Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis

In this research, the influence of global slenderness and sliding pallets factor on the seismic design of steel storage racks are assessed. Variations in span length, the height of storage levels, live load, and percentage of live load considered in the seismic mass are studied for different levels...

Full description

Autores:
Nuñez, Eduardo
Mata, Ramón
Castro, Jorge
Tovar Perilla, Nelson Javier
Guerrero Chávez, Néstor Luis
Roco, Ángel
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5537
Acceso en línea:
https://hdl.handle.net/20.500.12313/5537
Palabra clave:
Estantes de almacenamiento de acero - Diseño sísmico
Códigos de diseño
Diseño sísmico
Análisis de sensibilidad
Estanterías de almacenamiento de acero
Estructuras de acero
Design codes
Seismic design
Sensitivity analysis
Steel storage racks
Steel structures
Rights
openAccess
License
© 2022 by the authors.
id UNIBAGUE2_3fbdaa4e626f78805781e0929a72c78b
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5537
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis
title Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis
spellingShingle Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis
Estantes de almacenamiento de acero - Diseño sísmico
Códigos de diseño
Diseño sísmico
Análisis de sensibilidad
Estanterías de almacenamiento de acero
Estructuras de acero
Design codes
Seismic design
Sensitivity analysis
Steel storage racks
Steel structures
title_short Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis
title_full Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis
title_fullStr Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis
title_full_unstemmed Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis
title_sort Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis
dc.creator.fl_str_mv Nuñez, Eduardo
Mata, Ramón
Castro, Jorge
Tovar Perilla, Nelson Javier
Guerrero Chávez, Néstor Luis
Roco, Ángel
dc.contributor.author.none.fl_str_mv Nuñez, Eduardo
Mata, Ramón
Castro, Jorge
Tovar Perilla, Nelson Javier
Guerrero Chávez, Néstor Luis
Roco, Ángel
dc.subject.armarc.none.fl_str_mv Estantes de almacenamiento de acero - Diseño sísmico
Códigos de diseño
Diseño sísmico
Análisis de sensibilidad
Estanterías de almacenamiento de acero
Estructuras de acero
topic Estantes de almacenamiento de acero - Diseño sísmico
Códigos de diseño
Diseño sísmico
Análisis de sensibilidad
Estanterías de almacenamiento de acero
Estructuras de acero
Design codes
Seismic design
Sensitivity analysis
Steel storage racks
Steel structures
dc.subject.proposal.eng.fl_str_mv Design codes
Seismic design
Sensitivity analysis
Steel storage racks
Steel structures
description In this research, the influence of global slenderness and sliding pallets factor on the seismic design of steel storage racks are assessed. Variations in span length, the height of storage levels, live load, and percentage of live load considered in the seismic mass are studied for different levels of seismic zone and soil type. The models were designed according to the Chilean Code NCh2369. Subsequently, a global sensitivity analysis was developed to analyze the influence of each studied parameter in the seismic design response in terms of fundamental period, drift, and base shear from a response spectral analysis approach. A total of 12000 simulations were performed. Two-hundred additional models were performed to evaluate the variation of seismic mass in the structural response. Results indicate a significant influence of live loads and seismic mass on steel racks designed for soft soils and unbrace conditions. The stiffness also modifies the performance of the racks, mainly in models using braces in the down-aisle direction and cross-aisle direction. In these cases, the seismic mass factor does not have a strong influence on structural response in comparison to the global slenderness.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-11
dc.date.accessioned.none.fl_str_mv 2025-08-25T15:50:47Z
dc.date.available.none.fl_str_mv 2025-08-25T15:50:47Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Nuñez, E., Mata, R., Castro, J., Maureira, N., Guerrero, N. y Roco, Á. (2022). Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis. Buildings, 12(11), 1826. DOI: 10.3390/buildings12111826
dc.identifier.doi.none.fl_str_mv 10.3390/buildings12111826
dc.identifier.issn.none.fl_str_mv 20755309
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5537
identifier_str_mv Nuñez, E., Mata, R., Castro, J., Maureira, N., Guerrero, N. y Roco, Á. (2022). Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis. Buildings, 12(11), 1826. DOI: 10.3390/buildings12111826
10.3390/buildings12111826
20755309
url https://hdl.handle.net/20.500.12313/5537
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationissue.none.fl_str_mv 11
dc.relation.citationstartpage.none.fl_str_mv 1826
dc.relation.citationvolume.none.fl_str_mv 12
dc.relation.ispartofjournal.none.fl_str_mv Buildings
dc.relation.references.none.fl_str_mv Castiglioni, C.A.; Drei, A.; Carydis, P.; Mouzakis, H. Experimental assessment of static friction between pallet and beams in racking systems. J. Build. Eng. 2016, 6, 203–214.
