Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process

Cocoa production has emerged as an effective agricultural strategy to reduce conflict in Colombia, transitioning from coca to cocoa cultivation. While this shift has provided economic benefits, it has also resulted in the generation of substantial cocoa by-products. Although there are various altern...

Full description

Autores:
Salazar-Camacho, Natalia Andre
Delgadillo-Mirquez, Liliana
Sanchez-Echeverri, Luz Adriana
Tovar-Perilla, Nelson Javier
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5842
Acceso en línea:
https://doi.org/10.3390/ su16177817
https://hdl.handle.net/20.500.12313/5842
https://www.mdpi.com/2071-1050/16/17/7817
Palabra clave:
Alternativas sostenibles - Evaluación
Desechos de cacao
Jerarquía analítica - Proceso
Analytic Hierarchy Process
cocoa waste
renewable energy
rural development
Rights
openAccess
License
© 2024 by the authors.
id UNIBAGUE2_17096e65d4760f28bdd236589ba85753
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5842
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process
title Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process
spellingShingle Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process
Alternativas sostenibles - Evaluación
Desechos de cacao
Jerarquía analítica - Proceso
Analytic Hierarchy Process
cocoa waste
renewable energy
rural development
title_short Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process
title_full Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process
title_fullStr Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process
title_full_unstemmed Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process
title_sort Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process
dc.creator.fl_str_mv Salazar-Camacho, Natalia Andre
Delgadillo-Mirquez, Liliana
Sanchez-Echeverri, Luz Adriana
Tovar-Perilla, Nelson Javier
dc.contributor.author.none.fl_str_mv Salazar-Camacho, Natalia Andre
Delgadillo-Mirquez, Liliana
Sanchez-Echeverri, Luz Adriana
Tovar-Perilla, Nelson Javier
dc.subject.armarc.none.fl_str_mv Alternativas sostenibles - Evaluación
Desechos de cacao
Jerarquía analítica - Proceso
topic Alternativas sostenibles - Evaluación
Desechos de cacao
Jerarquía analítica - Proceso
Analytic Hierarchy Process
cocoa waste
renewable energy
rural development
dc.subject.proposal.eng.fl_str_mv Analytic Hierarchy Process
cocoa waste
renewable energy
rural development
description Cocoa production has emerged as an effective agricultural strategy to reduce conflict in Colombia, transitioning from coca to cocoa cultivation. While this shift has provided economic benefits, it has also resulted in the generation of substantial cocoa by-products. Although there are various alternative methods of utilizing these by-products, many farmers are unaware of them, and others lack the necessary tools to determine which alternative is the best to pursue. This study sought to explore sustainable options for cocoa waste utilization through the application of the Analytic Hierarchy Process (AHP). By employing technological surveillance, viable options for reusing cocoa residues were identified. The AHP results indicate that pellet production is a promising alternative for rural communities. It is also a potential source of energy that could address the community’s need for alternative energy sources. Initially, other energy production alternatives were not explored. However, in response to the AHP findings, this study also explored the use of cocoa waste combined with animal manure for energy generation through anaerobic digestion.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-09
dc.date.accessioned.none.fl_str_mv 2025-10-28T20:42:31Z
dc.date.available.none.fl_str_mv 2025-10-28T20:42:31Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Salazar-Camacho, N.A.; Delgadillo-Mirquez, L.; Sanchez-Echeverri, L.A.; Tovar-Perilla, N.J. Evaluating Sustainable Alternatives for CocoaWaste Utilization Using the Analytic Hierarchy Process. Sustainability 2024, 16, 7817. https://doi.org/10.3390/ su16177817
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/ su16177817
dc.identifier.issn.none.fl_str_mv 20711050
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5842
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/2071-1050/16/17/7817
identifier_str_mv Salazar-Camacho, N.A.; Delgadillo-Mirquez, L.; Sanchez-Echeverri, L.A.; Tovar-Perilla, N.J. Evaluating Sustainable Alternatives for CocoaWaste Utilization Using the Analytic Hierarchy Process. Sustainability 2024, 16, 7817. https://doi.org/10.3390/ su16177817
20711050
url https://doi.org/10.3390/ su16177817
https://hdl.handle.net/20.500.12313/5842
https://www.mdpi.com/2071-1050/16/17/7817
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationissue.none.fl_str_mv 17
dc.relation.citationvolume.none.fl_str_mv 16
dc.relation.ispartofjournal.none.fl_str_mv Sustainability
dc.relation.references.none.fl_str_mv DNP Función Pública. Documento CONPES 3654 de 2010; Gestor Normativo; DNP Función Pública: Bogotá, Colombia, 2010
Fedecacao. Producción Cacaotera Presentó una Reducción del 10% en 2022 por Lluvias; Fedecacao: Bogotá, Colombia, 2023
Consejo Privado de Competitividad. Informe Nacional de Competitividad 2019–2020; Consejo Privado de Competitividad: Bogotá, Colombia, 2019
Fidelis, C.; Rajashekhar Rao, B.K. Enriched Cocoa Pod Composts and Their Fertilizing Effects on Hybrid Cocoa Seedlings. Int. J. Recycl. Org. Waste Agric. 2017, 6, 99–106.
