A Sustainable Approach Using Beef and Pig Bone Waste as a Cement Replacement to Produce Concrete
Owing to the ongoing accumulation of industrial by-products, the management and disposal of waste have emerged as a significant issue. Employing these industrial wastes as an alternative to replace cement holds potential as a promising solution for conserving energy and reducing CO2 emissions. In th...
- Autores:
-
Palomino-Guzmán, Elkin Ronaldo
González-López, Alejandra
Olmedo-Montoya, Jorge
Sanchez-Echeverri, Luz Adriana
Tovar-Perilla, Nelson Javier
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5750
- Palabra clave:
- Huesos de res y cerdo - Concreto
Animal bone waste applications
Cement replacement
Disposal of industrial waste; green concrete
Mechanical properties of concrete
Sustainable construction
- Rights
- openAccess
- License
- © 2024 by the authors.
| id |
UNIBAGUE2_2d20ea53fdbf4deab3029b6f4017257a |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5750 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
A Sustainable Approach Using Beef and Pig Bone Waste as a Cement Replacement to Produce Concrete |
| title |
A Sustainable Approach Using Beef and Pig Bone Waste as a Cement Replacement to Produce Concrete |
| spellingShingle |
A Sustainable Approach Using Beef and Pig Bone Waste as a Cement Replacement to Produce Concrete Huesos de res y cerdo - Concreto Animal bone waste applications Cement replacement Disposal of industrial waste; green concrete Mechanical properties of concrete Sustainable construction |
| title_short |
A Sustainable Approach Using Beef and Pig Bone Waste as a Cement Replacement to Produce Concrete |
| title_full |
A Sustainable Approach Using Beef and Pig Bone Waste as a Cement Replacement to Produce Concrete |
| title_fullStr |
A Sustainable Approach Using Beef and Pig Bone Waste as a Cement Replacement to Produce Concrete |
| title_full_unstemmed |
A Sustainable Approach Using Beef and Pig Bone Waste as a Cement Replacement to Produce Concrete |
| title_sort |
A Sustainable Approach Using Beef and Pig Bone Waste as a Cement Replacement to Produce Concrete |
| dc.creator.fl_str_mv |
Palomino-Guzmán, Elkin Ronaldo González-López, Alejandra Olmedo-Montoya, Jorge Sanchez-Echeverri, Luz Adriana Tovar-Perilla, Nelson Javier |
| dc.contributor.author.none.fl_str_mv |
Palomino-Guzmán, Elkin Ronaldo González-López, Alejandra Olmedo-Montoya, Jorge Sanchez-Echeverri, Luz Adriana Tovar-Perilla, Nelson Javier |
| dc.subject.armarc.none.fl_str_mv |
Huesos de res y cerdo - Concreto |
| topic |
Huesos de res y cerdo - Concreto Animal bone waste applications Cement replacement Disposal of industrial waste; green concrete Mechanical properties of concrete Sustainable construction |
| dc.subject.proposal.eng.fl_str_mv |
Animal bone waste applications Cement replacement Disposal of industrial waste; green concrete Mechanical properties of concrete Sustainable construction |
| description |
Owing to the ongoing accumulation of industrial by-products, the management and disposal of waste have emerged as a significant issue. Employing these industrial wastes as an alternative to replace cement holds potential as a promising solution for conserving energy and reducing CO2 emissions. In this study, pig and beef bone powder were used as cement replacements in concrete, and the mechanical properties were studied. Bone powders were prepared from random bones collected from local slaughterhouses, butchers, and restaurants. The pig bone powder (PBP) and beef bone powder (BBP) were prepared by direct fire contact, oven-calcined for 4 h at 300 °C, crushed, and sieved to size 0.4 to 2 mm. A concrete mix design was formulated for a target compressive strength of 21 MPa at 28 days of curing. This design included three