Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone
This article describes the synthesis, characterization (1H NMR, 13C NMR, FT-IR, HRMS and XRD), UV-Vis absorption and fluorescence spectra, theoretical analysis, evaluation of nonlinear optical properties (NLO), thermal analysis and determination of the hemolytic capacity of the compound (E)-N-(4-(3(...
- Autores:
-
Polo-Cuadrado, Efraín
Osorio, Edison
Acosta-Quiroga, Karen
Camargo-Ayala, Paola Andrea
Brito, Iván
Rodriguez, Jany
Alderete, Joel B.
Forero-Doria, Oscar
Blanco-Acuña, Edgard Fabián
Gutiérrez, Margarita
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5801
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/5801
https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra00820k
- Palabra clave:
- Propiedades ópticas
Propiedades espectroscópicas no lineales
Melting point
Optical depth
Thermolysis
- Rights
- openAccess
- License
- © 2024 The Author(s).
| id |
UNIBAGUE2_4bdcaa3fd7fd6959645746a78b391aa0 |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5801 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone |
| title |
Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone |
| spellingShingle |
Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone Propiedades ópticas Propiedades espectroscópicas no lineales Melting point Optical depth Thermolysis |
| title_short |
Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone |
| title_full |
Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone |
| title_fullStr |
Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone |
| title_full_unstemmed |
Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone |
| title_sort |
Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone |
| dc.creator.fl_str_mv |
Polo-Cuadrado, Efraín Osorio, Edison Acosta-Quiroga, Karen Camargo-Ayala, Paola Andrea Brito, Iván Rodriguez, Jany Alderete, Joel B. Forero-Doria, Oscar Blanco-Acuña, Edgard Fabián Gutiérrez, Margarita |
| dc.contributor.author.none.fl_str_mv |
Polo-Cuadrado, Efraín Osorio, Edison Acosta-Quiroga, Karen Camargo-Ayala, Paola Andrea Brito, Iván Rodriguez, Jany Alderete, Joel B. Forero-Doria, Oscar Blanco-Acuña, Edgard Fabián Gutiérrez, Margarita |
| dc.subject.armarc.none.fl_str_mv |
Propiedades ópticas Propiedades espectroscópicas no lineales |
| topic |
Propiedades ópticas Propiedades espectroscópicas no lineales Melting point Optical depth Thermolysis |
| dc.subject.proposal.eng.fl_str_mv |
Melting point Optical depth Thermolysis |
| description |
This article describes the synthesis, characterization (1H NMR, 13C NMR, FT-IR, HRMS and XRD), UV-Vis absorption and fluorescence spectra, theoretical analysis, evaluation of nonlinear optical properties (NLO), thermal analysis and determination of the hemolytic capacity of the compound (E)-N-(4-(3(benzo[d][1,3]dioxol-5-yl)acryloyl)phenyl)quinoline-3-carboxamide (5). Radiological findings showed that compound 5 crystallized in space group Pca21. Furthermore, theoretical DFT studies performed with the B3LYP and M062X functionals showed good agreement with the experimental results and provided valuable information on the molecular and electronic structure, reactivity, polarizability, and kinematic stability of the compound. Besides, compound 5 did not show any hemolytic effect on human erythrocytes and exhibited strong NLO properties. The TG and DTA thermograms of quinoline–chalcone (5) revealed a