Mechanical Fracture of Aluminium Alloy (AA 2024-T4), Used in the Manufacture of a Bioproducts Plant

Aluminium alloy (AA2024-T4) is a material commonly used in the aerospace industry, where it forms part of the fuselage of aircraft and spacecraft thanks to its good machinability and strength/weight ratio. These characteristics allowed it to be applied in the construction of the structure of a pilot...

Full description

Autores:
Urrego, Luis Fabian
García-Beltrán, Olimpo
Arzola, Nelson
Araque, Oscar
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5582
Acceso en línea:
https://hdl.handle.net/20.500.12313/5582
https://www.mdpi.com/search?q=Mechanical+Fracture+of+Aluminium+Alloy+%28AA+2024-T4%29%2C+Used+in+the+Manufacture+of+a+Bioproducts+Plant&journal=metals
Palabra clave:
Aleación de Aluminio (AA 2024-T4) - Fractura mecánica
Planta de Bioproductos
Crack
Fatigue
Geometric factor
Pilot plant
Support vector regression
Rights
openAccess
License
© 2023 by the authors.
id UNIBAGUE2_419b5be8aac2272af1843db3d7439af5
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5582
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Mechanical Fracture of Aluminium Alloy (AA 2024-T4), Used in the Manufacture of a Bioproducts Plant
title Mechanical Fracture of Aluminium Alloy (AA 2024-T4), Used in the Manufacture of a Bioproducts Plant
spellingShingle Mechanical Fracture of Aluminium Alloy (AA 2024-T4), Used in the Manufacture of a Bioproducts Plant
Aleación de Aluminio (AA 2024-T4) - Fractura mecánica
Planta de Bioproductos
Crack
Fatigue
Geometric factor
Pilot plant
Support vector regression
title_short Mechanical Fracture of Aluminium Alloy (AA 2024-T4), Used in the Manufacture of a Bioproducts Plant
title_full Mechanical Fracture of Aluminium Alloy (AA 2024-T4), Used in the Manufacture of a Bioproducts Plant
title_fullStr Mechanical Fracture of Aluminium Alloy (AA 2024-T4), Used in the Manufacture of a Bioproducts Plant
title_full_unstemmed Mechanical Fracture of Aluminium Alloy (AA 2024-T4), Used in the Manufacture of a Bioproducts Plant
title_sort Mechanical Fracture of Aluminium Alloy (AA 2024-T4), Used in the Manufacture of a Bioproducts Plant
dc.creator.fl_str_mv Urrego, Luis Fabian
García-Beltrán, Olimpo
Arzola, Nelson
Araque, Oscar
dc.contributor.author.none.fl_str_mv Urrego, Luis Fabian
García-Beltrán, Olimpo
Arzola, Nelson
Araque, Oscar
dc.subject.armarc.none.fl_str_mv Aleación de Aluminio (AA 2024-T4) - Fractura mecánica
Planta de Bioproductos
topic Aleación de Aluminio (AA 2024-T4) - Fractura mecánica
Planta de Bioproductos
Crack
Fatigue
Geometric factor
Pilot plant
Support vector regression
dc.subject.proposal.eng.fl_str_mv Crack
Fatigue
Geometric factor
Pilot plant
Support vector regression
description Aluminium alloy (AA2024-T4) is a material commonly used in the aerospace industry, where it forms part of the fuselage of aircraft and spacecraft thanks to its good machinability and strength/weight ratio. These characteristics allowed it to be applied in the construction of the structure of a pilot plant to produce biological extracts and nano-encapsulated bioproducts for the phytosanitary control of diseases associated with microorganisms in crops of Theobroma cacao L. (Cacao). The mechanical design of the bolted support joints for this structure implies knowing the performance under fatigue conditions of the AA2024-T4 material since the use of bolts entails the placement of circular stress concentrators in the AA2024-T4 sheet. The geometric correction constant (Y) is a dimensionless numerical scalar used to correct the stress intensity factor (SIF) at the crack tip during propagation. This factor allows the