Chemical bonding analysis on MgEH15 (E = Sc and Y), highly stable clusters for hydrogen storage
Magnesium based alloys containing scandium and yttrium are promising materials for hydrogen storage devices due to the hydrogen absorption and desorption kinetic and thermodynamic properties, results showing the reversibility of the hydrogenation reaction and leads to a long-lasting energy source. N...
- Autores:
-
Ferraro, Franklin
Barboza, Cristina A
Osorio, Edison
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5518
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/5518
https://www.sciencedirect.com/science/article/pii/S0009261422008971
- Palabra clave:
- MgEH (E = Sc y Y) - Análisis de enlace químico
Almacenamiento de hidrógeno
EDA-NOCV
Hydrogen storage
QTAIM
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
| id |
UNIBAGUE2_3b71d63049416f58cfb7c20b6a60d1b6 |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5518 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Chemical bonding analysis on MgEH15 (E = Sc and Y), highly stable clusters for hydrogen storage |
| title |
Chemical bonding analysis on MgEH15 (E = Sc and Y), highly stable clusters for hydrogen storage |
| spellingShingle |
Chemical bonding analysis on MgEH15 (E = Sc and Y), highly stable clusters for hydrogen storage MgEH (E = Sc y Y) - Análisis de enlace químico Almacenamiento de hidrógeno EDA-NOCV Hydrogen storage QTAIM |
| title_short |
Chemical bonding analysis on MgEH15 (E = Sc and Y), highly stable clusters for hydrogen storage |
| title_full |
Chemical bonding analysis on MgEH15 (E = Sc and Y), highly stable clusters for hydrogen storage |
| title_fullStr |
Chemical bonding analysis on MgEH15 (E = Sc and Y), highly stable clusters for hydrogen storage |
| title_full_unstemmed |
Chemical bonding analysis on MgEH15 (E = Sc and Y), highly stable clusters for hydrogen storage |
| title_sort |
Chemical bonding analysis on MgEH15 (E = Sc and Y), highly stable clusters for hydrogen storage |
| dc.creator.fl_str_mv |
Ferraro, Franklin Barboza, Cristina A Osorio, Edison |
| dc.contributor.author.none.fl_str_mv |
Ferraro, Franklin Barboza, Cristina A Osorio, Edison |
| dc.subject.armarc.none.fl_str_mv |
MgEH (E = Sc y Y) - Análisis de enlace químico Almacenamiento de hidrógeno |
| topic |
MgEH (E = Sc y Y) - Análisis de enlace químico Almacenamiento de hidrógeno EDA-NOCV Hydrogen storage QTAIM |
| dc.subject.proposal.eng.fl_str_mv |
EDA-NOCV Hydrogen storage QTAIM |
| description |
Magnesium based alloys containing scandium and yttrium are promising materials for hydrogen storage devices due to the hydrogen absorption and desorption kinetic and thermodynamic properties, results showing the reversibility of the hydrogenation reaction and leads to a long-lasting energy source. Nevertheless, to the best of our knowledge, there are no theoretical studies comparing the stability between Y and Sc-doped systems available in the literature. In this contribution, we report an analysis of stability and chemical bonding nature for a series of complexes MgEHn (E = Sc and Y, where n = 10 –16) with the aim to understand the nature of binding between a hydrogen molecule and the core system of the metal blend. The results obtained suggest that yttrium-bonded hydrogen molecules are more labile for a dehydrogenation step in comparison to those with scandium. Additionally, based on QTAIM and EDA-NOCV calculations, we conclude that alloys containing scandium are predicted to be more tightly bonded to H2 molecules than those with yttrium. Consequently, the dehydrogenation reaction would be more thermodynamically favorable for the latter. |
| publishDate |
2023 |
| dc.date.issued.none.fl_str_mv |
2023-01-16 |
| dc.date.accessioned.none.fl_str_mv |
2025-08-21T21:50:58Z |
| dc.date.available.none.fl_str_mv |
2025-08-21T21:50:58Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
Ferraro, F., Barboza, C. y Osorio, E. (2023). Chemical bonding analysis on MgEH15 (E = Sc and Y), highly stable clusters for hydrogen storage. Chemical Physics Letters, 811. DOI: 10.1016/j.cplett.2022.140240 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.cplett.2022.140240 |
| dc.identifier.issn.none.fl_str_mv |
00092614 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/5518 |