multi-step thermal decomposition process with a total mass loss of 83.2%, including water content loss. The DTA curves exhibited endothermic peaks corresponding to decomposition steps, melting point, and thermochemical transition. Additionally, exothermic peaks in the DTA thermograms align with significant mass loss, confirming the compound's melting point and water content, as validated by X-ray diffraction analysis. These results contribute to the advancement of research on compounds with NLO properties and offer a promising avenue for the development of substances potentially applicable to optical devices in the biomedical field. |
| publishDate |
2024 |
| dc.date.issued.none.fl_str_mv |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-10-17T22:55:28Z |
| dc.date.available.none.fl_str_mv |
2025-10-17T22:55:28Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
Polo-Cuadrado, E., Osorio, E., Acosta-Quiroga, K., Camargo-Ayala, P., Brito, I., Rodriguez, J., Alderete, J., Forero-Doria, O., Blanco-Acuña, E. y Gutiérrez, M. (2024). Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone. RSC Advances, 14(15), 10199 - 10208. DOI: 10.1039/d4ra00820k |
| dc.identifier.doi.none.fl_str_mv |
10.1039/d4ra00820k |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/5801 |
| dc.identifier.url.none.fl_str_mv |
https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra00820k |
| identifier_str_mv |
Polo-Cuadrado, E., Osorio, E., Acosta-Quiroga, K., Camargo-Ayala, P., Brito, I., Rodriguez, J., Alderete, J., Forero-Doria, O., Blanco-Acuña, E. y Gutiérrez, M. (2024). Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone. RSC Advances, 14(15), 10199 - 10208. DOI: 10.1039/d4ra00820k 10.1039/d4ra00820k |
| url |
https://hdl.handle.net/20.500.12313/5801 https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra00820k |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.none.fl_str_mv |
10208 |
| dc.relation.citationissue.none.fl_str_mv |
15 |
| dc.relation.citationstartpage.none.fl_str_mv |
10199 |
| dc.relation.citationvolume.none.fl_str_mv |
14 |
| dc.relation.ispartofjournal.none.fl_str_mv |
RSC Advances |
| dc.relation.references.none.fl_str_mv |
N. Sudha , R. Surendran and S. Jeyaram , Opt. Mater., 2022, 131 , 112668 N. V. Agrinskaya , V. A. Lukoshkin , V. V. Kudryavtsev , G. I. Nosova , N. A. Solovskaya and A. V. Yakimanskiǐ , Phys. Solid State, 1999, 41 , 1914 —1917 R. Bano , M. Asghar , K. Ayub , T. Mahmood , J. Iqbal , S. Tabassum , R. Zakaria and M. A. Gilani , Front. Mater., 2021, 8 , 783239 S. Omar , M. Shkir , M. Ajmal Khan , Z. Ahmad and S. AlFaify , Optik, 2020, 204 , 164172 H. Belahlou , S. Abed , M. Bouchouit , S. Taboukhat , L. Messaadia , E. E. Bendeif , A. Bouraiou , B. Sahraoui and K. Bouchouit , J. Mol. Struct., 2023, 1294 , 136488 A. Saha , V. Shukla , S. Choudhury and J. Jayabalan , Chem. Phys. Lett., 2016, 653 , 184 —189 L. R. Almeida , M. M. Anjos , G. C. Ribeiro , C. Valverde , D. F. S. Machado , G. R. Oliveira , H. B. Napolitano and H. C. B. De Oliveira , New J. Chem., 2017, 41 , 1744 —1754 B. Ganapayya , A. Jayarama and S. M. Dharmaprakash , Mol. Cryst. Liq. Cryst., 2013, 571 , 87 —98 P. J. Tejkiran , M. S. Brahma Teja , P. Sai Siva Kumar , P. Sankar , R. Philip , S. Naveen , N. K. Lokanath and G. Nageswara Rao , J. Photochem. Photobiol., A, 2016, 324 , 33 —39 E. F. Blanco-Acuña , L. A. Vázquez-López , L. Gasque and H. García-Ortega , J. Mol. Struct., 