. Furthermore, theoretical DFT studies performed with the B3LYP and M062X functionals showed good agreement with the experimental results and provided valuable information on the molecular and electronic structure, reactivity, polarizability, and kinematic stability of the compound. Besides, compound 5 did not show any hemolytic effect on human erythrocytes and exhibited strong NLO properties. The TG and DTA thermograms of quinoline–chalcone (5) revealed a multi-step thermal decomposition process with a total mass loss of 83.2%, including water content loss. The DTA curves exhibited endothermic peaks corresponding to decomposition steps, melting point, and thermochemical transition. Additionally, exothermic peaks in the DTA thermograms align with significant mass loss, confirming the compound's melting point and water content, as validated by X-ray diffraction analysis. These results contribute to the advancement of research on compounds with NLO properties and offer a promising avenue for the development of substances potentially applicable to optical devices in the biomedical field.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-10-17T22:55:28Z
dc.date.available.none.fl_str_mv 2025-10-17T22:55:28Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Polo-Cuadrado, E., Osorio, E., Acosta-Quiroga, K., Camargo-Ayala, P., Brito, I., Rodriguez, J., Alderete, J., Forero-Doria, O., Blanco-Acuña, E. y Gutiérrez, M. (2024). Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone. RSC Advances, 14(15), 10199 - 10208. DOI: 10.1039/d4ra00820k
dc.identifier.doi.none.fl_str_mv 10.1039/d4ra00820k
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5801
dc.identifier.url.none.fl_str_mv https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra00820k
identifier_str_mv Polo-Cuadrado, E., Osorio, E., Acosta-Quiroga, K., Camargo-Ayala, P., Brito, I., Rodriguez, J., Alderete, J., Forero-Doria, O., Blanco-Acuña, E. y Gutiérrez, M. (2024). Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone. RSC Advances, 14(15), 10199 - 10208. DOI: 10.1039/d4ra00820k
10.1039/d4ra00820k
url https://hdl.handle.net/20.500.12313/5801
https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra00820k
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 10208
dc.relation.citationissue.none.fl_str_mv 15
dc.relation.citationstartpage.none.fl_str_mv 10199
dc.relation.citationvolume.none.fl_str_mv 14
dc.relation.ispartofjournal.none.fl_str_mv RSC Advances
dc.relation.references.none.fl_str_mv N. Sudha , R. Surendran and S. Jeyaram , Opt. Mater., 2022, 131 , 112668
N. V. Agrinskaya , V. A. Lukoshkin , V. V. Kudryavtsev , G. I. Nosova , N. A. Solovskaya and A. V. Yakimanskiǐ , Phys. Solid State, 1999, 41 , 1914 —1917
R. Bano , M. Asghar , K. Ayub , T. Mahmood , J. Iqbal , S. Tabassum , R. Zakaria and M. A. Gilani , Front. Mater., 2021, 8 , 783239
S. Omar , M. Shkir , M. Ajmal Khan , Z. Ahmad and S. AlFaify , Optik, 2020, 204 , 164172
H. Belahlou , S. Abed , M. Bouchouit , S. Taboukhat , L. Messaadia , E. E. Bendeif , A. Bouraiou , B. Sahraoui and K. Bouchouit , J. Mol. Struct., 2023, 1294 , 136488
A. Saha , V. Shukla , S. Choudhury and J. Jayabalan , Chem. Phys. Lett., 2016, 653 , 184 —189
L. R. Almeida , M. M. Anjos , G. C. Ribeiro , C. Valverde , D. F. S. Machado , G. R. Oliveira , H. B. Napolitano and H. C. B. De Oliveira , New J. Chem., 2017, 41 , 1744 —1754