| dc.identifier.url.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0009261422008971 |
| identifier_str_mv |
Ferraro, F., Barboza, C. y Osorio, E. (2023). Chemical bonding analysis on MgEH15 (E = Sc and Y), highly stable clusters for hydrogen storage. Chemical Physics Letters, 811. DOI: 10.1016/j.cplett.2022.140240 10.1016/j.cplett.2022.140240 00092614 |
| url |
https://hdl.handle.net/20.500.12313/5518 https://www.sciencedirect.com/science/article/pii/S0009261422008971 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationstartpage.none.fl_str_mv |
140240 |
| dc.relation.citationvolume.none.fl_str_mv |
811 |
| dc.relation.ispartofjournal.none.fl_str_mv |
Chemical Physics Letters |
| dc.relation.references.none.fl_str_mv |
M. Höök, X. Tang Depletion of fossil fuels and anthropogenic climate change—A review Energy Policy, 52 (2013), pp. 797-809, 10.1016/J.ENPOL.2012.10.046 H. Li, X. Cao, Y. Liu, Y. Shao, Z. Nan, L. Teng, et al. Safety of hydrogen storage and transportation: An overview on mechanisms, techniques, and challenges Energy Rep., 8 (2022), pp. 6258-6269, 10.1016/J.EGYR.2022.04.067 J. Zhang, Z. Li, Y. Wu, X. Guo, J. Ye, B. Yuan, et al. Recent advances on the thermal destabilization of Mg-based hydrogen storage materials RSC Adv., 9 (2018), pp. 408-428, 10.1039/C8RA05596C Hydrogen Storage | Department of Energy n.d. https://www.energy.gov/eere/fuelcells/hydrogen-storage (accessed November 8, 2022). B. Li, J. Li, H. Zhao, X. Yu, H. Shao Mg-based metastable nano alloys for hydrogen storage Int. J. Hydrogen Energy, 44 (2019), pp. 6007-6018, 10.1016/J.IJHYDENE.2019.01.127 N.A.A. Rusman, M. Dahari A review on the current progress of metal hydrides material for solid-state hydrogen storage applications Int. J. Hydrogen Energy, 41 (2016), pp. 12108-12126, 10.1016/J.IJHYDENE.2016.05.244 H. Yong, S. Guo, Z. Yuan, Y. Qi, D. Zhao, Y. Zhang Improved hydrogen storage kinetics and thermodynamics of RE-Mg-based alloy by co-doping Ce–Y Int. J. Hydrogen Energy, 44 (2019), pp. 16765-16776, 10.1016/J.IJHYDENE.2019.04.281 J.H. He, J. Zhang, X.J. Zhou, J.N. Chen, L.P. Yu, L.K. Jiang, et al. Hydrogen storage properties of Mg98.5Gd1Zn0.5 and Mg98.5Gd0.5Y0.5Zn0.5 alloys containing LPSO phases Int. J. Hydrogen Energy, 46 (2021), pp. 32949-32961, 10.1016/J.IJHYDENE.2021.07.140 L. Ouyang, Z. Cao, H. Wang, R. Hu, M. Zhu Application of dielectric barrier discharge plasma-assisted milling in energy storage materials – A review J. Alloy. Compd., 691 (2017), pp. 422-435, 10.1016/J.JALLCOM.2016.08.179 L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, et al. Dual-tuning effect of In on the thermodynamic and kinetic properties of Mg2Ni dehydrogenation Int. J. Hydrogen Energy, 38 (2013), pp. 8881-8887, 10.1016/J.IJHYDENE.2013.05.027 L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, et al. Enhanced dehydriding thermodynamics and kinetics in Mg(In)–MgF2 composite directly synthesized by plasma milling J. Alloy. Compd., 586 (2014), pp. 113-117, 10.1016/J.JALLCOM.2013.10.029 M. Zhang, X. Xiao, B. Luo, M. Liu, M. Chen, L. Chen Superior de/hydrogenation performances of MgH2 catalyzed by 3D flower-like TiO2@C nanostructures J. Energy Chem., 46 (2020), pp. 191-198, 10.1016/J.JECHEM.2019.11.010 M.S. Yahya, M. Ismail Improvement of hydrogen storage properties of MgH2 catalyzed by K2NbF7 and multiwall carbon nanotube J. Phys. Chem. C, 122 (2018), pp. 11222-11233, 10.1021/ACS.JPCC.8B02162/ASSET/IMAGES/MEDIUM/JP-2018-02162P_0012.GIF L. Zhang, Z. Sun, Z. Cai, N. Yan, X. Lu, X. Zhu, et al. Enhanced hydrogen storage properties of MgH2 by the synergetic catalysis of Zr0.4Ti0.6Co nanosheets and carbon nanotubes Appl. Surf. Sci., 504 (2020), Article 144465, 10.1016/J.APSUSC.2019.144465 H. Kang, H. Yong, J. Wang, S. Xu, L. Li, S. Wang, et al. Characterization on the kinetics and thermodynamics of Mg-based hydrogen storage alloy by the multiple alloying of Ce, Ni and Y elements Mater. Charact., 182 (2021), Article 111583, 10.1016/J.MATCHAR.2021.111583 J.N. Chen, J. Zhang, J.H. He, X.J. Zhou, X.Z. Lu, X.M. Chen, et al. A comparative study on hydrogen storage properties of as-cast and extruded Mg-4.7Y-4.1Nd-0.5Zr alloys J. Phys. Chem. Solid, 161 (2022), Article 110483, 10.1016/J.JPCS.2021.110483 H. Zhang, L. Bao, Y. Pan, J. Yuan