Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films

Aggregation-Induced Emission (AIE) luminogens have garnered significant interest due to their distinctive applications in different applications. Among the diverse molecular architectures, those based on triphenylamine and thiophene hold prominence. However, a comprehensive understanding of the deac...

Full description

Autores:
Segura, Camilo
Ormazabal-Toledo, Rodrigo
García-Beltrán, Olimpo
Squeo, Benedetta M.
Bachmann, Cristian
Flores, Catalina
Osorio-Román, Igor O
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5914
Acceso en línea:
https://hdl.handle.net/20.500.12313/5914
https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/chem.202302940
Palabra clave:
Aggregation-Induced Emission
Excimers-like
Lifetime
Twisted Intramolecular Charge Transfer
Rights
closedAccess
License
© 2023 Wiley-VCH GmbH.
id UNIBAGUE2_1e21d5019a7712a87b07030804e8ef33
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5914
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films
title Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films
spellingShingle Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films
Aggregation-Induced Emission
Excimers-like
Lifetime
Twisted Intramolecular Charge Transfer
title_short Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films
title_full Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films
title_fullStr Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films
title_full_unstemmed Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films
title_sort Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films
dc.creator.fl_str_mv Segura, Camilo
Ormazabal-Toledo, Rodrigo
García-Beltrán, Olimpo
Squeo, Benedetta M.
Bachmann, Cristian
Flores, Catalina
Osorio-Román, Igor O
dc.contributor.author.none.fl_str_mv Segura, Camilo
Ormazabal-Toledo, Rodrigo
García-Beltrán, Olimpo
Squeo, Benedetta M.
Bachmann, Cristian
Flores, Catalina
Osorio-Román, Igor O
dc.subject.proposal.eng.fl_str_mv Aggregation-Induced Emission
Excimers-like
Lifetime
Twisted Intramolecular Charge Transfer
topic Aggregation-Induced Emission
Excimers-like
Lifetime
Twisted Intramolecular Charge Transfer
description Aggregation-Induced Emission (AIE) luminogens have garnered significant interest due to their distinctive applications in different applications. Among the diverse molecular architectures, those based on triphenylamine and thiophene hold prominence. However, a comprehensive understanding of the deactivation mechanism both in solution and films remains lacking. In this study, we synthesized and characterized spectroscopically two AIE luminogens: 5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophene-2-carbaldehyde (TTY) and 5′-(4-(bis(4-methoxyphenyl)amino)phenyl)-[2,2′-bithiophene]-5-carbaldehyde (TTO). Photophysical and theoretical analyses were conducted in both solution and PMMA films to understand the deactivation mechanism of TTY and TTO. In diluted solutions, the emission behavior of TTY and TTO is influenced by the solvent, and the deactivation of the excited state can occur via locally excited (LE) or twisted intramolecular charge transfer (TICT) state. In PMMA films, rotational and translational movements are constrained, necessitating emission solely from the LE state. Nevertheless, in the PMMA film, excimers-like structures form, resulting in the emergence of a longer wavelength band and a reduction in emission intensity. The zenith of emission intensity occurs when molecules are dispersed at higher concentrations within PMMA, effectively diminishing the likelihood of excimer-like formations. Luminescent Solar Concentrators (LSC) were fabricated to validate these findings, and the optical efficiency was studied at varying concentrations of luminogen and PMMA.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-02-16
dc.date.accessioned.none.fl_str_mv 2025-11-06T20:13:49Z
dc.date.available.none.fl_str_mv 2025-11-06T20:13:49Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Segura, C., Ormazabal-Toledo, R., García-Beltrán, O., Squeo, B., Bachmann, C., Flores, C. y Osorio-Román, I. (2024). Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films. Chemistry - A European Journal, 30(10). DOI: 10.1002/chem.202302940.
dc.identifier.doi.none.fl_str_mv 10.1002/chem.202302940
dc.identifier.eissn.none.fl_str_mv 15213765
dc.identifier.issn.none.fl_str_mv 09476539
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5914
dc.identifier.url.none.fl_str_mv https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/chem.202302940
identifier_str_mv Segura, C., Ormazabal-Toledo, R., García-Beltrán, O., Squeo, B., Bachmann, C., Flores, C. y Osorio-Román, I. (2024). Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films. Chemistry - A European Journal, 30(10). DOI: 10.1002/chem.202302940.
