Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films
Aggregation-Induced Emission (AIE) luminogens have garnered significant interest due to their distinctive applications in different applications. Among the diverse molecular architectures, those based on triphenylamine and thiophene hold prominence. However, a comprehensive understanding of the deac...
- Autores:
-
Segura, Camilo
Ormazabal-Toledo, Rodrigo
García-Beltrán, Olimpo
Squeo, Benedetta M.
Bachmann, Cristian
Flores, Catalina
Osorio-Román, Igor O
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5914
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/5914
https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/chem.202302940
- Palabra clave:
- Aggregation-Induced Emission
Excimers-like
Lifetime
Twisted Intramolecular Charge Transfer
- Rights
- closedAccess
- License
- © 2023 Wiley-VCH GmbH.
| id |
UNIBAGUE2_1e21d5019a7712a87b07030804e8ef33 |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5914 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films |
| title |
Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films |
| spellingShingle |
Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films Aggregation-Induced Emission Excimers-like Lifetime Twisted Intramolecular Charge Transfer |
| title_short |
Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films |
| title_full |
Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films |
| title_fullStr |
Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films |
| title_full_unstemmed |
Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films |
| title_sort |
Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films |
| dc.creator.fl_str_mv |
Segura, Camilo Ormazabal-Toledo, Rodrigo García-Beltrán, Olimpo Squeo, Benedetta M. Bachmann, Cristian Flores, Catalina Osorio-Román, Igor O |
| dc.contributor.author.none.fl_str_mv |
Segura, Camilo Ormazabal-Toledo, Rodrigo García-Beltrán, Olimpo Squeo, Benedetta M. Bachmann, Cristian Flores, Catalina Osorio-Román, Igor O |
| dc.subject.proposal.eng.fl_str_mv |
Aggregation-Induced Emission Excimers-like Lifetime Twisted Intramolecular Charge Transfer |
| topic |
Aggregation-Induced Emission Excimers-like Lifetime Twisted Intramolecular Charge Transfer |
| description |
Aggregation-Induced Emission (AIE) luminogens have garnered significant interest due to their distinctive applications in different applications. Among the diverse molecular architectures, those based on triphenylamine and thiophene hold prominence. However, a comprehensive understanding of the deactivation mechanism both in solution and films remains lacking. In this study, we synthesized and characterized spectroscopically two AIE luminogens: 5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophene-2-carbaldehyde (TTY) and 5′-(4-(bis(4-methoxyphenyl)amino)phenyl)-[2,2′-bithiophene]-5-carbaldehyde (TTO). Photophysical and theoretical analyses were conducted in both solution and PMMA films to understand the deactivation mechanism of TTY and TTO. In diluted solutions, the emission behavior of TTY and TTO is influenced by the solvent, and the deactivation of the excited state can occur via locally excited (LE) or twisted intramolecular charge transfer (TICT) state. In PMMA films, rotational and translational movements are constrained, necessitating emission solely from the LE state. Nevertheless, in the PMMA film, excimers-like structures form, resulting in the emergence of a longer wavelength band and a reduction in emission intensity. The zenith of emission intensity occurs when molecules are dispersed at higher concentrations within PMMA, effectively diminishing the likelihood of excimer-like formations. Luminescent Solar Concentrators (LSC) were fabricated to validate these findings, and the optical efficiency was studied at varying concentrations of luminogen and PMMA. |