Coulomb, C.A. Essai sur une Application des Regles de Maximis et Minimis à Quelques Problemes Relatifs à l’architecture, Memoires de Mathèmatique et de Physique; Academie Royale des Sciences: Paris, France, 1776; pp. 343–382.
Stribeck, R. Die wesentlichen Eigenschaften der Gleit- und Rollenlager (Characteristics of Plain and Roller Bearings). Z. Vereines Seutscher Ing. 1902, 46, 1432–1437.
Dahl, P.R. Solid Friction Damping of Mechanical Vibrations. AIAA J. 1976, 14, 1675–1682.
De Wit, C.C.; Olsson, H.; Amstrong, K.; Lischinsky, P. A new model for control of systems with friction. IEEE Trans. Autom. Control 1995, 40, 419–425.
Denoël, V.; Degée, H. Cas Particulier d’étude Analytique de l’élément à Frottement, Internal Report 2005-1; Department M&S, University of Liege: Liege, Belgium, 2005.
ANSI MH16 1–2012; Specification for the Design, Testing and Utilization of Industrial Steel Storage Racks. Rack Manufacturers Institute: Charlotte, NC, USA, 2012.
ANSI MH 16.3; Specification for the Design, Testing and Utilization of Industrial Steel Cantilevered Storage Racks. American National Standard: New York, NY, USA, 2009.
EN 16681; Steel Static Storage Systems—Adjustable Pallet Racking Systems. Principles for Seismic Design European Committee for Standardization: Brussels, Belgium, 2016.
FEM 10.2.08; Recommendations for the Design of Static Steel Storage Pallet Racks in Seismic Conditions. Federation Européenne de Manutention: Brussels, Belgium, 2010.
AS 4084-2012; Steel Storage Racking. Standards Australia Sydney: Sydney, Australia, 2012.
NCh2369.Of2003; Earthquake Resistant Design of Industrial Structures and Facilities. Instituto Nacional de Normalización (INN): Santiago, Chile, 2003.
NCh433.Of1996; Earthquake Resistant Design of Buildings. Instituto Nacional de Normalización (INN): Santiago, Chile, 2012.
Nuñez, E.; Aguayo, C.; Herrera, R. Assessment of the Seismic Behavior of Selective Storage Racks Subjected to Chilean Earthquakes. Metals 2020, 10, 855.
AISI. North American Specification for the Design of Cold-Formed Steel Structural Members, 1st ed.; American Iron and Steel Institute: Washington, DC, USA, 2012.
Zhang, W.; Tong, G. Response spectra of two-storey frames with racks on the elastic floor. J. Build. Eng. 2021, 43, 103092.
Bernuzzi, C.; Simoncelli, M. Steel storage pallet racks in seismic zones: Advanced vs. standard design strategies. Thin-Walled Struct. 2017, 116, 291–306.
EN 1993-1-1:2005; Eurocode 3—Design of Steel Structures-part 1-1: General Rules and Rules for Buildings. CEN European Committee for Standardization: Belgium, Brussels, 2005.
Bernuzzi, C.; Simoncelli, M. Seismic Design of Grana Cheese Cold-Formed Steel Racks. Buildings 2020, 10, 246.