stress concentration to be modified as a function of the specimen dimensions. In this work, four compact tension specimens were modeled in AA2024-T4, and each one was modified by introducing a second circular stress concentrator varying its size between 15 mm, 20 mm, 25 mm, and 30 mm, respectively. Applying a cyclic load of 1000N, a load ratio R=-1 and a computational model with tetrahedral elements, it was determined that the highest SIF corresponds to the specimen with a 30 mm concentrator with a value close to 460 MPa.mm0.5. Where the crack propagation had a maximum length of 53 mm. Using these simulation data, it was possible to process each one and obtain a mathematical model that calculates the geometric correction constant (Y). The calculated data using the new model was shown to have a direct relationship with the behavior obtained from the simulation.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-06
dc.date.accessioned.none.fl_str_mv 2025-09-01T21:10:53Z
dc.date.available.none.fl_str_mv 2025-09-01T21:10:53Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Urrego, L., García-Beltrán, O., Arzola, N y Araque, O. (2023). Mechanical Fracture of Aluminium Alloy (AA 2024-T4), Used in the Manufacture of a Bioproducts Plant. Metals, 13(6). DOI: 10.3390/met13061134
dc.identifier.doi.none.fl_str_mv 10.3390/met13061134
dc.identifier.issn.none.fl_str_mv 20754701
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5582
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/search?q=Mechanical+Fracture+of+Aluminium+Alloy+%28AA+2024-T4%29%2C+Used+in+the+Manufacture+of+a+Bioproducts+Plant&journal=metals
identifier_str_mv Urrego, L., García-Beltrán, O., Arzola, N y Araque, O. (2023). Mechanical Fracture of Aluminium Alloy (AA 2024-T4), Used in the Manufacture of a Bioproducts Plant. Metals, 13(6). DOI: 10.3390/met13061134
10.3390/met13061134
20754701
url https://hdl.handle.net/20.500.12313/5582
https://www.mdpi.com/search?q=Mechanical+Fracture+of+Aluminium+Alloy+%28AA+2024-T4%29%2C+Used+in+the+Manufacture+of+a+Bioproducts+Plant&journal=metals
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationissue.none.fl_str_mv 6
dc.relation.citationstartpage.none.fl_str_mv 1134
dc.relation.citationvolume.none.fl_str_mv 13
dc.relation.ispartofjournal.none.fl_str_mv Metals
dc.relation.references.none.fl_str_mv Sanchez-Capa, M.; Viteri-Sanchez, S.; Burbano-Cachiguango, A. New Characteristics in the Fermentation Process of Cocoa (Theobroma cacao L.) ‘Super Á rbol’ in La Joya de los. Sustainability 2022, 14, 7564
Gómez, E.H.; Campo, I.; Rosario, E.; Tapachula, K.C. Factores socieconómicos y parasitológicos que limitan la producción del cacao en Chiapas, México Socioeconomic and parasitological factors that limits cocoa production in Chiapas, Mexico, 2015. Rev. Mex. Fitopatol. 2015, 33, 232–246.
Chitiva-Chitiva, L.C.; Ladino-Vargas, C.; Cuca-Suárez, L.E.; Prieto-Rodríguez, J.A.; Patiño-Ladino, O.J. Antifungal Activity of Chemical Constituents from Phytopathogen Fungi of Cocoa. Molecules 2021, 26, 3256
Guerrini, A.; Sacchetti, G.; Rossi, D.; Paganetto, G.; Muzzoli, M.; Andreotti, E.; Tognolini, M.; Maldonado, M.E.; Bruni, R. Bioactivities of Piper aduncum L. and Piper obliquum Ruiz & Pavon (Piperaceae) essential oils from Eastern Ecuador. Environ. Toxicol. Pharmacol. 2009, 27, 39–48.
Guerrero, R.; Risco, G.; Cevallos, O.; Villamar, R.; Peñaherrera, S. Extractos vegetales: Una alternativa para el control de enfermedades en el cultivo de cacao (Theobroma cacao). Ing. Innovación 2020, 8, 2326
Nairn, J.A. Direct comparison of anisotropic damage mechanics to fracture mechanics of explicit cracks. Eng. Fract. Mech. 2018, 203, 197–207.