Porto de Souza Vandenberghe, L.; Kley Valladares-Diestra, K.; Amaro Bittencourt, G.; Fátima Murawski de Mello, A.; Sarmiento Vásquez, Z.; Zwiercheczewski de Oliveira, P.; Vinícius de Melo Pereira, G.; Ricardo Soccol, C. Added-Value Biomolecules’ Production from Cocoa Pod Husks: A Review. Bioresour. Technol 2022, 344, 126252.
Mansur, D.; Tago, T.; Masuda, T.; Abimanyu, H. Conversion of Cacao Pod Husks by Pyrolysis and Catalytic Reaction to Produce Useful Chemicals. Biomass Bioenergy 2014, 66, 275–285.
San Cristóbal, J.R. Multi-Criteria Decision-Making in the Selection of a Renewable Energy Project in Spain: The VIKOR Method. Renew. Energy 2011, 36, 498–502
Pohekar, S.D.; Ramachandran, M. Application of multi-criteria decision making to sustainable energy planning—A review. Renew. Sustain. Energy Rev. 2004, 8, 365–381.
Caravaggio, N.; Caravella, S.; Ishizaka, A.; Resce, G. Beyond CO2: A multi-criteria analysis of air pollution in Europe. J. Clean. Prod. 2019, 219, 576–586.
Nautiyal, H.; Goel, V. Sustainability Assessment: Metrics and Methods. In Methods in Sustainability Science; Ren, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 27–45.
Tovar-Perilla, N.J.; Bermeo-Andrade, H.P.; Torres-Delgado, J.F.; Gómez, M.I. Methodology to Support Decision-Making in Prioritization Improvement Plans Aimed at Agricultural Sector: Case Study. DYNA 2018, 85, 356–363.
Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980.
Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: Berlin, Germany, 1981.
Brans, J.P.; Vincke, P. A Preference Ranking Organization Method: The PROMETHEE Method for MCDM. Manag. Sci. 1985, 31, 647–656.
Din, G.Y.; Yunusova, A.B. Using AHP for evaluation of criteria for agro-industrial projects. Int. J. Hort. Agric. 2016, 1, 6.
Akıncı, H.; Özalp, A.Y.; Turgut, B. Agricultural land use suitability analysis using GIS and AHP technique. Comput. Electron. Agric. 2013, 97, 71–82.
Veisi, H.; Deihimfard, R.; Shahmohammadi, A.; Hydarzadeh, Y. Application of the Analytic Hierarchy Process (AHP) in a Multi-Criteria Selection of Agricultural Irrigation Systems. Agric. Water Manag. 2022, 267, 107619
Saaty, R.W. The Analytic Hierarchy Process—What It Is and How It Is Used. Math. Model. 1987, 9, 161–176
Lu, F.; Rodriguez-Garcia, J.; Van Damme, I.; Westwood, N.J.; Shaw, L.; Robinson, J.S.; Warren, G.; Chatzifragkou, A.; McQueen Mason, S.; Gomez, L.; et al. Valorisation Strategies for Cocoa Pod Husk and Its Fractions. Curr. Opin. Green Sustain. Chem. 2018, 14, 80–88.
