Crop Water Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot

To optimize growth and management, precision agriculture relies on a deep understanding of agricultural dynamics, particularly crop water status analysis. Leveraging unmanned aerial vehicles, we can efficiently acquire high-resolution spatiotemporal samples by utilizing remote sensors. However, non-...

Full description

Autores:
Triana-Martinez, Jenniffer Carolina
Álvarez-Meza, Andrés Marino
Gil-González, Julian
De Swaef, Tom
Fernandez-Gallego, Jose A
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5840
Acceso en línea:
https://doi.org/ 10.3390/rs16152854
https://hdl.handle.net/20.500.12313/5840
https://www.mdpi.com/2072-4292/16/15/2854
Palabra clave:
Cultivos - Estado hídrico
Antennas
Crops
Forestry
Linear transformations
Metadata
Precision agriculture
Regression analysis
Rights
openAccess
License
© 2024 by the authors.
id UNIBAGUE2_41425a88bce0aeb07d04775a15b44bae
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5840
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Crop Water Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot
title Crop Water Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot
spellingShingle Crop Water Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot
Cultivos - Estado hídrico
Antennas
Crops
Forestry
Linear transformations
Metadata
Precision agriculture
Regression analysis
title_short Crop Water Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot
title_full Crop Water Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot
title_fullStr Crop Water Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot
title_full_unstemmed Crop Water Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot
title_sort Crop Water Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot
dc.creator.fl_str_mv Triana-Martinez, Jenniffer Carolina
Álvarez-Meza, Andrés Marino
Gil-González, Julian
De Swaef, Tom
Fernandez-Gallego, Jose A
dc.contributor.author.none.fl_str_mv Triana-Martinez, Jenniffer Carolina
Álvarez-Meza, Andrés Marino
Gil-González, Julian
De Swaef, Tom
Fernandez-Gallego, Jose A
dc.subject.armarc.none.fl_str_mv Cultivos - Estado hídrico
topic Cultivos - Estado hídrico
Antennas
Crops
Forestry
Linear transformations
Metadata
Precision agriculture
Regression analysis
dc.subject.proposal.eng.fl_str_mv Antennas
Crops
Forestry
Linear transformations
Metadata
Precision agriculture
Regression analysis
description To optimize growth and management, precision agriculture relies on a deep understanding of agricultural dynamics, particularly crop water status analysis. Leveraging unmanned aerial vehicles, we can efficiently acquire high-resolution spatiotemporal samples by utilizing remote sensors. However, non-linear relationships among data features, localized within specific subgroups, frequently emerge in agricultural data. Interpreting these complex patterns requires sophisticated analysis due to the presence of noise, high variability, and non-stationarity behavior in the collected samples. Here, we introduce Local Biplot, a methodological framework tailored for discerning meaningful data patterns in non-stationary contexts for precision agriculture. Local Biplot relies on the well-known uniform manifold approximation and projection method, such as UMAP, and local affine transformations to codify non-stationary and non-linear data patterns while maintaining interpretability. This lets us find important clusters for transformation and projection within a single global axis pair. Hence, our framework encompasses variable and observational contributions within individual clusters. At the same time, we provide a relevance analysis strategy to help explain why those clusters exist, facilitating the understanding of data dynamics while favoring interpretability. We demonstrated our method’s capabilities through experiments on both synthetic and real-world datasets, covering scenarios involving grass and rice crops. Moreover, we use random forest and linear regression models to predict water status variables from our Local Biplot-based feature ranking and clusters. Our findings revealed enhanced clustering and prediction capability while emphasizing the importance of input features in precision agriculture. As a result, Local Biplot is a useful tool to visualize, analyze, and compare the intricate underlying patterns and internal structures of complex agricultural datasets.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-08