Mecholsky, J.J. Fracture mechanics principles. Dent. Mater. 1995, 11, 111–112.
Taylor, D.; Cornetti, P.; Pugno, N. The fracture mechanics of finite crack extension. Eng. Fract. Mech. 2005, 72, 1021–1038.
Atzori, B.; Lazzarin, P.; Meneghetti, G. Fracture mechanics and notch sensitivity. Fatigue Fract. Eng. Mater. Struct. 2003, 26, 257–267.
Smith, S.M.; Scattergood, R.O. Crack-Shape Effects for Indentation Fracture Toughness Measurements. J. Am. Ceram. Soc. 1992, 75, 305–315.
Newman, J.C., Jr.; Raju, I. An empirical stress-intensity factor equation for the surface crack. Eng. Fract. Mech. 1981, 15, 185–192.
Nix, K.J.; Lindley, T.C. The Application of Fracture Mechanics to Fretting Fatigue. Fatigue Fract. Eng. Mater. Struct. 1985, 8, 143–160.
Clarke, S.M.; Griebsch, J.H.; Simpson, T.W. Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses. J. Mech. Des. 2004, 127, 1077–1087.
Smola, A.J.; Scholkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. Available online: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1CAD92EF8CCE726A305D8A41F873EEFC?doi=10.1.1.114.4288&rep=rep1&type=pdf%0Ahttp://download.springer.com/static/pdf/493/art%3A10.1023%2FB%3ASTCO.0000035301.49549.88.pdf?auth66=1408162706_8a28764ed0fae9 (accessed on 10 April 2023).
Heydari, M.H.; Choupani, N. A New Comparative Method to Evaluate the Fracture Properties of Laminated Composite. Int. J. Eng. 2014, 27, 991–1004.
El-Desouky, A.R. Mixed Mode Crack Propagation of Zirconia/Nickel Functionally Graded Materials. Int. J. Eng. 2013, 26, 885–894.
Guo, K.; Gou, G.; Lv, H.; Shan, M. Jointing of CFRP/5083 Aluminum Alloy by Induction Brazing: Processing, Connecting Mechanism, and Fatigue Performance. Coatings 2022, 12, 1559.
USA Department of Defense. MIL-HDBK-2097, Military Handbook: Acquisition of Support Equipment and Associated Integrated Logistics Support; USA Department of Defense: Washington, DC, USA, 1997.
Haji, Z. Low cycle fatigue behavior of aluminum alloys AA2024-T6 and AA7020-T6. Diyala J. Eng. Sci. 2010, 127–137.
Meggiolaro, M. Statistical evaluation of strain-life fatigue crack initiation predictions. Int. J. Fatigue 2004, 26, 463–476.
Faisal, B.M.; Abass, A.T.; Hammadi, A.F. Fatigue Life Estimation of Aluminum Alloy 2024-T4 and Fiber Glass-Polyester Composite Material. Int. Res. J. Eng. Technol. 2016, 2016, 1760–1764. Available online: www.irjet.net (accessed on 10 April 2023).
Hudson, M.; Scardina, J. Effect of stress ratio on fatigue crack growth in 7075-T6 Al alloy sheet. Natl. Symp. Fract. Mech. 1967.
Wei, R.P. Fatigue-crack propagation in a high-strength. Int. J. Fract. Mech. 1968, 4, 159–168.
ANSYS. Meshing Guide; Finite Elem. Simulations Using ANSYS; Ansys: Canonsburg, PA, USA, 2015; Volume 15317, pp. 407–424.
Araque, O.; Arzola, N. Weld Magnification Factor Approach in Cruciform Joints Considering Post Welding Cooling Medium and Weld Size. Materials 2018, 11, 81.
Shawe-Taylor, J.; Cristianini, N. Kernel Methods for Pattern Analysis; Cambridge University Press: Cambridge, UK, 2004.
Demir, S.; Toktamiş, Ö. On the adaptive Nadaraya-Watson kernel regression estimators. Hacet. J. Math. Stat. 2010, 39, 429–437.