Ge Enhanced hydrogen storage performances of binary Mg-Y nanoscale particles Chem. Phys. Lett., 796 (2022), p. 139573, 10.1016/J.CPLETT.2022.139573 H. Chen, H. Liang, W. Dai, C. Lu, K. Ding, J. Bi, et al. MgScH15: A highly stable cluster for hydrogen storage Int. J. Hydrogen Energy, 45 (2020), pp. 32260-32268, 10.1016/J.IJHYDENE.2020.08.229 A. Jaiswal, R.K. Sahoo, S.S. Ray, S. Sahu Alkali metals decorated silicon clusters (SinMn, n = 6, 10; M = Li, Na) as potential hydrogen storage materials: A DFT study Int. J. Hydrogen Energy, 47 (2022), pp. 1775-1789, 10.1016/J.IJHYDENE.2021.10.228 Y.H. Yin, J.W. Li The adsorption of hydrogen on B36Li2+6 and the non-covalent interaction between them Mol. Phys. (2021), p. 119, 10.1080/00268976.2021.1892847/SUPPL_FILE/TMPH_A_1892847_SM5276.ZIP P.O. Krasnov, G.S. Shkaberina, S.P. Polyutov Molecular hydrogen sorption capacity of P216-schwarzite: PM6-D3, MP2 and QTAIM approaches Comput. Mater. Sci., 209 (2022), Article 111410, 10.1016/J.COMMATSCI.2022.111410 S. Banerjee, T. Ash, T. Debnath, A.K. Das Be2+ and Mg2+-decorated sulflower: Potential systems for molecular hydrogen storage Int. J. Hydrogen Energy, 46 (2021), pp. 17827-17839, 10.1016/J.IJHYDENE.2021.02.180 P. Banerjee, K.R.S. Chandrakumar, G.P. Das Exploring adsorption and desorption characteristics of molecular hydrogen on neutral and charged Mg nanoclusters: A first principles study Chem. Phys., 469–470 (2016), pp. 123-131, 10.1016/J.CHEMPHYS.2016.02.004 B.R. Barnett, H.A. Evans, G.M. Su, H.Z.H. Jiang, R. Chakraborty, D. Banyeretse, et al. Observation of an Intermediate to H2Binding in a Metal-Organic Framework J. Am. Chem. Soc., 143 (2021), pp. 14884-14894, 10.1021/JACS.1C07223/SUPPL_FILE/JA1C07223_SI_001.PDF T. Banu, A. Ghosh, A.K. Das Impact of metal-alkoxide functionalized linkers on H2 binding: A density functional study Chem. Phys. Lett., 658 (2016), pp. 140-145, 10.1016/J.CPLETT.2016.06.037 J. Lyu, R.R. Elman, L.A. Svyatkin, V.N. Kudiiarov Theoretical and Experimental Research of Hydrogen Solid Solution in Mg and Mg-Al System Mater, 15 (2022), p. 1667, 10.3390/MA15051667 B. Chakraborty, P. Mane, A. Vaidyanathan Hydrogen storage in scandium decorated triazine based g-C3N4: Insights from DFT simulations Int. J. Hydrogen Energy (2022), 10.1016/J.IJHYDENE.2022.02.185 A. Kundu, B. Chakraborty Yttrium doped covalent triazine frameworks as promising reversible hydrogen storage material: DFT investigations Int. J. Hydrogen Energy, 47 (2022), pp. 30567-30579, 10.1016/J.IJHYDENE.2022.06.315 A. Vaidyanathan, V. Wagh, C.S. Rout, B. Chakraborty High capacity reversible hydrogen storage in zirconium doped 2D-covalent triazine frameworks: Density Functional Theory investigations Int. J. Hydrogen Energy, 46 (2021), pp. 14520-14531, 10.1016/J.IJHYDENE.2021.01.175 B. Chakraborty, P. Ray, N. Garg, S. Banerjee High capacity reversible hydrogen storage in titanium doped 2D carbon allotrope Ψ-graphene: Density Functional Theory investigations Int. J. Hydrogen Energy, 46 (2021), pp. 4154-4167, 10.1016/J.IJHYDENE.2020.10.161 A. Gangan, B. Chakraborty, L.M. Ramaniah, S. Banerjee First principles study on hydrogen storage in yttrium doped graphyne: Role of acetylene linkage in enhancing hydrogen storage Int. J. Hydrogen Energy, 44 (2019), pp. 16735-16744, 10.1016/J.IJHYDENE.2019.05.051 A. Yadav, B. Chakraborty, A. Gangan, N. Patel, M.R. Press, L.M. Ramaniah Magnetic Moment Controlling Desorption Temperature in Hydrogen Storage: A Case of Zirconium-Doped Graphene as a High Capacity Hydrogen Storage Medium J. Phys. Chem. C, 121 (2017), pp. 16721-16730, 10.1021/ACS.JPCC.7B04886/ASSET/IMAGES/MEDIUM/JP-2017-04886G_0013.GIF B. Chakraborty, P. Modak, S. Banerjee Hydrogen storage in yttrium-decorated single walled carbon nanotube J. Phys. Chem. C, 116 (2012), pp. 22502-22508, 10.1021/JP3036296/ASSET/IMAGES/MEDIUM/JP-2012-036296_0001.GIF P. Modak, B. Chakraborty, S. Banerjee Study on the electronic structure and hydrogen adsorption by transition metal decorated single wall carbon nanotubes J. Phys. Condens. Matter, 24 (2012), Article 185505, 10.1088/0953-8984/24/18/185505 A.N. Alexandrova H·(H2O)n Clusters: Microsolvation of the Hydrogen Atom via Molecular ab Initio Gradient Embedded Genetic Algorithm (GEGA) Chem. A Eur. J., 