different levels of cement replacement with each type of bone powder (10%, 15%, and 20% by mass). These mixes were then evaluated and compared to a control mix without any bone powder replacement (PB-0). This study evaluated the mechanical properties via compressive strength and flexural testing. The results showed that the workability of the mixtures decreased with the increase in bone powder content. Bone powder functions as a pozzolanic substance, engaging in a chemical reaction with the calcium hydroxide in concrete to produce compounds that exhibit cement-like properties; however, an increase in bone powder content worsened the mechanical properties. The most promising results were obtained for a 10% replacement percentage of BBP and PBP, obtaining strengths of 21.15 MPa and 22.78 MPa, respectively. These are both above the design strength, with PBP concrete even exceeding the strength of PB-0 (21.75 MPa). These results showed a good agreement with the standard values and allow to use these wastes as a replacement for cement, becoming a sustainable solution to the exploitation of quarry materials and, in turn, to the problem of contamination by biological waste from the meat industry. |
| publishDate |
2024 |
| dc.date.issued.none.fl_str_mv |
2024-01 |
| dc.date.accessioned.none.fl_str_mv |
2025-09-30T16:31:29Z |
| dc.date.available.none.fl_str_mv |
2025-09-30T16:31:29Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
Palomino-Guzmán, E., González-López, A., Olmedo-Montoya, J., Sanchez-Echeverri, L. y Tovar-Perilla, N. (2024). A Sustainable Approach Using Beef and Pig Bone Waste as a Cement Replacement to Produce Concrete. Sustainability, 16(2). DOI: 10.3390/su16020701 |
| dc.identifier.doi.none.fl_str_mv |
10.3390/su16020701 |
| dc.identifier.issn.none.fl_str_mv |
20711050 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/5750 |
| dc.identifier.url.none.fl_str_mv |
https://www.mdpi.com/2071-1050/16/2/701 |
| identifier_str_mv |
Palomino-Guzmán, E., González-López, A., Olmedo-Montoya, J., Sanchez-Echeverri, L. y Tovar-Perilla, N. (2024). A Sustainable Approach Using Beef and Pig Bone Waste as a Cement Replacement to Produce Concrete. Sustainability, 16(2). DOI: 10.3390/su16020701 10.3390/su16020701 20711050 |
| url |
https://hdl.handle.net/20.500.12313/5750 https://www.mdpi.com/2071-1050/16/2/701 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationissue.none.fl_str_mv |
2 |
| dc.relation.citationvolume.none.fl_str_mv |
16 |
| dc.relation.ispartofjournal.none.fl_str_mv |
Sustainability |
| dc.relation.references.none.fl_str_mv |
Yu, Y.; Jujan, V.; Yazan, D.M.; Iacob, M.-E. A Systematic Literature Review on Circular Economy Implementation in the Construction Industry: A Policy-Making Perspective. Resour. Conserv. Recycl. 2022, 183, 106359. Shen, L.-Y.; Lu, W.-S.; Yao, H.; Wu, D.-H. A Computer-Based Scoring Method for Measuring the Environmental Performance of Construction Activities. Autom. Constr. 2005, 14, 297–309. Poudyal, L.; Adhikari, K. Environmental Sustainability in Cement Industry: An Integrated Approach for Green and Economical Cement Production. Resour. Environ. Sustain. 2021, 4, 100024. European Commission. Internal Market, Industry, Entrepreneurship and SMEs. Available online: https://single-market-economy.ec.europa.eu/index_en Akhtar, A.; Sarmah, A.K. Construction and Demolition Waste Generation and Properties of Recycled Aggregate Concrete: A Global Perspective. J. Clean. Prod. 2018, 186, 262–281. Coelho, A.; de Brito, J. Influence of Construction and Demolition Waste Management on the Environmental Impact of Buildings. Waste Manag. 