| publishDate |
2024 |
| dc.date.issued.none.fl_str_mv |
2024-02-16 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-06T20:13:49Z |
| dc.date.available.none.fl_str_mv |
2025-11-06T20:13:49Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
Segura, C., Ormazabal-Toledo, R., García-Beltrán, O., Squeo, B., Bachmann, C., Flores, C. y Osorio-Román, I. (2024). Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films. Chemistry - A European Journal, 30(10). DOI: 10.1002/chem.202302940. |
| dc.identifier.doi.none.fl_str_mv |
10.1002/chem.202302940 |
| dc.identifier.eissn.none.fl_str_mv |
15213765 |
| dc.identifier.issn.none.fl_str_mv |
09476539 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/5914 |
| dc.identifier.url.none.fl_str_mv |
https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/chem.202302940 |
| identifier_str_mv |
Segura, C., Ormazabal-Toledo, R., García-Beltrán, O., Squeo, B., Bachmann, C., Flores, C. y Osorio-Román, I. (2024). Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films. Chemistry - A European Journal, 30(10). DOI: 10.1002/chem.202302940. 10.1002/chem.202302940 15213765 09476539 |
| url |
https://hdl.handle.net/20.500.12313/5914 https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/chem.202302940 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationissue.none.fl_str_mv |
10 |
| dc.relation.citationvolume.none.fl_str_mv |
30 |
| dc.relation.ispartofjournal.none.fl_str_mv |
Chemistry - A European Journal |
| dc.relation.references.none.fl_str_mv |
M. G. Brik, A. M. Srivastava, Eds., Luminescent Materials, De Gruyter, 2003. A. H. Kitai, Luminescent Materials and Applications, John Wiley & Sons Ltd, Chichester, 2008. J. B. Birks, Wiley-Interscience 1970, 74, 1294–1295. Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361–5388. M. Yu, R. Huang, J. Guo, Z. Zhao, B. Z. Tang, PhotoniX 2020, 1, 1–33. D. Ma, in Status and Prospects of Aggregation-Induced Emission Materials in Organic Optoelectronic Devices (Eds.: Y. Tang, B. Z. Tang), Springer International Publishing, Cham, 2022, pp. 171–207. Q. Peng, Z. Shuai, Aggregate 2021, 2, 1–20. Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Commun. 2009, 29, 4332–4353. Q. Peng, Z. Shuai, Aggregate 2021, 2, 1–20. D. Presti, L. Wilbraham, C. Targa, F. Labat, A. Pedone, M. C. Menziani, I. Ciofini, C. Adamo, J. Phys. Chem. C 2017, 121, 5747–5752. L. Tu, Y. Xie, Z. Li, B. Tang, SmartMat 2021, 2, 326–346. G. R. Suman, M. Pandey, A. S. J. Chakravarthy, Mater. Chem. Front. 2021, 5, 1541–1584. J. Wang, Q. Meng, Y. Yang, S. Zhong, R. Zhang, Y. Fang, Y. Gao, X. Cui, ACS Sens. 2022, 7, 2521–2536. N. L. C. Leung, N. Xie, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J. W. Y. Lam, B. Z. Tang, Chem. A Eur. J. 2014, 20, 15349–15353 J. Shi, Y. Li, Q. Li, Z. Li, ACS Appl. Mater. Interfaces 2018, 10, 12278–12294. R. Hu, E. Lager, A. Aguilar-Aguilar, J. Liu, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y. Zhong, K. S. Wong, E. Peña-Cabrera, B. Z. Tang, J. Phys. Chem. C 2009, 113, 15845–15853. G. F. Zhang, M. P. Aldred, W. L. Gong, C. Li, M. Q. Zhu, Chem. Commun. 