114 (2010), pp. 12591-12599, 10.1021/jp1092543 A.N. Alexandrova, A.I. Boldyrev Search for the Lin0/+1/-1 (n = 5–7) Lowest-Energy Structures Using the ab Initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters J. Chem. Theory Comput., 1 (2005), pp. 566-580, 10.1021/ct050093g C. Adamo, V. Barone Toward reliable density functional methods without adjustable parameters: The PBE0 model J. Chem. Phys., 110 (1999), p. 6158, 10.1063/1.478522 M. Ernzerhof, G.E. Scuseria Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional J. Chem. Phys., 110 (1999), p. 5029, 10.1063/1.478401 P. Fuentealba, H. Preuss, H. Stoll, S.L. Von A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds Chem. Phys. Lett., 89 (1982), pp. 418-422, 10.1016/0009-2614(82)80012-2 F. Weigend, R. Ahlrichs Balanced basis sets of split valence{,} triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy PCCP, 7 (2005), pp. 3297-3305, 10.1039/B508541A G.D. Purvis, R.J. Bartlett A full coupled-cluster singles and doubles model: The inclusion of disconnected triples J. Chem. Phys., 76 (1982), pp. 1910-1918, 10.1063/1.443164 R.F.W. Bader A quantum theory of molecular structure and its applications Chem. Rev., 91 (1991), pp. 893-928, 10.1021/cr00005a013 J.I. Rodríguez, R.F.W. Bader, P.W. Ayers, C. Michel, A.W. Götz, C. Bo A high performance grid-based algorithm for computing QTAIM properties Chem. Phys. Lett., 472 (2009), pp. 149-152, 10.1016/J.CPLETT.2009.02.081 J.I. Rodríguez An efficient method for computing the QTAIM topology of a scalar field: The electron density case J. Comput. Chem., 34 (2013), pp. 681-686, 10.1002/JCC.23180 E. Van Lenthe, E.J. Baerends, J.G. Snijders Relativistic regular two-component Hamiltonians J. Chem. Phys., 99 (1998), p. 4597, 10.1063/1.466059 R.F.W. Bader Atoms in Molecules Acc. Chem. Res., 18 (1985), pp. 9-15, 10.1021/AR00109A003/ASSET/AR00109A003.FP.PNG_V03 E. Espinosa, I. Alkorta, J. Elguero, E. Molins From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H⋯F–Y systems J. Chem. Phys., 117 (2002), p. 5529, 10.1063/1.1501133 G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders, et al. Chemistry with ADF J. Comput. Chem., 22 (2001), pp. 931-967, 10.1002/JCC.1056 K. Morokdma Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O J. Chem. Phys., 55 (2003), p. 1236, 10.1063/1.1676210 M. Mitoraj, A. Michalak Applications of natural orbitals for chemical valence in a description of bonding in conjugated molecules J. Mol. Model., 14 (2008), pp. 681-687, 10.1007/S00894-008-0276-1/TABLES/2 M. Mitoraj, A. Michalak Donor-acceptor properties of ligands from the natural orbitals for chemical valence Organometallics, 26 (2007), pp. 6576-6580, 10.1021/OM700754N/ASSET/IMAGES/MEDIUM/OM-2007-00754N_0007.GIF M.P. Mitoraj, A. Michalak, T. Ziegler A Combined Charge and Energy Decomposition Scheme for Bond Analysis J. Chem. Theory Comput., 5 (2009), pp. 962-975, 10.1021/CT800503D S.M.N.V.T. Gorantla, K.C. Mondal Energy Decomposition Analysis Coupled with Natural Orbitals for Chemical Valence and Nucleus-Independent Chemical Shift Analysis of Bonding, Stability, and Aromaticity of Functionalized Fulvenes: A Bonding Insight. ACS Omega, 6 (2021), pp. 17798-17810, 10.1021/ACSOMEGA.1C00648/ASSET/IMAGES/LARGE/AO1C00648_0005.JPEG D.Y. Zubarev, A.I. Boldyrev Revealing Intuitively Assessable Chemical Bonding Patterns in Organic Aromatic Molecules via Adaptive Natural Density Partitioning J. Org. Chem., 73 (2008), pp. 9251-9258, 10.1021/jo801407e D.Y. Zubarev, A.I. Boldyrev Developing paradigms of chemical bonding: adaptive natural density partitioning PCCP, 10 (2008), p. 5207, 10.1039/b804083d M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman et al. Gaussian 09, Revision B.01. Gaussian 09, Revis B01, Gaussian, Inc, Wallingford CT, 2009. E.J. Baerends, ADF2012.01, Scientific Computing and Modelling NV, Theoretical Chemistry, Vrije Universiteit, Amsterdam, 2012. ADF201201, Sci. Comput. Model NV, Theor. Chem. Vrije Univ. Amsterdam, 2012 n.d. J.M. Millam, V. Bakken, W. Chen, W.L. Hase, H.B. Schlegel Ab initio classical trajectories on the Born-Oppenheimer surface: Hessian-based integrators using fifth-order polynomial and rational function fits J. Chem. Phys., 111 (1999), p. 3800, 10.1063/1.480037 Y. Zhao, D.G. Truhlar, Y. Zhao, D.G. Truhlar