2012, 32, 532–541. Stanitsas, M.; Kirytopoulos, K.; Leopoulos, V. Integrating Sustainability Indicators into Project Management: The Case of Construction Industry. J. Clean. Prod. 2021, 279. Singh, V.K. The Science and Technology of Cement and Other Hydraulic Binders; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 9780323950800. Jawaid, M.; Singh, B.; Kian, L.K.; Zaki, S.A.; Radzi, A.M. Processing Techniques on Plastic Waste Materials for Construction and Building Applications. Curr. Opin. Green Sustain. Chem. 2023, 40, 100761. Sanchez-Echeverri, L.A.; Tovar-Perilla, N.J.; Suarez-Puentes, J.G.; Bravo-Cervera, J.E.; Rojas-Parra, D.F. Mechanical and Market Study for Sand/Recycled-Plastic Cobbles in a Medium-Size Colombian City. Recycling 2021, 6, 17. Thomas, B.S.; Yang, J.; Mo, K.H.; Abdalla, J.A.; Hawileh, R.A.; Ariyachandra, E. Biomass Ashes from Agricultural Wastes as Supplementary Cementitious Materials or Aggregate Replacement in Cement/Geopolymer Concrete: A Comprehensive Review. J. Build. Eng. 2021, 40, 102332. Hamada, H.M.; Skariah Thomas, B.; Tayeh, B.; Yahaya, F.M.; Muthusamy, K.; Yang, J. Use of Oil Palm Shell as an Aggregate in Cement Concrete: A Review. Constr. Build. Mater. 2020, 265, 120357. Sanchez-Echeverri, L.A.; Medina-Perilla, J.A.; Ganjian, E. Nonconventional Ca(OH)2 Treatment of Bamboo for the Reinforcement of Cement Composites. Materials 2020, 13, 1892. Zhou, X.; Saini, H.; Kastiukas, G. Engineering Properties of Treated Natural Hemp Fiber-Reinforced Concrete. Front. Built. Environ. 2017, 3, 33. Sánchez, M.L.; Capote, G.; Carrillo, J. Composites Reinforced with Guadua Fibers: Physical and Mechanical Properties. Constr. Build. Mater. 2019, 228, 116749 Raza, M.H.; Khan, M.; Zhong, R.Y. Strength, Porosity and Life Cycle Analysis of Geopolymer and Hybrid Cement Mortars for Sustainable Construction. Sci. Total Environ. 2024, 907, 167839. Cordoba, G.; Barquero, M.; Bonavetti, V.; Irassar, E.F. Sustainability of Concretes with Binary and Ternary Blended Cements Considering Performance Parameters. CEMENT 2023, 13, 100077. Prakash, B.; Saravanan, T.J.; Kabeer, K.I.S.A.; Bisht, K. Exploring the Potential of Waste Marble Powder as a Sustainable Substitute to Cement in Cement-Based Composites: A Review. Constr. Build. Mater. 2023, 401, 132887. Neeraja, P.G.; Unnikrishnan, S.; Varghese, A. A Comprehensive Review of Partial Replacement of Cement in Concrete. Mater. Today Proc. 2023. Santos, S.F.; Tonoli, G.H.D.; Mejia, J.E.B.; Fiorelli, J.; Savastano, H., Jr. Non-Conventional Cement-Based Composites Reinforced with Vegetable Fibers: A Review of Strategies to Improve Durability. Mater. Construcción 2015, 65, e041. Chakraborty, S.; Kundu, S.P.; Roy, A.; Adhikari, B.; Majumder, S.B. Effect of Jute as Fiber Reinforcement Controlling the Hydration Characteristics of Cement Matrix. Ind. Eng. Chem. Res. 2013, 52, 1252–1260. Gunasekaran, P.K.; Chin, S.C. Performance of Bamboo Biochar as Partial Cement Replacement in Mortar. Mater. Today Proc. 2023. Gudia, S.E.L.; Go, A.W.; Giduquio, M.B.; Juanir, R.G.; Jamora, J.B.; Gunarto, C.; Tabañag, I.D.F. Sugarcane Bagasse Ash as a Partial Replacement for Cement in Paste and Mortar Formulation—A Case in the Philippines. J. Build. Eng. 2023, 76, 107221. Gudainiyan, J.; Kishore, K. A Review on Cement Concrete Strength Incorporated with Agricultural Waste. Mater. Today Proc. 2023, 78, 396–402. Rao, M.S.C.; Packialakshmi, S.; Rath, B.; Alharbi, S.A.; Alfarraj, S.; Praveenkumar, T.R.; Gavurová, B. Utilization of Agricultural, Industrial Waste and Nanosilica as Replacement for Cementitious Material and Natural Aggregates–Mechanical, Microstructural and Durability Characteristics Assessment. Environ. Res. 2023, 231, 116010. Agarwal, N.; Garg, N. A Research Green Concrete. Int. J. Innov. Res. Eng. Multidiscip. 