dc.date.accessioned.none.fl_str_mv 2025-10-28T20:33:23Z
dc.date.available.none.fl_str_mv 2025-10-28T20:33:23Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Triana-Martinez, J.C.; Álvarez-Meza, A.M.; Gil-González, J.; De Swaef, T.; Fernandez-Gallego, J.A. CropWater Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot. Remote Sens. 2024, 16, 2854. https://doi.org/ 10.3390/rs16152854
dc.identifier.doi.none.fl_str_mv https://doi.org/ 10.3390/rs16152854
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5840
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/2072-4292/16/15/2854
identifier_str_mv Triana-Martinez, J.C.; Álvarez-Meza, A.M.; Gil-González, J.; De Swaef, T.; Fernandez-Gallego, J.A. CropWater Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot. Remote Sens. 2024, 16, 2854. https://doi.org/ 10.3390/rs16152854
url https://doi.org/ 10.3390/rs16152854
https://hdl.handle.net/20.500.12313/5840
https://www.mdpi.com/2072-4292/16/15/2854
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationissue.none.fl_str_mv 16
dc.relation.citationstartpage.none.fl_str_mv 15
dc.relation.ispartofjournal.none.fl_str_mv Remote Sensing
dc.relation.references.none.fl_str_mv Arouna, A.; Dzomeku, I.K.; Shaibu, A.G.; Nurudeen, A.R. Water management for sustainable irrigation in rice (Oryza sativa L.) production: A review. Agronomy 2023, 13, 1522.
Oumarou Abdoulaye, A.; Lu, H.; Zhu, Y.; Alhaj Hamoud, Y.; Sheteiwy, M. The global trend of the net irrigation water requirement of maize from 1960 to 2050. Climate 2019, 7, 124
Gui, Y.W.; Sheteiwy, M.S.; Zhu, S.G.; Batool, A.; Xiong, Y.C. Differentiate effects of non-hydraulic and hydraulic root signaling on yield and water use efficiency in diploid and tetraploid wheat under drought stress. Environ. Exp. Bot. 2021, 181, 104287.
Al Hamedi, F.; Karthishwaran, K.; Alyafei, M.A.M. Hydroponic wheat production using fresh water and treated wastewater under the semi-arid region. Emir. J. Food Agric 2021, 33, 178
Jiang, H.; Hu, H.; Li, B.; Zhang, Z.; Wang, S.; Lin, T. Understanding the non-stationary relationships between corn yields and meteorology via a spatiotemporally varying coefficient model. Agric. For. Meteorol. 2021, 301, 108340.
Archana, S.; Kumar, P.S. A Survey on Deep Learning Based Crop Yield Prediction. Nat. Environ. Pollut. Technol. 2023, 22
Crusiol, L.G.T.; Nanni, M.R.; Furlanetto, R.H.; Sibaldelli, R.N.R.; Sun, L.; Gonçalves, S.L.; Foloni, J.S.S.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier, N.; et al. Assessing the sensitive spectral bands for soybean water status monitoring and soil moisture prediction using leaf-based hyperspectral reflectance. Agric. Water Manag. 2023, 277, 108089.
Efthimiou, N. Object-oriented soil erosion modelling: A non-stationary approach towards a realistic calculation of soil loss at parcel level. Catena 2023, 222, 106816
Ndlovu, H.S.; Odindi, J.; Sibanda, M.; Mutanga, O.; Clulow, A.; Chimonyo, V.G.; Mabhaudhi, T. A comparative estimation of maize leaf water content using machine learning techniques and unmanned aerial vehicle (UAV)-based proximal and remotely sensed data. Remote Sens. 2021, 13, 4091.
Abdulraheem, M.I.; Zhang, W.; Li, S.; Moshayedi, A.J.; Farooque, A.A.; Hu, J. Advancement of remote sensing for soil measurements and applications: A comprehensive review. Sustainability 2023, 15, 15444.
Gu, Z.; Qi, Z.; Burghate, R.; Yuan, S.; Jiao, X.; Xu, J. Irrigation scheduling approaches and applications: A review. J. Irrig. Drain. Eng. 2020, 146, 04020007
Xie, X.; Yang, Y.; Li, W.; Liao, N.; Pan, W.; Su, H. Estimation of Leaf Area Index in a Typical Northern Tropical Secondary Monsoon Rainforest by Different Indirect Methods. Remote Sens. 2023, 15, 1621.