The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals Theor. Chem. Accounts, 120 (2007), pp. 215-241, 10.1007/S00214-007-0310-X E.V. Anikina, A. Banerjee, V.P. Beskachko, R. Ahuja Influence of Kubas-type interaction of B-Ni codoped graphdiyne with hydrogen molecules on desorption temperature and storage efficiency Mater. Today Energy, 16 (2020), Article 100421, 10.1016/J.MTENER.2020.100421 G.J. Kubas Molecular Hydrogen Complexes: Coordination of a σ Bond to Transition Metals Acc. Chem. Res., 21 (1988), pp. 120-128, 10.1021/AR00147A005/ASSET/AR00147A005.FP.PNG_V03 |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
closedAccess |
| rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier B.V. |
| dc.publisher.place.none.fl_str_mv |
Países bajos |
| publisher.none.fl_str_mv |
Elsevier B.V. |
| dc.source.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0009261422008971 |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/8f2220ab-a915-48ee-88e3-ff2311af7d9b/download https://repositorio.unibague.edu.co/bitstreams/45f7bf49-09ab-444a-aaae-047825c433d8/download https://repositorio.unibague.edu.co/bitstreams/4a015bbf-fdf5-4238-8b84-c02c756ad423/download https://repositorio.unibague.edu.co/bitstreams/a435bf7c-8c4d-42e6-876b-a7908a26af36/download |
| bitstream.checksum.fl_str_mv |
1ce29986c5b5e0837e556e5da3b558d9 7f2f77f08159947278799b72b8264b47 2fa3e590786b9c0f3ceba1b9656b7ac3 ace6115a55eb18158b65a4b33c5a63e9 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059967676645376 |
| spelling |
Ferraro, Franklin2e69f05f-7765-498a-9dae-bfe6fc2b2a60-1Barboza, Cristina Ade4f4f35-fd64-4989-ae3e-a2cd21bd6fc6-1Osorio, Edisone6d834e4-46ca-40f0-ab7c-630a35856901-12025-08-21T21:50:58Z2025-08-21T21:50:58Z2023-01-16Magnesium based alloys containing scandium and yttrium are promising materials for hydrogen storage devices due to the hydrogen absorption and desorption kinetic and thermodynamic properties, results showing the reversibility of the hydrogenation reaction and leads to a long-lasting energy source. Nevertheless, to the best of our knowledge, there are no theoretical studies comparing the stability between Y and Sc-doped systems available in the literature. In this contribution, we report an analysis of stability and chemical bonding nature for a series of complexes MgEHn (E = Sc and Y, where n = 10 –16) with the aim to understand the nature of binding between a hydrogen molecule and the core system of the metal blend. The results obtained suggest that yttrium-bonded hydrogen molecules are more labile for a dehydrogenation step in comparison to those with scandium. Additionally, based on QTAIM and EDA-NOCV calculations, we conclude that alloys containing scandium are predicted to be more tightly bonded to H2 molecules than those with yttrium. Consequently, the dehydrogenation reaction would be more thermodynamically favorable for the latter.application/pdfFerraro, F., Barboza, C. y Osorio, E. (2023). Chemical bonding analysis on MgEH15 (E = Sc and Y), highly stable clusters for hydrogen storage. Chemical Physics Letters, 811. DOI: 10.1016/j.cplett.2022.14024010.1016/j.cplett.2022.14024000092614https://hdl.handle.net/20.500.12313/5518https://www.sciencedirect.com/science/article/pii/S0009261422008971engElsevier B.V.Países bajos140240811Chemical Physics LettersM. Höök, X. Tang Depletion of fossil fuels and anthropogenic climate change—A review Energy Policy, 52 (2013), pp. 797-809, 10.1016/J.ENPOL.2012.10.046H. Li, X. Cao, Y. Liu, Y. Shao, Z. Nan, L. Teng, et al. Safety of hydrogen storage and transportation: An overview on mechanisms, techniques, and challenges Energy Rep., 8 (2022), pp. 6258-6269, 10.1016/J.EGYR.2022.04.067J. Zhang, Z. Li, Y. Wu, X. Guo, J. Ye, B. Yuan, et al. Recent advances on the thermal destabilization of Mg-based hydrogen storage materials RSC Adv., 9 (2018), pp. 408-428, 10.1039/C8RA05596CHydrogen Storage | Department of Energy n.d. https://www.energy.gov/eere/fuelcells/hydrogen-storage (accessed November 8, 2022).B. Li, J. Li, H. Zhao, X. Yu, H. Shao Mg-based metastable nano alloys for hydrogen storage Int. J. Hydrogen Energy, 44 (2019), pp. 6007-6018, 10.1016/J.IJHYDENE.2019.01.127N.A.A. Rusman, M. Dahari A review on the current progress of metal hydrides material