Fan, J.; Gijbels, I. Local Polynomial Modelling and Its Applications; Applied Pr. New York; CRC Press: Boca Raton, FL, USA, 1996.
Chu, C.-Y.; Henderson, D.J.; Parmeter, C.F. On discrete Epanechnikov kernel functions. Comput. Stat. Data Anal. 2017, 116, 79–105.
Alshoaibi, A.M. Computational Simulation of 3D Fatigue Crack Growth under Mixed-Mode Loading. Appl. Sci. 2021, 11, 5953.
Rahmatabadi, D.; Pahlavani, M.; Bayati, A.; Hashemi, R.; Marzbanrad, J. Evaluation of fracture toughness and rupture energy absorption capacity of as-rolled LZ71 and LZ91 Mg alloy sheet. Mater. Res. Express 2018, 6, 036517.
dc.rights.none.fl_str_mv © 2023 by the authors.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv © 2023 by the authors.
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
dc.publisher.place.none.fl_str_mv Suiza
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv https://www.mdpi.com/2075-4701/13/6/1134
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/336d6f61-d19c-45f0-84ff-044130c33676/download
https://repositorio.unibague.edu.co/bitstreams/61675461-e353-4af3-ab70-cbc3f065512c/download
https://repositorio.unibague.edu.co/bitstreams/fb7b58a2-2bbe-4efc-a32b-72d7eb604026/download
https://repositorio.unibague.edu.co/bitstreams/9bc9a1da-21da-4aab-8ba7-9b465a47e5a5/download
bitstream.checksum.fl_str_mv 0d3cfb98920e1e8f29f21c049241fde8
077a5545de6b5c68524afdd7acbb5aa9
2fa3e590786b9c0f3ceba1b9656b7ac3
dd7f32016d80917cf848e53c8f2b0fe6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059993547112448
spelling Urrego, Luis Fabian4d32823e-6312-4810-b6db-612534a1c190-1García-Beltrán, Olimpo5bc12f58-2b62-4c7c-a477-0820b4de72e9-1Arzola, Nelson98a2f36b-b5ae-4397-93f0-cf08f3f4ad9c-1Araque, Oscaredc2c29e-176c-4dde-a414-bf83fddfa5d1-12025-09-01T21:10:53Z2025-09-01T21:10:53Z2023-06Aluminium alloy (AA2024-T4) is a material commonly used in the aerospace industry, where it forms part of the fuselage of aircraft and spacecraft thanks to its good machinability and strength/weight ratio. These characteristics allowed it to be applied in the construction of the structure of a pilot plant to produce biological extracts and nano-encapsulated bioproducts for the phytosanitary control of diseases associated with microorganisms in crops of Theobroma cacao L. (Cacao). The mechanical design of the bolted support joints for this structure implies knowing the performance under fatigue conditions of the AA2024-T4 material since the use of bolts entails the placement of circular stress concentrators in the AA2024-T4 sheet. The geometric correction constant (Y) is a dimensionless numerical scalar used to correct the stress intensity factor (SIF) at the crack tip during propagation. This factor allows the stress concentration to be modified as a function of the specimen dimensions. In this work, four compact tension specimens were modeled in AA2024-T4, and each one was modified by introducing a second circular stress concentrator varying its size between 15 mm, 20 mm, 25 mm, and 30 mm, respectively. Applying a cyclic load of 1000N, a load ratio R=-1 and a computational model with tetrahedral elements, it was determined that the highest SIF corresponds to the specimen with a 30 mm concentrator with a value close to 460 MPa.mm0.5. Where the crack propagation had a maximum length of 53 mm. Using these simulation data, it was possible to process each one and obtain a mathematical model that calculates the