10.1002/chem.202302940
15213765
09476539
url https://hdl.handle.net/20.500.12313/5914
https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/chem.202302940
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationissue.none.fl_str_mv 10
dc.relation.citationvolume.none.fl_str_mv 30
dc.relation.ispartofjournal.none.fl_str_mv Chemistry - A European Journal
dc.relation.references.none.fl_str_mv M. G. Brik, A. M. Srivastava, Eds., Luminescent Materials, De Gruyter, 2003.
A. H. Kitai, Luminescent Materials and Applications, John Wiley & Sons Ltd, Chichester, 2008.
J. B. Birks, Wiley-Interscience 1970, 74, 1294–1295.
Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361–5388.
M. Yu, R. Huang, J. Guo, Z. Zhao, B. Z. Tang, PhotoniX 2020, 1, 1–33.
D. Ma, in Status and Prospects of Aggregation-Induced Emission Materials in Organic Optoelectronic Devices (Eds.: Y. Tang, B. Z. Tang), Springer International Publishing, Cham, 2022, pp.  171–207.
Q. Peng, Z. Shuai, Aggregate 2021, 2, 1–20.
Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Commun. 2009, 29, 4332–4353.
Q. Peng, Z. Shuai, Aggregate 2021, 2, 1–20.
D. Presti, L. Wilbraham, C. Targa, F. Labat, A. Pedone, M. C. Menziani, I. Ciofini, C. Adamo, J. Phys. Chem. C 2017, 121, 5747–5752.
L. Tu, Y. Xie, Z. Li, B. Tang, SmartMat 2021, 2, 326–346.
G. R. Suman, M. Pandey, A. S. J. Chakravarthy, Mater. Chem. Front. 2021, 5, 1541–1584.
J. Wang, Q. Meng, Y. Yang, S. Zhong, R. Zhang, Y. Fang, Y. Gao, X. Cui, ACS Sens. 2022, 7, 2521–2536.
N. L. C. Leung, N. Xie, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J. W. Y. Lam, B. Z. Tang, Chem. A Eur. J. 2014, 20, 15349–15353
J. Shi, Y. Li, Q. Li, Z. Li, ACS Appl. Mater. Interfaces 2018, 10, 12278–12294.
R. Hu, E. Lager, A. Aguilar-Aguilar, J. Liu, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y. Zhong, K. S. Wong, E. Peña-Cabrera, B. Z. Tang, J. Phys. Chem. C 2009, 113, 15845–15853.
G. F. Zhang, M. P. Aldred, W. L. Gong, C. Li, M. Q. Zhu, Chem. Commun. 2012, 48, 7711–7713
P. S. Hariharan, V. K. Prasad, S. Nandi, A. Anoop, D. Moon, S. P. Anthony, Cryst. Growth Des. 2017, 17, 146–155.
Y. Yin, Z. Chen, Y. Yang, G. Liu, C. Fan, S. Pu, RSC Adv. 2019, 9, 24338–24343.
W. Xu, M. M. S. Lee, Z. Zhang, H. H. Y. Sung, I. D. Williams, R. T. K. Kwok, J. W. Y. Lam, D. Wang, B. Z. Tang, Chem. Sci. 2019, 10, 3494–3501
C. Qi, H. Ma, H. Fan, Z. Yang, H. Cao, Q. Wei, Z. Lei, ChemPlusChem 2016, 81, 637–645.
L. Liu, J. Ma, J. Pan, D. Li, H. Wang, H. Yang, New J. Chem. 2021, 45, 5049–5059.
Y. B. Barot, V. Anand, R. Mishra, J. Photochem. Photobiol. A 2022, 426, 113785.
M. T. Gabr, F. Christopher Pigge, Mater. Chem. Front. 2017, 1, 1654–1661.
X. Wang, G. Ding, Y. Duan, Y. Zhu, G. Zhu, M. Wang, X. Li, Y. Zhang, X. Qin, C. H. Hung, Talanta 2020, 217, 121029.
J. Zhang, Q. Chen, Y. Fan, H. Qiu, Z. Ni, Y. Li, S. Yin, Dyes Pigm. 2021, 193, 109500.
J. Huang, Y. Jiang, J. Yang, R. Tang, N. Xie, Q. Li, H. S. Kwok, B. Z. Tang, Z. Li, J. Mater. Chem. C 2014, 2, 2028–2036.