2018, 6, 362–378 Ramezanianpour, A.A. Cement Replacement Materials; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-642-36720-5. Bissoli-Dalvi, M.; Nico-Rodrigues, E.A.; de Alvarez, C.E.; Saelzer Fuica, G.E.; Montarroyos, D.C.G. The Sustainability of the Materials under the Approach of ISMAS. Constr. Build. Mater. 2016, 106, 357–363. Sanchez-Echeverri, L.A.; Ganjian, E.; Medina-Perilla, J.A.; Quintana, G.C.; Sanchez-Toro, J.H.; Tyrer, M. Mechanical Refining Combined with Chemical Treatment for the Processing of Bamboo Fibres to Produce Efficient Cement Composites. Constr. Build. Mater. 2021, 269, 121232. Jarabo, R.; Fuente, E.; Monte, M.C.; Savastano, H., Jr.; Mujté, P.; Negro, C. Use of Cellulose Fibers from Hemp Core in Fiber-Cement Production. Effect on Flocculation, Retention, Drainage and Product Properties. Ind. Crop. Prod. 2012, 39, 89–96. Ozawa, M.; Suzuki, S. Microstructural Development of Natural Hydroxyapatite Originated from Fish-Bone Waste through Heat Treatment. J. Am. Ceram. Soc. 2004, 85, 1315–1317. Naga, S.M.; Awaad, M.; El-Mehalawy, N.; Antonious, M.S. Recycling of Fish Bone Ash in the Prepatration of Stoneware Tiles. Interceram 2014, 2, 15–18. Oneyelowe, K.C. Kaolin Stabilization of Olokoro Lateritic Soil Using Bone Ash as Admixture. Int. J. Constr. Res. Civ. Eng. 2015, 1, 39–47. Akinyele, J.O.; Adekunle, A.A.; Ogudani, O. The effect of partial replacement of cement with bone ash and wood ash in concrete. ANNALS Fac. Eng. Hunedoara–Int. J. Eng. 2016, 14, 199–204. ICONTEC. Especificación de Desempeño para Cemento Hidráulico; ICONTEC: Bogotá, Colombia, 2014. Ismail, Z.Z.; AbdelKareem, H.N. Sustainable Approach for Recycling Waste Lamb and Chicken Bones for Fluoride Removal from Water Followed by Reusing Fluoride-Bearing Waste in Concrete. Waste Manag. 2015, 45, 66–75. Krap, T.; van de Goot, F.R.W.; Oostra, R.J.; Duijst, W.; Waters-Rist, A.L. Temperature Estimations of Heated Bone: A Questionnaire-Based Study of Accuracy and Precision of Interpretation of Bone Colour by Forensic and Physical Anthropologists. Leg. Med. 2017, 29, 22–28. Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Reglamento Colombiano de Construcción Sismo Resistente; Ministerio de Ambiente, Vivienda y Desarrollo Territorial: Bogotá, Colombia, 1997. Asociación Colombiana de Ingeniería Sísmica. Título C-Concreto Estructural; Ministerio de Ambiente, Vivienda y Desarrollo Territorial: Bogotá, Colombia, 2010; pp. 302–564. Caltrans. Review of Concrete Mix Designs. In Concrete Technology Manual; Caltrans: Sacramento, CA, USA, 2013; pp. 1–52. Yang, J.; Moon, J. Experimental Study on Tracing the Initial Water–to-Cement Ratio of Hardened Concrete Using Petrography Analysis. Constr. Build. Mater. 2023, 403, 133199. Dhemla, P.; Somani, P.; Swami, B.L. Comparative Analysis and Performance of Light Weight Concrete with Varying Water Cement Ratio Using Plain and Blended Cement. Mater. Today Proc. 2023, 93, 148–155 Giraldo-Bolivar, O. Diseño de Mezclas de Hormigón: Métodos Empíricos y Analíticos; Universidad Nacional de Colombia, Facultad de Minas: Medellín, Colombia, 2004. ASTM C78; American Society for Testing and Materials Flexural Strength of Concrete Using Simple Beam with Third-Point Loading. ASTM International: West Conshohocken, PA, USA, 2020. ASTM C39; American Society for Testing and Materials Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2001. Ahmad, S.; Tulliani, J.M.; Ferro, G.A.; Khushnood, R.A.; Restuccia, L.; Jagdale, P. Crack Path and Fracture Surface Modifications in Cement Composites. Frat. Ed Integrità Strutt. 2015, 9, 524–533. Benti Teshome, B.; Mohammed, A.; Aure, T.W. Investigating Mechanical Properties of Animal Bone Powder Partially Replaced Cement in Concrete Production. Int. J. Sci. Res. Eng. Dev. 2019, 2, 2581–7175. Singh, H.; Singh, E.R.; Singh, S. Study on Partial Replacement of Cement with Animalbone Powder along with the Addition of Polyproplyene Fiber in Concrete. Int. J. Eng. Res. Technol. 