Buthelezi, S.; Mutanga, O.; Sibanda, M.; Odindi, J.; Clulow, A.D.; Chimonyo, V.G.; Mabhaudhi, T. Assessing the prospects of remote sensing maize leaf area index using UAV-derived multi-spectral data in smallholder farms across the growing season. Remote Sens. 2023, 15, 1597.
Karunathilake, E.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture 2023, 13, 1593.
Sobjak, R.; De Souza, E.G.; Bazzi, C.L.; Opazo, M.A.U.; Mercante, E.; Aikes Junior, J. Process improvement of selecting the best interpolator and its parameters to create thematic maps. Precis. Agric. 2023, 24, 1461–1496.
Dal Prà, A.; Bozzi, R.; Parrini, S.; Immovilli, A.; Davolio, R.; Ruozzi, F.; Fabbri, M.C. Discriminant analysis as a tool to classify farm hay in dairy farms. PLoS ONE 2023, 18, e0294468.
Arevalo-Ramirez, T.; Auat Cheein, F. Cluster Analysis for Agriculture. In Encyclopedia of Smart Agriculture Technologies; Zhang, Q., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–8.
Prakash, S.; Reddy, S.S.; Chaudhary, S.; Vimal, S.; Kumar, A. Multivariate analysis in rice (Oryza sativa L.) germplasms for yield attributing traits. Plant Sci. Today 2024, 11, 64–75.
Fu, Z.; Zhang, J.; Jiang, J.; Zhang, Z.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Using the time series nitrogen diagnosis curve for precise nitrogen management in wheat and rice. Field Crop. Res. 2024, 307, 109259.
Derraz, R.; Muharam, F.M.; Nurulhuda, K.; Jaafar, N.A.; Yap, N.K. Ensemble and single algorithm models to handle multicollinearity of UAV vegetation indices for predicting rice biomass. Comput. Electron. Agric. 2023, 205, 107621.
Satpathi, A.; Setiya, P.; Das, B.; Nain, A.S.; Jha, P.K.; Singh, S.; Singh, S. Comparative analysis of statistical and machine learning techniques for rice yield forecasting for Chhattisgarh, India. Sustainability 2023, 15, 2786
Gabriel, K.R. The biplot graphic display of matrices with application to principal component analysis. Biometrika 1971, 58, 453–467.
Yan, W.; Tinker, N.A. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 2006, 86, 623–645
Mohammadi, R.; Jafarzadeh, J.; Poursiahbidi, M.M.; Hatamzadeh, H.; Amri, A. Genotype-by-environment interaction and stability analysis for grain yield in durum wheat using GGE biplot and genotypic and environmental covariates. Agric. Res. 2023, 12, 364–374.
Sharma, V.; Tripathi, A.K.; Mittal, H. Technological revolutions in smart farming: Current trends, challenges & future directions. Comput. Electron. Agric. 2022, 201, 107217.
Radočaj, D.; Jurišić, M.; Gašparović, M. The role of remote sensing data and methods in a modern approach to fertilization in precision agriculture. Remote Sens. 2022, 14, 778.
McInnes, L.; Healy, J.; Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv 2018, arXiv:1802.03426.
Murphy, K.P. Probabilistic Machine Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2022
House, D.; Keyser, J.C. Foundations of Physically Based Modeling and Animation; AK Peters/CRC Press: Boca Raton, FL, USA, 2016.
De Swaef, T.; Maes, W.H.; Aper, J.; Baert, J.; Cougnon, M.; Reheul, D.; Steppe, K.; Roldán-Ruiz, I.; Lootens, P. Applying RGB- and thermal-based vegetation indices from UAVs for high-throughput field phenotyping of drought tolerance in forage grasses. Remote Sens. 2021, 13, 147
Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269.