2012, 48, 7711–7713 P. S. Hariharan, V. K. Prasad, S. Nandi, A. Anoop, D. Moon, S. P. Anthony, Cryst. Growth Des. 2017, 17, 146–155. Y. Yin, Z. Chen, Y. Yang, G. Liu, C. Fan, S. Pu, RSC Adv. 2019, 9, 24338–24343. W. Xu, M. M. S. Lee, Z. Zhang, H. H. Y. Sung, I. D. Williams, R. T. K. Kwok, J. W. Y. Lam, D. Wang, B. Z. Tang, Chem. Sci. 2019, 10, 3494–3501 C. Qi, H. Ma, H. Fan, Z. Yang, H. Cao, Q. Wei, Z. Lei, ChemPlusChem 2016, 81, 637–645. L. Liu, J. Ma, J. Pan, D. Li, H. Wang, H. Yang, New J. Chem. 2021, 45, 5049–5059. Y. B. Barot, V. Anand, R. Mishra, J. Photochem. Photobiol. A 2022, 426, 113785. M. T. Gabr, F. Christopher Pigge, Mater. Chem. Front. 2017, 1, 1654–1661. X. Wang, G. Ding, Y. Duan, Y. Zhu, G. Zhu, M. Wang, X. Li, Y. Zhang, X. Qin, C. H. Hung, Talanta 2020, 217, 121029. J. Zhang, Q. Chen, Y. Fan, H. Qiu, Z. Ni, Y. Li, S. Yin, Dyes Pigm. 2021, 193, 109500. J. Huang, Y. Jiang, J. Yang, R. Tang, N. Xie, Q. Li, H. S. Kwok, B. Z. Tang, Z. Li, J. Mater. Chem. C 2014, 2, 2028–2036. F. Mateen, T. G. Hwang, L. F. Boesel, W. J. Choi, J. P. Kim, X. Gong, J. M. Park, S. K. Hong, Int. J. Energy Res. 2021, 45, 17971–17981. H. T. Lin, C. L. Huang, G. S. Liou, ACS Appl. Mater. Interfaces 2019, 11, 11684–11690. J. Liu, J. Chen, Y. Dong, Y. Yu, S. Zhang, J. Wang, Q. Song, W. Li, C. Zhang, Mater. Chem. Front. 2020, 4, 1411–1420. A. V. Marsh, N. J. Cheetham, M. Little, M. Dyson, A. J. P. White, P. Beavis, C. N. Warriner, A. C. Swain, P. N. Stavrinou, M. Heeney, Angew. Chem. 2018, 130, 10800–10805. S. Sasaki, G. P. C. Drummen, G. I. Konishi, J. Mater. Chem. C 2016, 4, 2731–2743. C. Wang, W. Chi, Q. Qiao, D. Tan, Z. Xu, X. Liu, Chem. Soc. Rev. 2021, 50, 12656–12678. A. M. El-Zohry, E. A. Orabi, M. Karlsson, B. Zietz, J. Phys. Chem. A 2021, 125, 2885–2894. X. Lv, C. Gao, T. Han, H. Shi, W. Guo, Chem. Commun. 2020, 56, 715–718. J. Zhang, Y. Tu, H. Shen, J. W. Y. Lam, J. Sun, H. Zhang, B. Z. Tang, Nat. Commun. 2023, 14, 1–10 Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 2003, 103, 3899–4031 R. Lakshmi, P. Gopinath, J. Phys. Conf. Ser. 2022, 2357, DOI 10.1088/1742-6596/2357/1/012014. H. Liu, Y. Dai, Y. Gao, H. Gao, L. Yao, S. Zhang, Z. Xie, K. Wang, B. Zou, B. Yang, Y. Ma, Adv. Opt. Mater. 2018, 6, 1–6. Y. Wen, H. Liu, S. Zhang, Y. Gao, Y. Yan, B. Yang, J. Mater. Chem. C 2019, 7, 12502–12508. Y. Liu, X. Tao, F. Wang, X. Dang, D. Zou, Y. Ren, M. Jiang, J. Phys. Chem. C 2008, 112, 3975–3981. Y. Liu, X. Tao, F. Wang, J. Shi, J. Sun, W. Yu, Y. Ren, D. Zou, M. Jiang, J. Phys. Chem. C 2007, 111, 6544–6549 L. Murphy, P. Brulatti, V. Fattori, M. Cocchi, J. A. G. Williams, Chem. Commun. 2012, 48, 5817–5819. H. Yoo, J. Yang, A. Yousef, M. R. Wasielewski, D. Kim, J. Am. Chem. Soc. 2010, 132, 3939–3944. X. Shan, W. Chi, H. Jiang, Z. Luo, C. Qian, H. Wu, Y. Zhao, Angew. Chem. Int. Ed. 2023, 62, DOI 10.1002/anie.202215652. Y. Shen, Z. Zhang, H. Liu, Y. Yan, S. Zhang, B. Yang, Y. Ma, J. Phys. Chem. C 2019, 123, 13047–13056. M. G. Debije, P. P. C. Verbunt, Adv. Energy Mater. 2012, 2, 12–35. F. Mateen, P. Meti, D. Y. Hwang, W. Swelm, H. Gharni, A. G. Al-Sehemi, Y. C. Kim, Y. D. Gong, S. K. Hong, Dyes Pigm. 2022, 205, 110563. F. Mateen, P. Meti, D. Y. Hwang, W. Swelm, H. Gharni, A. G. Al-Sehemi, Y. C. Kim, Y. D. Gong, S. K. Hong, Dyes Pigm. 2022, 205, 110563 P. Meti, F. Mateen, D. Y. Hwang, Y. E. Lee, S. K. Hong, Y. D. Gong, Dyes Pigm. 2022, 202, 110221 C. Micheletti, Q. Wang, F. Ventura, M. Turelli, I. Ciofini, C. Adamo, A. Pucci, Aggregate 2022, 3, 1–10. M. G. Debije, R. C. Evans, G. Griffini, Energy Environ. Sci. 2021, 14, 293–301 |