2019, 8, 118–123. Okoye, F.N.; Odumodu, O.I. Investigation into the Possibility of Partial Replacement of Cement with Bone Powder in Concrete Production. Int. J. Eng. Res. Dev. 2016, 12, 40–45. Manikanta, V.; Vasudeva, N.; Mohan, M.; Reddy, S. An Effective Study on Utilizing Bone Powder Ash as Partial Replacement of Construction Material. Int. J. Innov. Technol. Res. 2016, 4, 3060–3062. Hassoun, M.N.; Al-Manaseer, A. Structural Concrete: Theory and Design, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2020. DANE. Encuesta de Sacrificio de Ganado 2022; Departamento Administrativo Nacional de Estadística: Bogotá, Colombia, 2023. |
| dc.rights.eng.fl_str_mv |
© 2024 by the authors. |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| rights_invalid_str_mv |
© 2024 by the authors. http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
| dc.publisher.place.none.fl_str_mv |
Suiza |
| publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/fa6b0bd8-8c36-4778-9a65-139d9bef1919/download https://repositorio.unibague.edu.co/bitstreams/652f94a2-8442-45cd-827d-0a2542514366/download https://repositorio.unibague.edu.co/bitstreams/435f46df-a4bb-43c0-bb51-6ca202262fb0/download https://repositorio.unibague.edu.co/bitstreams/e907c648-9e24-41f8-b327-bdf9c733961a/download |
| bitstream.checksum.fl_str_mv |
0fb52ed1ca1e7ee82988af245fe3e0d6 3ca2d37074e0ee90ccf0106b09b01dd5 db7da7248a92049fe73281d00e48e5ad 2fa3e590786b9c0f3ceba1b9656b7ac3 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059988566376448 |
| spelling |
Palomino-Guzmán, Elkin Ronaldo69093538-7bf7-44a9-91f4-fcc43d1530e3-1González-López, Alejandraa45786a3-afb5-4640-acbb-c19233cbb7e5-1Olmedo-Montoya, Jorge98834429-a06f-4bc8-a5bd-ea714f71dbc6-1Sanchez-Echeverri, Luz Adriana3335d48d-a9a9-4e56-be86-a6c4fe67217e-1Tovar-Perilla, Nelson Javier30644df6-3875-4d87-94d7-1798da1996a9-12025-09-30T16:31:29Z2025-09-30T16:31:29Z2024-01Owing to the ongoing accumulation of industrial by-products, the management and disposal of waste have emerged as a significant issue. Employing these industrial wastes as an alternative to replace cement holds potential as a promising solution for conserving energy and reducing CO2 emissions. In this study, pig and beef bone powder were used as cement replacements in concrete, and the mechanical properties were studied. Bone powders were prepared from random bones collected from local slaughterhouses, butchers, and restaurants. The pig bone powder (PBP) and beef bone powder (BBP) were prepared by direct fire contact, oven-calcined for 4 h at 300 °C, crushed, and sieved to size 0.4 to 2 mm. A concrete mix design was formulated for a target compressive strength of 21 MPa at 28 days of curing. This design included three different levels of cement replacement with each type of bone powder (10%, 15%, and 20% by mass). These mixes were then evaluated and compared to a control mix without any bone powder replacement (PB-0). This study evaluated the mechanical properties via compressive strength and flexural testing. The results showed that the workability of the mixtures decreased with the increase in bone powder content. Bone powder functions as a pozzolanic substance, engaging in a chemical reaction with the calcium hydroxide in concrete to produce compounds that exhibit cement-like properties; however, an increase in bone powder content worsened the mechanical properties. The most promising results were obtained for a 10% replacement percentage of BBP and PBP, obtaining strengths of 21.15 MPa and 22.78 MPa, respectively. These are both above the design strength, with PBP concrete even exceeding the strength of PB-0 (21.75 MPa). These results showed a good agreement with the standard values and allow to use these