B. Ganapayya , A. Jayarama and S. M. Dharmaprakash , Mol. Cryst. Liq. Cryst., 2013, 571 , 87 —98
P. J. Tejkiran , M. S. Brahma Teja , P. Sai Siva Kumar , P. Sankar , R. Philip , S. Naveen , N. K. Lokanath and G. Nageswara Rao , J. Photochem. Photobiol., A, 2016, 324 , 33 —39
E. F. Blanco-Acuña , L. A. Vázquez-López , L. Gasque and H. García-Ortega , J. Mol. Struct., 2023, 1271 , 134009
V. venkatarao , L. Kumar , A. Jha and G. Sridhar , Chem. Data Collect., 2019, 22 , 100236
R. Ustabaş , N. Süleymanoğlu , N. Özdemir , N. Kahriman , E. Bektaş and Y. Ünver , Lett. Org. Chem., 2018, 17 , 46 —53
C. Tratrat , M. Haroun , I. Xenikakis , K. Liaras , E. Tsolaki , P. Eleftheriou , A. Petrou , B. Aldhubiab , M. Attimarad , K. N. Venugopala , S. Harsha , H. S. Elsewedy , A. Geronikaki and M. Soković , Curr. Top. Med. Chem., 2019, 19 , 356 —375
L. V. Chinh , T. N. Hung , N. T. Nga , T. T. N. Hang , T. T. N. Mai and V. A. Tarasevich , Russ. J. Org. Chem., 2014, 50 , 1767 —1774
M. Sökmen and M. Akram Khan , Inflammopharmacology, 2016, 24 , 81 —86
P. Yadav and K. Shah , Bioorg. Chem., 2021, 109 , 104639
Z. Muhammad , J. Yau , A. U. Zezi , M. G. Magaji , A. N. Hamza , Z. Muhammad , J. Yau , A. U. Zezi , M. G. Magaji and A. N. Hamza , Am. J. Pharmacother. Pharm. Sci., 2023, 2 , 11
H. O. Saxena , U. Faridi , J. K. Kumar , S. Luqman , M. P. Darokar , K. Shanker , C. S. Chanotiya , M. M. Gupta and A. S. Negi , Steroids, 2007, 72 , 892 —900
E. Polo , N. Ibarra-Arellano , L. Prent-Peñaloza , A. Morales-Bayuelo , J. Henao , A. Galdámez and M. Gutiérrez , Bioorg. Chem., 2019, 90 , 103034
E. Polo , J. Trilleras and M. G. Cabrera , Molbank, 2017, 2017 , M960
O. V. Dolomanov , L. J. Bourhis , R. J. Gildea , J. A. K. Howard and H. Puschmann , J. Appl. Crystallogr., 2009, 42 , 339 —341
G. M. Sheldrick Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71 , 3 —8
Z. Chen , H. Duan , X. Tong , P. Hsu , L. Han , S. L. Morris-Natschke , S. Yang , W. Liu and K. H. Lee , J. Nat. Prod., 2018, 81 , 465 —474
A. D. McLean and G. S. Chandler , J. Chem. Phys., 1980, 72 , 5639 —5648
R. Krishnan , J. S. Binkley , R. Seeger and J. A. Pople , J. Chem. Phys., 1980, 72 , 650 —654
Y. Zhao and D. G. Truhlar , Theor. Chem. Acc., 2008, 120 , 215 —241
S. Miertuš , E. Scrocco and J. Tomasi , Chem. Phys., 1981, 55 , 117 —129
M. E. Casida , C. Jamorski , K. C. Casida and D. R. Salahub , J. Chem. Phys., 1998, 108 , 4439 —4449
J. L. Pascual-ahuir , E. Silla and I. Tuñon , J. Comput. Chem., 1994, 15 , 1127 —1138
A. D. Becke J. Chem. Phys., 1993, 98 , 5648 —5652
C. Lee , W. Yang and R. G. Parr , Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37 , 785 —789
W. J. Hehre , K. Ditchfield and J. A. Pople , J. Chem. Phys., 1972, 56 , 2257 —2261
P. Geerlings , F. De Proft and W. Langenaeker , Chem. Rev., 2003, 103 , 1793 —1873
P. J. Stephens , F. J. Devlin , C. F. Chabalowski and M. J. Frisch , J. Phys. Chem., 1994, 98 , 11623 —11627
CCCBDB listing of precalculated vibrational scaling factors, https://cccbdb.nist.gov/vibscalejustx.asp, accessed 25 January 2024.
H. Chermette J. Comput. Chem., 1999, 20 , 129 —154
R.Dennington, T. A.Keith and J. M.Millam, GaussView, Version 6.0, Semichem Inc., Shawnee Mission, KS, 2016.