geometric correction constant (Y). The calculated data using the new model was shown to have a direct relationship with the behavior obtained from the simulation.application/pdfUrrego, L., García-Beltrán, O., Arzola, N y Araque, O. (2023). Mechanical Fracture of Aluminium Alloy (AA 2024-T4), Used in the Manufacture of a Bioproducts Plant. Metals, 13(6). DOI: 10.3390/met1306113410.3390/met1306113420754701https://hdl.handle.net/20.500.12313/5582https://www.mdpi.com/search?q=Mechanical+Fracture+of+Aluminium+Alloy+%28AA+2024-T4%29%2C+Used+in+the+Manufacture+of+a+Bioproducts+Plant&journal=metalsengMDPISuiza6113413MetalsSanchez-Capa, M.; Viteri-Sanchez, S.; Burbano-Cachiguango, A. New Characteristics in the Fermentation Process of Cocoa (Theobroma cacao L.) ‘Super Á rbol’ in La Joya de los. Sustainability 2022, 14, 7564Gómez, E.H.; Campo, I.; Rosario, E.; Tapachula, K.C. Factores socieconómicos y parasitológicos que limitan la producción del cacao en Chiapas, México Socioeconomic and parasitological factors that limits cocoa production in Chiapas, Mexico, 2015. Rev. Mex. Fitopatol. 2015, 33, 232–246.Chitiva-Chitiva, L.C.; Ladino-Vargas, C.; Cuca-Suárez, L.E.; Prieto-Rodríguez, J.A.; Patiño-Ladino, O.J. Antifungal Activity of Chemical Constituents from Phytopathogen Fungi of Cocoa. Molecules 2021, 26, 3256Guerrini, A.; Sacchetti, G.; Rossi, D.; Paganetto, G.; Muzzoli, M.; Andreotti, E.; Tognolini, M.; Maldonado, M.E.; Bruni, R. Bioactivities of Piper aduncum L. and Piper obliquum Ruiz & Pavon (Piperaceae) essential oils from Eastern Ecuador. Environ. Toxicol. Pharmacol. 2009, 27, 39–48.Guerrero, R.; Risco, G.; Cevallos, O.; Villamar, R.; Peñaherrera, S. Extractos vegetales: Una alternativa para el control de enfermedades en el cultivo de cacao (Theobroma cacao). Ing. Innovación 2020, 8, 2326Nairn, J.A. Direct comparison of anisotropic damage mechanics to fracture mechanics of explicit cracks. Eng. Fract. Mech. 2018, 203, 197–207.Mecholsky, J.J. Fracture mechanics principles. Dent. Mater. 1995, 11, 111–112.Taylor, D.; Cornetti, P.; Pugno, N. The fracture mechanics of finite crack extension. Eng. Fract. Mech. 2005, 72, 1021–1038.Atzori, B.; Lazzarin, P.; Meneghetti, G. Fracture mechanics and notch sensitivity. Fatigue Fract. Eng. Mater. Struct. 2003, 26, 257–267.Smith, S.M.; Scattergood, R.O. Crack-Shape Effects for Indentation Fracture Toughness Measurements. J. Am. Ceram. Soc. 1992, 75, 305–315.Newman, J.C., Jr.; Raju, I. An empirical stress-intensity factor equation for the surface crack. Eng. Fract. Mech. 1981, 15, 185–192.Nix, K.J.; Lindley, T.C. The Application of Fracture Mechanics to Fretting Fatigue. Fatigue Fract. Eng. Mater. Struct. 1985, 8, 143–160.Clarke, S.M.; Griebsch, J.H.; Simpson, T.W. Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses. J. Mech. Des. 2004, 127, 1077–1087.Smola, A.J.; Scholkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. Available online: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1CAD92EF8CCE726A305D8A41F873EEFC?doi=10.1.1.114.4288&rep=rep1&type=pdf%0Ahttp://download.springer.com/static/pdf/493/art%3A10.1023%2FB%3ASTCO.0000035301.49549.88.pdf?auth66=1408162706_8a28764ed0fae9 (accessed on 10 April 2023).Heydari, M.H.; Choupani, N. A New Comparative Method to Evaluate the Fracture Properties of Laminated Composite. Int. J. Eng. 2014, 27, 991–1004.El-Desouky, A.R. Mixed Mode Crack Propagation of Zirconia/Nickel Functionally Graded