Meyer, G.E.; Hindman, T.W.; Laksmi, K. Machine vision detection parameters for plant species identification. In Precision Agriculture and Biological Quality; SPIE: Paris, France, 1999; Volume 3543, pp. 327–335
Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87
Meyer, G.E.; Neto, J.C.; Jones, D.D.; Hindman, T.W. Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. Comput. Electron. Agric. 2004, 42, 161–180.
Genno, H.; Kobayashi, K. Apple growth evaluated automatically with high-definition field monitoring images. Comput. Electron. Agric. 2019, 164, 104895
Jiménez-Muñoz, J.C.; Sobrino, J.A.; Plaza, A.; Guanter, L.; Moreno, J.; Martínez, P. Comparison between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: Case study of PROBA/CHRIS data over an agricultural area. Sensors 2009, 9, 768–793.
Steele, M.R.; Gitelson, A.A.; Rundquist, D.C.; Merzlyak, M.N. Nondestructive estimation of anthocyanin content in grapevine leaves. Am. J. Enol. Vitic. 2009, 60, 87–92
Xiaoqin, W.; Miaomiao, W.; Shaoqiang, W.; Yundong, W. Extraction of vegetation information from visible unmanned aerial vehicle images. Trans. Chin. Soc. Agric. Eng. 2015, 31
Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87
Kataoka, T.; Kaneko, T.; Okamoto, H.; Hata, S. Crop growth estimation system using machine vision. In Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), Kobe, Japan, 20–24 July 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 2, pp. b1079–b1083
Hague, T.; Tillett, N.; Wheeler, H. Automated crop and weed monitoring in widely spaced cereals. Precis. Agric. 2006, 7, 21–32.
Buchaillot, M.L.; Gracia-Romero, A.; Vergara-Diaz, O.; Zaman-Allah, M.A.; Tarekegne, A.; Cairns, J.E.; Prasanna, B.M.; Araus, J.L.; Kefauver, S.C. Evaluating maize genotype performance under low nitrogen conditions using RGB UAV phenotyping techniques. Sensors 2019, 19, 1815
Vories, E.; Tacker, P.; Hogan, R. Multiple inlet approach to reduce water requirements for rice production. Appl. Eng. Agric. 2005, 21, 611–616.
Rejesus, R.M.; Palis, F.G.; Rodriguez, D.G.P.; Lampayan, R.M.; Bouman, B.A. Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines. Food Policy 2011, 36, 280–288.
Kriegler, F.J. Preprocessing transformations and their effects on multspectral recognition. In Proceedings of the Sixth International Symposium on Remote Sesning of Environment, Ann Arbor, MI, USA, 13–16 October 1969; pp. 97–131
Shaver, T.; Khosla, R.; Westfall, D. Utilizing green normalized difference vegetation indices (GNDVI) for production level management zone delineation in irrigated corn. In Proceedings of the 18th World Congress of Soil Science, Philadelphia, PA, USA, 9–15 July 2006
Sharifi, A.; Felegari, S. Remotely sensed normalized difference red-edge index for rangeland biomass estimation. Aircr. Eng. Aerosp. Technol. 2023, 95, 1128–1136.
Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309.
Steven, M.D. The sensitivity of the OSAVI vegetation index to observational parameters. Remote Sens. Environ. 1998, 63, 49–60
Aparicio, N.; Villegas, D.; Casadesus, J.; Araus, J.L.; Royo, C. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agron. J. 2000, 92, 83–91
Casadesús, J.; Kaya, Y.; Bort, J.; Nachit, M.; Araus, J.; Amor, S.; Ferrazzano, G.; Maalouf, F.; Maccaferri, M.; Martos, V.; et al. Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Ann. Appl. Biol. 2007, 150, 227–236.
Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022.
Triana-Martinez, J.C. Python-gcpds.localbiplot. 2024. Available online: https://github.com/UN-GCPDS/python-gcpds.localbiplot (accessed on 21 March 2024).