for solid-state hydrogen storage applications Int. J. Hydrogen Energy, 41 (2016), pp. 12108-12126, 10.1016/J.IJHYDENE.2016.05.244H. Yong, S. Guo, Z. Yuan, Y. Qi, D. Zhao, Y. Zhang Improved hydrogen storage kinetics and thermodynamics of RE-Mg-based alloy by co-doping Ce–Y Int. J. Hydrogen Energy, 44 (2019), pp. 16765-16776, 10.1016/J.IJHYDENE.2019.04.281J.H. He, J. Zhang, X.J. Zhou, J.N. Chen, L.P. Yu, L.K. Jiang, et al. Hydrogen storage properties of Mg98.5Gd1Zn0.5 and Mg98.5Gd0.5Y0.5Zn0.5 alloys containing LPSO phases Int. J. Hydrogen Energy, 46 (2021), pp. 32949-32961, 10.1016/J.IJHYDENE.2021.07.140L. Ouyang, Z. Cao, H. Wang, R. Hu, M. Zhu Application of dielectric barrier discharge plasma-assisted milling in energy storage materials – A review J. Alloy. Compd., 691 (2017), pp. 422-435, 10.1016/J.JALLCOM.2016.08.179L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, et al. Dual-tuning effect of In on the thermodynamic and kinetic properties of Mg2Ni dehydrogenation Int. J. Hydrogen Energy, 38 (2013), pp. 8881-8887, 10.1016/J.IJHYDENE.2013.05.027L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, et al. Enhanced dehydriding thermodynamics and kinetics in Mg(In)–MgF2 composite directly synthesized by plasma milling J. Alloy. Compd., 586 (2014), pp. 113-117, 10.1016/J.JALLCOM.2013.10.029M. Zhang, X. Xiao, B. Luo, M. Liu, M. Chen, L. Chen Superior de/hydrogenation performances of MgH2 catalyzed by 3D flower-like TiO2@C nanostructures J. Energy Chem., 46 (2020), pp. 191-198, 10.1016/J.JECHEM.2019.11.010M.S. Yahya, M. Ismail Improvement of hydrogen storage properties of MgH2 catalyzed by K2NbF7 and multiwall carbon nanotube J. Phys. Chem. C, 122 (2018), pp. 11222-11233, 10.1021/ACS.JPCC.8B02162/ASSET/IMAGES/MEDIUM/JP-2018-02162P_0012.GIFL. Zhang, Z. Sun, Z. Cai, N. Yan, X. Lu, X. Zhu, et al. Enhanced hydrogen storage properties of MgH2 by the synergetic catalysis of Zr0.4Ti0.6Co nanosheets and carbon nanotubes Appl. Surf. Sci., 504 (2020), Article 144465, 10.1016/J.APSUSC.2019.144465H. Kang, H. Yong, J. Wang, S. Xu, L. Li, S. Wang, et al. Characterization on the kinetics and thermodynamics of Mg-based hydrogen storage alloy by the multiple alloying of Ce, Ni and Y elements Mater. Charact., 182 (2021), Article 111583, 10.1016/J.MATCHAR.2021.111583J.N. Chen, J. Zhang, J.H. He, X.J. Zhou, X.Z. Lu, X.M. Chen, et al. A comparative study on hydrogen storage properties of as-cast and extruded Mg-4.7Y-4.1Nd-0.5Zr alloys J. Phys. Chem. Solid, 161 (2022), Article 110483, 10.1016/J.JPCS.2021.110483H. Zhang, L. Bao, Y. Pan, J. Yuan Ge Enhanced hydrogen storage performances of binary Mg-Y nanoscale particles Chem. Phys. Lett., 796 (2022), p. 139573, 10.1016/J.CPLETT.2022.139573H. Chen, H. Liang, W. Dai, C. Lu, K. Ding, J. Bi, et al. MgScH15: A highly stable cluster for hydrogen storage Int. J. Hydrogen Energy, 45 (2020), pp. 32260-32268, 10.1016/J.IJHYDENE.2020.08.229A. Jaiswal, R.K. Sahoo, S.S. Ray, S. Sahu Alkali metals decorated silicon clusters (SinMn, n = 6, 10; M = Li, Na) as potential hydrogen storage materials: A DFT study Int. J. Hydrogen Energy, 47 (2022), pp. 1775-1789, 10.1016/J.IJHYDENE.2021.10.228Y.H. Yin, J.W. Li The adsorption of hydrogen on B36Li2+6 and the non-covalent interaction between them Mol. Phys. (2021), p. 119, 10.1080/00268976.2021.1892847/SUPPL_FILE/TMPH_A_1892847_SM5276.ZIPP.O. Krasnov, G.S. Shkaberina, S.P. Polyutov Molecular hydrogen sorption capacity of P216-schwarzite: PM6-D3, MP2 and QTAIM approaches Comput. Mater. Sci., 209 (2022), Article 111410, 10.1016/J.COMMATSCI.2022.111410S. Banerjee, T. Ash, T. Debnath, A.K. Das Be2+ and Mg2+-decorated sulflower: Potential systems for molecular hydrogen storage Int. J. Hydrogen Energy, 46 (2021), pp. 17827-17839, 10.1016/J.IJHYDENE.2021.02.180P. Banerjee, K.R.S. Chandrakumar, G.P. Das Exploring adsorption and desorption characteristics of molecular hydrogen on neutral and charged Mg nanoclusters: A first principles study Chem. Phys., 469–470 (2016), pp. 123-131, 10.1016/J.CHEMPHYS.2016.02.004B.R. Barnett, H.A. Evans, G.M. Su, H.Z.H. Jiang, R. Chakraborty, D. Banyeretse, et al. Observation of an Intermediate to H2Binding in a Metal-Organic Framework J. Am. Chem. Soc., 143 (2021), pp. 14884-14894, 