Sintonización de hiperparámetros en modelos de aprendizaje profundo para la clasificación de enfermedades en plantas empleando la base de datos PlantVillage

Datos estadísticos de la FAO y DataBank, indican un aumento en la población subnutrida en los últimos años. Al revisar las cifras, esta problemática se atribuye al crecimiento constante de la población y a una producción de cereales inconstante. En busca de conocer las contribuciones tecnológicas pa...

Full description

Autores:
González Flórez, Miguel Ángel
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
spa
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/4617
Acceso en línea:
https://hdl.handle.net/20.500.12313/4617
Palabra clave:
Enfermedades de planta - Clasificación
Datos PlantVillage
Sintonización de hiperparámetros
Aprendizaje profundo
Clasificación
Enfermedades de plantas
PlantVillage
Hyperparameter tuning
Deep learning
Classification
Plant diseases
PlantVillage
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UNIBAGUE2_40419ec25cb37f4d30ef8a0f26759133
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/4617
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.spa.fl_str_mv Sintonización de hiperparámetros en modelos de aprendizaje profundo para la clasificación de enfermedades en plantas empleando la base de datos PlantVillage
title Sintonización de hiperparámetros en modelos de aprendizaje profundo para la clasificación de enfermedades en plantas empleando la base de datos PlantVillage
spellingShingle Sintonización de hiperparámetros en modelos de aprendizaje profundo para la clasificación de enfermedades en plantas empleando la base de datos PlantVillage
Enfermedades de planta - Clasificación
Datos PlantVillage
Sintonización de hiperparámetros
Aprendizaje profundo
Clasificación
Enfermedades de plantas
PlantVillage
Hyperparameter tuning
Deep learning
Classification
Plant diseases
PlantVillage
title_short Sintonización de hiperparámetros en modelos de aprendizaje profundo para la clasificación de enfermedades en plantas empleando la base de datos PlantVillage
title_full Sintonización de hiperparámetros en modelos de aprendizaje profundo para la clasificación de enfermedades en plantas empleando la base de datos PlantVillage
title_fullStr Sintonización de hiperparámetros en modelos de aprendizaje profundo para la clasificación de enfermedades en plantas empleando la base de datos PlantVillage
title_full_unstemmed Sintonización de hiperparámetros en modelos de aprendizaje profundo para la clasificación de enfermedades en plantas empleando la base de datos PlantVillage
title_sort Sintonización de hiperparámetros en modelos de aprendizaje profundo para la clasificación de enfermedades en plantas empleando la base de datos PlantVillage
dc.creator.fl_str_mv González Flórez, Miguel Ángel
dc.contributor.advisor.none.fl_str_mv Fernández Gallego, Jose Armando
dc.contributor.author.none.fl_str_mv González Flórez, Miguel Ángel
dc.contributor.jury.none.fl_str_mv Barrero Mendoza, Oscar
dc.subject.armarc.none.fl_str_mv Enfermedades de planta - Clasificación
Datos PlantVillage
topic Enfermedades de planta - Clasificación
Datos PlantVillage
Sintonización de hiperparámetros
Aprendizaje profundo
Clasificación
Enfermedades de plantas
PlantVillage
Hyperparameter tuning
Deep learning
Classification
Plant diseases
PlantVillage
dc.subject.proposal.spa.fl_str_mv Sintonización de hiperparámetros
Aprendizaje profundo
Clasificación
Enfermedades de plantas
PlantVillage
dc.subject.proposal.eng.fl_str_mv Hyperparameter tuning
Deep learning
Classification
Plant diseases
PlantVillage
description Datos estadísticos de la FAO y DataBank, indican un aumento en la población subnutrida en los últimos años. Al revisar las cifras, esta problemática se atribuye al crecimiento constante de la población y a una producción de cereales inconstante. En busca de conocer las contribuciones tecnológicas para la agricultura, se encuentran aportes en agricultura de precisión, robótica, internet de las cosas y visión por computadora. La detección de enfermedades puede contribuir a mejorar el rendimiento de los cultivos y puede ser desarrollada utilizando redes neuronales. En el proceso de entrenamiento de las redes se definen ciertas variables (denominadas hiperparámetros) para configurar la arquitectura de la red neuronal que influyen en diferentes aspectos como la duración del entrenamiento y desempeño de la red. Este trabajo se estudia los hiperparámetros de una red neuronal profunda con el objetivo de mejorar el rendimiento de la red neuronal para clasificar enfermedades en plantas, se realiza un ajuste semiautomático de los hiperparámetros utilizando la librería Keras y la base de datos PlantVillage.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-12-13T23:06:58Z
dc.date.available.none.fl_str_mv 2024-12-13T23:06:58Z
dc.date.issued.none.fl_str_mv 2024
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.none.fl_str_mv González-Flórez, M. A. (2024). Sintonización de Hiperparámetros en Modelos de Aprendizaje Profundo para la Clasificación de Enfermedades en Plantas Empleando la Base de Datos PlantVillage. [Trabajo de grado, Universidad de Ibagué]. https://hdl.handle.net/20.500.12313/4617
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/4617
identifier_str_mv González-Flórez, M. A. (2024). Sintonización de Hiperparámetros en Modelos de Aprendizaje Profundo para la Clasificación de Enfermedades en Plantas Empleando la Base de Datos PlantVillage. [Trabajo de grado, Universidad de Ibagué]. https://hdl.handle.net/20.500.12313/4617
url https://hdl.handle.net/20.500.12313/4617
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv FAO, “Conceptos Básicos | Programa Especial para la Seguridad Alimentaria (PESA) Centroamérica | Organización de las Naciones Unidas para la Alimentación y la Agricultura,” 2023. [Online]. Available: https://www.fao.org/in-action/pesa-centroamerica/temas/conceptos-basicos/es/
Minambiente, “Minambiente, interesado en ayudar a disminuir el desperdicio de alimentos,” Sep. 2022. [Online]. Available: https://www.minambiente.gov.co/ minambiente-interesado-en-ayudar-a-disminuir-el-desperdicio-de-alimentos/
Universidad de Antioquia, “Agricultura de precision,” 2020. [Online]. Available: https://www.udea.edu.co/wps/portal/udea/web/inicio/extension/ portafoliotecnologico/articulos/Agricultura_de_precision
C. Liang and T. Shah, “IoT in Agriculture: The Future of Precision Monitoring and Data-Driven Farming,” Eigenpub Review of Science and Technology, vol. 7, no. 1, pp. 85–104, Jun. 2023. [Online]. Available: https://studies.eigenpub.com/index.php/erst/ article/view/11
G. Quaglia, C. Visconte, L. S. Scimmi, M. Melchiorre, P. Cavallone, and S. Pastorelli, “Design of a UGV Powered by Solar Energy for Precision Agriculture,” Robotics 2020, Vol. 9, Page 13, vol. 9, no. 1, p. 13, Mar. 2020, publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2218-6581/9/1/13/htm
S. M. Kasem, Z. Baka, M. A. El-Metwally, A. A. Ibrahim, and M. Soliman, “Biocontrol Agents of Mycoflora to Improve the Physiological and Genetic Characteristics of Maize Plants,” Egyptian Journal of Botany, vol. 64, no. 3, pp. 298–317, Sep. 2024, publisher: National Information and Documentation Center (NIDOC), Academy of Scientific Research and Technology (ASRT). [Online]. Available: https://ejbo.journals.ekb.eg/article_377520.html
F. U. Mba, “Detection of three cereal viruses in oat samples,” 2024, publisher: Helsingin yliopisto;University of Helsinki;Helsingfors universitet. [Online]. Available: URN:NBN:fi:hulib-202408293941;http://hdl.handle.net/10138/585175
R. A. Francisco, N. V. Fassinou Hotegni, D. E. O. Sogbohossou, C. A. Houdegbe, E. G. Achigan-Dako, and A. H. Bokonon-Ganta, “Knowledge and management of insect pests affecting Gynandropsis gynandra [(L.) Briq (Cleomaceae)] among vegetable growers in Benin,” International Journal of Tropical Insect Science, Aug. 2024. [Online]. Available: https://doi.org/10.1007/s42690-024-01344-z Tésis.
A. Raza, K. Khandelwal, S. Pandit, M. Singh, S. Kumar, S. Rustagi, N. Ranjan, R. Verma, K. Priya, and R. Prasad, “Exploring the potential of metallic and metal oxide nanoparticles for reinforced disease management in agricultural systems: A comprehensive review,” Environmental Nanotechnology, Monitoring & Management, p. 100998, Aug. 2024. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S2215153224000862
K. A. Ashley, “Exploring Crop Management Impacts to Soil Health in Maine Potato Production,” Ph.D. dissertation. [Online]. Available: https://digitalcommons.library. umaine.edu/etd/3939
N. Kundu, G. Rani, and V. S. Dhaka, “A Comparative Analysis of Deep Learning Models Applied for Disease Classification in Bell Pepper,” 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), pp. 243–247, Nov. 2020, conference Name: 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC) ISBN: 9781728171326 Place: Waknaghat, India Publisher: IEEE. [Online]. Available: https://ieeexplore.ieee.org/document/9315821/
L. Tan, J. Lu, and H. Jiang, “Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine Learning and Deep Learning Methods,” AgriEngineering 2021, Vol. 3, Pages 542-558, vol. 3, no. 3, pp. 542–558, Jul. 2021, publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2624-7402/3/3/35/htm
J. Andrew, J. Eunice, D. E. Popescu, M. K. Chowdary, and J. Hemanth, “Deep Learning-Based Leaf Disease Detection in Crops Using Images for Agricultural Applications,” Agronomy 2022, Vol. 12, Page 2395, vol. 12, no. 10, p. 2395, Oct. 2022, publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2073-4395/12/10/2395/htm
A. Bhola, S. Verma, and P. Kumar, “A comparative analysis of deep learning models for cucumber disease classification using transfer learning,” Journal of Current Science and Technology, vol. 13, no. 1, pp. 23–35, Feb. 2023. [Online]. Available: https://ph04.tci-thaijo.org/index.php/JCST/article/view/201
E. L. da Rocha, L. Ferreira Rodrigues, and J. F. Mari, “Maize leaf disease classification using convolutional neural networks and hyperparameter optimization,” Anais do Workshop de Visão Computacional (WVC), pp. 104–110, Oct. 2020, publisher: SBC. [Online]. Available: https://sol.sbc.org.br/index.php/wvc/article/view/13489
J. A. Pandian, V. D. Kumar, O. Geman, M. Hnatiuc, M. Arif, and K. Kanchanadevi, “Plant Disease Detection Using Deep Convolutional Neural Network,” Applied Sciences 2022, Vol. 12, Page 6982, vol. 12, no. 14, p. 6982, Jul. 2022, publisher: Multidisciplinary Digital Publishing Institute ISBN: 9798350306811. [Online]. Available: https://www.mdpi.com/2076-3417/12/14/6982/htm
J. A. Pandian and G. Geetharamani, “Identification of plant leaf diseases using a ninelayer deep convolutional neural network,” Computers & Electrical Engineering, vol. 76, pp. 323–338, Jun. 2019, publisher: Pergamon.