H.-B. Zhao , Y.-Q. Qiu , C.-G. Liu , S.-L. Sun , Y. Liu and R.-S. Wang , J. Organomet. Chem., 2010, 695 , 2251 —2257
Y. Y. Hu , S. L. Sun , S. Muhammad , H. L. Xu and Z. M. Su , J. Phys. Chem. C, 2010, 114 , 19792 —19798
H. Abbas , M. Shkir and S. AlFaify , Arabian J. Chem., 2019, 12 , 2336 —2346
E. Polo-Cuadrado , C. Rojas-Peña , K. Acosta-Quiroga , L. Camargo-Ayala , I. Brito , J. Cisterna , F. Moncada , J. Trilleras , Y. A. Rodríguez-Núñez and M. Gutierrez , RSC Adv., 2022, 12 , 33032 —33048
M. Frimat , I. Boudhabhay and L. T. Roumenina , Toxins, 2019, 11 , 660
E. Mathew and I. H. Joe , J. Mol. Liq., 2023, 392 , 123415
D. C. Harrowven , B. J. Sutton and S. Coulton , Tetrahedron Lett., 2001, 42 , 2907 —2910
R. I. Al-Wabli , K. S. Resmi , Y. Sheena Mary , C. Yohannan Panicker , M. A. Attia , A. A. El-Emam and C. Van Alsenoy , J. Mol. Struct., 2016, 1123 , 375 —383
S. Shettigar , P. Poornesh , G. Umesh , B. K. Sarojini , B. Narayana and K. Prakash Kamath , Opt. Laser Technol., 2010, 42 , 1162 —1166
dc.rights.eng.fl_str_mv © 2024 The Author(s).
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv © 2024 The Author(s).
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
dc.publisher.place.none.fl_str_mv Reino Unido
publisher.none.fl_str_mv Royal Society of Chemistry
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/3ef53184-7127-4af2-8853-1b4375322a35/download
https://repositorio.unibague.edu.co/bitstreams/8f9a6895-8e7b-4b6b-99ce-7a5c7b8577e8/download
https://repositorio.unibague.edu.co/bitstreams/7b92a544-a5e5-456e-93b6-4a8fcbba5a27/download
https://repositorio.unibague.edu.co/bitstreams/01e7eb8f-c134-49c7-ae49-298691559f48/download
bitstream.checksum.fl_str_mv 2fa3e590786b9c0f3ceba1b9656b7ac3
664aef3d96ac514d6400cca23fb68d91
9d55b1ef2df781794a77551fa9381b39
73bdd51e9b8b0c6c33f03041879ca9d4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059980864585728
spelling Polo-Cuadrado, Efraínf8016ac0-3f43-4599-89b2-3d8e129cb357-1Osorio, Edisone6d834e4-46ca-40f0-ab7c-630a35856901-1Acosta-Quiroga, Karen90475b55-a2db-4ca5-aa5c-41aaa1a7c985-1Camargo-Ayala, Paola Andrea51909bee-c3db-4c2a-a2ed-101ca337237d-1Brito, Iván26ac473f-3c45-4d5a-9701-4e0cf4753fa9-1Rodriguez, Jany3d64592a-9590-4587-a30c-0bf7b27889ea-1Alderete, Joel B.1e551baa-cc16-4cf8-a340-1bd35189146a-1Forero-Doria, Oscar0620fbe6-a90e-40ea-aa6f-68eeeefae106-1Blanco-Acuña, Edgard Fabiánc450278e-bba4-492d-a889-549277b62065-1Gutiérrez, Margarita3d6c891b-b6e6-4157-b398-c6ef08538087-12025-10-17T22:55:28Z2025-10-17T22:55:28Z2024This article describes the synthesis, characterization (1H NMR, 13C NMR, FT-IR, HRMS and XRD), UV-Vis absorption and fluorescence spectra, theoretical analysis, evaluation of nonlinear optical properties (NLO), thermal analysis and determination of the hemolytic capacity of the compound (E)-N-(4-(3(benzo[d][1,3]dioxol-5-yl)acryloyl)phenyl)quinoline-3-carboxamide (5). Radiological findings showed that compound 5 crystallized in space group Pca21. Furthermore, theoretical DFT studies performed with the B3LYP and M062X functionals showed good agreement with the experimental results and provided valuable information on the molecular and electronic structure, reactivity, polarizability, and kinematic stability of the compound. Besides, compound 5 did not show any hemolytic effect on human erythrocytes and exhibited strong NLO properties. The TG and DTA thermograms of quinoline–chalcone (5) revealed a multi-step thermal decomposition process with a total mass loss of 83.2%, including water content loss. The DTA curves exhibited endothermic peaks