Materials. Int. J. Eng. 2013, 26, 885–894.Guo, K.; Gou, G.; Lv, H.; Shan, M. Jointing of CFRP/5083 Aluminum Alloy by Induction Brazing: Processing, Connecting Mechanism, and Fatigue Performance. Coatings 2022, 12, 1559.USA Department of Defense. MIL-HDBK-2097, Military Handbook: Acquisition of Support Equipment and Associated Integrated Logistics Support; USA Department of Defense: Washington, DC, USA, 1997.Haji, Z. Low cycle fatigue behavior of aluminum alloys AA2024-T6 and AA7020-T6. Diyala J. Eng. Sci. 2010, 127–137.Meggiolaro, M. Statistical evaluation of strain-life fatigue crack initiation predictions. Int. J. Fatigue 2004, 26, 463–476.Faisal, B.M.; Abass, A.T.; Hammadi, A.F. Fatigue Life Estimation of Aluminum Alloy 2024-T4 and Fiber Glass-Polyester Composite Material. Int. Res. J. Eng. Technol. 2016, 2016, 1760–1764. Available online: www.irjet.net (accessed on 10 April 2023).Hudson, M.; Scardina, J. Effect of stress ratio on fatigue crack growth in 7075-T6 Al alloy sheet. Natl. Symp. Fract. Mech. 1967.Wei, R.P. Fatigue-crack propagation in a high-strength. Int. J. Fract. Mech. 1968, 4, 159–168.ANSYS. Meshing Guide; Finite Elem. Simulations Using ANSYS; Ansys: Canonsburg, PA, USA, 2015; Volume 15317, pp. 407–424.Araque, O.; Arzola, N. Weld Magnification Factor Approach in Cruciform Joints Considering Post Welding Cooling Medium and Weld Size. Materials 2018, 11, 81.Shawe-Taylor, J.; Cristianini, N. Kernel Methods for Pattern Analysis; Cambridge University Press: Cambridge, UK, 2004.Demir, S.; Toktamiş, Ö. On the adaptive Nadaraya-Watson kernel regression estimators. Hacet. J. Math. Stat. 2010, 39, 429–437.Fan, J.; Gijbels, I. Local Polynomial Modelling and Its Applications; Applied Pr. New York; CRC Press: Boca Raton, FL, USA, 1996.Chu, C.-Y.; Henderson, D.J.; Parmeter, C.F. On discrete Epanechnikov kernel functions. Comput. Stat. Data Anal. 2017, 116, 79–105.Alshoaibi, A.M. Computational Simulation of 3D Fatigue Crack Growth under Mixed-Mode Loading. Appl. Sci. 2021, 11, 5953.Rahmatabadi, D.; Pahlavani, M.; Bayati, A.; Hashemi, R.; Marzbanrad, J. Evaluation of fracture toughness and rupture energy absorption capacity of as-rolled LZ71 and LZ91 Mg alloy sheet. Mater. Res. Express 2018, 6, 036517.© 2023 by the authors.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.mdpi.com/2075-4701/13/6/1134Aleación de Aluminio (AA 2024-T4) - Fractura mecánicaPlanta de BioproductosCrackFatigueGeometric factorPilot plantSupport vector regressionMechanical Fracture of Aluminium Alloy (AA 2024-T4), Used in the Manufacture of a Bioproducts PlantArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain5854https://repositorio.unibague.edu.co/bitstreams/336d6f61-d19c-45f0-84ff-044130c33676/download0d3cfb98920e1e8f29f21c049241fde8MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg22638https://repositorio.unibague.edu.co/bitstreams/61675461-e353-4af3-ab70-cbc3f065512c/download077a5545de6b5c68524afdd7acbb5aa9MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/fb7b58a2-2bbe-4efc-a32b-72d7eb604026/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf156130https://repositorio.unibague.edu.co/bitstreams/9bc9a1da-21da-4aab-8ba7-9b465a47e5a5/downloaddd7f32016d80917cf848e53c8f2b0fe6MD5220.500.12313/5582oai:repositorio.unibague.edu.co:20.500.12313/55822025-09-12 11:59:09.722https://creativecommons.org/licenses/by-nc/4.0/© 2023 by the authors.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=