Tsai, C.H.; Tsai, W.T.; Liu, S.C.; Lin, Y.Q. Thermochemical Characterization of Biochar from Cocoa Pod Husk Prepared at Low Pyrolysis Temperature. Biomass Convers. Biorefinery 2018, 8, 237–243
Akinola, A.O.; Eiche, J.F.; Owolabi, P.O.; Elegbeleye, A.P. Pyrolytic Analysis of Cocoa Pod for Biofuel Production. Niger. J. Technol. 2018, 37, 1026–1031.
Billah, M.; Agratiyan, T.D.; Ayu, D.; Erliyanti, N.K.; Saputro, E.A.; Yogaswara, R.R. Synthesis of Bioethanol from Cocoa Pod Husk Using Zymomonas mobilis. Int. J. Environ. Innov. Sustain. Energy 2020, 1, 31–3
Antwi, E.; Engler, N.; Nelles, M.; Schüch, A. Anaerobic Digestion and the Effect of Hydrothermal Pretreatment on the Biogas Yield of Cocoa Pod Residues. Waste Manag. 2019, 88, 131–140
Widjaja, T.; Nurkhamidah, S.; Altway, A.; Rohmah, A.A.Z.; Saepulah, F. Chemical Pre-Treatments Effect for Reducing Lignin on Cocoa Pulp Waste for Biogas Production. AIP Conf. Proc. 2021, 2349, 020058.
Rojas, J.; Ramirez, K.; Velasquez, P.; Acevedo, P.; Santis, A. Evaluation of Bio-Hydrogen Production by Dark Fermentation from Cocoa Waste Mucilage. Chem. Eng. Trans. 2020, 79, 283–288.
Syamsiro, M.; Saptoadi, H.; Tambunan, B.H. Experimental Investigation on Combustion of Bio-Pellets from Indonesian Cocoa Pod Husk. Asian J. Appl. Sci. 2011, 4, 712–719.
Acosta, N.; Kang, I.D.; Rabaey, K.; De Vrieze, J. Cow Manure Stabilizes Anaerobic Digestion of Cocoa Waste. Waste Manag. 2021, 126, 508–516.
Leckner, B.; Lind, F. Combustion of Municipal Solid Waste in Fluidized Bed or on Grate—A Comparison. Waste Manag. 2020, 109, 94–108
Dahunsi, S.O.; Osueke, C.O.; Olayanju, T.M.A.; Lawal, A.I. Co-Digestion of Theobroma cacao (Cocoa) Pod Husk and Poultry Manure for Energy Generation: Effects of Pretreatment Methods. Bioresour. Technol. 2019, 283, 229–241.
Hernández-Sarabia, M.; Sierra-Silva, J.; Delgadillo-Mirquez, L.; Ávila-Navarro, J.; Carranza, L. The Potential of the Biodigester as a Useful Tool in Coffee Farms. Appl. Sci. 2021, 11, 6884
Kumar Khanal, S.; Lü, F.; Wong, J.W.C.; Wu, D.; Oechsner, H. Anaerobic Digestion beyond Biogas. Bioresour. Technol. 2021, 337, 125378.
Sánchez-Torres, J.; Palop-Marro, F. Herramientas de Software Para La Práctica En La Empresa de La Vigilancia Tecnológica e Inteligencia Competitiva: Evaluación Comparativa; TRIZ: Valencia, Spain, 2002; Volume 1.
Arango Alzate, B.; Tamayo Giraldo, L.; Fadul Barbosa, A. Vigilancia Tecnológica: Metodologías y Aplicaciones. Gestión Pers. Tecnol. 2012, 13, 2–8
UNE 166006:2018; Technology Watch System. Guidelines for Implementation. Asociación Española de Normalización: Madrid, Spain, 2018.
Carrillo-Zambrano, E.; Páez-Leal, M.C.; Suárez, J.M.; Luna-González, M.L. Modelo de Vigilancia Tecnológica Para la Gestión de Un Grupo de Investigación en Salud. MedUNAB 2018, 21, 84–99.