10.1021/JACS.1C07223/SUPPL_FILE/JA1C07223_SI_001.PDFT. Banu, A. Ghosh, A.K. Das Impact of metal-alkoxide functionalized linkers on H2 binding: A density functional study Chem. Phys. Lett., 658 (2016), pp. 140-145, 10.1016/J.CPLETT.2016.06.037J. Lyu, R.R. Elman, L.A. Svyatkin, V.N. Kudiiarov Theoretical and Experimental Research of Hydrogen Solid Solution in Mg and Mg-Al System Mater, 15 (2022), p. 1667, 10.3390/MA15051667B. Chakraborty, P. Mane, A. Vaidyanathan Hydrogen storage in scandium decorated triazine based g-C3N4: Insights from DFT simulations Int. J. Hydrogen Energy (2022), 10.1016/J.IJHYDENE.2022.02.185A. Kundu, B. Chakraborty Yttrium doped covalent triazine frameworks as promising reversible hydrogen storage material: DFT investigations Int. J. Hydrogen Energy, 47 (2022), pp. 30567-30579, 10.1016/J.IJHYDENE.2022.06.315A. Vaidyanathan, V. Wagh, C.S. Rout, B. Chakraborty High capacity reversible hydrogen storage in zirconium doped 2D-covalent triazine frameworks: Density Functional Theory investigations Int. J. Hydrogen Energy, 46 (2021), pp. 14520-14531, 10.1016/J.IJHYDENE.2021.01.175B. Chakraborty, P. Ray, N. Garg, S. Banerjee High capacity reversible hydrogen storage in titanium doped 2D carbon allotrope Ψ-graphene: Density Functional Theory investigations Int. J. Hydrogen Energy, 46 (2021), pp. 4154-4167, 10.1016/J.IJHYDENE.2020.10.161A. Gangan, B. Chakraborty, L.M. Ramaniah, S. Banerjee First principles study on hydrogen storage in yttrium doped graphyne: Role of acetylene linkage in enhancing hydrogen storage Int. J. Hydrogen Energy, 44 (2019), pp. 16735-16744, 10.1016/J.IJHYDENE.2019.05.051A. Yadav, B. Chakraborty, A. Gangan, N. Patel, M.R. Press, L.M. Ramaniah Magnetic Moment Controlling Desorption Temperature in Hydrogen Storage: A Case of Zirconium-Doped Graphene as a High Capacity Hydrogen Storage Medium J. Phys. Chem. C, 121 (2017), pp. 16721-16730, 10.1021/ACS.JPCC.7B04886/ASSET/IMAGES/MEDIUM/JP-2017-04886G_0013.GIFB. Chakraborty, P. Modak, S. Banerjee Hydrogen storage in yttrium-decorated single walled carbon nanotube J. Phys. Chem. C, 116 (2012), pp. 22502-22508, 10.1021/JP3036296/ASSET/IMAGES/MEDIUM/JP-2012-036296_0001.GIFP. Modak, B. Chakraborty, S. Banerjee Study on the electronic structure and hydrogen adsorption by transition metal decorated single wall carbon nanotubes J. Phys. Condens. Matter, 24 (2012), Article 185505, 10.1088/0953-8984/24/18/185505A.N. Alexandrova H·(H2O)n Clusters: Microsolvation of the Hydrogen Atom via Molecular ab Initio Gradient Embedded Genetic Algorithm (GEGA) Chem. A Eur. J., 114 (2010), pp. 12591-12599, 10.1021/jp1092543A.N. Alexandrova, A.I. Boldyrev Search for the Lin0/+1/-1 (n = 5–7) Lowest-Energy Structures Using the ab Initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters J. Chem. Theory Comput., 1 (2005), pp. 566-580, 10.1021/ct050093gC. Adamo, V. Barone Toward reliable density functional methods without adjustable parameters: The PBE0 model J. Chem. Phys., 110 (1999), p. 6158, 10.1063/1.478522M. Ernzerhof, G.E. Scuseria Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional J. Chem. Phys., 110 (1999), p. 5029, 10.1063/1.478401P. Fuentealba, H. Preuss, H. Stoll, S.L. Von A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds Chem. Phys. Lett., 89 (1982), pp. 418-422, 10.1016/0009-2614(82)80012-2F. Weigend, R. Ahlrichs Balanced basis sets of split valence{,} triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy PCCP, 7 (2005), pp. 3297-3305, 10.1039/B508541AG.D. Purvis, R.J. Bartlett A full coupled-cluster singles and doubles model: The inclusion of disconnected triples J. Chem. Phys., 76 (1982), pp. 1910-1918, 10.1063/1.443164R.F.W. Bader A quantum theory of molecular structure and its applications Chem. Rev., 91 (1991), pp. 893-928, 10.1021/cr00005a013J.I. Rodríguez, R.F.W. Bader, P.W. Ayers, C. Michel, A.W. Götz, C. Bo A high performance grid-based algorithm for computing QTAIM properties Chem. Phys. Lett., 472 (2009), pp. 149-152, 10.1016/J.CPLETT.2009.02.081J.I. Rodríguez An efficient method for computing the QTAIM topology of a scalar field: The electron density case J. Comput. Chem., 34 (2013), pp. 681-686, 10.1002/JCC.23180E. Van Lenthe, E.J. Baerends, J.G. Snijders Relativistic regular two-component Hamiltonians J. Chem. Phys., 99 (1998), p. 4597, 