Tsarpalis, D.; Vamvatsikos, D.; Vayas, I. Seismic assessment approaches for mass-dominant sliding contents: The case of storage racks. Earthq. Eng. Struct. Dyn. 2021, 51, 812–831.
Maguire, J.R.; Teh, L.H.; Clifton, G.C.; McCarthy, T.J. Equivalent static force method for selective storage racks with uplifting baseplates. J. Constr. Steel Res. 2019, 165, 105821.
Baldassino, N.; Zandonini, R. Design by testing of industrial racks. Adv. Steel. Constr. 2011, 7, 27–47.
Smith, J.; Marcillo, E.; Reyes, J.; Ardila, O. Assessment of the Effective Seismic Mass for Low-Rise Framed Shear Buildings Supporting Nearly Permanent Live Loads. J. Struct. Eng. 2018, 144, 04018098.
Natali, A.; Morelli, F.; Salvatore, W. Influence of the Design Parameters on the Current Seismic Design Approach for Automated Rack Supported Warehouses. In Proceedings of the 7th World Congress on Civil, Structural, and Environmental Engineering, Lisbon, Portugal, 10–12 April 2022.
Smith, J.; Reyes, J.; Ardila, L.; Villamizar, J.; Ardila, O. Effect of live load on the seismic design of single-storey storage structures under unidirectional horizontal ground motions. Eng. Struct. 2015, 93, 50–60.
Deng, L.; Li, J.; Yang, Y.; Deng, P. Imperfection sensitivity analysis and DSM design of web-stiffened lipped channel columns experiencing local-distortional interaction. Thin-Walled Struct. 2020, 152, 106699.
Gusella, F.; Arwade, S.R.; Orlando, M.; Peterman, K.D. Influence of mechanical and geometric uncertainty on rack connection structural response. J. Constr. Steel Res. 2018, 153, 343–355.
Alvarez, O.; Muñoz, E.; Maureira, N.; Roco, A. A Sensitivity Analysis Approach for Assessing the Effect of Design Parameters in Reducing Seismic Demand of Base-Isolated Storage Racks. Appl. Sci. 2011, 11, 11553.
Zareian, F.; Aguirre, C.; Beltrán, J.F.; Cruz, E.; Herrera, R.; Leon, R.; Millan, A.; Verdugo, A. Reconnaissance Report of Chilean Industrial Facilities Affected by the 2010 Chile Offshore Bío-Bío Earthquake. Earthq. Spectra 2012, 28, 513–532.
FEMA 460; Seismic Considerations for Steel Storage Racks Located in Areas Accessible to the Public. Federal Emergency Management Agency: Washington, DC, USA, 2005.
A36/A36M-14; Standard Specification for Carbon Structural Steel. ASTM International: West Conshohocken, PA, USA, 2014.
Computer and Structures, Inc. (CSI). SAP2000; v22; Computer and Structures, Inc.: Berkeley, CA, USA, 2000.
Pavéz, I. Análisis Experimental del Comportamiento de Elementos Conformantes de Sistemas de Almacenaje en Diversas Condiciones de Carga. Thesis to Obtain the Professional Title of Mechanical Engineer. Licentiate Thesis, University of Concepción, Concepción, Chile, 2017.
Wojtkiewicz, S.F.; Johnson, E.A. Efficient sensitivity analysis of structures with local modifications. I: Time domain responses. J. Eng. Mech. 2014, 140, 04014067
Pianosi, F.; Wagener, T. A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environ. Model. Softw. 2015, 67, 1–11.
Young, P.; Spear, R.; Hornberger, G. Modeling badly defined systems: Some further thoughts. In Proceedings of the SIMSIG Conference, Canberra, Australia, 4–8 September 1978; pp. 24–32.
Spear, R.; Hornberger, G. Eutrophication in peel inlet. II. Identification of critical uncertainties via generalized sensitivity analysis. Water Res. 1980, 14, 43–49.
Pianosi, F.; Sarrazin, F.; Wagener, T. A Matlab toolbox for Global Sensitivity Analysis. Environ. Model. Softw. 2015, 70, 80–85.