Vega-Almeida, R.L.; Iglesias-Alfonso, C.; Moura-Delgado, M.; Cossio-Cárdenas, G. Plan de Comunicación Del Sistema de Inteligencia Colaborativa Para el Empresarial BioCubaFarma. Rev. Cubana Inf. Cienc. Salud 2020, 31, 1–24
Ojikutu, A.O.; Osokoya, O.O. Evaluation of Biogas Production from Food Waste. Int. J. Eng. Sci. 2014, 3, 1–7
Esposito, G.; Frunzo, L.; Liotta, F.; Panico, A.; Pirozzi, F. Bio-Methane Potential Tests to Measure the Biogas Production from the Digestion and Co-Digestion of Complex Organic Substrates. Chem. Eng. Trans. 2012, 5, 39–44.
APHA/AWWA/WEF; American Public Health Association; American Water Works Association; Water Environment Federtion (APHA-AWWA-WEF). Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Water Works Association: Denver, CO, USA, 2001.
Candia-García, C.; Delgadillo-Mirquez, L.; Hernandez, M. Biodegradation of Rice Straw under Anaerobic Digestion. Environ. Technol. Innov. 2018, 10, 215–222.
Li, D.; Liu, S.; Mi, L.; Li, Z.; Yuan, Y.; Yan, Z.; Liu, X. Effects of Feedstock Ratio and Organic Loading Rate on the Anaerobic Mesophilic Co-Digestion of Rice Straw and Cow Manure. Bioresour. Technol. 2015, 189, 319–326.
Castañeda-Morales, Y.; Arciniegas-Benavides, N.C. Diseño de una Planta Productora de Pellets de Madera a Partir Del Aprovechamiento de Residuos Forestales de Un Aserrío Ubicado en la Ciudad de Bogotá; Universidad Distrital Francisco José de Caldas: Bogotá, Colombia, 2019.
Harinera del Valle. Harinera Del Valle. Available online: https://www.hv.com.co/ (accessed on 29 July 2024)
Rojas González, L.M. Aprovechamiento de La Cáscara de Cacao Para La Elaboración de Un Biocomposito Con Aplicación En La Construcción Sostenible; Universidad El Bosque: Bogotá, Colombia, 2019.
Navarro-García, G.; Navarro-García, S. Fertilizantes Química y Acción; Mundi-Prensa; Ediciones Mundi-Prensa: Madrid, Spain, 2014; Volume 1.
Villamizar-Jaimes, Y.; Rodriguez-Guerrero, J.S.; Leon-Castrillo, L.C. Characterization Physicochemical, Microbiological and Functional of Cacao Shell Flour (Theobroma cacao L.) Variety CCN-51. Cuad. Act. 2017, 9, 65–75
Ramírez, A.Q.; González, Y.V.; Valencia, L.A.L. Effect of Solid Wastes Leachates on a Tropical Soil. DYNA 2017, 84, 283–290.
Suhartini, S.; Hidayat, N.; Hadi, M.W.R. Co-Digestion of Cocoa Pods and Cocoa Leaves: Effect of C/N Ratio to Biogas and Energy Potential. IOP Conf. Ser. Earth Environ. Sci. 2021, 733, 012139
Messineo, A.; Maniscalco, M.P.; Volpe, R. Biomethane Recovery from Olive Mill Residues through Anaerobic Digestion: A Review of the State of the Art Technology. Sci. Total Environ. 2020, 703, 135508.
Xu, F.; Wang, Z.-W.; Li, Y. Predicting the Methane Yield of Lignocellulosic Biomass in Mesophilic Solid-State Anaerobic Digestion Based on Feedstock Characteristics and Process Parameters. Bioresour. Technol. 2014, 173, 168–176.
Mosquera, J.; Varela, L.; Santis, A.; Villamizar, S.; Acevedo, P.; Cabeza, I. Improving Anaerobic Co-Digestion of Different Residual Biomass Sources Readily Available in Colombia by Process Parameters Optimization. Biomass Bioenergy 2020, 142, 105790.
Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic Co-Digestion Process for Biogas Production: Progress, Challenges and Perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496.
Kim, M.-J.; Kim, S.-H. Conditions of Lag-Phase Reduction during Anaerobic Digestion of Protein for High-Efficiency Biogas Production. Biomass Bioenergy 2020, 143, 105813.