F. Mateen, T. G. Hwang, L. F. Boesel, W. J. Choi, J. P. Kim, X. Gong, J. M. Park, S. K. Hong, Int. J. Energy Res. 2021, 45, 17971–17981.
H. T. Lin, C. L. Huang, G. S. Liou, ACS Appl. Mater. Interfaces 2019, 11, 11684–11690.
J. Liu, J. Chen, Y. Dong, Y. Yu, S. Zhang, J. Wang, Q. Song, W. Li, C. Zhang, Mater. Chem. Front. 2020, 4, 1411–1420.
A. V. Marsh, N. J. Cheetham, M. Little, M. Dyson, A. J. P. White, P. Beavis, C. N. Warriner, A. C. Swain, P. N. Stavrinou, M. Heeney, Angew. Chem. 2018, 130, 10800–10805.
S. Sasaki, G. P. C. Drummen, G. I. Konishi, J. Mater. Chem. C 2016, 4, 2731–2743.
C. Wang, W. Chi, Q. Qiao, D. Tan, Z. Xu, X. Liu, Chem. Soc. Rev. 2021, 50, 12656–12678.
A. M. El-Zohry, E. A. Orabi, M. Karlsson, B. Zietz, J. Phys. Chem. A 2021, 125, 2885–2894.
X. Lv, C. Gao, T. Han, H. Shi, W. Guo, Chem. Commun. 2020, 56, 715–718.
J. Zhang, Y. Tu, H. Shen, J. W. Y. Lam, J. Sun, H. Zhang, B. Z. Tang, Nat. Commun. 2023, 14, 1–10
Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 2003, 103, 3899–4031
R. Lakshmi, P. Gopinath, J. Phys. Conf. Ser. 2022, 2357, DOI 10.1088/1742-6596/2357/1/012014.
H. Liu, Y. Dai, Y. Gao, H. Gao, L. Yao, S. Zhang, Z. Xie, K. Wang, B. Zou, B. Yang, Y. Ma, Adv. Opt. Mater. 2018, 6, 1–6.
Y. Wen, H. Liu, S. Zhang, Y. Gao, Y. Yan, B. Yang, J. Mater. Chem. C 2019, 7, 12502–12508.
Y. Liu, X. Tao, F. Wang, X. Dang, D. Zou, Y. Ren, M. Jiang, J. Phys. Chem. C 2008, 112, 3975–3981.
Y. Liu, X. Tao, F. Wang, J. Shi, J. Sun, W. Yu, Y. Ren, D. Zou, M. Jiang, J. Phys. Chem. C 2007, 111, 6544–6549
L. Murphy, P. Brulatti, V. Fattori, M. Cocchi, J. A. G. Williams, Chem. Commun. 2012, 48, 5817–5819.
H. Yoo, J. Yang, A. Yousef, M. R. Wasielewski, D. Kim, J. Am. Chem. Soc. 2010, 132, 3939–3944.
X. Shan, W. Chi, H. Jiang, Z. Luo, C. Qian, H. Wu, Y. Zhao, Angew. Chem. Int. Ed. 2023, 62, DOI 10.1002/anie.202215652.
Y. Shen, Z. Zhang, H. Liu, Y. Yan, S. Zhang, B. Yang, Y. Ma, J. Phys. Chem. C 2019, 123, 13047–13056.
M. G. Debije, P. P. C. Verbunt, Adv. Energy Mater. 2012, 2, 12–35.
F. Mateen, P. Meti, D. Y. Hwang, W. Swelm, H. Gharni, A. G. Al-Sehemi, Y. C. Kim, Y. D. Gong, S. K. Hong, Dyes Pigm. 2022, 205, 110563.
F. Mateen, P. Meti, D. Y. Hwang, W. Swelm, H. Gharni, A. G. Al-Sehemi, Y. C. Kim, Y. D. Gong, S. K. Hong, Dyes Pigm. 2022, 205, 110563
P. Meti, F. Mateen, D. Y. Hwang, Y. E. Lee, S. K. Hong, Y. D. Gong, Dyes Pigm. 2022, 202, 110221
C. Micheletti, Q. Wang, F. Ventura, M. Turelli, I. Ciofini, C. Adamo, A. Pucci, Aggregate 2022, 3, 1–10.
M. G. Debije, R. C. Evans, G. Griffini, Energy Environ. Sci. 2021, 14, 293–301
dc.rights.none.fl_str_mv © 2023 Wiley-VCH GmbH.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv © 2023 Wiley-VCH GmbH.