10.1063/1.466059R.F.W. Bader Atoms in Molecules Acc. Chem. Res., 18 (1985), pp. 9-15, 10.1021/AR00109A003/ASSET/AR00109A003.FP.PNG_V03E. Espinosa, I. Alkorta, J. Elguero, E. Molins From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H⋯F–Y systems J. Chem. Phys., 117 (2002), p. 5529, 10.1063/1.1501133G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders, et al. Chemistry with ADF J. Comput. Chem., 22 (2001), pp. 931-967, 10.1002/JCC.1056K. Morokdma Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O J. Chem. Phys., 55 (2003), p. 1236, 10.1063/1.1676210M. Mitoraj, A. Michalak Applications of natural orbitals for chemical valence in a description of bonding in conjugated molecules J. Mol. Model., 14 (2008), pp. 681-687, 10.1007/S00894-008-0276-1/TABLES/2M. Mitoraj, A. Michalak Donor-acceptor properties of ligands from the natural orbitals for chemical valence Organometallics, 26 (2007), pp. 6576-6580, 10.1021/OM700754N/ASSET/IMAGES/MEDIUM/OM-2007-00754N_0007.GIFM.P. Mitoraj, A. Michalak, T. Ziegler A Combined Charge and Energy Decomposition Scheme for Bond Analysis J. Chem. Theory Comput., 5 (2009), pp. 962-975, 10.1021/CT800503DS.M.N.V.T. Gorantla, K.C. Mondal Energy Decomposition Analysis Coupled with Natural Orbitals for Chemical Valence and Nucleus-Independent Chemical Shift Analysis of Bonding, Stability, and Aromaticity of Functionalized Fulvenes: A Bonding Insight. ACS Omega, 6 (2021), pp. 17798-17810, 10.1021/ACSOMEGA.1C00648/ASSET/IMAGES/LARGE/AO1C00648_0005.JPEGD.Y. Zubarev, A.I. Boldyrev Revealing Intuitively Assessable Chemical Bonding Patterns in Organic Aromatic Molecules via Adaptive Natural Density Partitioning J. Org. Chem., 73 (2008), pp. 9251-9258, 10.1021/jo801407eD.Y. Zubarev, A.I. Boldyrev Developing paradigms of chemical bonding: adaptive natural density partitioning PCCP, 10 (2008), p. 5207, 10.1039/b804083dM.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman et al. Gaussian 09, Revision B.01. Gaussian 09, Revis B01, Gaussian, Inc, Wallingford CT, 2009.E.J. Baerends, ADF2012.01, Scientific Computing and Modelling NV, Theoretical Chemistry, Vrije Universiteit, Amsterdam, 2012. ADF201201, Sci. Comput. Model NV, Theor. Chem. Vrije Univ. Amsterdam, 2012 n.d.J.M. Millam, V. Bakken, W. Chen, W.L. Hase, H.B. Schlegel Ab initio classical trajectories on the Born-Oppenheimer surface: Hessian-based integrators using fifth-order polynomial and rational function fits J. Chem. Phys., 111 (1999), p. 3800, 10.1063/1.480037Y. Zhao, D.G. Truhlar, Y. Zhao, D.G. Truhlar The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals Theor. Chem. Accounts, 120 (2007), pp. 215-241, 10.1007/S00214-007-0310-XE.V. Anikina, A. Banerjee, V.P. Beskachko, R. Ahuja Influence of Kubas-type interaction of B-Ni codoped graphdiyne with hydrogen molecules on desorption temperature and storage efficiency Mater. Today Energy, 16 (2020), Article 100421, 10.1016/J.MTENER.2020.100421G.J. Kubas Molecular Hydrogen Complexes: Coordination of a σ Bond to Transition Metals Acc. Chem. Res., 21 (1988), pp. 120-128, 10.1021/AR00147A005/ASSET/AR00147A005.FP.PNG_V03Copyright © 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.sciencedirect.com/science/article/pii/S0009261422008971MgEH (E = Sc y Y) - Análisis de enlace químicoAlmacenamiento de hidrógenoEDA-NOCVHydrogen storageQTAIMChemical bonding analysis on MgEH15 (E = Sc and Y), highly stable clusters for hydrogen storageArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain3190https://repositorio.unibague.edu.co/bitstreams/8f2220ab-a915-48ee-88e3-ff2311af7d9b/download1ce29986c5b5e0837e556e5da3b558d9MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg24513https://repositorio.unibague.edu.co/bitstreams/45f7bf49-09ab-444a-aaae-047825c433d8/download7f2f77f08159947278799b72b8264b47MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/4a015bbf-fdf5-4238-8b84-c02c756ad423/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf135062https://repositorio.unibague.edu.co/bitstreams/a435bf7c-8c4d-42e6-876b-a7908a26af36/downloadace6115a55eb18158b65a4b33c5a63e9MD5220.500.12313/5518oai:repositorio.unibague.edu.co:20.500.12313/55182025-09-12 11:34:28.705https://creativecommons.org/licenses/by-nc/4.0/Copyright © 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