| dc.rights.none.fl_str_mv |
© 2023 Wiley-VCH GmbH. |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
| rights_invalid_str_mv |
© 2023 Wiley-VCH GmbH. http://purl.org/coar/access_right/c_14cb |
| eu_rights_str_mv |
closedAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Wiley-VCH Verlag |
| dc.publisher.place.none.fl_str_mv |
Alemania |
| publisher.none.fl_str_mv |
Wiley-VCH Verlag |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/f43cd05c-d369-4390-9d8a-b99b27aeea0f/download https://repositorio.unibague.edu.co/bitstreams/83657b93-632b-4dde-8794-8dd4ff3d564c/download https://repositorio.unibague.edu.co/bitstreams/d6b1bf8c-a95c-4efe-9332-7f914a698350/download https://repositorio.unibague.edu.co/bitstreams/d43a6d4a-4f19-4e68-8a62-61db40256f54/download |
| bitstream.checksum.fl_str_mv |
d3aebbf301beba3cdfeff0256ee57dbf 16cda8190b57aa13b2c76a15106ed4e9 2fa3e590786b9c0f3ceba1b9656b7ac3 86b212a2e79a737c7053b43b828db904 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059993438060544 |
| spelling |
Segura, Camilo9cd4f458-8b52-40c0-b654-9ae1f91355e9-1Ormazabal-Toledo, Rodrigo8f9636a3-13f8-40c6-b708-c4b2871e4803-1García-Beltrán, Olimpo6037fb1a-6bfc-4342-9fa2-54cdb7c4e977-1Squeo, Benedetta M.b31a7336-0f0a-4d24-bd30-46728fd70022-1Bachmann, Cristiane095e051-c79d-4239-8d2a-1c16b7e71caf-1Flores, Catalina1253ec5e-a51a-4540-a18e-3394072ccca1-1Osorio-Román, Igor Of2efc1a8-1ab4-4932-b0ce-5bf25adac705-12025-11-06T20:13:49Z2025-11-06T20:13:49Z2024-02-16Aggregation-Induced Emission (AIE) luminogens have garnered significant interest due to their distinctive applications in different applications. Among the diverse molecular architectures, those based on triphenylamine and thiophene hold prominence. However, a comprehensive understanding of the deactivation mechanism both in solution and films remains lacking. In this study, we synthesized and characterized spectroscopically two AIE luminogens: 5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophene-2-carbaldehyde (TTY) and 5′-(4-(bis(4-methoxyphenyl)amino)phenyl)-[2,2′-bithiophene]-5-carbaldehyde (TTO). Photophysical and theoretical analyses were conducted in both solution and PMMA films to understand the deactivation mechanism of TTY and TTO. In diluted solutions, the emission behavior of TTY and TTO is influenced by the solvent, and the deactivation of the excited state can occur via locally excited (LE) or twisted intramolecular charge transfer (TICT) state. In PMMA films, rotational and translational movements are constrained, necessitating emission solely from the LE state. Nevertheless, in the PMMA film, excimers-like structures form, resulting in the emergence of a longer wavelength band and a reduction in emission intensity. The zenith of emission intensity occurs when molecules are dispersed at higher concentrations within PMMA, effectively diminishing the likelihood of excimer-like formations. Luminescent Solar Concentrators (LSC) were fabricated to validate these findings, and the optical efficiency was studied at varying concentrations of luminogen and PMMA.application/pdfSegura, C., Ormazabal-Toledo, R., García-Beltrán, O., Squeo, B., Bachmann, C., Flores, C. y Osorio-Román, I. (2024). Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films. Chemistry - A European Journal, 30(10). DOI: 10.1002/chem.202302940.10.1002/chem.2023029401521376509476539https://hdl.handle.net/20.500.12313/5914https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/chem.202302940engWiley-VCH VerlagAlemania1030Chemistry - A European JournalM. G. Brik, A. M. Srivastava, Eds., Luminescent Materials, De Gruyter, 2003.A. H. Kitai, Luminescent Materials and Applications, John Wiley & Sons Ltd, Chichester, 2008.J. B. Birks, Wiley-Interscience 1970, 74, 1294–1295.Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361–5388.M. Yu, R. Huang, J. Guo, Z. Zhao, B. Z. Tang, PhotoniX 2020, 1, 1–33.D. Ma, in Status and Prospects of Aggregation-Induced Emission Materials in Organic Optoelectronic Devices (Eds.: Y. Tang, B. Z. Tang), Springer International Publishing, Cham, 2022, pp. 171–207.Q. Peng, Z. Shuai, Aggregate 2021, 2, 1–20.Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Commun. 2009, 29, 4332–4353.Q. Peng, Z. Shuai, Aggregate 2021, 2, 1–20.D. Presti, L. Wilbraham, C. Targa, F. Labat, A. Pedone, M. C. Menziani, I. Ciofini, C. Adamo, J. Phys. Chem. C 2017, 121, 5747–5752.L. Tu, Y. Xie, Z. Li, B. Tang, SmartMat 2021, 2, 326–346.G. R. Suman, M. Pandey, A. S. J. Chakravarthy, Mater. Chem. Front. 2021, 5, 1541–1584.J. Wang, Q. Meng, Y. Yang, S. Zhong, R. Zhang, Y. Fang, Y. Gao, X. Cui, ACS Sens. 2022, 7, 2521–2536.N. L. C. Leung, N. Xie, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J. W. Y. Lam, B. Z. Tang, Chem. A Eur. J. 2014, 20, 15349–15353J. Shi, Y. Li, Q. Li, Z. Li, ACS Appl. Mater. Interfaces 2018, 10, 12278–12294.R. Hu, E. Lager, A. Aguilar-Aguilar, J. Liu, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y. Zhong, K. S. Wong, E. Peña-Cabrera, B. Z. Tang, J. Phys. Chem. C 2009, 113, 15845–15853.G. F. Zhang, M. P. Aldred, W. L. Gong, C. Li, M. Q. Zhu, Chem. Commun. 2012, 48, 7711–7713P. S. Hariharan, V. K. Prasad, S. Nandi, A. Anoop, D. Moon, S. P. Anthony, Cryst. Growth Des. 2017, 17, 146–155.Y. Yin, Z. Chen, Y. Yang, G. Liu, C. Fan, S. Pu, RSC Adv. 2019, 9, 24338–24343.W. Xu, M. M. S. Lee, Z. Zhang, H. H. Y. Sung, I. D. Williams, R. T. K. Kwok, J. W. Y. Lam, D. Wang, B. Z. Tang, Chem. Sci. 2019, 10, 3494–3501C. Qi, H. Ma, H. Fan, Z. Yang, H. Cao, Q. Wei, Z. Lei, ChemPlusChem 2016, 81, 637–645.L. Liu, J. Ma, J. Pan, D. Li, H. Wang, H. Yang, New J. Chem. 2021, 45, 5049–5059.Y. B. Barot, V. Anand, R. Mishra, J. Photochem. Photobiol. A 2022, 426, 113785.M. T. Gabr, F. Christopher Pigge, Mater. Chem. Front. 2017, 1, 1654–1661.X. Wang, G. Ding, Y. Duan, Y. Zhu, G. Zhu, M. Wang, X. Li, Y. Zhang, X. Qin, C. H. Hung, Talanta 2020, 217, 121029.J. Zhang, Q. Chen, Y. Fan, H. Qiu, Z. Ni, Y. Li, S. Yin, Dyes Pigm. 2021, 193, 109500.J. Huang, Y. Jiang, J. Yang, R. Tang, N. Xie, Q. Li, H. S. Kwok, B. Z. Tang, Z. Li, J. Mater. Chem. C 2014, 2, 2028–2036.F. Mateen, T. G. Hwang, L. F. Boesel, W. J. Choi, J. P. Kim, X. Gong, J. M. Park, S. K. Hong, Int. J. Energy Res. 2021, 45, 17971–17981.H. T. Lin, C. L. Huang, G. S. Liou, ACS Appl. Mater. Interfaces 2019, 11, 11684–11690.J. Liu, J. Chen, Y. Dong, Y. Yu, S. Zhang, J. Wang, Q. Song, W. Li, C. Zhang, Mater. Chem. Front. 