2023, 1271 , 134009 V. venkatarao , L. Kumar , A. Jha and G. Sridhar , Chem. Data Collect., 2019, 22 , 100236 R. Ustabaş , N. Süleymanoğlu , N. Özdemir , N. Kahriman , E. Bektaş and Y. Ünver , Lett. Org. Chem., 2018, 17 , 46 —53 C. Tratrat , M. Haroun , I. Xenikakis , K. Liaras , E. Tsolaki , P. Eleftheriou , A. Petrou , B. Aldhubiab , M. Attimarad , K. N. Venugopala , S. Harsha , H. S. Elsewedy , A. Geronikaki and M. Soković , Curr. Top. Med. Chem., 2019, 19 , 356 —375 L. V. Chinh , T. N. Hung , N. T. Nga , T. T. N. Hang , T. T. N. Mai and V. A. Tarasevich , Russ. J. Org. Chem., 2014, 50 , 1767 —1774 M. Sökmen and M. Akram Khan , Inflammopharmacology, 2016, 24 , 81 —86 P. Yadav and K. Shah , Bioorg. Chem., 2021, 109 , 104639 Z. Muhammad , J. Yau , A. U. Zezi , M. G. Magaji , A. N. Hamza , Z. Muhammad , J. Yau , A. U. Zezi , M. G. Magaji and A. N. Hamza , Am. J. Pharmacother. Pharm. Sci., 2023, 2 , 11 H. O. Saxena , U. Faridi , J. K. Kumar , S. Luqman , M. P. Darokar , K. Shanker , C. S. Chanotiya , M. M. Gupta and A. S. Negi , Steroids, 2007, 72 , 892 —900 E. Polo , N. Ibarra-Arellano , L. Prent-Peñaloza , A. Morales-Bayuelo , J. Henao , A. Galdámez and M. Gutiérrez , Bioorg. Chem., 2019, 90 , 103034 E. Polo , J. Trilleras and M. G. Cabrera , Molbank, 2017, 2017 , M960 O. V. Dolomanov , L. J. Bourhis , R. J. Gildea , J. A. K. Howard and H. Puschmann , J. Appl. Crystallogr., 2009, 42 , 339 —341 G. M. Sheldrick Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71 , 3 —8 Z. Chen , H. Duan , X. Tong , P. Hsu , L. Han , S. L. Morris-Natschke , S. Yang , W. Liu and K. H. Lee , J. Nat. Prod., 2018, 81 , 465 —474 A. D. McLean and G. S. Chandler , J. Chem. Phys., 1980, 72 , 5639 —5648 R. Krishnan , J. S. Binkley , R. Seeger and J. A. Pople , J. Chem. Phys., 1980, 72 , 650 —654 Y. Zhao and D. G. Truhlar , Theor. Chem. Acc., 2008, 120 , 215 —241 S. Miertuš , E. Scrocco and J. Tomasi , Chem. Phys., 1981, 55 , 117 —129 M. E. Casida , C. Jamorski , K. C. Casida and D. R. Salahub , J. Chem. Phys., 1998, 108 , 4439 —4449 J. L. Pascual-ahuir , E. Silla and I. Tuñon , J. Comput. Chem., 1994, 15 , 1127 —1138 A. D. Becke J. Chem. Phys., 1993, 98 , 5648 —5652 C. Lee , W. Yang and R. G. Parr , Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37 , 785 —789 W. J. Hehre , K. Ditchfield and J. A. Pople , J. Chem. Phys., 1972, 56 , 2257 —2261 P. Geerlings , F. De Proft and W. Langenaeker , Chem. Rev., 2003, 103 , 1793 —1873 P. J. Stephens , F. J. Devlin , C. F. Chabalowski and M. J. Frisch , J. Phys. Chem., 1994, 98 , 11623 —11627 CCCBDB listing of precalculated vibrational scaling factors, https://cccbdb.nist.gov/vibscalejustx.asp, accessed 25 January 2024. H. Chermette J. Comput. Chem., 1999, 20 , 129 —154 R.Dennington, T. A.Keith and J. M.Millam, GaussView, Version 6.0, Semichem Inc., Shawnee Mission, KS, 2016. H.-B. Zhao , Y.-Q. Qiu , C.-G. Liu , S.-L. Sun , Y. Liu and R.-S. Wang , J. Organomet. Chem., 2010, 695 , 2251 —2257 Y. Y. Hu , S. L. Sun , S. Muhammad , H. L. Xu and Z. M. Su , J. Phys. Chem. C, 2010, 114 , 19792 —19798 H. Abbas , M. Shkir and S. AlFaify , Arabian J. Chem., 2019, 12 , 2336 —2346 E. Polo-Cuadrado , C. Rojas-Peña , K. Acosta-Quiroga , L. Camargo-Ayala , I. Brito , J. Cisterna , F. Moncada , J. Trilleras , Y. A. Rodríguez-Núñez and M. Gutierrez , RSC Adv., 2022, 12 , 33032 —33048 M. Frimat , I. Boudhabhay and L. T. Roumenina , Toxins, 2019, 11 , 660 E. Mathew and I. H. Joe , J. Mol. Liq., 2023, 392 , 123415 D. C. Harrowven , B. J. Sutton and S. Coulton , Tetrahedron Lett., 2001, 42 , 2907 —2910 R. I. Al-Wabli , K. S. Resmi , Y. Sheena Mary , C. Yohannan Panicker , M. A. Attia , A. A. El-Emam and C. Van Alsenoy , J. Mol. Struct., 2016, 1123 , 375 —383 S. Shettigar , P. Poornesh , G. Umesh , B. K. Sarojini , B. Narayana and K. Prakash Kamath , Opt. Laser Technol., 2010, 42 , 1162 —1166 |