Wu, L.; Yuan, L.; Zhao, G.; Lin, H.; Li, S.Z. Deep clustering and visualization for end-to-end high-dimensional data analysis. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 8543–8554
Wang, H.; Chang, W.; Yao, Y.; Yao, Z.; Zhao, Y.; Li, S.; Liu, Z.; Zhang, X. Cropformer: A new generalized deep learning classification approach for multi-scenario crop classification. Front. Plant Sci. 2023, 14, 1130659.
dc.rights.none.fl_str_mv © 2024 by the authors.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv © 2024 by the authors.
http://purl.org/coar/access_right/c_abf2
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.place.none.fl_str_mv Suiza
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/f7479b0e-9b63-47fc-a289-1764c743cc2b/download
https://repositorio.unibague.edu.co/bitstreams/a272f987-aec8-4dc5-b9d8-954065510d74/download
https://repositorio.unibague.edu.co/bitstreams/eb3c8961-8431-40a9-b992-9e9714aa4602/download
https://repositorio.unibague.edu.co/bitstreams/7e134b86-f3fe-4ff2-ad93-eaa3882f8518/download
bitstream.checksum.fl_str_mv 2fa3e590786b9c0f3ceba1b9656b7ac3
7e8ce3ac6af7ba2ddcfabcd16bde86c6
25f4f3d03e0ccd7f940753543dd4a204
9b7388541dde7112a145a47766e14c83
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059955891699712
spelling Triana-Martinez, Jenniffer Carolina407c69b2-46f4-42c4-a569-244690587cdb-1Álvarez-Meza, Andrés Marinoe7baa84c-f992-4731-8f15-4cca0d36381c-1Gil-González, Juliand4dc3d5d-c43a-46c7-813c-26d2fb86299b-1De Swaef, Tom789f0db7-00fb-4402-afb1-100c73bec72b-1Fernandez-Gallego, Jose A5c39dc3b-5876-4b8c-bceb-1e5bce9dc255-12025-10-28T20:33:23Z2025-10-28T20:33:23Z2024-08To optimize growth and management, precision agriculture relies on a deep understanding of agricultural dynamics, particularly crop water status analysis. Leveraging unmanned aerial vehicles, we can efficiently acquire high-resolution spatiotemporal samples by utilizing remote sensors. However, non-linear relationships among data features, localized within specific subgroups, frequently emerge in agricultural data. Interpreting these complex patterns requires sophisticated analysis due to the presence of noise, high variability, and non-stationarity behavior in the collected samples. Here, we introduce Local Biplot, a methodological framework tailored for discerning meaningful data patterns in non-stationary contexts for precision agriculture. Local Biplot relies on the well-known uniform manifold approximation and projection method, such as UMAP, and local affine transformations to codify non-stationary and non-linear data patterns while maintaining interpretability. This lets us find important clusters for transformation and projection within a single global axis pair. Hence, our framework encompasses variable and observational contributions within individual clusters. At the same time, we provide a relevance analysis strategy to help explain why those clusters exist, facilitating the understanding of data dynamics while favoring interpretability. We demonstrated our method’s capabilities through experiments on both synthetic and real-world datasets, covering scenarios involving grass and rice crops. Moreover, we use random forest and linear regression models to predict water status variables from our Local Biplot-based feature ranking and clusters. Our findings revealed enhanced clustering and prediction capability while emphasizing the importance of input features in precision agriculture. As a result, Local Biplot is a useful tool to visualize, analyze, and compare the intricate underlying patterns and internal structures of complex agricultural datasets.application/pdfTriana-Martinez, J.C.; Álvarez-Meza, A.M.; Gil-González, J.; De