Y. Zhao, J. Qiu, M. Xie, and H. Huang, “Equivalence between algorithmic instability and transition to replica symmetry breaking in perceptron learning systems,” Physical Review Research, vol. 4, no. 2, p. 023023, Apr. 2022, arXiv:2111.13302 [cond-mat, stat]. [Online]. Available: http://arxiv.org/abs/2111.13302
B. Suteja, “Application of Neural Network in Letter Recognition Using the Perceptron Method,” Instal : Jurnal Komputer, vol. 14, no. 01, pp. 11–23, Jun. 2022, number: 01. [Online]. Available: https://journalinstal.cattleyadf.org/index.php/Instal/article/view/9
F. Schwendicke, W. Samek, and J. Krois, “Artificial Intelligence in Dentistry: Chances and Challenges,” Journal of Dental Research, vol. 99, no. 7, pp. 769–774, Jul. 2020, publisher: SAGE Publications Inc. [Online]. Available: https://doi.org/10.1177/0022034520915714
W. Nabi, A. Bansal, and B. Xu, “Applications of artificial intelligence and machine learning approaches in echocardiography,” Echocardiography, vol. 38, no. 6, pp. 982–992, 2021, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/echo.15048. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/echo.15048
S. Yadav, S. Yadav, S. P. Srivastava, S. K. Gupta, and S. Mishra, “Machine Learning,” in Deep Learning for Targeted Treatments. John Wiley & Sons, Ltd, 2022, pp. 407–430, section: 13 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119857983.ch13. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119857983.ch13
Y. P. Raykov and D. Saad, “Principled Machine Learning,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 4, pp. 1–19, Jul. 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9808310/
I. N. da Silva, D. Hernane Spatti, R. Andrade Flauzino, L. H. B. Liboni, and S. F. dos Reis Alves, “Artificial Neural Network Architectures and Training Processes,” in Artificial Neural Networks : A Practical Course, I. N. da Silva, D. Hernane Spatti, R. Andrade Flauzino, L. H. B. Liboni, and S. F. dos Reis Alves, Eds. Cham: Springer International Publishing, 2017, pp. 21–28. [Online]. Available: https://doi.org/10.1007/978-3-319-43162-8_2
Y. Sun, G. G. Yen, and M. Zhang, “Deep Neural Networks,” in Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances, Y. Sun, G. G. Yen, and M. Zhang, Eds. Cham: Springer International Publishing, 2023, pp. 9–30. [Online]. Available: https://doi.org/10.1007/978-3-031-16868-0_2
W. W. Hsieh, “Deep Learning,” in Introduction to Environmental Data Science. Cambridge University Press, Mar. 2023, pp. 494–517. [Online]. Available: https://www.cambridge.org/core/books/introduction-to-environmental-data-science/ deep-learning/E413E23B804C883A68FE006C0A2E8D1A
T. T. Teoh and Z. Rong, “Convolutional Neural Networks,” in Artificial Intelligence with Python, T. T. Teoh and Z. Rong, Eds. Singapore: Springer, 2022, pp. 261–275. [Online]. Available: https://doi.org/10.1007/978-981-16-8615-3_16
P. Purwono, A. Ma’arif, W. Rahmaniar, H. I. K. Fathurrahman, A. Z. K. Frisky, and Q. M. u. Haq, “Understanding of Convolutional Neural Network (CNN): A Review,” International Journal of Robotics and Control Systems, vol. 2, no. 4, pp. 739–748, 2022, number: 4. [Online]. Available: https://pubs2.ascee.org/index.php/IJRCS/article/view/ 888
S. Pattanayak, “Convolutional Neural Networks,” in Pro Deep Learning with TensorFlow 2.0: A Mathematical Approach to Advanced Artificial Intelligence in Python, S. Pattanayak, Ed. Berkeley, CA: Apress, 2023, pp. 199–291. [Online]. Available: https://doi.org/10.1007/978-1-4842-8931-0_3
M. M. Taye, “Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions,” Computation, vol. 11, no. 3, p. 52, Mar. 2023, number: 3 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2079-3197/11/3/52
S. Sharma, S. Sharma, and A. Athaiya, “ACTIVATION FUNCTIONS IN NEURAL NETWORKS,” International Journal of Engineering Applied Sciences and Technology, vol. 04, no. 12, pp. 310–316, May 2020. [Online]. Available: https://www.ijeast.com/ papers/310-316,Tesma412,IJEAST.pdf
K. Biswas, S. Kumar, S. Banerjee, and A. K. Pandey, “EIS - Efficient and Trainable Activation Functions for Better Accuracy and Performance,” in Artificial Neural Networks and Machine Learning – ICANN 2021, I. Farkaš, P. Masulli, S. Otte, and S. Wermter, Eds. Cham: Springer International Publishing, 2021, pp. 260–272.
S. Feng and B. Wang, “A novel design of learnable pooling algorithm,” in Third International Symposium on Computer Engineering and Intelligent Communications (ISCEIC 2022), vol. 12462. SPIE, Feb. 2023, pp. 756–762. [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12462/1246230/ A-novel-design-of-learnable-pooling-algorithm/10.1117/12.2660788.full
M. Monnet, H. Gebran, A. Matic-Flierl, F. Kiwit, B. Schachtner, A. Bentellis, and J. M. Lorenz, “Pooling techniques in hybrid quantum-classical convolutional neural networks,” May 2023, arXiv:2305.05603 [quant-ph]. [Online]. Available: http: //arxiv.org/abs/2305.05603
K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” Dec. 2015, arXiv:1512.03385 [cs] version: 1. [Online]. Available: http://arxiv.org/abs/1512.03385
T. Lee, V. P. Singh, and K. H. Cho, “Training a Neural Network,” in Deep Learning for Hydrometeorology and Environmental Science, T. Lee, V. P. Singh, and K. H. Cho, Eds. Cham: Springer International Publishing, 2021, pp. 47–62. [Online]. Available: https://doi.org/10.1007/978-3-030-64777-3_5
C. Cappi, C. Chapdelaine, L. Gardes, E. Jenn, B. Lefevre, S. Picard, and T. Soumarmon, “Dataset Definition Standard (DDS),” Jan. 2021, arXiv:2101.03020 [cs]. [Online]. Available: http://arxiv.org/abs/2101.03020
L. Yu, L. Sun, B. Du, T. Zhu, and W. Lv, “Label-Enhanced Graph Neural Network for Semi-Supervised Node Classification,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 11, pp. 11 529–11 540, Nov. 2023, conference Name: IEEE Transactions on Knowledge and Data Engineering. [Online]. Available: https://ieeexplore.ieee.org/document/9997579
M. Madhyastha, R. Underwood, R. Burns, and B. Nicolae, “DStore: A Lightweight Scalable Learning Model Repository with Fine-Grain Tensor-Level Access,” in Proceedings of the 37th ACM International Conference on Supercomputing, ser. ICS ’23. New York, NY, USA: Association for Computing Machinery, Jun. 2023, pp. 133–143. [Online]. Available: https://dl.acm.org/doi/10.1145/3577193.3593730
H. Shaziya and R. Zaheer, “Impact of Hyperparameters on Model Development in Deep Learning,” in Proceedings of International Conference on Computational Intelligence and Data Engineering, N. Chaki, J. Pejas, N. Devarakonda, and R. M. Rao Kovvur, Eds. Singapore: Springer, 2021, pp. 57–67.
S. Bos, E. Vinogradov, and S. Pollin, “Avoiding normalization uncertainties in deep learning architectures for end-to-end communication,” Jul. 2021, publisher: Institute of Electrical and Electronics Engineers (IEEE). [Online]. Available: http: //dx.doi.org/10.36227/techrxiv.14994906.v1
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press, 2016.