| dc.rights.eng.fl_str_mv |
© 2024 The Author(s). |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| rights_invalid_str_mv |
© 2024 The Author(s). http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
| dc.publisher.place.none.fl_str_mv |
Reino Unido |
| publisher.none.fl_str_mv |
Royal Society of Chemistry |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/3ef53184-7127-4af2-8853-1b4375322a35/download https://repositorio.unibague.edu.co/bitstreams/8f9a6895-8e7b-4b6b-99ce-7a5c7b8577e8/download https://repositorio.unibague.edu.co/bitstreams/7b92a544-a5e5-456e-93b6-4a8fcbba5a27/download https://repositorio.unibague.edu.co/bitstreams/01e7eb8f-c134-49c7-ae49-298691559f48/download |
| bitstream.checksum.fl_str_mv |
2fa3e590786b9c0f3ceba1b9656b7ac3 664aef3d96ac514d6400cca23fb68d91 9d55b1ef2df781794a77551fa9381b39 73bdd51e9b8b0c6c33f03041879ca9d4 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059980864585728 |
| spelling |
Polo-Cuadrado, Efraínf8016ac0-3f43-4599-89b2-3d8e129cb357-1Osorio, Edisone6d834e4-46ca-40f0-ab7c-630a35856901-1Acosta-Quiroga, Karen90475b55-a2db-4ca5-aa5c-41aaa1a7c985-1Camargo-Ayala, Paola Andrea51909bee-c3db-4c2a-a2ed-101ca337237d-1Brito, Iván26ac473f-3c45-4d5a-9701-4e0cf4753fa9-1Rodriguez, Jany3d64592a-9590-4587-a30c-0bf7b27889ea-1Alderete, Joel B.1e551baa-cc16-4cf8-a340-1bd35189146a-1Forero-Doria, Oscar0620fbe6-a90e-40ea-aa6f-68eeeefae106-1Blanco-Acuña, Edgard Fabiánc450278e-bba4-492d-a889-549277b62065-1Gutiérrez, Margarita3d6c891b-b6e6-4157-b398-c6ef08538087-12025-10-17T22:55:28Z2025-10-17T22:55:28Z2024This article describes the synthesis, characterization (1H NMR, 13C NMR, FT-IR, HRMS and XRD), UV-Vis absorption and fluorescence spectra, theoretical analysis, evaluation of nonlinear optical properties (NLO), thermal analysis and determination of the hemolytic capacity of the compound (E)-N-(4-(3(benzo[d][1,3]dioxol-5-yl)acryloyl)phenyl)quinoline-3-carboxamide (5). Radiological findings showed that compound 5 crystallized in space group Pca21. Furthermore, theoretical DFT studies performed with the B3LYP and M062X functionals showed good agreement with the experimental results and provided valuable information on the molecular and electronic structure, reactivity, polarizability, and kinematic stability of the compound. Besides, compound 5 did not show any hemolytic effect on human erythrocytes and exhibited strong NLO properties. The TG and DTA thermograms of quinoline–chalcone (5) revealed a multi-step thermal decomposition process with a total mass loss of 83.2%, including water content loss. The DTA curves exhibited endothermic peaks corresponding to decomposition steps, melting point, and thermochemical transition. Additionally, exothermic peaks in the DTA thermograms align with significant mass loss, confirming the compound's melting point and water content, as validated by X-ray diffraction analysis. These results contribute to the advancement of research on compounds with NLO properties and offer