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley-VCH Verlag
dc.publisher.place.none.fl_str_mv Alemania
publisher.none.fl_str_mv Wiley-VCH Verlag
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/f43cd05c-d369-4390-9d8a-b99b27aeea0f/download
https://repositorio.unibague.edu.co/bitstreams/83657b93-632b-4dde-8794-8dd4ff3d564c/download
https://repositorio.unibague.edu.co/bitstreams/d6b1bf8c-a95c-4efe-9332-7f914a698350/download
https://repositorio.unibague.edu.co/bitstreams/d43a6d4a-4f19-4e68-8a62-61db40256f54/download
bitstream.checksum.fl_str_mv d3aebbf301beba3cdfeff0256ee57dbf
16cda8190b57aa13b2c76a15106ed4e9
2fa3e590786b9c0f3ceba1b9656b7ac3
86b212a2e79a737c7053b43b828db904
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059993438060544
spelling Segura, Camilo9cd4f458-8b52-40c0-b654-9ae1f91355e9-1Ormazabal-Toledo, Rodrigo8f9636a3-13f8-40c6-b708-c4b2871e4803-1García-Beltrán, Olimpo6037fb1a-6bfc-4342-9fa2-54cdb7c4e977-1Squeo, Benedetta M.b31a7336-0f0a-4d24-bd30-46728fd70022-1Bachmann, Cristiane095e051-c79d-4239-8d2a-1c16b7e71caf-1Flores, Catalina1253ec5e-a51a-4540-a18e-3394072ccca1-1Osorio-Román, Igor Of2efc1a8-1ab4-4932-b0ce-5bf25adac705-12025-11-06T20:13:49Z2025-11-06T20:13:49Z2024-02-16Aggregation-Induced Emission (AIE) luminogens have garnered significant interest due to their distinctive applications in different applications. Among the diverse molecular architectures, those based on triphenylamine and thiophene hold prominence. However, a comprehensive understanding of the deactivation mechanism both in solution and films remains lacking. In this study, we synthesized and characterized spectroscopically two AIE luminogens: 5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophene-2-carbaldehyde (TTY) and 5′-(4-(bis(4-methoxyphenyl)amino)phenyl)-[2,2′-bithiophene]-5-carbaldehyde (TTO). Photophysical and theoretical analyses were conducted in both solution and PMMA films to understand the deactivation mechanism of TTY and TTO. In diluted solutions, the emission behavior of TTY and TTO is influenced by the solvent, and the deactivation of the excited state can occur via locally excited (LE) or twisted intramolecular charge transfer (TICT) state. In PMMA films, rotational and translational movements are constrained, necessitating emission solely from the LE state. Nevertheless, in the PMMA film, excimers-like structures form, resulting in the emergence of a longer wavelength band and a reduction in emission intensity. The zenith of emission intensity occurs when molecules are dispersed at higher concentrations within PMMA, effectively diminishing the likelihood of excimer-like formations. Luminescent Solar Concentrators (LSC) were fabricated to validate these findings, and the optical efficiency was studied at varying concentrations of luminogen and PMMA.application/pdfSegura, C., Ormazabal-Toledo, R., García-Beltrán, O., Squeo, B., Bachmann, C., Flores, C. y Osorio-Román, I. (2024). Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films. Chemistry - A European Journal, 30(10). DOI: 10.1002/chem.202302940.10.1002/chem.2023029401521376509476539https://hdl.handle.net/20.500.12313/5914https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/chem.202302940engWiley-VCH VerlagAlemania1030Chemistry - A European JournalM. G. Brik, A. M. Srivastava, Eds., Luminescent Materials, De Gruyter, 2003.A. H. Kitai, Luminescent Materials and Applications, John Wiley & Sons Ltd, Chichester, 2008.J. B. Birks, Wiley-Interscience 1970, 74, 1294–1295.Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361–5388.M. Yu, R. Huang, J. Guo, Z. Zhao, B. Z. Tang, PhotoniX 2020, 1, 1–33.D. Ma, in Status and Prospects of Aggregation-Induced Emission Materials in Organic Optoelectronic Devices (Eds.: Y. Tang, B. Z. Tang), Springer International Publishing, Cham, 2022, pp.  171–207.Q. Peng, Z. Shuai, Aggregate 2021, 2, 1–20.Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Commun. 2009, 29, 4332–4353.Q. Peng, Z. Shuai, Aggregate 2021, 2, 1–20.D. Presti, L. Wilbraham, C. Targa, F. Labat, A. Pedone, M. C. Menziani, I. Ciofini, C. Adamo, J. Phys. Chem. C 2017, 121, 5747–5752.L. Tu, Y. Xie, Z. Li, B. Tang, SmartMat 2021, 2, 326–346.G. R. Suman, M. Pandey, A. S. J. Chakravarthy, Mater. Chem. Front. 2021, 5, 1541–1584.J. Wang, Q. Meng, Y. Yang, S. Zhong, R. Zhang, Y. Fang, Y. Gao, X. Cui, ACS Sens. 2022, 7, 2521–2536.N. L. C. Leung, N. Xie, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J. W. Y. Lam, B. Z. Tang, Chem. A Eur. J. 2014, 20, 15349–15353J. Shi, Y. Li, Q. Li, Z. Li, ACS Appl. Mater. Interfaces 2018, 10, 12278–12294.R. Hu, E. Lager, A. Aguilar-Aguilar, J. Liu, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y. Zhong, K. S. Wong, E. Peña-Cabrera, B. Z. Tang, J. Phys. Chem. C 2009, 113, 15845–15853.G. F. Zhang, M. P. Aldred, W. L. Gong, C. Li, M. Q. Zhu, Chem. Commun. 2012, 48, 7711–7713P. S. Hariharan, V. K. Prasad, S. Nandi, A. Anoop, D. Moon, S. P. Anthony, Cryst. Growth Des. 2017, 17, 146–155.Y. Yin, Z. Chen, Y. Yang, G. Liu, C. Fan, S. Pu, RSC Adv. 2019, 9, 24338–24343.W. Xu, M. M. S. Lee, Z. Zhang, H. H. Y. Sung, I. D. Williams, R. T. K. Kwok, J. W. Y. Lam, D. Wang, B. Z. Tang, Chem. Sci. 2019, 10, 3494–3501C. Qi, H. Ma, H. Fan, Z. Yang, H. Cao, Q. Wei, Z. Lei, ChemPlusChem 2016, 81, 637–645.L. Liu, J. Ma, J. Pan, D. Li, H. Wang, H. Yang, New J. Chem. 2021, 45, 5049–5059.Y. B. Barot, V. Anand, R. Mishra, J. Photochem. Photobiol. A 2022, 426, 113785.M. T. Gabr, F. Christopher Pigge, Mater. Chem. Front. 2017, 1, 1654–1661.X. Wang, G. Ding, Y. Duan, Y. Zhu, G. Zhu, M. Wang, X. Li, Y. Zhang, X. Qin, C. H. Hung, Talanta 2020, 217, 121029.J. Zhang, Q. Chen, Y. Fan, H. Qiu, Z. Ni, Y. Li, S. Yin, Dyes Pigm. 2021, 193, 109500.J. Huang, Y. Jiang, J. Yang, R. Tang, N. Xie, Q. Li, H. S. Kwok, B. Z. Tang, Z. Li, J. Mater. Chem. C 2014, 2, 2028–2036.F. Mateen, T. G. Hwang, L. F. Boesel, W. J. Choi, J. P. Kim, X. Gong, J. M. Park, S. K. Hong, Int. J. Energy Res. 2021, 45, 17971–17981.H. T. Lin, C. L. Huang, G. S. Liou, ACS Appl. Mater. Interfaces 2019, 11, 11684–11690.J. Liu, J. Chen, Y. Dong, Y. Yu, S. Zhang, J. Wang, Q. Song, W. Li, C. Zhang, Mater. Chem. Front. 