2020, 4, 1411–1420.A. V. Marsh, N. J. Cheetham, M. Little, M. Dyson, A. J. P. White, P. Beavis, C. N. Warriner, A. C. Swain, P. N. Stavrinou, M. Heeney, Angew. Chem. 2018, 130, 10800–10805.S. Sasaki, G. P. C. Drummen, G. I. Konishi, J. Mater. Chem. C 2016, 4, 2731–2743.C. Wang, W. Chi, Q. Qiao, D. Tan, Z. Xu, X. Liu, Chem. Soc. Rev. 2021, 50, 12656–12678.A. M. El-Zohry, E. A. Orabi, M. Karlsson, B. Zietz, J. Phys. Chem. A 2021, 125, 2885–2894.X. Lv, C. Gao, T. Han, H. Shi, W. Guo, Chem. Commun. 2020, 56, 715–718.J. Zhang, Y. Tu, H. Shen, J. W. Y. Lam, J. Sun, H. Zhang, B. Z. Tang, Nat. Commun. 2023, 14, 1–10Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 2003, 103, 3899–4031R. Lakshmi, P. Gopinath, J. Phys. Conf. Ser. 2022, 2357, DOI 10.1088/1742-6596/2357/1/012014.H. Liu, Y. Dai, Y. Gao, H. Gao, L. Yao, S. Zhang, Z. Xie, K. Wang, B. Zou, B. Yang, Y. Ma, Adv. Opt. Mater. 2018, 6, 1–6.Y. Wen, H. Liu, S. Zhang, Y. Gao, Y. Yan, B. Yang, J. Mater. Chem. C 2019, 7, 12502–12508.Y. Liu, X. Tao, F. Wang, X. Dang, D. Zou, Y. Ren, M. Jiang, J. Phys. Chem. C 2008, 112, 3975–3981.Y. Liu, X. Tao, F. Wang, J. Shi, J. Sun, W. Yu, Y. Ren, D. Zou, M. Jiang, J. Phys. Chem. C 2007, 111, 6544–6549L. Murphy, P. Brulatti, V. Fattori, M. Cocchi, J. A. G. Williams, Chem. Commun. 2012, 48, 5817–5819.H. Yoo, J. Yang, A. Yousef, M. R. Wasielewski, D. Kim, J. Am. Chem. Soc. 2010, 132, 3939–3944.X. Shan, W. Chi, H. Jiang, Z. Luo, C. Qian, H. Wu, Y. Zhao, Angew. Chem. Int. Ed. 2023, 62, DOI 10.1002/anie.202215652.Y. Shen, Z. Zhang, H. Liu, Y. Yan, S. Zhang, B. Yang, Y. Ma, J. Phys. Chem. C 2019, 123, 13047–13056.M. G. Debije, P. P. C. Verbunt, Adv. Energy Mater. 2012, 2, 12–35.F. Mateen, P. Meti, D. Y. Hwang, W. Swelm, H. Gharni, A. G. Al-Sehemi, Y. C. Kim, Y. D. Gong, S. K. Hong, Dyes Pigm. 2022, 205, 110563.F. Mateen, P. Meti, D. Y. Hwang, W. Swelm, H. Gharni, A. G. Al-Sehemi, Y. C. Kim, Y. D. Gong, S. K. Hong, Dyes Pigm. 2022, 205, 110563P. Meti, F. Mateen, D. Y. Hwang, Y. E. Lee, S. K. Hong, Y. D. Gong, Dyes Pigm. 2022, 202, 110221C. Micheletti, Q. Wang, F. Ventura, M. Turelli, I. Ciofini, C. Adamo, A. Pucci, Aggregate 2022, 3, 1–10.M. G. Debije, R. C. Evans, G. Griffini, Energy Environ. Sci. 2021, 14, 293–301© 2023 Wiley-VCH GmbH.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAggregation-Induced EmissionExcimers-likeLifetimeTwisted Intramolecular Charge TransferPhotophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA FilmsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículo.PDF.txtArtículo.PDF.txtExtracted texttext/plain3755https://repositorio.unibague.edu.co/bitstreams/f43cd05c-d369-4390-9d8a-b99b27aeea0f/downloadd3aebbf301beba3cdfeff0256ee57dbfMD53THUMBNAILArtículo.PDF.jpgArtículo.PDF.jpgIM Thumbnailimage/jpeg24603https://repositorio.unibague.edu.co/bitstreams/83657b93-632b-4dde-8794-8dd4ff3d564c/download16cda8190b57aa13b2c76a15106ed4e9MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/d6b1bf8c-a95c-4efe-9332-7f914a698350/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.PDFArtículo.PDFapplication/pdf163200https://repositorio.unibague.edu.co/bitstreams/d43a6d4a-4f19-4e68-8a62-61db40256f54/download86b212a2e79a737c7053b43b828db904MD5220.500.12313/5914oai:repositorio.unibague.edu.co:20.500.12313/59142025-11-07 03:03:37.383https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