wastes as a replacement for cement, becoming a sustainable solution to the exploitation of quarry materials and, in turn, to the problem of contamination by biological waste from the meat industry.application/pdfPalomino-Guzmán, E., González-López, A., Olmedo-Montoya, J., Sanchez-Echeverri, L. y Tovar-Perilla, N. (2024). A Sustainable Approach Using Beef and Pig Bone Waste as a Cement Replacement to Produce Concrete. Sustainability, 16(2). DOI: 10.3390/su1602070110.3390/su1602070120711050https://hdl.handle.net/20.500.12313/5750https://www.mdpi.com/2071-1050/16/2/701engMultidisciplinary Digital Publishing Institute (MDPI)Suiza216SustainabilityYu, Y.; Jujan, V.; Yazan, D.M.; Iacob, M.-E. A Systematic Literature Review on Circular Economy Implementation in the Construction Industry: A Policy-Making Perspective. Resour. Conserv. Recycl. 2022, 183, 106359.Shen, L.-Y.; Lu, W.-S.; Yao, H.; Wu, D.-H. A Computer-Based Scoring Method for Measuring the Environmental Performance of Construction Activities. Autom. Constr. 2005, 14, 297–309.Poudyal, L.; Adhikari, K. Environmental Sustainability in Cement Industry: An Integrated Approach for Green and Economical Cement Production. Resour. Environ. Sustain. 2021, 4, 100024.European Commission. Internal Market, Industry, Entrepreneurship and SMEs. Available online: https://single-market-economy.ec.europa.eu/index_enAkhtar, A.; Sarmah, A.K. Construction and Demolition Waste Generation and Properties of Recycled Aggregate Concrete: A Global Perspective. J. Clean. Prod. 2018, 186, 262–281.Coelho, A.; de Brito, J. Influence of Construction and Demolition Waste Management on the Environmental Impact of Buildings. Waste Manag. 2012, 32, 532–541.Stanitsas, M.; Kirytopoulos, K.; Leopoulos, V. Integrating Sustainability Indicators into Project Management: The Case of Construction Industry. J. Clean. Prod. 2021, 279.Singh, V.K. The Science and Technology of Cement and Other Hydraulic Binders; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 9780323950800.Jawaid, M.; Singh, B.; Kian, L.K.; Zaki, S.A.; Radzi, A.M. Processing Techniques on Plastic Waste Materials for Construction and Building Applications. Curr. Opin. Green Sustain. Chem. 2023, 40, 100761.Sanchez-Echeverri, L.A.; Tovar-Perilla, N.J.; Suarez-Puentes, J.G.; Bravo-Cervera, J.E.; Rojas-Parra, D.F. Mechanical and Market Study for Sand/Recycled-Plastic Cobbles in a Medium-Size Colombian City. Recycling 2021, 6, 17.Thomas, B.S.; Yang, J.; Mo, K.H.; Abdalla, J.A.; Hawileh, R.A.; Ariyachandra, E. Biomass Ashes from Agricultural Wastes as Supplementary Cementitious Materials or Aggregate Replacement in Cement/Geopolymer Concrete: A Comprehensive Review. J. Build. Eng. 2021, 40, 102332.Hamada, H.M.; Skariah Thomas, B.; Tayeh, B.; Yahaya, F.M.; Muthusamy, K.; Yang, J. Use of Oil Palm Shell as an Aggregate in Cement Concrete: A Review. Constr. Build. Mater. 2020, 265, 120357.Sanchez-Echeverri, L.A.; Medina-Perilla, J.A.; Ganjian, E. Nonconventional Ca(OH)2 Treatment of Bamboo for the Reinforcement of Cement Composites. Materials 2020, 13, 1892.Zhou, X.; Saini, H.; Kastiukas, G. Engineering Properties of Treated Natural Hemp Fiber-Reinforced Concrete. Front. Built. Environ. 2017, 3, 33.Sánchez, M.L.; Capote, G.; Carrillo, J. Composites Reinforced with Guadua Fibers: Physical and Mechanical Properties. Constr. Build. Mater. 2019, 228, 116749Raza, M.H.; Khan, M.; Zhong, R.Y. Strength, Porosity and Life Cycle Analysis of Geopolymer and Hybrid Cement Mortars for Sustainable Construction. Sci. Total Environ. 2024, 907, 167839.Cordoba, G.; Barquero, M.; Bonavetti, V.; Irassar, E.F. Sustainability of Concretes with Binary and Ternary Blended Cements Considering Performance Parameters. CEMENT 2023, 13, 100077.Prakash, B.; Saravanan, T.J.; Kabeer, K.I.S.A.; Bisht, K. Exploring the Potential of Waste Marble Powder as a Sustainable Substitute to Cement in Cement-Based Composites: A Review. Constr. Build. Mater. 