MATLAB, version 7.10.0 (R2010a); The MathWorks Inc.: Natick, MA, USA, 2010.
McKenna, F.; Fenves, G.L.; Scott, M.H. Open System for Earthquake Engineering Simulation; University of California: Berkeley, CA, USA, 2000.
dc.rights.eng.fl_str_mv © 2022 by the authors.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv © 2022 by the authors.
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
dc.publisher.place.none.fl_str_mv Suiza
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv https://www.mdpi.com/2075-5309/12/11/1826
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/3b43af5b-c209-44e8-90ec-705c7e385b02/download
https://repositorio.unibague.edu.co/bitstreams/1e285d56-632d-430c-a5ea-624794d4a6b1/download
https://repositorio.unibague.edu.co/bitstreams/8d187a9e-065b-438e-907c-6fb5a3d4c0a8/download
https://repositorio.unibague.edu.co/bitstreams/2e1a6421-83e7-46f1-9928-25d9018bd78d/download
bitstream.checksum.fl_str_mv 2fa3e590786b9c0f3ceba1b9656b7ac3
352198a8d78cc42e7e25a8f7ccb800f5
619e25aba071dd01e08cbdfaed418e61
9379e44a575e474853a996d06e37df32
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059986568839168
spelling Nuñez, Eduardo1d5cdb21-9c1a-4002-865b-2107704e126c-1Mata, Ramón3510326f-13ac-41f4-9d25-72770fd438c6-1Castro, Jorgeca9ad4f8-d55f-4528-b01f-57d3adc18ddd-1Tovar Perilla, Nelson Javier0225d873-752d-40b4-8898-095eef0f03bc600Guerrero Chávez, Néstor Luisb511be61-14be-4841-a6e1-febf905f281a600Roco, Ángel4e368a21-6dff-492c-a8ae-f84e9d2ffcfa-12025-08-25T15:50:47Z2025-08-25T15:50:47Z2022-11In this research, the influence of global slenderness and sliding pallets factor on the seismic design of steel storage racks are assessed. Variations in span length, the height of storage levels, live load, and percentage of live load considered in the seismic mass are studied for different levels of seismic zone and soil type. The models were designed according to the Chilean Code NCh2369. Subsequently, a global sensitivity analysis was developed to analyze the influence of each studied parameter in the seismic design response in terms of fundamental period, drift, and base shear from a response spectral analysis approach. A total of 12000 simulations were performed. Two-hundred additional models were performed to evaluate the variation of seismic mass in the structural response. Results indicate a significant influence of live loads and seismic mass on steel racks designed for soft soils and unbrace conditions. The stiffness also modifies the performance of the racks, mainly in models using braces in the down-aisle direction and cross-aisle direction. In these cases, the seismic mass factor does not have a strong influence on structural response in comparison to the global slenderness.application/pdfNuñez, E., Mata, R., Castro, J., Maureira, N., Guerrero, N. y Roco, Á. (2022). Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis. Buildings, 12(11), 1826. DOI: 10.3390/buildings1211182610.3390/buildings1211182620755309https://hdl.handle.net/20.500.12313/5537engMDPISuiza11182612BuildingsCastiglioni, C.A.; Drei, A.; Carydis, P.; Mouzakis, H. Experimental assessment of static friction between pallet and beams in racking systems. J. Build. Eng. 2016, 6, 203–214.Coulomb, C.A. Essai sur une Application des Regles de Maximis et Minimis à Quelques Problemes Relatifs à l’architecture, Memoires de Mathèmatique et de Physique; Academie Royale des Sciences: Paris, France, 1776; pp. 343–382.Stribeck, R. Die wesentlichen Eigenschaften der Gleit- und Rollenlager (Characteristics of Plain and Roller Bearings). Z. Vereines Seutscher Ing. 1902, 46, 