Swaef, T.; Fernandez-Gallego, J.A. CropWater Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot. Remote Sens. 2024, 16, 2854. https://doi.org/ 10.3390/rs16152854https://doi.org/ 10.3390/rs16152854https://hdl.handle.net/20.500.12313/5840https://www.mdpi.com/2072-4292/16/15/2854engMultidisciplinary Digital Publishing Institute (MDPI)Suiza1615Remote SensingArouna, A.; Dzomeku, I.K.; Shaibu, A.G.; Nurudeen, A.R. Water management for sustainable irrigation in rice (Oryza sativa L.) production: A review. Agronomy 2023, 13, 1522.Oumarou Abdoulaye, A.; Lu, H.; Zhu, Y.; Alhaj Hamoud, Y.; Sheteiwy, M. The global trend of the net irrigation water requirement of maize from 1960 to 2050. Climate 2019, 7, 124Gui, Y.W.; Sheteiwy, M.S.; Zhu, S.G.; Batool, A.; Xiong, Y.C. Differentiate effects of non-hydraulic and hydraulic root signaling on yield and water use efficiency in diploid and tetraploid wheat under drought stress. Environ. Exp. Bot. 2021, 181, 104287.Al Hamedi, F.; Karthishwaran, K.; Alyafei, M.A.M. Hydroponic wheat production using fresh water and treated wastewater under the semi-arid region. Emir. J. Food Agric 2021, 33, 178Jiang, H.; Hu, H.; Li, B.; Zhang, Z.; Wang, S.; Lin, T. Understanding the non-stationary relationships between corn yields and meteorology via a spatiotemporally varying coefficient model. Agric. For. Meteorol. 2021, 301, 108340.Archana, S.; Kumar, P.S. A Survey on Deep Learning Based Crop Yield Prediction. Nat. Environ. Pollut. Technol. 2023, 22Crusiol, L.G.T.; Nanni, M.R.; Furlanetto, R.H.; Sibaldelli, R.N.R.; Sun, L.; Gonçalves, S.L.; Foloni, J.S.S.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier, N.; et al. Assessing the sensitive spectral bands for soybean water status monitoring and soil moisture prediction using leaf-based hyperspectral reflectance. Agric. Water Manag. 2023, 277, 108089.Efthimiou, N. Object-oriented soil erosion modelling: A non-stationary approach towards a realistic calculation of soil loss at parcel level. Catena 2023, 222, 106816Ndlovu, H.S.; Odindi, J.; Sibanda, M.; Mutanga, O.; Clulow, A.; Chimonyo, V.G.; Mabhaudhi, T. A comparative estimation of maize leaf water content using machine learning techniques and unmanned aerial vehicle (UAV)-based proximal and remotely sensed data. Remote Sens. 2021, 13, 4091.Abdulraheem, M.I.; Zhang, W.; Li, S.; Moshayedi, A.J.; Farooque, A.A.; Hu, J. Advancement of remote sensing for soil measurements and applications: A comprehensive review. Sustainability 2023, 15, 15444.Gu, Z.; Qi, Z.; Burghate, R.; Yuan, S.; Jiao, X.; Xu, J. Irrigation scheduling approaches and applications: A review. J. Irrig. Drain. Eng. 2020, 146, 04020007Xie, X.; Yang, Y.; Li, W.; Liao, N.; Pan, W.; Su, H. Estimation of Leaf Area Index in a Typical Northern Tropical Secondary Monsoon Rainforest by Different Indirect Methods. Remote Sens. 2023, 15, 1621.Buthelezi, S.; Mutanga, O.; Sibanda, M.; Odindi, J.; Clulow, A.D.; Chimonyo, V.G.; Mabhaudhi, T. Assessing the prospects of remote sensing maize leaf area index using UAV-derived multi-spectral data in smallholder farms across the growing season. Remote Sens. 2023, 15, 1597.Karunathilake, E.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture 2023, 13, 1593.Sobjak, R.; De Souza, E.G.; Bazzi, C.L.; Opazo, M.A.U.; Mercante, E.; Aikes Junior, J. Process improvement of selecting the best interpolator and its parameters to create thematic maps. Precis. Agric. 2023, 24, 1461–1496.Dal Prà, A.; Bozzi, R.; Parrini, S.; Immovilli, A.; Davolio, R.; Ruozzi, F.; Fabbri, M.C. Discriminant analysis as a tool to classify farm hay in dairy farms. PLoS ONE 2023, 18, e0294468.Arevalo-Ramirez, T.; Auat Cheein, F. Cluster Analysis for Agriculture. In Encyclopedia of Smart Agriculture Technologies; Zhang, Q., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–8.Prakash, S.; Reddy, S.S.; Chaudhary, S.; Vimal, S.; Kumar, A. Multivariate analysis in rice (Oryza sativa L.) germplasms for yield attributing traits. Plant Sci. Today 2024, 11, 64–75.Fu, Z.; Zhang, J.; Jiang, J.; Zhang, Z.