a promising avenue for the development of substances potentially applicable to optical devices in the biomedical field.application/pdfPolo-Cuadrado, E., Osorio, E., Acosta-Quiroga, K., Camargo-Ayala, P., Brito, I., Rodriguez, J., Alderete, J., Forero-Doria, O., Blanco-Acuña, E. y Gutiérrez, M. (2024). Nonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalcone. RSC Advances, 14(15), 10199 - 10208. DOI: 10.1039/d4ra00820k10.1039/d4ra00820khttps://hdl.handle.net/20.500.12313/5801https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra00820kengRoyal Society of ChemistryReino Unido10208151019914RSC AdvancesN. Sudha , R. Surendran and S. Jeyaram , Opt. Mater., 2022, 131 , 112668N. V. Agrinskaya , V. A. Lukoshkin , V. V. Kudryavtsev , G. I. Nosova , N. A. Solovskaya and A. V. Yakimanskiǐ , Phys. Solid State, 1999, 41 , 1914 —1917R. Bano , M. Asghar , K. Ayub , T. Mahmood , J. Iqbal , S. Tabassum , R. Zakaria and M. A. Gilani , Front. Mater., 2021, 8 , 783239S. Omar , M. Shkir , M. Ajmal Khan , Z. Ahmad and S. AlFaify , Optik, 2020, 204 , 164172H. Belahlou , S. Abed , M. Bouchouit , S. Taboukhat , L. Messaadia , E. E. Bendeif , A. Bouraiou , B. Sahraoui and K. Bouchouit , J. Mol. Struct., 2023, 1294 , 136488A. Saha , V. Shukla , S. Choudhury and J. Jayabalan , Chem. Phys. Lett., 2016, 653 , 184 —189L. R. Almeida , M. M. Anjos , G. C. Ribeiro , C. Valverde , D. F. S. Machado , G. R. Oliveira , H. B. Napolitano and H. C. B. De Oliveira , New J. Chem., 2017, 41 , 1744 —1754B. Ganapayya , A. Jayarama and S. M. Dharmaprakash , Mol. Cryst. Liq. Cryst., 2013, 571 , 87 —98P. J. Tejkiran , M. S. Brahma Teja , P. Sai Siva Kumar , P. Sankar , R. Philip , S. Naveen , N. K. Lokanath and G. Nageswara Rao , J. Photochem. Photobiol., A, 2016, 324 , 33 —39E. F. Blanco-Acuña , L. A. Vázquez-López , L. Gasque and H. García-Ortega , J. Mol. Struct., 2023, 1271 , 134009V. venkatarao , L. Kumar , A. Jha and G. Sridhar , Chem. Data Collect., 2019, 22 , 100236R. Ustabaş , N. Süleymanoğlu , N. Özdemir , N. Kahriman , E. Bektaş and Y. Ünver , Lett. Org. Chem., 2018, 17 , 46 —53C. Tratrat , M. Haroun , I. Xenikakis , K. Liaras , E. Tsolaki , P. Eleftheriou , A. Petrou , B. Aldhubiab , M. Attimarad , K. N. Venugopala , S. Harsha , H. S. Elsewedy , A. Geronikaki and M. Soković , Curr. Top. Med. Chem., 2019, 19 , 356 —375L. V. Chinh , T. N. Hung , N. T. Nga , T. T. N. Hang , T. T. N. Mai and V. A. Tarasevich , Russ. J. Org. Chem., 2014, 50 , 1767 —1774M. Sökmen and M. Akram Khan , Inflammopharmacology, 2016, 24 , 81 —86P. Yadav and K. Shah , Bioorg. Chem., 2021, 109 , 104639Z. Muhammad , J. Yau , A. U. Zezi , M. G. Magaji , A. N. Hamza , Z. Muhammad , J. Yau , A. U. Zezi , M. G. Magaji and A. N. Hamza , Am. J. Pharmacother. Pharm. Sci., 2023, 2 , 11H. O. Saxena , U. Faridi , J. K. Kumar , S. Luqman , M. P. Darokar , K. Shanker , C. S. Chanotiya , M. M. Gupta and A. S. Negi , Steroids, 2007, 72 , 892 —900E. Polo , N. Ibarra-Arellano , L. Prent-Peñaloza , A. Morales-Bayuelo , J. Henao , A. Galdámez and M. Gutiérrez , Bioorg. Chem., 2019, 90 , 103034E. Polo , J. Trilleras and M. G. Cabrera , Molbank, 2017, 2017 , M960O. V. Dolomanov , L. J. Bourhis , R. J. Gildea , J. A. K. Howard and H. Puschmann , J. Appl. Crystallogr., 2009, 42 , 339 —341G. M. Sheldrick Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71 , 3 —8Z. Chen , H. Duan , X. Tong , P. Hsu , L. Han , S. L. Morris-Natschke , S. Yang , W. Liu and K. H. Lee , J. Nat. Prod., 2018, 81 , 465 —474A. D. McLean and G. S. Chandler , J. Chem. Phys., 1980, 72 , 5639 —5648R. Krishnan , J. S. Binkley , R. Seeger and J. A. Pople , J. Chem. Phys., 1980, 72 , 650 —654Y. Zhao and D. G. Truhlar , Theor. Chem. Acc., 2008, 120 , 215 —241S. Miertuš , E. Scrocco and J. Tomasi , Chem. Phys., 1981, 55 , 117 —129M. E. Casida , C. Jamorski , K. C. Casida and D. R. Salahub , J. Chem. Phys., 1998, 108 , 4439 —4449J. L. Pascual-ahuir , E. Silla and I. Tuñon , J. Comput. Chem., 1994, 15 , 1127 —1138A. D. Becke J. Chem. Phys., 1993, 98 , 5648 —5652C. Lee , W. Yang and R. G. Parr , Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37 , 785 —789W. J. Hehre , K. Ditchfield and J. A. Pople , J. Chem. Phys., 1972, 56 , 2257 —2261P. Geerlings , F. De Proft and W. Langenaeker , Chem. Rev., 2003, 103 , 1793 —1873P. J. Stephens , F. J. Devlin , C. F. Chabalowski and M. J. Frisch , J. Phys. Chem., 1994, 98 , 11623 —11627CCCBDB listing of precalculated vibrational scaling factors, https://cccbdb.nist.gov/vibscalejustx.asp, accessed 25 January 2024.H. Chermette J. Comput. Chem., 1999, 20 , 129 —154R.Dennington, T. A.Keith and J. M.Millam, GaussView, Version 6.0, Semichem Inc., Shawnee Mission, KS, 2016.H.-B. Zhao , Y.-Q. Qiu , C.-G. Liu , S.-L. Sun , Y. Liu and R.-S. Wang , J. Organomet. Chem., 2010, 695 , 2251 —2257Y. Y. Hu , S. L. Sun , S. Muhammad , H. L. Xu and Z. M. Su , J. Phys. Chem. C, 2010, 114 , 19792 —19798H. Abbas , M. Shkir and S. AlFaify , Arabian J. Chem., 2019, 12 , 2336 —2346E. Polo-Cuadrado , C. Rojas-Peña , K. Acosta-Quiroga , L. Camargo-Ayala , I. Brito , J. Cisterna , F. Moncada , J. Trilleras , Y. A. Rodríguez-Núñez and M. Gutierrez , RSC Adv., 2022, 12 , 33032 —33048M. Frimat , I. Boudhabhay and L. T. Roumenina , Toxins, 2019, 11 , 660E. Mathew and I. H. Joe , J. Mol. Liq., 2023, 392 , 123415D. C. Harrowven , B. J. Sutton and S. Coulton , Tetrahedron Lett., 2001, 42 , 2907 —2910R. I. Al-Wabli , K. S. Resmi , Y. Sheena Mary , C. Yohannan Panicker , M. A. Attia , A. A. El-Emam and C. Van Alsenoy , J. Mol. Struct., 2016, 1123 , 375 —383S. Shettigar , P. Poornesh , G. Umesh , B. K. Sarojini , B. Narayana and K. Prakash Kamath , Opt. Laser Technol., 2010, 42 , 1162 —1166© 2024 The Author(s).info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/Propiedades ópticasPropiedades espectroscópicas no linealesMelting pointOptical depthThermolysisNonlinear optical and spectroscopic properties, thermal analysis, and hemolytic capacity evaluation of quinoline-1,3-benzodioxole chalconeArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/3ef53184-7127-4af2-8853-1b4375322a35/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain3632https://repositorio.unibague.edu.co/bitstreams/8f9a6895-8e7b-4b6b-99ce-7a5c7b8577e8/download664aef3d96ac514d6400cca23fb68d91MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg22274https://repositorio.unibague.edu.co/bitstreams/7b92a544-a5e5-456e-93b6-4a8fcbba5a27/download9d55b1ef2df781794a77551fa9381b39MD54ORIGINALArtículo.pdfArtículo.pdfapplication/pdf230341https://repositorio.unibague.edu.co/bitstreams/01e7eb8f-c134-49c7-ae49-298691559f48/download73bdd51e9b8b0c6c33f03041879ca9d4MD5220.500.12313/5801oai:repositorio.unibague.edu.co:20.500.12313/58012025-10-18 03:02:10.231https://creativecommons.org/licenses/by-nc/4.0/© 2024 The Author(s).https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