N. Raximov, J. Kuvandikov, and K. Dilmurod, “The importance of loss function in artificial intelligence,” in 2022 International Conference on Information Science and Communications Technologies (ICISCT), Sep. 2022, pp. 1–3. [Online]. Available: https://ieeexplore.ieee.org/document/10146883
N. Gowdra, R. Sinha, S. MacDonell, and W. Yan, “Maximum Categorical Cross Entropy (MCCE): A noise-robust alternative loss function to mitigate racial bias in Convolutional Neural Networks (CNNs) by reducing overfitting,” Oct. 2020. [Online]. Available: https://openreview.net/forum?id=1IBgFQbj7y
I. A. Dewi and M. A. N. E. Salawangi, “High performance of optimizers in deep learning for cloth patterns detection,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 12, no. 3, pp. 1407–1418, Sep. 2023, number: 3. [Online]. Available: https://ijai.iaescore.com/index.php/IJAI/article/view/22128
S. Ruder, “An overview of gradient descent optimization algorithms,” Jun. 2017, arXiv:1609.04747 [cs]. [Online]. Available: http://arxiv.org/abs/1609.04747
H. Robbins and S. Monro, “A Stochastic Approximation Method,” The Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, Sep. 1951, publisher: Institute of Mathematical Statistics. [Online]. Available: https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/ issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, “Chapter 10 - Deep learning,” in Data Mining (Fourth Edition), I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Eds. Morgan Kaufmann, Jan. 2017, pp. 417–466. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128042915000106
G. Hinton, N. Srivastava, and K. Swersky, “Lecture 6e-Rmsprop: Divide the Gradient by a Running Average of Its Recent Magnitude,” COURSERA: Neural Networks for Machine Learning, vol. 4, no. 2, pp. 26–31, 2012.
R. Elshamy, O. Abu-Elnasr, M. Elhoseny, and S. Elmougy, “Improving the efficiency of RMSProp optimizer by utilizing Nestrove in deep learning,” Scientific Reports, vol. 13, p. 8814, May 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC10232429/
D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Jan. 2017, arXiv:1412.6980 [cs]. [Online]. Available: http://arxiv.org/abs/1412.6980
A. H. Montazeri, S. K. Emami, M. R. Zaghiyan, and S. Eslamian, “Chapter 23 - Stochastic learning algorithms,” in Handbook of Hydroinformatics, S. Eslamian and F. Eslamian, Eds. Elsevier, Jan. 2023, pp. 385–410. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128212851000166
M. Grandini, E. Bagli, and G. Visani, “Metrics for Multi-Class Classification: an Overview,” Aug. 2020, arXiv:2008.05756 [cs, stat]. [Online]. Available: http: //arxiv.org/abs/2008.05756
D. Darwish, “Improving Techniques for Convolutional Neural Networks Performance,” European Journal of Electrical Engineering and Computer Science, vol. 8, no. 1, pp. 1–16, Jan. 2024, number: 1. [Online]. Available: https://ejece.org/index.php/ejece/article/ view/596
C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” Journal of Big Data, vol. 6, no. 1, p. 60, Jul. 2019. [Online]. Available: https://doi.org/10.1186/s40537-019-0197-0
P. Pawara, E. Okafor, L. Schomaker, and M. Wiering, “Data Augmentation for Plant Classification,” in Advanced Concepts for Intelligent Vision Systems, J. Blanc-Talon, R. Penne, W. Philips, D. Popescu, and P. Scheunders, Eds. Cham: Springer International Publishing, 2017, pp. 615–626.
A. Gilik, A. S. Ogrenci, and A. Ozmen, “Air quality prediction using CNN+LSTMbased hybrid deep learning architecture,” Environmental Science and Pollution Research, vol. 29, no. 8, pp. 11 920–11 938, Feb. 2022. [Online]. Available: https: //doi.org/10.1007/s11356-021-16227-w
M. Subramanian, K. Shanmugavadivel, and P. S. Nandhini, “On fine-tuning deep learning models using transfer learning and hyper-parameters optimization for disease identification in maize leaves,” Neural Computing and Applications, vol. 34, no. 16, pp. 13 951–13 968, Aug. 2022, publisher: Springer Science and Business Media Deutschland GmbH. [Online]. Available: https://link.springer.com/article/10. 1007/s00521-022-07246-w
F. Friedrichs and C. Igel, “Evolutionary tuning of multiple SVM parameters,” Neurocomputing, vol. 64, pp. 107–117, Mar. 2005. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0925231204005223
D. Passos and P. Mishra, “A tutorial on automatic hyperparameter tuning of deep spectral modelling for regression and classification tasks,” Chemometrics and Intelligent Laboratory Systems, vol. 223, p. 104520, Apr. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169743922000314
J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,” Journal of Machine Learning Research, vol. 13, no. 10, pp. 281–305, 2012. [Online]. Available: http://jmlr.org/papers/v13/bergstra12a.html
J. Močkus, “On bayesian methods for seeking the extremum,” in Optimization Techniques IFIP Technical Conference Novosibirsk, July 1–7, 1974, G. I. Marchuk, Ed. Berlin, Heidelberg: Springer, 1975, pp. 400–404.
L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization,” Jun. 2018, arXiv:1603.06560 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1603.06560
L. Liao, H. Li, W. Shang, and L. Ma, “An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural Networks,” ACM Transactions on Software Engineering and Methodology, vol. 31, no. 3, pp. 53:1–53:40, 2022. [Online]. Available: https://doi.org/10.1145/3506695
I. Kandel and M. Castelli, “The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset,” ICT Express, vol. 6, no. 4, pp. 312–315, Dec. 2020. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S2405959519303455
Y. Bengio, “Practical Recommendations for Gradient-Based Training of Deep Architectures,” in Neural Networks: Tricks of the Trade: Second Edition, G. Montavon, G. B. Orr, and K.-R. Müller, Eds. Berlin, Heidelberg: Springer, 2012, pp. 437–478. [Online]. Available: https://doi.org/10.1007/978-3-642-35289-8_26
R. M. Schmidt, F. Schneider, and P. Hennig, “Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers,” Aug. 2021, arXiv:2007.01547 [cs, stat]. [Online]. Available: http://arxiv.org/abs/2007.01547
D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl, “On Empirical Comparisons of Optimizers for Deep Learning,” Jun. 2020, arXiv:1910.05446 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1910.05446
C. Bakkene, T. K. Svendsen, and J. A. Eriksen, “Optimization of a Convolutional Neural Network for Classification of Radar Signals,” Master’s thesis, Norwegian University of Science and Technology, Trondheim, Jun. 2021. [Online]. Available: https://hdl.handle.net/11250/2787100
N. T. Sinshaw, B. E. Ejigu, B. G. Assefa, and S. K. Mohapatra, “Amharic Handwritten & Machine Printed Character Recognition Using Deep CNN with Random Search Hyperparameter Optimization Algorithm,” May 2023. [Online]. Available: https://www.researchsquare.com
S. Roy, R. Mehera, R. K. Pal, and S. K. Bandyopadhyay, “Hyperparameter optimization for deep neural network models: a comprehensive study on methods and techniques,” Innovations in Systems and Software Engineering, pp. 1–12, Oct. 2023, publisher: Springer Science and Business Media Deutschland GmbH. [Online]. Available: https://link.springer.com/article/10.1007/s11334-023-00540-3
A. A. Chowdhury, A. Das, K. K. S. Hoque, and D. Karmaker, “A Comparative Study of Hyperparameter Optimization Techniques for Deep Learning,” pp. 509–521, 2022, publisher: Springer, Singapore ISBN: 978-981-19-0332-8. [Online]. Available: https://link.springer.com/chapter/10.1007/978-981-19-0332-8_38
A. Waheed, M. Goyal, D. Gupta, A. Khanna, A. E. Hassanien, and H. M. Pandey, “An optimized dense convolutional neural network model for disease recognition and classification in corn leaf,” Computers and Electronics in Agriculture, vol. 175, p. 105456, Aug. 2020, publisher: Elsevier.
L. Poole and D. Brown, “Investigating Popular CNN Architectures for Plant Disease Detection,” icABCD 2021 - 4th International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems, Proceedings, Aug. 2021, publisher: Institute of Electrical and Electronics Engineers Inc. ISBN: 9781728185927.
J. A. Pandian, K. Kanchanadevi, V. D. Kumar, E. Jasińska, R. Goňo, Z. Leonowicz, and M. Jasiński, “A Five Convolutional Layer Deep Convolutional Neural Network for Plant Leaf Disease Detection,” Electronics 2022, Vol. 11, Page 1266, vol. 11, no. 8, p. 1266, Apr. 2022, publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2079-9292/11/8/1266/htm
M. H. Saleem, J. Potgieter, and K. M. Arif, “A Performance-Optimized Deep Learningbased Plant Disease Detection Approach for Horticultural Crops of New Zealand,” IEEE Access, 2022, publisher: Institute of Electrical and Electronics Engineers Inc.
V. K. Vishnoi, K. Kumar, B. Kumar, S. Mohan, and A. A. Khan, “Detection of Apple Plant Diseases Using Leaf Images Through Convolutional Neural Network,” IEEE Access, vol. 11, pp. 6594–6609, 2023, publisher: Institute of Electrical and Electronics Engineers Inc.
L. Poole and D. Brown, “A multispectral and machine learning approach to early stress classification in plants,” Master’s thesis, Rhodes University, Grahamstown, Mar. 2022. [Online]. Available: https://hdl.handle.net/10962/232410
J. F. Restrepo-Arias, J. W. Branch-Bedoya, and G. Awad, “Plant Disease Detection Strategy Based on Image Texture and Bayesian Optimization with Small Neural Networks,” Agriculture 2022, Vol. 12, Page 1964, vol. 12, no. 11, p. 1964, Nov. 2022, publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2077-0472/12/11/1964/htm
D. Strigl, K. Kofler, and S. Podlipnig, “Performance and Scalability of GPU-Based Convolutional Neural Networks,” in 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing, Feb. 2010, pp. 317–324, iSSN: 2377-5750. [Online]. Available: https://ieeexplore.ieee.org/document/5452452
H. Aliady and D. Utari, “GPU Based Image Classification using Convolutional Neural Network Chicken Dishes Classification,” Jul. 2018.