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Using the time series nitrogen diagnosis curve for precise nitrogen management in wheat and rice. Field Crop. Res. 2024, 307, 109259.Derraz, R.; Muharam, F.M.; Nurulhuda, K.; Jaafar, N.A.; Yap, N.K. Ensemble and single algorithm models to handle multicollinearity of UAV vegetation indices for predicting rice biomass. Comput. Electron. Agric. 2023, 205, 107621.Satpathi, A.; Setiya, P.; Das, B.; Nain, A.S.; Jha, P.K.; Singh, S.; Singh, S. Comparative analysis of statistical and machine learning techniques for rice yield forecasting for Chhattisgarh, India. Sustainability 2023, 15, 2786Gabriel, K.R. The biplot graphic display of matrices with application to principal component analysis. Biometrika 1971, 58, 453–467.Yan, W.; Tinker, N.A. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 2006, 86, 623–645Mohammadi, R.; Jafarzadeh, J.; Poursiahbidi, M.M.; Hatamzadeh, H.; Amri, A. Genotype-by-environment interaction and stability analysis for grain yield in durum wheat using GGE biplot and genotypic and environmental covariates. Agric. Res. 2023, 12, 364–374.Sharma, V.; Tripathi, A.K.; Mittal, H. Technological revolutions in smart farming: Current trends, challenges & future directions. Comput. Electron. Agric. 2022, 201, 107217.Radočaj, D.; Jurišić, M.; Gašparović, M. The role of remote sensing data and methods in a modern approach to fertilization in precision agriculture. Remote Sens. 2022, 14, 778.McInnes, L.; Healy, J.; Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv 2018, arXiv:1802.03426.Murphy, K.P. Probabilistic Machine Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2022House, D.; Keyser, J.C. Foundations of Physically Based Modeling and Animation; AK Peters/CRC Press: Boca Raton, FL, USA, 2016.De Swaef, T.; Maes, W.H.; Aper, J.; Baert, J.; Cougnon, M.; Reheul, D.; Steppe, K.; Roldán-Ruiz, I.; Lootens, P. Applying RGB- and thermal-based vegetation indices from UAVs for high-throughput field phenotyping of drought tolerance in forage grasses. Remote Sens. 2021, 13, 147Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269.Meyer, G.E.; Hindman, T.W.; Laksmi, K. Machine vision detection parameters for plant species identification. In Precision Agriculture and Biological Quality; SPIE: Paris, France, 1999; Volume 3543, pp. 327–335Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87Meyer, G.E.; Neto, J.C.; Jones, D.D.; Hindman, T.W. Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. Comput. Electron. Agric. 2004, 42, 161–180.Genno, H.; Kobayashi, K. Apple growth evaluated automatically with high-definition field monitoring images. Comput. Electron. Agric. 2019, 164, 104895Jiménez-Muñoz, J.C.; Sobrino, J.A.; Plaza, A.; Guanter, L.; Moreno, J.; Martínez, P. Comparison between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: Case study of PROBA/CHRIS data over an agricultural area. Sensors 2009, 9, 768–793.Steele, M.R.; Gitelson, A.A.; Rundquist, D.C.; Merzlyak, M.N. Nondestructive estimation of anthocyanin content in grapevine leaves. Am. J. Enol. Vitic. 2009, 60, 87–92Xiaoqin, W.; Miaomiao, W.; Shaoqiang, W.; Yundong, W. Extraction of vegetation information from visible unmanned aerial vehicle images. Trans. Chin. Soc. Agric. Eng. 2015, 31Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87Kataoka, T.; Kaneko, T.; Okamoto, H.; Hata, S. Crop growth estimation system using machine vision. In Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), Kobe, Japan, 20–24 July 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 2, pp. b1079–b1083Hague, T.; Tillett, N.; Wheeler, H. Automated crop and weed monitoring in widely spaced cereals. Precis. Agric. 