corresponding to decomposition steps, melting point, and thermochemical transition. Additionally, exothermic peaks in the DTA thermograms align with significant mass loss, confirming the compound's melting point and water content, as validated by X-ray diffraction analysis. These results contribute to the advancement of research on compounds with NLO properties and offer a promising avenue for the development of substances potentially applicable to optical devices in the biomedical field.application/pdfPolo-Cuadrado, E., Osorio, E., Acosta-Quiroga, K., Camargo-Ayala, P., Brito, I., Rodriguez, J., Alderete, J., Forero-Doria, O., Blanco-Acuña, E. y Gutiérrez, M. (2024). Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone. RSC Advances, 14(15), 10199 - 10208. DOI: 10.1039/d4ra00820k10.1039/d4ra00820khttps://hdl.handle.net/20.500.12313/5801https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra00820kengRoyal Society of ChemistryReino Unido10208151019914RSC AdvancesN. Sudha , R. Surendran and S. Jeyaram , Opt. Mater., 2022, 131 , 112668N. V. Agrinskaya , V. A. Lukoshkin , V. V. Kudryavtsev , G. I. Nosova , N. A. Solovskaya and A. V. Yakimanskiǐ , Phys. Solid State, 1999, 41 , 1914 —1917R. Bano , M. Asghar , K. Ayub , T. Mahmood , J. Iqbal , S. Tabassum , R. Zakaria and M. A. Gilani , Front. Mater., 2021, 8 , 783239S. Omar , M. Shkir , M. Ajmal Khan , Z. Ahmad and S. AlFaify , Optik, 2020, 204 , 164172H. Belahlou , S. Abed , M. Bouchouit , S. Taboukhat , L. Messaadia , E. E. Bendeif , A. Bouraiou , B. Sahraoui and K. Bouchouit , J. Mol. Struct., 2023, 1294 , 136488A. Saha , V. Shukla , S. Choudhury and J. Jayabalan , Chem. Phys. Lett., 2016, 653 , 184 —189L. R. Almeida , M. M. Anjos , G. C. Ribeiro , C. Valverde , D. F. S. Machado , G. R. Oliveira , H. B. Napolitano and H. C. B. De Oliveira , New J. Chem., 2017, 41 , 1744 —1754B. Ganapayya , A. Jayarama and S. M. Dharmaprakash , Mol. Cryst. Liq. Cryst., 2013, 571 , 87 —98P. J. Tejkiran , M. S. Brahma Teja , P. Sai Siva Kumar , P. Sankar , R. Philip , S. Naveen , N. K. Lokanath and G. Nageswara Rao , J. Photochem. Photobiol., A, 2016, 324 , 33 —39E. F. Blanco-Acuña , L. A. Vázquez-López , L. Gasque and H. García-Ortega , J. Mol. Struct., 2023, 1271 , 134009V. venkatarao , L. Kumar , A. Jha and G. Sridhar , Chem. Data Collect., 2019, 22 , 100236R. Ustabaş , N. Süleymanoğlu , N. Özdemir , N. Kahriman , E. Bektaş and Y. Ünver , Lett. Org. Chem., 2018, 17 , 46 —53C. Tratrat , M. Haroun , I. Xenikakis , K. Liaras , E. Tsolaki , P. Eleftheriou , A. Petrou , B. Aldhubiab , M. Attimarad , K. N. Venugopala , S. Harsha , H. S. Elsewedy , A. Geronikaki and M. Soković , Curr. Top. Med. Chem., 2019, 19 , 356 —375L. V. Chinh , T. N. Hung , N. T. Nga , T. T. N. Hang , T. T. N. Mai and V. A. Tarasevich , Russ. J. Org. Chem., 2014, 50 , 1767 —1774M. Sökmen and M. Akram Khan , Inflammopharmacology, 2016, 24 , 81 —86P. Yadav and K. Shah , Bioorg. Chem., 2021, 109 , 104639Z. Muhammad , J. Yau , A. U. Zezi , M. G. Magaji , A. N. Hamza , Z. Muhammad , J. Yau , A. U. Zezi , M. G. Magaji and A. N. Hamza , Am. J. Pharmacother. Pharm. Sci., 2023, 2 , 11H. O. Saxena , U. Faridi , J. K. Kumar , S. Luqman , M. P. Darokar , K. Shanker , C. S. Chanotiya , M. M. Gupta and A. S. Negi , Steroids, 2007, 72 , 892 —900E. Polo , N. Ibarra-Arellano , L. Prent-Peñaloza , A. Morales-Bayuelo , J. Henao , A. Galdámez and M. Gutiérrez , Bioorg. Chem., 2019, 90 , 103034E. Polo , J. Trilleras and M. G. Cabrera , Molbank, 2017, 2017 , M960O. V. Dolomanov , L. J. Bourhis , R. J. Gildea , J. A. K. Howard