D. P. Hughes and M. Salathe, “An open access repository of images on plant health to enable the development of mobile disease diagnostics,” Apr. 2016, arXiv:1511.08060 [cs]. [Online]. Available: http://arxiv.org/abs/1511.08060
Y. Yuan, L. Chen, Y. Ren, S. Wang, and Y. Li, “Impact of dataset on the study of crop disease image recognition,” International Journal of Agricultural and Biological Engineering, vol. 15, no. 5, pp. 181–186, Nov. 2022, number: 5. [Online]. Available: https://www.ijabe.org/index.php/ijabe/article/view/7005
D. C. Marcu and C. Grava, “The Importance of Data Quality in Training a Deep Convolutional Neural Network,” in 2023 17th International Conference on Engineering of Modern Electric Systems (EMES), Jun. 2023, pp. 1–4. [Online]. Available: https://ieeexplore.ieee.org/document/10171785
V. Sehwag, R. Oak, M. Chiang, and P. Mittal, “Time for a Background Check! Uncovering the impact of Background Features on Deep Neural Networks,” Jun. 2020, arXiv:2006.14077 [cs]. [Online]. Available: http://arxiv.org/abs/2006.14077
J. A. Pandian and G. Geetharamani, “Data for: Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network,” vol. 1, Apr. 2019, publisher: Mendeley Data. [Online]. Available: https://data.mendeley.com/datasets/tywbtsjrjv/1
B. Jena, S. Saxena, G. K. Nayak, L. Saba, N. Sharma, and J. S. Suri, “Artificial intelligence-based hybrid deep learning models for image classification: The first narrative review,” Computers in Biology and Medicine, vol. 137, p. 104803, Oct. 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010482521005977
A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The Marginal Value of Adaptive Gradient Methods in Machine Learning,” May 2018, arXiv:1705.08292. [Online]. Available: http://arxiv.org/abs/1705.08292
T. Wu, P. Zeng, and C. Song, “An optimization Strategy for Deep Neural Networks Training,” in 2022 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML), Oct. 2022, pp. 596–603. [Online]. Available: https://ieeexplore.ieee.org/document/10009665
P. M. Radiuk, “Impact of Training Set Batch Size on the Performance of Convolutional Neural Networks for Diverse Datasets,” Information Technology and Management Science, vol. 20, no. 1, pp. 20–24, 2017. [Online]. Available: https://itms-journals.rtu.lv/article/view/itms-2017-0003
F. Mohameth, C. Bingcai, and K. A. Sada, “Plant Disease Detection with Deep Learning and Feature Extraction Using Plant Village,” Journal of Computer and Communications, vol. 8, no. 6, pp. 10–22, Jun. 2020, number: 6 Publisher: Scientific Research Publishing. [Online]. Available: https://www.scirp.org/journal/paperinformation.aspx? paperid=100958
A. Sagar and D. Jacob, “On Using Transfer Learning For Plant Disease Detection,” May 2021, pages: 2020.05.22.110957 Section: New Results. [Online]. Available: https://www.biorxiv.org/content/10.1101/2020.05.22.110957v2
M. Prabhakar, R. Purushothaman, and D. P. Awasthi, “Deep learning based assessment of disease severity for early blight in tomato crop,” Multimedia Tools and Applications, vol. 79, no. 39, pp. 28 773–28 784, Oct. 2020. [Online]. Available: https://doi.org/10.1007/s11042-020-09461-w
N. Ganatra and A. Patel, “Performance Analysis Of Fine-Tuned Convolutional Neural Network Models For Plant Disease Classification,” pp. 293–305, Jan. 2020.
S. M. Hassan, A. K. Maji, M. Jasiński, Z. Leonowicz, and E. Jasińska, “Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach,” Electronics, vol. 10, no. 12, p. 1388, Jan. 2021, number: 12 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2079-9292/10/12/1388
M. M. F. Alim, Subiyanto, and Sartini, “Identification of diseases in tomato leaves using convolutional neural network and transfer learning method,” Journal of Physics: Conference Series, vol. 1918, no. 4, p. 042137, Jun. 2021, publisher: IOP Publishing. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/1918/4/042137
S. K. Sahu, M. Pandey, and K. Geete, “Classification of soybean leaf disease from environment effect using fine tuning transfer learning,” Annals of the Romanian Society for Cell Biology, pp. 2188–2201, 2021. [Online]. Available: http://annalsofrscb.ro/index.php/journal/article/view/1660
P. Thakur, A. Chug, and A. P. Singh, “Plant Disease detection of Bell Pepper Plant Using Transfer Learning over different Models,” in 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), Aug. 2021, pp. 384–389, iSSN: 2688-769X.
A. Morellos, X. E. Pantazi, C. Paraskevas, and D. Moshou, “Comparison of Deep Neural Networks in Detecting Field Grapevine Diseases Using Transfer Learning,” Remote Sensing, vol. 14, no. 18, p. 4648, Jan. 2022, number: 18 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2072-4292/14/18/4648
R. M. Math and N. V. Dharwadkar, “Early detection and identification of grape diseases using convolutional neural networks,” Journal of Plant Diseases and Protection, vol. 129, no. 3, pp. 521–532, Jun. 2022. [Online]. Available: https://doi.org/10.1007/s41348-022-00589-5
H. Tarek, H. Aly, S. Eisa, and M. Abul-Soud, “Optimized Deep Learning Algorithms for Tomato Leaf Disease Detection with Hardware Deployment,” Electronics, vol. 11, no. 1, p. 140, Jan. 2022, number: 1 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2079-9292/11/1/140
V. Singh, A. Chug, and A. P. Singh, “Classification of Beans Leaf Diseases using Fine Tuned CNN Model,” Procedia Computer Science, vol. 218, pp. 348– 356, Jan. 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S1877050923000170
G. Fenu and F. M. Malloci, “Classification of Pear Leaf Diseases Based on Ensemble Convolutional Neural Networks,” AgriEngineering, vol. 5, no. 1, pp. 141–152, Mar. 2023, number: 1 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2624-7402/5/1/9
A. Saeed, A. A. Abdel-Aziz, A. Mossad, M. A. Abdelhamid, A. Y. Alkhaled, and M. Mayhoub, “Smart Detection of Tomato Leaf Diseases Using Transfer Learning-Based Convolutional Neural Networks,” Agriculture, vol. 13, no. 1, p. 139, Jan. 2023, number: 1 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2077-0472/13/1/139
P. K. Das and S. S. Rupa, “ResNet for Leaf-based Disease Classification in Strawberry Plant,” International Journal of Applied Methods in Electronics and Computers, vol. 11, no. 3, pp. 151–157, Sep. 2023, number: 3. [Online]. Available: https://ijamec.org/index.php/ijamec/article/view/381
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
dc.format.extent.none.fl_str_mv 87 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Ibagué
dc.publisher.faculty.none.fl_str_mv Ingeniería
dc.publisher.place.none.fl_str_mv Ibagué
dc.publisher.program.none.fl_str_mv Ingeniería Electrónica
publisher.none.fl_str_mv Universidad de Ibagué
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/40ebe014-0b31-47aa-b636-478e2c3cf8bf/download
https://repositorio.unibague.edu.co/bitstreams/98a961f4-359d-4185-baa8-6d2de2b57eac/download
https://repositorio.unibague.edu.co/bitstreams/fefc5d51-e958-4c93-b345-f2673a71c2cf/download
https://repositorio.unibague.edu.co/bitstreams/72fe16d5-4d87-400b-ac79-85b730c86dc9/download
https://repositorio.unibague.edu.co/bitstreams/bbc08cc9-fd0b-45c8-ba4f-feef6616c9a0/download
https://repositorio.unibague.edu.co/bitstreams/50c25434-e624-4210-a651-54f8b40ac957/download
https://repositorio.unibague.edu.co/bitstreams/7e06dcde-9178-4799-905f-2dc2948fa36a/download
bitstream.checksum.fl_str_mv 470c78374e2b36126fb1f6d103df3970
54e33186afacec668f407fc3613a1ee0
2fa3e590786b9c0f3ceba1b9656b7ac3
21e66b23850ecc6e035a1bae1ad09fc5
c1f9cd537dd79aafcd4f89ea00e8920b
8e0d43351c631646a14733255321733d
4baf38fbaa0f50e777641f77ef7a27a5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059985376608256