2023, 401, 132887.Neeraja, P.G.; Unnikrishnan, S.; Varghese, A. A Comprehensive Review of Partial Replacement of Cement in Concrete. Mater. Today Proc. 2023.Santos, S.F.; Tonoli, G.H.D.; Mejia, J.E.B.; Fiorelli, J.; Savastano, H., Jr. Non-Conventional Cement-Based Composites Reinforced with Vegetable Fibers: A Review of Strategies to Improve Durability. Mater. Construcción 2015, 65, e041.Chakraborty, S.; Kundu, S.P.; Roy, A.; Adhikari, B.; Majumder, S.B. Effect of Jute as Fiber Reinforcement Controlling the Hydration Characteristics of Cement Matrix. Ind. Eng. Chem. Res. 2013, 52, 1252–1260.Gunasekaran, P.K.; Chin, S.C. Performance of Bamboo Biochar as Partial Cement Replacement in Mortar. Mater. Today Proc. 2023.Gudia, S.E.L.; Go, A.W.; Giduquio, M.B.; Juanir, R.G.; Jamora, J.B.; Gunarto, C.; Tabañag, I.D.F. Sugarcane Bagasse Ash as a Partial Replacement for Cement in Paste and Mortar Formulation—A Case in the Philippines. J. Build. Eng. 2023, 76, 107221.Gudainiyan, J.; Kishore, K. A Review on Cement Concrete Strength Incorporated with Agricultural Waste. Mater. Today Proc. 2023, 78, 396–402.Rao, M.S.C.; Packialakshmi, S.; Rath, B.; Alharbi, S.A.; Alfarraj, S.; Praveenkumar, T.R.; Gavurová, B. Utilization of Agricultural, Industrial Waste and Nanosilica as Replacement for Cementitious Material and Natural Aggregates–Mechanical, Microstructural and Durability Characteristics Assessment. Environ. Res. 2023, 231, 116010.Agarwal, N.; Garg, N. A Research Green Concrete. Int. J. Innov. Res. Eng. Multidiscip. 2018, 6, 362–378Ramezanianpour, A.A. Cement Replacement Materials; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-642-36720-5.Bissoli-Dalvi, M.; Nico-Rodrigues, E.A.; de Alvarez, C.E.; Saelzer Fuica, G.E.; Montarroyos, D.C.G. The Sustainability of the Materials under the Approach of ISMAS. Constr. Build. Mater. 2016, 106, 357–363.Sanchez-Echeverri, L.A.; Ganjian, E.; Medina-Perilla, J.A.; Quintana, G.C.; Sanchez-Toro, J.H.; Tyrer, M. Mechanical Refining Combined with Chemical Treatment for the Processing of Bamboo Fibres to Produce Efficient Cement Composites. Constr. Build. Mater. 2021, 269, 121232.Jarabo, R.; Fuente, E.; Monte, M.C.; Savastano, H., Jr.; Mujté, P.; Negro, C. Use of Cellulose Fibers from Hemp Core in Fiber-Cement Production. Effect on Flocculation, Retention, Drainage and Product Properties. Ind. Crop. Prod. 2012, 39, 89–96.Ozawa, M.; Suzuki, S. Microstructural Development of Natural Hydroxyapatite Originated from Fish-Bone Waste through Heat Treatment. J. Am. Ceram. Soc. 2004, 85, 1315–1317.Naga, S.M.; Awaad, M.; El-Mehalawy, N.; Antonious, M.S. Recycling of Fish Bone Ash in the Prepatration of Stoneware Tiles. Interceram 2014, 2, 15–18.Oneyelowe, K.C. Kaolin Stabilization of Olokoro Lateritic Soil Using Bone Ash as Admixture. Int. J. Constr. Res. Civ. Eng. 2015, 1, 39–47.Akinyele, J.O.; Adekunle, A.A.; Ogudani, O. The effect of partial replacement of cement with bone ash and wood ash in concrete. ANNALS Fac. Eng. Hunedoara–Int. J. Eng. 2016, 14, 199–204.ICONTEC. Especificación de Desempeño para Cemento Hidráulico; ICONTEC: Bogotá, Colombia, 2014.Ismail, Z.Z.; AbdelKareem, H.N. Sustainable Approach for Recycling Waste Lamb and Chicken Bones for Fluoride Removal from Water Followed by Reusing Fluoride-Bearing Waste in Concrete. Waste Manag. 2015, 45, 66–75.Krap, T.; van de Goot, F.R.W.; Oostra, R.J.; Duijst, W.; Waters-Rist, A.L. Temperature Estimations of Heated Bone: A Questionnaire-Based Study of Accuracy and Precision of Interpretation of Bone Colour by Forensic and Physical Anthropologists. Leg. Med. 2017, 29, 22–28.Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Reglamento Colombiano de Construcción Sismo Resistente; Ministerio de Ambiente, Vivienda y Desarrollo Territorial: Bogotá, Colombia, 1997.Asociación Colombiana de Ingeniería Sísmica. Título C-Concreto Estructural; Ministerio de Ambiente, Vivienda y Desarrollo Territorial: Bogotá, Colombia, 2010; pp. 302–564.Caltrans. Review of Concrete Mix Designs. In Concrete Technology Manual; Caltrans: Sacramento, CA, USA, 2013; pp. 1–52.Yang, J.; Moon, J. Experimental Study on Tracing the Initial Water–to-Cement Ratio of Hardened Concrete Using Petrography Analysis. Constr. Build. Mater. 2023, 403, 133199.Dhemla, P.; Somani, P.; Swami, B.L. Comparative Analysis and Performance of Light Weight Concrete with Varying Water Cement Ratio Using Plain and Blended Cement. Mater. Today Proc. 2023, 93, 148–155Giraldo-Bolivar, O. Diseño de Mezclas de Hormigón: Métodos Empíricos y Analíticos; Universidad Nacional de Colombia, Facultad de Minas: Medellín, Colombia, 2004.ASTM C78; American Society for Testing and Materials Flexural Strength of Concrete Using Simple Beam with Third-Point Loading. ASTM International: West Conshohocken, PA, USA, 2020.ASTM C39; American Society for Testing and Materials Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2001.Ahmad, S.; Tulliani, J.M.; Ferro, G.A.; Khushnood, R.A.; Restuccia, L.; Jagdale, P. Crack Path and Fracture Surface Modifications in Cement Composites. Frat. Ed Integrità Strutt. 2015, 9, 524–533.Benti Teshome, B.; Mohammed, A.; Aure, T.W. Investigating Mechanical Properties of Animal Bone Powder Partially Replaced Cement in Concrete Production. Int. J. Sci. Res. Eng. Dev. 2019, 2, 2581–7175.Singh, H.; Singh, E.R.; Singh, S. Study on Partial Replacement of Cement with Animalbone Powder along with the Addition of Polyproplyene Fiber in Concrete. Int. J. Eng. Res. Technol. 2019, 8, 118–123.Okoye, F.N.; Odumodu, O.I. Investigation into the Possibility of Partial Replacement of Cement with Bone Powder in Concrete Production. Int. J. Eng. Res. Dev. 2016, 12, 40–45.Manikanta, V.; Vasudeva, N.; Mohan, M.; Reddy, S. An Effective Study on Utilizing Bone Powder Ash as Partial Replacement of Construction Material. Int. J. Innov. Technol. Res. 2016, 4, 3060–3062.Hassoun, M.N.; Al-Manaseer, A. Structural Concrete: Theory and Design, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2020.DANE. Encuesta de Sacrificio de Ganado 2022; Departamento Administrativo Nacional de Estadística: Bogotá, Colombia, 2023.© 2024 by the authors.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/Huesos de res y cerdo - ConcretoAnimal bone waste applicationsCement replacementDisposal of industrial waste; green concreteMechanical properties of concreteSustainable constructionA Sustainable Approach Using Beef and Pig Bone Waste as a Cement Replacement to Produce ConcreteArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationORIGINALArtículo.pdfArtículo.pdfapplication/pdf87810https://repositorio.unibague.edu.co/bitstreams/fa6b0bd8-8c36-4778-9a65-139d9bef1919/download0fb52ed1ca1e7ee82988af245fe3e0d6MD52TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain2664https://repositorio.unibague.edu.co/bitstreams/652f94a2-8442-45cd-827d-0a2542514366/download3ca2d37074e0ee90ccf0106b09b01dd5MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg25528https://repositorio.unibague.edu.co/bitstreams/435f46df-a4bb-43c0-bb51-6ca202262fb0/downloaddb7da7248a92049fe73281d00e48e5adMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/e907c648-9e24-41f8-b327-bdf9c733961a/download2fa3e590786b9c0f3ceba1b9656b7ac3MD5120.500.12313/5750oai:repositorio.unibague.edu.co:20.500.12313/57502025-10-01 03:02:07.925https://creativecommons.org/licenses/by-nc/4.0/© 2024 by the authors.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