2020, 4, 1411–1420.A. V. Marsh, N. J. Cheetham, M. Little, M. Dyson, A. J. P. White, P. Beavis, C. N. Warriner, A. C. Swain, P. N. Stavrinou, M. Heeney, Angew. Chem. 2018, 130, 10800–10805.S. Sasaki, G. P. C. Drummen, G. I. Konishi, J. Mater. Chem. C 2016, 4, 2731–2743.C. Wang, W. Chi, Q. Qiao, D. Tan, Z. Xu, X. Liu, Chem. Soc. Rev. 2021, 50, 12656–12678.A. M. El-Zohry, E. A. Orabi, M. Karlsson, B. Zietz, J. Phys. Chem. A 2021, 125, 2885–2894.X. Lv, C. Gao, T. Han, H. Shi, W. Guo, Chem. Commun. 2020, 56, 715–718.J. Zhang, Y. Tu, H. Shen, J. W. Y. Lam, J. Sun, H. Zhang, B. Z. Tang, Nat. Commun. 2023, 14, 1–10Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 2003, 103, 3899–4031R. Lakshmi, P. Gopinath, J. Phys. Conf. Ser. 2022, 2357, DOI 10.1088/1742-6596/2357/1/012014.H. Liu, Y. Dai, Y. Gao, H. Gao, L. Yao, S. Zhang, Z. Xie, K. Wang, B. Zou, B. Yang, Y. Ma, Adv. Opt. Mater. 2018, 6, 1–6.Y. Wen, H. Liu, S. Zhang, Y. Gao, Y. Yan, B. Yang, J. Mater. Chem. C 2019, 7, 12502–12508.Y. Liu, X. Tao, F. Wang, X. Dang, D. Zou, Y. Ren, M. Jiang, J. Phys. Chem. C 2008, 112, 3975–3981.Y. Liu, X. Tao, F. Wang, J. Shi, J. Sun, W. Yu, Y. Ren, D. Zou, M. Jiang, J. Phys. Chem. C 2007, 111, 6544–6549L. Murphy, P. Brulatti, V. Fattori, M. Cocchi, J. A. G. Williams, Chem. Commun. 2012, 48, 5817–5819.H. Yoo, J. Yang, A. Yousef, M. R. Wasielewski, D. Kim, J. Am. Chem. Soc. 2010, 132, 3939–3944.X. Shan, W. Chi, H. Jiang, Z. Luo, C. Qian, H. Wu, Y. Zhao, Angew. Chem. Int. Ed. 2023, 62, DOI 10.1002/anie.202215652.Y. Shen, Z. Zhang, H. Liu, Y. Yan, S. Zhang, B. Yang, Y. Ma, J. Phys. Chem. C 2019, 123, 13047–13056.M. G. Debije, P. P. C. Verbunt, Adv. Energy Mater. 2012, 2, 12–35.F. Mateen, P. Meti, D. Y. Hwang, W. Swelm, H. Gharni, A. G. Al-Sehemi, Y. C. Kim, Y. D. Gong, S. K. Hong, Dyes Pigm. 2022, 205, 110563.F. Mateen, P. Meti, D. Y. Hwang, W. Swelm, H. Gharni, A. G. Al-Sehemi, Y. C. Kim, Y. D. Gong, S. K. Hong, Dyes Pigm. 2022, 205, 110563P. Meti, F. Mateen, D. Y. Hwang, Y. E. Lee, S. K. Hong, Y. D. Gong, Dyes Pigm. 2022, 202, 110221C. Micheletti, Q. Wang, F. Ventura, M. Turelli, I. Ciofini, C. Adamo, A. Pucci, Aggregate 2022, 3, 1–10.M. G. Debije, R. C. Evans, G. Griffini, Energy Environ. Sci. 2021, 14, 293–301© 2023 Wiley-VCH GmbH.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAggregation-Induced EmissionExcimers-likeLifetimeTwisted Intramolecular Charge TransferPhotophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA FilmsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículo.PDF.txtArtículo.PDF.txtExtracted texttext/plain3755https://repositorio.unibague.edu.co/bitstreams/f43cd05c-d369-4390-9d8a-b99b27aeea0f/downloadd3aebbf301beba3cdfeff0256ee57dbfMD53THUMBNAILArtículo.PDF.jpgArtículo.PDF.jpgIM Thumbnailimage/jpeg24603https://repositorio.unibague.edu.co/bitstreams/83657b93-632b-4dde-8794-8dd4ff3d564c/download16cda8190b57aa13b2c76a15106ed4e9MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/d6b1bf8c-a95c-4efe-9332-7f914a698350/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.PDFArtículo.PDFapplication/pdf163200https://repositorio.unibague.edu.co/bitstreams/d43a6d4a-4f19-4e68-8a62-61db40256f54/download86b212a2e79a737c7053b43b828db904MD5220.500.12313/5914oai:repositorio.unibague.edu.co:20.500.12313/59142025-11-07 03:03:37.383https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=