spelling Fernández Gallego, Jose Armando13f15360-a12b-4149-9932-b46907b21333-1González Flórez, Miguel Ángel09cb0320-b93a-4a73-9e35-d27f69d1cc0f-1Barrero Mendoza, Oscar2d7e2643-9c20-40f0-a36b-4ecd5bf1e6526002024-12-13T23:06:58Z2024-12-13T23:06:58Z2024Datos estadísticos de la FAO y DataBank, indican un aumento en la población subnutrida en los últimos años. Al revisar las cifras, esta problemática se atribuye al crecimiento constante de la población y a una producción de cereales inconstante. En busca de conocer las contribuciones tecnológicas para la agricultura, se encuentran aportes en agricultura de precisión, robótica, internet de las cosas y visión por computadora. La detección de enfermedades puede contribuir a mejorar el rendimiento de los cultivos y puede ser desarrollada utilizando redes neuronales. En el proceso de entrenamiento de las redes se definen ciertas variables (denominadas hiperparámetros) para configurar la arquitectura de la red neuronal que influyen en diferentes aspectos como la duración del entrenamiento y desempeño de la red. Este trabajo se estudia los hiperparámetros de una red neuronal profunda con el objetivo de mejorar el rendimiento de la red neuronal para clasificar enfermedades en plantas, se realiza un ajuste semiautomático de los hiperparámetros utilizando la librería Keras y la base de datos PlantVillage.Statistical data from FAO and DataBank indicate an increase in the undernourished population in recent years. In reviewing the figures, this problem is attributed to steady population growth and inconsistent cereal production. Looking for technological contributions to agriculture, contributions are found in precision agriculture, robotics, internet of things and computer vision. Disease detection can contribute to improved crop yields and can be developed using neural networks. In the training process of the networks, certain variables (called hyperparameters) are defined to configure the neural network architecture that influence different aspects such as training duration and network performance. This work studies the hyperparameters of a deep neural network with the aim of improving the performance of the neural network to classify plant diseases. A semi-automatic adjustment of the hyperparameters is performed using the Keras library and the PlantVillage dataset.PregradoIngeniero ElectrónicoResumen . . . . . III Lista de Figuras . . . . . VIII Lista de Tablas . . . . . IX Lista de Algoritmos . . . . . X Lista de Abreviaturas . . . . . XII 1. Introducción . . . . . 1 1.1. Descripción del Problema . . . . . 1 1.2. Objetivos de Investigación . . . . . 3 1.2.1. Objetivo General . . . . . 3 1.2.2. Objetivos Específicos . . . . . 3 2. Marco Teórico . . . . . 4 2.1. Aprendizaje Profundo . . . . . 4 2.2. Redes Neuronales . . . . . 5 2.2.1. Redes Neuronales Convolucionales . . . . . 6 2.2.1.1. ResNet-50 . . . . . 8 2.3. Entrenamiento, Validación y Prueba . . . . . 9 2.4. Hiperparámetros . . . . . 10 2.4.1. Tamaño del Lote . . . . . 10 2.4.2. Función de Pérdida . . . . . 11 2.4.2.1. Entropía Categórica Cruzada . . . . . 11 2.4.3. Optimizador . . . . . 11 2.4.3.1. SGD . . . . . 12 2.4.3.2. RMSprop . . . . . 13 2.4.3.3. Adam . . . . . 13 2.4.4. Tasa de Aprendizaje . . . . . 14 2.5. Métricas de Evaluación . . . . . 15 2.5.1. Precisión . . . . . 16 2.5.2. Exhaustividad . . . . . 16 2.5.3. Puntuación F1 . . . . . 17 2.5.4. Exactitud . . . . . 18 2.6. Técnicas para la Mejora del Rendimiento . . . . . 18 2.6.1. Aumento de Datos . . . . . 18 2.6.2. Aprendizaje por Transferencia . . . . . 19 2.6.3. Sintonización de Hiperparámetros . . . . . 20 2.6.3.1. Búsqueda en Cuadrícula . . . . . 20 2.6.3.2. Búsqueda Aleatoria . . . . . 21 2.6.3.3. Optimización Bayesiana . . . . . 21 2.6.3.4. HiperBanda . . . . . 22 3. Estado del Arte . . . . . 23 3.1. Trabajos Comparativos . . . . . 23 3.2. Trabajos Enfocados a una Técnica . . . . . 24 3.2.1. Búsqueda en Cuadrícula e HiperBanda . . . . . 24 3.2.2. Búsqueda Aleatoria . . . . . 24 3.2.3. Optimización Bayesiana . . . . . 25 4. Materiales . . . . . 26 4.1. Computadora . . . . . 26 4.1.1. Aprovechamiento de la GPU . . . . . 26 4.2. Plataforma de Desarrollo . . . . . 27 4.3. Librerías . . . . . 28 4.3.1. Propósitos Generales . . . . . 28 4.3.2. Sintonización de Hiperparámetros . . . . . 28 4.4. Base de Datos . . . . . 29 5. Metodología . . . . . 32 5.1. Selección de la Arquitectura . . . . . 32 5.2. Selección del Espacio de Búsqueda . . . . . 33 5.3. Sintonización de Hiperparámetros . . . . . 34 5.3.1. Implementación del HyperModel . . . . . 34 5.3.2. Implementación y Adecuación de los Tuner . . . . . 35 5.3.3. Búsqueda de Hiperparámetros . . . . . 39 5.4. Evaluación de los Algoritmos . . . . . 39 5.4.1. Evaluación de Entrenamiento y Validación . . . . . 39 5.4.1.1. Gráfico del Espacio de Búsqueda . . . . . 40 5.4.1.2. Gráfico de Coordenadas Paralelas . . . . . 40 5.4.1.3. Tiempo de Búsqueda . . . . . 41 5.4.1.4. Curvas de Pérdida y Exactitud . . . . . 41 5.4.2. Evaluación de la Prueba . . . . . 42 5.4.2.1. Gráfico de Radar . . . . . 42 6. Resultados y Discusión . . . . . 44 6.1. Resultados . . . . . 44 6.1.1. Rendimiento según el Espacio de Búsqueda . . . . . 44 6.1.2. Rendimiento según Hiperparámetros . . . . . 45 6.1.3. Rendimiento según Tiempo . . . . . 46 6.1.4. Rendimiento según Aprendizaje . . . . . 47 6.1.5. Rendimiento según Métricas de Evaluación . . . . . 47 6.2. Discusión . . . . . 49 6.2.1. Resultados de Entrenamiento y Validación . . . . . 49 6.2.1.1. Exactitud por Configuración . . . . . 49 6.2.1.2. Tiempos de Entrenamiento . . . . . 49 6.2.1.3. Tiempos de Búsqueda . . . . . 50 6.2.1.4. Curvas de Aprendizaje . . . . . 50 6.2.2. Resultados de la Prueba . . . . . 51 7. Conclusiones y Trabajo Futuro . . . . . 52 7.1. Conclusiones . . . . . 52 7.2. Trabajo Futuro . . . . . 53 Anexos . . . . . 54 A. Estado del Arte de Hyper-Tuning . . . . . 54 B. Descripción de PlantVillage Dataset . . . . . 56 C. Estado del Arte de Arquitecturas . . . . . 58 D. Función run_trial() General . . . . . 60 Bibliografía . . . . . 7387 páginasapplication/pdfGonzález-Flórez, M. A. (2024). Sintonización de Hiperparámetros en Modelos de Aprendizaje Profundo para la Clasificación de Enfermedades en Plantas Empleando la Base de Datos PlantVillage. [Trabajo de grado, Universidad de Ibagué]. https://hdl.handle.net/20.500.12313/4617https://hdl.handle.net/20.500.12313/4617spaUniversidad de IbaguéIngenieríaIbaguéIngeniería ElectrónicaFAO, “Conceptos Básicos | Programa Especial para la Seguridad Alimentaria (PESA) Centroamérica | Organización de las Naciones Unidas para la Alimentación y la Agricultura,” 2023. [Online]. Available: https://www.fao.org/in-action/pesa-centroamerica/temas/conceptos-basicos/es/Minambiente, “Minambiente, interesado en ayudar a disminuir el desperdicio de alimentos,” Sep. 2022. [Online]. Available: https://www.minambiente.gov.co/ minambiente-interesado-en-ayudar-a-disminuir-el-desperdicio-de-alimentos/Universidad de Antioquia, “Agricultura de precision,” 2020. [Online]. Available: https://www.udea.edu.co/wps/portal/udea/web/inicio/extension/ portafoliotecnologico/articulos/Agricultura_de_precisionC. Liang and T. Shah, “IoT in Agriculture: The Future of Precision Monitoring and Data-Driven Farming,” Eigenpub Review of Science and Technology, vol. 7, no. 1, pp. 85–104, Jun. 2023. [Online]. Available: https://studies.eigenpub.com/index.php/erst/ article/view/11G. Quaglia, C. Visconte, L. S. Scimmi, M. Melchiorre, P. Cavallone, and S. Pastorelli, “Design of a UGV Powered by Solar Energy for Precision Agriculture,” Robotics 2020, Vol. 9, Page 13, vol. 9, no. 1, p. 13, Mar. 2020, publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2218-6581/9/1/13/htmS. M. Kasem, Z. Baka, M. A. El-Metwally, A. A. Ibrahim, and M. Soliman, “Biocontrol Agents of Mycoflora to Improve the Physiological and Genetic Characteristics of Maize Plants,” Egyptian Journal of Botany, vol. 64, no. 3, pp. 298–317, Sep. 2024, publisher: National Information and Documentation Center (NIDOC), Academy of Scientific Research and Technology (ASRT). [Online]. Available: https://ejbo.journals.ekb.eg/article_377520.htmlF. U. Mba, “Detection of three cereal viruses in oat samples,” 2024, publisher: Helsingin yliopisto;University of Helsinki;Helsingfors universitet. [Online]. Available: URN:NBN:fi:hulib-202408293941;http://hdl.handle.net/10138/585175R. A. Francisco, N. V. Fassinou Hotegni, D. E. O. Sogbohossou, C. A. Houdegbe, E. G. Achigan-Dako, and A. H. Bokonon-Ganta, “Knowledge and management of insect pests affecting Gynandropsis gynandra [(L.) Briq (Cleomaceae)] among vegetable growers in Benin,” International Journal of Tropical Insect Science, Aug. 2024. [Online]. Available: https://doi.org/10.1007/s42690-024-01344-z Tésis.A. Raza, K. Khandelwal, S. Pandit, M. Singh, S. Kumar, S. Rustagi, N. Ranjan, R. Verma, K. Priya, and R. Prasad, “Exploring the potential of metallic and metal oxide nanoparticles for reinforced disease management in agricultural systems: A comprehensive review,” Environmental Nanotechnology, Monitoring & Management, p. 100998, Aug. 2024. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S2215153224000862K. A. Ashley, “Exploring Crop Management Impacts to Soil Health in Maine Potato Production,” Ph.D. dissertation. [Online]. Available: https://digitalcommons.library. umaine.edu/etd/3939N. Kundu, G. Rani, and V. S. Dhaka, “A Comparative Analysis of Deep Learning Models Applied for Disease Classification in Bell Pepper,” 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), pp. 243–247, Nov. 2020, conference Name: 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC) ISBN: 9781728171326 Place: Waknaghat, India Publisher: IEEE. [Online]. Available: https://ieeexplore.ieee.org/document/9315821/L. Tan, J. Lu, and H. Jiang, “Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine Learning and Deep Learning Methods,” AgriEngineering 2021, Vol. 3, Pages 542-558, vol. 3, no. 3, pp. 542–558, Jul. 2021, publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2624-7402/3/3/35/htmJ. Andrew, J. Eunice, D. E. Popescu, M. K. Chowdary, and J. Hemanth, “Deep Learning-Based Leaf Disease Detection in Crops Using Images for Agricultural Applications,” Agronomy 2022, Vol. 12, Page 2395, vol. 12, no. 10, p. 2395, Oct. 2022, publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2073-4395/12/10/2395/htmA. Bhola, S. Verma, and P. Kumar, “A comparative analysis of deep learning models for cucumber disease classification using transfer learning,” Journal of Current Science and Technology, vol. 13, no. 1, pp. 23–35, Feb. 2023. [Online]. Available: https://ph04.tci-thaijo.org/index.php/JCST/article/view/201E. L. da Rocha, L. Ferreira Rodrigues, and J. F. Mari, “Maize leaf disease classification using convolutional neural networks and hyperparameter optimization,” Anais do Workshop de Visão Computacional (WVC), pp. 104–110, Oct. 2020, publisher: SBC. [Online]. Available: https://sol.sbc.org.br/index.php/wvc/article/view/13489J. A. Pandian, V. D. Kumar, O. Geman, M. Hnatiuc, M. Arif, and K. Kanchanadevi, “Plant Disease Detection Using Deep Convolutional Neural Network,” Applied Sciences 2022, Vol. 12, Page 6982, vol. 12, no. 14, p. 6982, Jul. 2022, publisher: Multidisciplinary Digital Publishing Institute ISBN: 9798350306811. [Online]. Available: https://www.mdpi.com/2076-3417/12/14/6982/htmJ. A. Pandian and G. Geetharamani, “Identification of plant leaf diseases using a ninelayer deep convolutional neural network,” Computers & Electrical Engineering, vol. 76, pp. 323–338, Jun. 2019, publisher: Pergamon.Y. Zhao, J. Qiu, M. Xie, and H. Huang, “Equivalence between algorithmic instability and transition to replica symmetry breaking in perceptron learning systems,” Physical Review Research, vol. 4, no. 2, p. 023023, Apr. 2022, arXiv:2111.13302 [cond-mat, stat]. [Online]. Available: http://arxiv.org/abs/2111.13302B. Suteja, “Application of Neural Network in Letter Recognition Using the Perceptron Method,” Instal : Jurnal Komputer, vol. 14, no. 01, pp. 11–23, Jun. 2022, number: 01. [Online]. Available: https://journalinstal.cattleyadf.org/index.php/Instal/article/view/9F. Schwendicke, W. Samek, and J. Krois, “Artificial Intelligence in Dentistry: Chances and Challenges,” Journal of Dental Research, vol. 99, no. 7, pp. 769–774, Jul. 2020, publisher: SAGE Publications Inc. [Online]. Available: https://doi.org/10.1177/0022034520915714W. Nabi, A. Bansal, and B. Xu, “Applications of artificial intelligence and machine learning approaches in echocardiography,” Echocardiography, vol. 38, no. 6, pp. 982–992, 2021, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/echo.15048. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/echo.15048S. Yadav, S. Yadav, S. P. Srivastava, S. K. Gupta, and S. Mishra, “Machine Learning,” in Deep Learning for Targeted Treatments. John Wiley & Sons, Ltd, 2022, pp. 407–430, section: 13 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119857983.ch13. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119857983.ch13Y. P. Raykov and D. Saad, “Principled Machine Learning,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 4, pp. 1–19, Jul. 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9808310/I. N. da Silva, D. Hernane Spatti, R. Andrade Flauzino, L. H. B. Liboni, and S. F. dos Reis Alves, “Artificial Neural Network Architectures and Training Processes,” in Artificial Neural Networks : A Practical Course, I. N. da Silva, D. Hernane Spatti, R. Andrade Flauzino, L. H. B. Liboni, and S. F. dos Reis Alves, Eds. Cham: Springer International Publishing, 2017, pp. 21–28. [Online]. Available: https://doi.org/10.1007/978-3-319-43162-8_2Y. Sun, G. G. Yen, and M. Zhang, “Deep Neural Networks,” in Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances, Y. Sun, G. G. Yen, and M. Zhang, Eds. Cham: Springer International Publishing, 2023, pp. 9–30. [Online]. Available: https://doi.org/10.1007/978-3-031-16868-0_2W. W. Hsieh, “Deep Learning,” in Introduction to Environmental Data Science. Cambridge University Press, Mar. 2023, pp. 494–517. [Online]. Available: https://www.cambridge.org/core/books/introduction-to-environmental-data-science/ deep-learning/E413E23B804C883A68FE006C0A2E8D1AT. T. Teoh and Z. Rong, “Convolutional Neural Networks,” in Artificial Intelligence with Python, T. T. Teoh and Z. Rong, Eds. Singapore: Springer, 2022, pp. 261–275. [Online]. Available: https://doi.org/10.1007/978-981-16-8615-3_16P. Purwono, A. Ma’arif, W. Rahmaniar, H. I. K. Fathurrahman, A. Z. K. Frisky, and Q. M. u. Haq, “Understanding of Convolutional Neural Network (CNN): A Review,” International Journal of Robotics and Control Systems, vol. 2, no. 4, pp. 739–748, 2022, number: 4. [Online]. Available: https://pubs2.ascee.org/index.php/IJRCS/article/view/ 888S. Pattanayak, “Convolutional Neural Networks,” in Pro Deep Learning with TensorFlow 2.0: A Mathematical Approach to Advanced Artificial Intelligence in Python, S. Pattanayak, Ed. Berkeley, CA: Apress, 2023, pp. 199–291. [Online]. Available: https://doi.org/10.1007/978-1-4842-8931-0_3M. M. Taye, “Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions,” Computation, vol. 11, no. 3, p. 52, Mar. 2023, number: 3 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2079-3197/11/3/52S. Sharma, S. Sharma, and A. Athaiya, “ACTIVATION FUNCTIONS IN NEURAL NETWORKS,” International Journal of Engineering Applied Sciences and Technology, vol. 04, no. 12, pp. 310–316, May 2020. [Online]. Available: https://www.ijeast.com/ papers/310-316,Tesma412,IJEAST.pdfK. Biswas, S. Kumar, S. Banerjee, and A. K. Pandey, “EIS - Efficient and Trainable Activation Functions for Better Accuracy and Performance,” in Artificial Neural Networks and Machine Learning – ICANN 2021, I. Farkaš, P. Masulli, S. Otte, and S. Wermter, Eds. Cham: Springer International Publishing, 2021, pp. 260–272.S. Feng and B. Wang, “A novel design of learnable pooling algorithm,” in Third International Symposium on Computer Engineering and Intelligent Communications (ISCEIC 2022), vol. 12462. SPIE, Feb. 2023, pp. 756–762. [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12462/1246230/ A-novel-design-of-learnable-pooling-algorithm/10.1117/12.2660788.fullM. Monnet, H. Gebran, A. Matic-Flierl, F. Kiwit, B. Schachtner, A. Bentellis, and J. M. Lorenz, “Pooling techniques in hybrid quantum-classical convolutional neural networks,” May 2023, arXiv:2305.05603 [quant-ph]. [Online]. Available: http: //arxiv.org/abs/2305.05603K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” Dec. 2015, arXiv:1512.03385 [cs] version: 1. [Online]. Available: http://arxiv.org/abs/1512.03385T. Lee, V. P. Singh, and K. H. Cho, “Training a Neural Network,” in Deep Learning for Hydrometeorology and Environmental Science, T. Lee, V. P. Singh, and K. H. Cho, Eds. Cham: Springer International Publishing, 2021, pp. 47–62. [Online]. Available: https://doi.org/10.1007/978-3-030-64777-3_5C. Cappi, C. Chapdelaine, L. Gardes, E. Jenn, B. Lefevre, S. Picard, and T. Soumarmon, “Dataset Definition Standard (DDS),” Jan. 2021, arXiv:2101.03020 [cs]. [Online]. Available: http://arxiv.org/abs/2101.03020L. Yu, L. Sun, B. Du, T. Zhu, and W. Lv, “Label-Enhanced Graph Neural Network for Semi-Supervised Node Classification,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 11, pp. 11 529–11 540, Nov. 2023, conference Name: IEEE Transactions on Knowledge and Data Engineering. [Online]. Available: https://ieeexplore.ieee.org/document/9997579M. Madhyastha, R. Underwood, R. Burns, and B. Nicolae, “DStore: A Lightweight Scalable Learning Model Repository with Fine-Grain Tensor-Level Access,” in Proceedings of the 37th ACM International Conference on Supercomputing, ser. ICS ’23. New York, NY, USA: Association for Computing Machinery, Jun. 2023, pp. 133–143. [Online]. Available: https://dl.acm.org/doi/10.1145/3577193.3593730H. Shaziya and R. Zaheer, “Impact of Hyperparameters on Model Development in Deep Learning,” in Proceedings of International Conference on Computational Intelligence and Data Engineering, N. Chaki, J. Pejas, N. Devarakonda, and R. M. Rao Kovvur, Eds. Singapore: Springer, 2021, pp. 57–67.S. Bos, E. Vinogradov, and S. Pollin, “Avoiding normalization uncertainties in deep learning architectures for end-to-end communication,” Jul. 2021, publisher: Institute of Electrical and Electronics Engineers (IEEE). [Online]. Available: http: //dx.doi.org/10.36227/techrxiv.14994906.v1I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press, 2016.N. Raximov, J. Kuvandikov, and K. Dilmurod, “The importance of loss function in artificial intelligence,” in 2022 International Conference on Information Science and Communications Technologies (ICISCT), Sep. 2022, pp. 1–3. [Online]. Available: https://ieeexplore.ieee.org/document/10146883N. Gowdra, R. Sinha, S. MacDonell, and W. Yan, “Maximum Categorical Cross Entropy (MCCE): A noise-robust alternative loss function to mitigate racial bias in Convolutional Neural Networks (CNNs) by reducing overfitting,” Oct. 2020. [Online]. Available: https://openreview.net/forum?id=1IBgFQbj7yI. A. Dewi and M. A. N. E. Salawangi, “High performance of optimizers in deep learning for cloth patterns detection,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 12, no. 3, pp. 1407–1418, Sep. 2023, number: 3. [Online]. Available: https://ijai.iaescore.com/index.php/IJAI/article/view/22128S. Ruder, “An overview of gradient descent optimization algorithms,” Jun. 2017, arXiv:1609.04747 [cs]. [Online]. Available: http://arxiv.org/abs/1609.04747H. Robbins and S. Monro, “A Stochastic Approximation Method,” The Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, Sep. 1951, publisher: Institute of Mathematical Statistics. [Online]. Available: https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/ issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.fullI. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, “Chapter 10 - Deep learning,” in Data Mining (Fourth Edition), I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Eds. Morgan Kaufmann, Jan. 2017, pp. 417–466. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128042915000106G. Hinton, N. Srivastava, and K. Swersky, “Lecture 6e-Rmsprop: Divide the Gradient by a Running Average of Its Recent Magnitude,” COURSERA: Neural Networks for Machine Learning, vol. 4, no. 2, pp. 26–31, 2012.R. Elshamy, O. Abu-Elnasr, M. Elhoseny, and S. Elmougy, “Improving the efficiency of RMSProp optimizer by utilizing Nestrove in deep learning,” Scientific Reports, vol. 13, p. 8814, May 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC10232429/D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Jan. 2017, arXiv:1412.6980 [cs]. [Online]. Available: http://arxiv.org/abs/1412.6980A. H. Montazeri, S. K. Emami, M. R. Zaghiyan, and S. Eslamian, “Chapter 23 - Stochastic learning algorithms,” in Handbook of Hydroinformatics, S. Eslamian and F. Eslamian, Eds. Elsevier, Jan. 2023, pp. 385–410. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128212851000166M. Grandini, E. Bagli, and G. Visani, “Metrics for Multi-Class Classification: an Overview,” Aug. 2020, arXiv:2008.05756 [cs, stat]. [Online]. Available: http: //arxiv.org/abs/2008.05756D. Darwish, “Improving Techniques for Convolutional Neural Networks Performance,” European Journal of Electrical Engineering and Computer Science, vol. 8, no. 1, pp. 1–16, Jan. 2024, number: 1. [Online]. Available: https://ejece.org/index.php/ejece/article/ view/596C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” Journal of Big Data, vol. 6, no. 1, p. 60, Jul. 2019. [Online]. Available: https://doi.org/10.1186/s40537-019-0197-0P. Pawara, E. Okafor, L. Schomaker, and M. Wiering, “Data Augmentation for Plant Classification,” in Advanced Concepts for Intelligent Vision Systems, J. Blanc-Talon, R. Penne, W. Philips, D. Popescu, and P. Scheunders, Eds. Cham: Springer International Publishing, 2017, pp. 615–626.A. Gilik, A. S. Ogrenci, and A. Ozmen, “Air quality prediction using CNN+LSTMbased hybrid deep learning architecture,” Environmental Science and Pollution Research, vol. 29, no. 8, pp. 11 920–11 938, Feb. 2022. [Online]. Available: https: //doi.org/10.1007/s11356-021-16227-wM. Subramanian, K. Shanmugavadivel, and P. S. Nandhini, “On fine-tuning deep learning models using transfer learning and hyper-parameters optimization for disease identification in maize leaves,” Neural Computing and Applications, vol. 34, no. 16, pp. 13 951–13 968, Aug. 2022, publisher: Springer Science and Business Media Deutschland GmbH. [Online]. Available: https://link.springer.com/article/10. 1007/s00521-022-07246-wF. Friedrichs and C. Igel, “Evolutionary tuning of multiple SVM parameters,” Neurocomputing, vol. 64, pp. 107–117, Mar. 2005. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0925231204005223D. Passos and P. Mishra, “A tutorial on automatic hyperparameter tuning of deep spectral modelling for regression and classification tasks,” Chemometrics and Intelligent Laboratory Systems, vol. 223, p. 104520, Apr. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169743922000314J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,” Journal of Machine Learning Research, vol. 13, no. 10, pp. 281–305, 2012. [Online]. Available: http://jmlr.org/papers/v13/bergstra12a.htmlJ. Močkus, “On bayesian methods for seeking the extremum,” in Optimization Techniques IFIP Technical Conference Novosibirsk, July 1–7, 1974, G. I. Marchuk, Ed. Berlin, Heidelberg: Springer, 1975, pp. 400–404.L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization,” Jun. 2018, arXiv:1603.06560 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1603.06560L. Liao, H. Li, W. Shang, and L. Ma, “An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural Networks,” ACM Transactions on Software Engineering and Methodology, vol. 31, no. 3, pp. 53:1–53:40, 2022. [Online]. Available: https://doi.org/10.1145/3506695I. Kandel and M. Castelli, “The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset,” ICT Express, vol. 6, no. 4, pp. 312–315, Dec. 2020. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S2405959519303455Y. Bengio, “Practical Recommendations for Gradient-Based Training of Deep Architectures,” in Neural Networks: Tricks of the Trade: Second Edition, G. Montavon, G. B. Orr, and K.-R. Müller, Eds. Berlin, Heidelberg: Springer, 2012, pp. 437–478. [Online]. Available: https://doi.org/10.1007/978-3-642-35289-8_26R. M. Schmidt, F. Schneider, and P. Hennig, “Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers,” Aug. 2021, arXiv:2007.01547 [cs, stat]. [Online]. Available: http://arxiv.org/abs/2007.01547D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl, “On Empirical Comparisons of Optimizers for Deep Learning,” Jun. 2020, arXiv:1910.05446 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1910.05446C. Bakkene, T. K. Svendsen, and J. A. Eriksen, “Optimization of a Convolutional Neural Network for Classification of Radar Signals,” Master’s thesis, Norwegian University of Science and Technology, Trondheim, Jun. 2021. [Online]. Available: https://hdl.handle.net/11250/2787100N. T. Sinshaw, B. E. Ejigu, B. G. Assefa, and S. K. Mohapatra, “Amharic Handwritten & Machine Printed Character Recognition Using Deep CNN with Random Search Hyperparameter Optimization Algorithm,” May 2023. [Online]. Available: https://www.researchsquare.comS. Roy, R. Mehera, R. K. Pal, and S. K. Bandyopadhyay, “Hyperparameter optimization for deep neural network models: a comprehensive study on methods and techniques,” Innovations in Systems and Software Engineering, pp. 1–12, Oct. 2023, publisher: Springer Science and Business Media Deutschland GmbH. [Online]. Available: https://link.springer.com/article/10.1007/s11334-023-00540-3A. A. Chowdhury, A. Das, K. K. S. Hoque, and D. Karmaker, “A Comparative Study of Hyperparameter Optimization Techniques for Deep Learning,” pp. 509–521, 2022, publisher: Springer, Singapore ISBN: 978-981-19-0332-8. [Online]. Available: https://link.springer.com/chapter/10.1007/978-981-19-0332-8_38A. Waheed, M. Goyal, D. Gupta, A. Khanna, A. E. Hassanien, and H. M. Pandey, “An optimized dense convolutional neural network model for disease recognition and classification in corn leaf,” Computers and Electronics in Agriculture, vol. 175, p. 105456, Aug. 2020, publisher: Elsevier.L. Poole and D. Brown, “Investigating Popular CNN Architectures for Plant Disease Detection,” icABCD 2021 - 4th International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems, Proceedings, Aug. 2021, publisher: Institute of Electrical and Electronics Engineers Inc. ISBN: 9781728185927.J. A. Pandian, K. Kanchanadevi, V. D. Kumar, E. Jasińska, R. Goňo, Z. Leonowicz, and M. Jasiński, “A Five Convolutional Layer Deep Convolutional Neural Network for Plant Leaf Disease Detection,” Electronics 2022, Vol. 11, Page 1266, vol. 11, no. 8, p. 1266, Apr. 2022, publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2079-9292/11/8/1266/htmM. H. Saleem, J. Potgieter, and K. M. Arif, “A Performance-Optimized Deep Learningbased Plant Disease Detection Approach for Horticultural Crops of New Zealand,” IEEE Access, 2022, publisher: Institute of Electrical and Electronics Engineers Inc.V. K. Vishnoi, K. Kumar, B. Kumar, S. Mohan, and A. A. Khan, “Detection of Apple Plant Diseases Using Leaf Images Through Convolutional Neural Network,” IEEE Access, vol. 11, pp. 6594–6609, 2023, publisher: Institute of Electrical and Electronics Engineers Inc.L. Poole and D. Brown, “A multispectral and machine learning approach to early stress classification in plants,” Master’s thesis, Rhodes University, Grahamstown, Mar. 2022. [Online]. Available: https://hdl.handle.net/10962/232410J. F. Restrepo-Arias, J. W. Branch-Bedoya, and G. Awad, “Plant Disease Detection Strategy Based on Image Texture and Bayesian Optimization with Small Neural Networks,” Agriculture 2022, Vol. 