1432–1437.Dahl, P.R. Solid Friction Damping of Mechanical Vibrations. AIAA J. 1976, 14, 1675–1682.De Wit, C.C.; Olsson, H.; Amstrong, K.; Lischinsky, P. A new model for control of systems with friction. IEEE Trans. Autom. Control 1995, 40, 419–425.Denoël, V.; Degée, H. Cas Particulier d’étude Analytique de l’élément à Frottement, Internal Report 2005-1; Department M&S, University of Liege: Liege, Belgium, 2005.ANSI MH16 1–2012; Specification for the Design, Testing and Utilization of Industrial Steel Storage Racks. Rack Manufacturers Institute: Charlotte, NC, USA, 2012.ANSI MH 16.3; Specification for the Design, Testing and Utilization of Industrial Steel Cantilevered Storage Racks. American National Standard: New York, NY, USA, 2009.EN 16681; Steel Static Storage Systems—Adjustable Pallet Racking Systems. Principles for Seismic Design European Committee for Standardization: Brussels, Belgium, 2016.FEM 10.2.08; Recommendations for the Design of Static Steel Storage Pallet Racks in Seismic Conditions. Federation Européenne de Manutention: Brussels, Belgium, 2010.AS 4084-2012; Steel Storage Racking. Standards Australia Sydney: Sydney, Australia, 2012.NCh2369.Of2003; Earthquake Resistant Design of Industrial Structures and Facilities. Instituto Nacional de Normalización (INN): Santiago, Chile, 2003.NCh433.Of1996; Earthquake Resistant Design of Buildings. Instituto Nacional de Normalización (INN): Santiago, Chile, 2012.Nuñez, E.; Aguayo, C.; Herrera, R. Assessment of the Seismic Behavior of Selective Storage Racks Subjected to Chilean Earthquakes. Metals 2020, 10, 855.AISI. North American Specification for the Design of Cold-Formed Steel Structural Members, 1st ed.; American Iron and Steel Institute: Washington, DC, USA, 2012.Zhang, W.; Tong, G. Response spectra of two-storey frames with racks on the elastic floor. J. Build. Eng. 2021, 43, 103092.Bernuzzi, C.; Simoncelli, M. Steel storage pallet racks in seismic zones: Advanced vs. standard design strategies. Thin-Walled Struct. 2017, 116, 291–306.EN 1993-1-1:2005; Eurocode 3—Design of Steel Structures-part 1-1: General Rules and Rules for Buildings. CEN European Committee for Standardization: Belgium, Brussels, 2005.Bernuzzi, C.; Simoncelli, M. Seismic Design of Grana Cheese Cold-Formed Steel Racks. Buildings 2020, 10, 246.Tsarpalis, D.; Vamvatsikos, D.; Vayas, I. Seismic assessment approaches for mass-dominant sliding contents: The case of storage racks. Earthq. Eng. Struct. Dyn. 2021, 51, 812–831.Maguire, J.R.; Teh, L.H.; Clifton, G.C.; McCarthy, T.J. Equivalent static force method for selective storage racks with uplifting baseplates. J. Constr. Steel Res. 2019, 165, 105821.Baldassino, N.; Zandonini, R. Design by testing of industrial racks. Adv. Steel. Constr. 2011, 7, 27–47.Smith, J.; Marcillo, E.; Reyes, J.; Ardila, O. Assessment of the Effective Seismic Mass for Low-Rise Framed Shear Buildings Supporting Nearly Permanent Live Loads. J. Struct. Eng. 2018, 144, 04018098.Natali, A.; Morelli, F.; Salvatore, W. Influence of the Design Parameters on the Current Seismic Design Approach for Automated Rack Supported Warehouses. In Proceedings of the 7th World Congress on Civil, Structural, and Environmental Engineering, Lisbon, Portugal, 10–12 April 2022.Smith, J.; Reyes, J.; Ardila, L.; Villamizar, J.; Ardila, O. Effect of live load on the seismic design of single-storey storage structures under unidirectional horizontal ground motions. Eng. Struct. 2015, 93, 50–60.Deng, L.; Li, J.; Yang, Y.; Deng, P. Imperfection sensitivity analysis and DSM design of web-stiffened lipped channel columns experiencing local-distortional interaction. Thin-Walled Struct. 