2006, 7, 21–32.Buchaillot, M.L.; Gracia-Romero, A.; Vergara-Diaz, O.; Zaman-Allah, M.A.; Tarekegne, A.; Cairns, J.E.; Prasanna, B.M.; Araus, J.L.; Kefauver, S.C. Evaluating maize genotype performance under low nitrogen conditions using RGB UAV phenotyping techniques. Sensors 2019, 19, 1815Vories, E.; Tacker, P.; Hogan, R. Multiple inlet approach to reduce water requirements for rice production. Appl. Eng. Agric. 2005, 21, 611–616.Rejesus, R.M.; Palis, F.G.; Rodriguez, D.G.P.; Lampayan, R.M.; Bouman, B.A. Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines. Food Policy 2011, 36, 280–288.Kriegler, F.J. Preprocessing transformations and their effects on multspectral recognition. In Proceedings of the Sixth International Symposium on Remote Sesning of Environment, Ann Arbor, MI, USA, 13–16 October 1969; pp. 97–131Shaver, T.; Khosla, R.; Westfall, D. Utilizing green normalized difference vegetation indices (GNDVI) for production level management zone delineation in irrigated corn. In Proceedings of the 18th World Congress of Soil Science, Philadelphia, PA, USA, 9–15 July 2006Sharifi, A.; Felegari, S. Remotely sensed normalized difference red-edge index for rangeland biomass estimation. Aircr. Eng. Aerosp. Technol. 2023, 95, 1128–1136.Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309.Steven, M.D. The sensitivity of the OSAVI vegetation index to observational parameters. Remote Sens. Environ. 1998, 63, 49–60Aparicio, N.; Villegas, D.; Casadesus, J.; Araus, J.L.; Royo, C. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agron. J. 2000, 92, 83–91Casadesús, J.; Kaya, Y.; Bort, J.; Nachit, M.; Araus, J.; Amor, S.; Ferrazzano, G.; Maalouf, F.; Maccaferri, M.; Martos, V.; et al. Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Ann. Appl. Biol. 2007, 150, 227–236.Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022.Triana-Martinez, J.C. Python-gcpds.localbiplot. 2024. Available online: https://github.com/UN-GCPDS/python-gcpds.localbiplot (accessed on 21 March 2024).Wu, L.; Yuan, L.; Zhao, G.; Lin, H.; Li, S.Z. Deep clustering and visualization for end-to-end high-dimensional data analysis. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 8543–8554Wang, H.; Chang, W.; Yao, Y.; Yao, Z.; Zhao, Y.; Li, S.; Liu, Z.; Zhang, X. Cropformer: A new generalized deep learning classification approach for multi-scenario crop classification. Front. Plant Sci. 2023, 14, 1130659.© 2024 by the authors.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/Cultivos - Estado hídricoAntennasCropsForestryLinear transformationsMetadataPrecision agricultureRegression analysisCrop Water Status Analysis from Complex Agricultural Data Using UMAP-Based Local BiplotArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/f7479b0e-9b63-47fc-a289-1764c743cc2b/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf99210https://repositorio.unibague.edu.co/bitstreams/a272f987-aec8-4dc5-b9d8-954065510d74/download7e8ce3ac6af7ba2ddcfabcd16bde86c6MD52TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain3396https://repositorio.unibague.edu.co/bitstreams/eb3c8961-8431-40a9-b992-9e9714aa4602/download25f4f3d03e0ccd7f940753543dd4a204MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg31493https://repositorio.unibague.edu.co/bitstreams/7e134b86-f3fe-4ff2-ad93-eaa3882f8518/download9b7388541dde7112a145a47766e14c83MD5420.500.12313/5840oai:repositorio.unibague.edu.co:20.500.12313/58402025-10-29 03:01:05.456https://creativecommons.org/licenses/by/4.0/© 2024 by the authors.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=