12, Page 1964, vol. 12, no. 11, p. 1964, Nov. 2022, publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2077-0472/12/11/1964/htmD. Strigl, K. Kofler, and S. Podlipnig, “Performance and Scalability of GPU-Based Convolutional Neural Networks,” in 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing, Feb. 2010, pp. 317–324, iSSN: 2377-5750. [Online]. Available: https://ieeexplore.ieee.org/document/5452452H. Aliady and D. Utari, “GPU Based Image Classification using Convolutional Neural Network Chicken Dishes Classification,” Jul. 2018.D. P. Hughes and M. Salathe, “An open access repository of images on plant health to enable the development of mobile disease diagnostics,” Apr. 2016, arXiv:1511.08060 [cs]. [Online]. Available: http://arxiv.org/abs/1511.08060Y. Yuan, L. Chen, Y. Ren, S. Wang, and Y. Li, “Impact of dataset on the study of crop disease image recognition,” International Journal of Agricultural and Biological Engineering, vol. 15, no. 5, pp. 181–186, Nov. 2022, number: 5. [Online]. Available: https://www.ijabe.org/index.php/ijabe/article/view/7005D. C. Marcu and C. Grava, “The Importance of Data Quality in Training a Deep Convolutional Neural Network,” in 2023 17th International Conference on Engineering of Modern Electric Systems (EMES), Jun. 2023, pp. 1–4. [Online]. Available: https://ieeexplore.ieee.org/document/10171785V. Sehwag, R. Oak, M. Chiang, and P. Mittal, “Time for a Background Check! Uncovering the impact of Background Features on Deep Neural Networks,” Jun. 2020, arXiv:2006.14077 [cs]. [Online]. Available: http://arxiv.org/abs/2006.14077J. A. Pandian and G. Geetharamani, “Data for: Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network,” vol. 1, Apr. 2019, publisher: Mendeley Data. [Online]. Available: https://data.mendeley.com/datasets/tywbtsjrjv/1B. Jena, S. Saxena, G. K. Nayak, L. Saba, N. Sharma, and J. S. Suri, “Artificial intelligence-based hybrid deep learning models for image classification: The first narrative review,” Computers in Biology and Medicine, vol. 137, p. 104803, Oct. 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010482521005977A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The Marginal Value of Adaptive Gradient Methods in Machine Learning,” May 2018, arXiv:1705.08292. [Online]. Available: http://arxiv.org/abs/1705.08292T. Wu, P. Zeng, and C. Song, “An optimization Strategy for Deep Neural Networks Training,” in 2022 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML), Oct. 2022, pp. 596–603. [Online]. Available: https://ieeexplore.ieee.org/document/10009665P. M. Radiuk, “Impact of Training Set Batch Size on the Performance of Convolutional Neural Networks for Diverse Datasets,” Information Technology and Management Science, vol. 20, no. 1, pp. 20–24, 2017. [Online]. Available: https://itms-journals.rtu.lv/article/view/itms-2017-0003F. Mohameth, C. Bingcai, and K. A. Sada, “Plant Disease Detection with Deep Learning and Feature Extraction Using Plant Village,” Journal of Computer and Communications, vol. 8, no. 6, pp. 10–22, Jun. 2020, number: 6 Publisher: Scientific Research Publishing. [Online]. Available: https://www.scirp.org/journal/paperinformation.aspx? paperid=100958A. Sagar and D. Jacob, “On Using Transfer Learning For Plant Disease Detection,” May 2021, pages: 2020.05.22.110957 Section: New Results. [Online]. Available: https://www.biorxiv.org/content/10.1101/2020.05.22.110957v2M. Prabhakar, R. Purushothaman, and D. P. Awasthi, “Deep learning based assessment of disease severity for early blight in tomato crop,” Multimedia Tools and Applications, vol. 79, no. 39, pp. 28 773–28 784, Oct. 2020. [Online]. Available: https://doi.org/10.1007/s11042-020-09461-wN. Ganatra and A. Patel, “Performance Analysis Of Fine-Tuned Convolutional Neural Network Models For Plant Disease Classification,” pp. 293–305, Jan. 2020.S. M. Hassan, A. K. Maji, M. Jasiński, Z. Leonowicz, and E. Jasińska, “Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach,” Electronics, vol. 10, no. 12, p. 1388, Jan. 2021, number: 12 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2079-9292/10/12/1388M. M. F. Alim, Subiyanto, and Sartini, “Identification of diseases in tomato leaves using convolutional neural network and transfer learning method,” Journal of Physics: Conference Series, vol. 1918, no. 4, p. 042137, Jun. 2021, publisher: IOP Publishing. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/1918/4/042137S. K. Sahu, M. Pandey, and K. Geete, “Classification of soybean leaf disease from environment effect using fine tuning transfer learning,” Annals of the Romanian Society for Cell Biology, pp. 2188–2201, 2021. [Online]. Available: http://annalsofrscb.ro/index.php/journal/article/view/1660P. Thakur, A. Chug, and A. P. Singh, “Plant Disease detection of Bell Pepper Plant Using Transfer Learning over different Models,” in 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), Aug. 2021, pp. 384–389, iSSN: 2688-769X.A. Morellos, X. E. Pantazi, C. Paraskevas, and D. Moshou, “Comparison of Deep Neural Networks in Detecting Field Grapevine Diseases Using Transfer Learning,” Remote Sensing, vol. 14, no. 18, p. 4648, Jan. 2022, number: 18 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2072-4292/14/18/4648R. M. Math and N. V. Dharwadkar, “Early detection and identification of grape diseases using convolutional neural networks,” Journal of Plant Diseases and Protection, vol. 129, no. 3, pp. 521–532, Jun. 2022. [Online]. Available: https://doi.org/10.1007/s41348-022-00589-5H. Tarek, H. Aly, S. Eisa, and M. Abul-Soud, “Optimized Deep Learning Algorithms for Tomato Leaf Disease Detection with Hardware Deployment,” Electronics, vol. 11, no. 1, p. 140, Jan. 2022, number: 1 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2079-9292/11/1/140V. Singh, A. Chug, and A. P. Singh, “Classification of Beans Leaf Diseases using Fine Tuned CNN Model,” Procedia Computer Science, vol. 218, pp. 348– 356, Jan. 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S1877050923000170G. Fenu and F. M. Malloci, “Classification of Pear Leaf Diseases Based on Ensemble Convolutional Neural Networks,” AgriEngineering, vol. 5, no. 1, pp. 141–152, Mar. 2023, number: 1 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2624-7402/5/1/9A. Saeed, A. A. Abdel-Aziz, A. Mossad, M. A. Abdelhamid, A. Y. Alkhaled, and M. Mayhoub, “Smart Detection of Tomato Leaf Diseases Using Transfer Learning-Based Convolutional Neural Networks,” Agriculture, vol. 13, no. 1, p. 139, Jan. 2023, number: 1 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2077-0472/13/1/139P. K. Das and S. S. Rupa, “ResNet for Leaf-based Disease Classification in Strawberry Plant,” International Journal of Applied Methods in Electronics and Computers, vol. 11, no. 3, pp. 151–157, Sep. 2023, number: 3. [Online]. Available: https://ijamec.org/index.php/ijamec/article/view/381info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/Enfermedades de planta - ClasificaciónDatos PlantVillageSintonización de hiperparámetrosAprendizaje profundoClasificaciónEnfermedades de plantasPlantVillageHyperparameter tuningDeep learningClassificationPlant diseasesPlantVillageSintonización de hiperparámetros en modelos de aprendizaje profundo para la clasificación de enfermedades en plantas empleando la base de datos PlantVillageTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALTrabajo de gradoTrabajo de gradoapplication/pdf20306566https://repositorio.unibague.edu.co/bitstreams/40ebe014-0b31-47aa-b636-478e2c3cf8bf/download470c78374e2b36126fb1f6d103df3970MD51Formato de autorizaciónFormato de autorizaciónapplication/pdf158146https://repositorio.unibague.edu.co/bitstreams/98a961f4-359d-4185-baa8-6d2de2b57eac/download54e33186afacec668f407fc3613a1ee0MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/fefc5d51-e958-4c93-b345-f2673a71c2cf/download2fa3e590786b9c0f3ceba1b9656b7ac3MD53TEXTTrabajo de grado.txtTrabajo de grado.txtExtracted texttext/plain102119https://repositorio.unibague.edu.co/bitstreams/72fe16d5-4d87-400b-ac79-85b730c86dc9/download21e66b23850ecc6e035a1bae1ad09fc5MD58Formato de autorización.txtFormato de autorización.txtExtracted texttext/plain3345https://repositorio.unibague.edu.co/bitstreams/bbc08cc9-fd0b-45c8-ba4f-feef6616c9a0/downloadc1f9cd537dd79aafcd4f89ea00e8920bMD510THUMBNAILTrabajo de grado.jpgTrabajo de grado.jpgIM Thumbnailimage/jpeg11575https://repositorio.unibague.edu.co/bitstreams/50c25434-e624-4210-a651-54f8b40ac957/download8e0d43351c631646a14733255321733dMD59Formato de autorización.jpgFormato de autorización.jpgIM Thumbnailimage/jpeg23924https://repositorio.unibague.edu.co/bitstreams/7e06dcde-9178-4799-905f-2dc2948fa36a/download4baf38fbaa0f50e777641f77ef7a27a5MD51120.500.12313/4617oai:repositorio.unibague.edu.co:20.500.12313/46172025-08-13 01:14:00.48https://creativecommons.org/licenses/by-nc/4.0/https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=