2020, 152, 106699.Gusella, F.; Arwade, S.R.; Orlando, M.; Peterman, K.D. Influence of mechanical and geometric uncertainty on rack connection structural response. J. Constr. Steel Res. 2018, 153, 343–355.Alvarez, O.; Muñoz, E.; Maureira, N.; Roco, A. A Sensitivity Analysis Approach for Assessing the Effect of Design Parameters in Reducing Seismic Demand of Base-Isolated Storage Racks. Appl. Sci. 2011, 11, 11553.Zareian, F.; Aguirre, C.; Beltrán, J.F.; Cruz, E.; Herrera, R.; Leon, R.; Millan, A.; Verdugo, A. Reconnaissance Report of Chilean Industrial Facilities Affected by the 2010 Chile Offshore Bío-Bío Earthquake. Earthq. Spectra 2012, 28, 513–532.FEMA 460; Seismic Considerations for Steel Storage Racks Located in Areas Accessible to the Public. Federal Emergency Management Agency: Washington, DC, USA, 2005.A36/A36M-14; Standard Specification for Carbon Structural Steel. ASTM International: West Conshohocken, PA, USA, 2014.Computer and Structures, Inc. (CSI). SAP2000; v22; Computer and Structures, Inc.: Berkeley, CA, USA, 2000.Pavéz, I. Análisis Experimental del Comportamiento de Elementos Conformantes de Sistemas de Almacenaje en Diversas Condiciones de Carga. Thesis to Obtain the Professional Title of Mechanical Engineer. Licentiate Thesis, University of Concepción, Concepción, Chile, 2017.Wojtkiewicz, S.F.; Johnson, E.A. Efficient sensitivity analysis of structures with local modifications. I: Time domain responses. J. Eng. Mech. 2014, 140, 04014067Pianosi, F.; Wagener, T. A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environ. Model. Softw. 2015, 67, 1–11.Young, P.; Spear, R.; Hornberger, G. Modeling badly defined systems: Some further thoughts. In Proceedings of the SIMSIG Conference, Canberra, Australia, 4–8 September 1978; pp. 24–32.Spear, R.; Hornberger, G. Eutrophication in peel inlet. II. Identification of critical uncertainties via generalized sensitivity analysis. Water Res. 1980, 14, 43–49.Pianosi, F.; Sarrazin, F.; Wagener, T. A Matlab toolbox for Global Sensitivity Analysis. Environ. Model. Softw. 2015, 70, 80–85.MATLAB, version 7.10.0 (R2010a); The MathWorks Inc.: Natick, MA, USA, 2010.McKenna, F.; Fenves, G.L.; Scott, M.H. Open System for Earthquake Engineering Simulation; University of California: Berkeley, CA, USA, 2000.© 2022 by the authors.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.mdpi.com/2075-5309/12/11/1826Estantes de almacenamiento de acero - Diseño sísmicoCódigos de diseñoDiseño sísmicoAnálisis de sensibilidadEstanterías de almacenamiento de aceroEstructuras de aceroDesign codesSeismic designSensitivity analysisSteel storage racksSteel structuresInfluence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity AnalysisArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/3b43af5b-c209-44e8-90ec-705c7e385b02/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain2314https://repositorio.unibague.edu.co/bitstreams/1e285d56-632d-430c-a5ea-624794d4a6b1/download352198a8d78cc42e7e25a8f7ccb800f5MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg25714https://repositorio.unibague.edu.co/bitstreams/8d187a9e-065b-438e-907c-6fb5a3d4c0a8/download619e25aba071dd01e08cbdfaed418e61MD54ORIGINALArtículo.pdfArtículo.pdfapplication/pdf102960https://repositorio.unibague.edu.co/bitstreams/2e1a6421-83e7-46f1-9928-25d9018bd78d/download9379e44a575e474853a996d06e37df32MD5220.500.12313/5537oai:repositorio.unibague.edu.co:20.500.12313/55372025-08-26 03:02:55.679https://creativecommons.org/licenses/by-nc/4.0/© 2022 by the authors.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=