and H. Puschmann , J. Appl. Crystallogr., 2009, 42 , 339 —341G. M. Sheldrick Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71 , 3 —8Z. Chen , H. Duan , X. Tong , P. Hsu , L. Han , S. L. Morris-Natschke , S. Yang , W. Liu and K. H. Lee , J. Nat. Prod., 2018, 81 , 465 —474A. D. McLean and G. S. Chandler , J. Chem. Phys., 1980, 72 , 5639 —5648R. Krishnan , J. S. Binkley , R. Seeger and J. A. Pople , J. Chem. Phys., 1980, 72 , 650 —654Y. Zhao and D. G. Truhlar , Theor. Chem. Acc., 2008, 120 , 215 —241S. Miertuš , E. Scrocco and J. Tomasi , Chem. Phys., 1981, 55 , 117 —129M. E. Casida , C. Jamorski , K. C. Casida and D. R. Salahub , J. Chem. Phys., 1998, 108 , 4439 —4449J. L. Pascual-ahuir , E. Silla and I. Tuñon , J. Comput. Chem., 1994, 15 , 1127 —1138A. D. Becke J. Chem. Phys., 1993, 98 , 5648 —5652C. Lee , W. Yang and R. G. Parr , Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37 , 785 —789W. J. Hehre , K. Ditchfield and J. A. Pople , J. Chem. Phys., 1972, 56 , 2257 —2261P. Geerlings , F. De Proft and W. Langenaeker , Chem. Rev., 2003, 103 , 1793 —1873P. J. Stephens , F. J. Devlin , C. F. Chabalowski and M. J. Frisch , J. Phys. Chem., 1994, 98 , 11623 —11627CCCBDB listing of precalculated vibrational scaling factors, https://cccbdb.nist.gov/vibscalejustx.asp, accessed 25 January 2024.H. Chermette J. Comput. Chem., 1999, 20 , 129 —154R.Dennington, T. A.Keith and J. M.Millam, GaussView, Version 6.0, Semichem Inc., Shawnee Mission, KS, 2016.H.-B. Zhao , Y.-Q. Qiu , C.-G. Liu , S.-L. Sun , Y. Liu and R.-S. Wang , J. Organomet. Chem., 2010, 695 , 2251 —2257Y. Y. Hu , S. L. Sun , S. Muhammad , H. L. Xu and Z. M. Su , J. Phys. Chem. C, 2010, 114 , 19792 —19798H. Abbas , M. Shkir and S. AlFaify , Arabian J. Chem., 2019, 12 , 2336 —2346E. Polo-Cuadrado , C. Rojas-Peña , K. Acosta-Quiroga , L. Camargo-Ayala , I. Brito , J. Cisterna , F. Moncada , J. Trilleras , Y. A. Rodríguez-Núñez and M. Gutierrez , RSC Adv., 2022, 12 , 33032 —33048M. Frimat , I. Boudhabhay and L. T. Roumenina , Toxins, 2019, 11 , 660E. Mathew and I. H. Joe , J. Mol. Liq., 2023, 392 , 123415D. C. Harrowven , B. J. Sutton and S. Coulton , Tetrahedron Lett., 2001, 42 , 2907 —2910R. I. Al-Wabli , K. S. Resmi , Y. Sheena Mary , C. Yohannan Panicker , M. A. Attia , A. A. El-Emam and C. Van Alsenoy , J. Mol. Struct., 2016, 1123 , 375 —383S. Shettigar , P. Poornesh , G. Umesh , B. K. Sarojini , B. Narayana and K. Prakash Kamath , Opt. Laser Technol., 2010, 42 , 1162 —1166© 2024 The Author(s).info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/Propiedades ópticasPropiedades espectroscópicas no linealesMelting pointOptical depthThermolysisNonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalconeArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/3ef53184-7127-4af2-8853-1b4375322a35/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain3632https://repositorio.unibague.edu.co/bitstreams/8f9a6895-8e7b-4b6b-99ce-7a5c7b8577e8/download664aef3d96ac514d6400cca23fb68d91MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg22274https://repositorio.unibague.edu.co/bitstreams/7b92a544-a5e5-456e-93b6-4a8fcbba5a27/download9d55b1ef2df781794a77551fa9381b39MD54ORIGINALArtículo.pdfArtículo.pdfapplication/pdf230341https://repositorio.unibague.edu.co/bitstreams/01e7eb8f-c134-49c7-ae49-298691559f48/download73bdd51e9b8b0c6c33f03041879ca9d4MD5220.500.12313/5801oai:repositorio.unibague.edu.co:20.500.12313/58012025-10-18 03:02:10.231https://creativecommons.org/licenses/by-nc/4.0/© 2024 The Author(s).https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=