Dinkler, K.; Li, B.; Guo, J.; Hülsemann, B.; Becker, G.C.; Müller, J.; Oechsner, H. Adapted Hedley Fractionation for the Analysis of Inorganic Phosphate in Biogas Digestate. Bioresour. Technol. 2021, 331, 125038.
dc.rights.none.fl_str_mv © 2024 by the authors.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv © 2024 by the authors.
http://purl.org/coar/access_right/c_abf2
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.place.none.fl_str_mv Suiza
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/dee0a3de-ccdd-4977-b2ba-b3fea4bc4e60/download
https://repositorio.unibague.edu.co/bitstreams/f8aa8d59-1a92-4b7f-b531-3cbd4a384a91/download
https://repositorio.unibague.edu.co/bitstreams/e741ccb1-0d0e-46f8-9160-88070beba9ac/download
https://repositorio.unibague.edu.co/bitstreams/7c0f2d6a-1805-4715-acba-ed6b869268b6/download
https://repositorio.unibague.edu.co/bitstreams/b1b13d20-3e11-4e50-9dad-b35b21d470f8/download
bitstream.checksum.fl_str_mv 2fa3e590786b9c0f3ceba1b9656b7ac3
63abbb3eb8381be49fe25268b58831b6
b30dc4bbd6695f4c348dfc1f551b9f89
ec765c860f2e688ed1c3994fa589443c
aded38eb05082d879683aba0c08f8b30
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059964044378112
spelling Salazar-Camacho, Natalia Andreb5a8043c-208f-4c10-9231-088353959e2a-1Delgadillo-Mirquez, Liliana0025fadf-fa3c-4261-be25-74ff2de2b494-1Sanchez-Echeverri, Luz Adriana3335d48d-a9a9-4e56-be86-a6c4fe67217e-1Tovar-Perilla, Nelson Javier3632db5a-0c8c-42d3-8590-718e1e6fb6f6-12025-10-28T20:42:31Z2025-10-28T20:42:31Z2024-09Cocoa production has emerged as an effective agricultural strategy to reduce conflict in Colombia, transitioning from coca to cocoa cultivation. While this shift has provided economic benefits, it has also resulted in the generation of substantial cocoa by-products. Although there are various alternative methods of utilizing these by-products, many farmers are unaware of them, and others lack the necessary tools to determine which alternative is the best to pursue. This study sought to explore sustainable options for cocoa waste utilization through the application of the Analytic Hierarchy Process (AHP). By employing technological surveillance, viable options for reusing cocoa residues were identified. The AHP results indicate that pellet production is a promising alternative for rural communities. It is also a potential source of energy that could address the community’s need for alternative energy sources. Initially, other energy production alternatives were not explored. However, in response to the AHP findings, this study also explored the use of cocoa waste combined with animal manure for energy generation through anaerobic digestion.application/pdfSalazar-Camacho, N.A.; Delgadillo-Mirquez, L.; Sanchez-Echeverri, L.A.; Tovar-Perilla, N.J. Evaluating Sustainable Alternatives for CocoaWaste Utilization Using the Analytic Hierarchy Process. Sustainability 2024, 16, 7817. https://doi.org/10.3390/ su16177817https://doi.org/10.3390/ su1617781720711050https://hdl.handle.net/20.500.12313/5842https://www.mdpi.com/2071-1050/16/17/7817engMultidisciplinary Digital Publishing Institute (MDPI)Suiza1716SustainabilityDNP Función Pública. Documento CONPES 3654 de 2010; Gestor Normativo; DNP Función Pública: Bogotá, Colombia, 2010Fedecacao. Producción Cacaotera Presentó una Reducción del 10% en 2022 por Lluvias; Fedecacao: Bogotá, Colombia, 2023Consejo Privado de Competitividad. Informe Nacional de Competitividad 2019–2020; Consejo Privado de Competitividad: Bogotá, Colombia, 2019Fidelis, C.; Rajashekhar Rao, B.K. Enriched Cocoa Pod Composts and Their Fertilizing Effects on Hybrid Cocoa Seedlings. Int. J. Recycl. Org. Waste Agric. 2017, 6, 99–106.Porto de Souza Vandenberghe, L.; Kley Valladares-Diestra, K.; Amaro Bittencourt, G.; Fátima Murawski de Mello, A.; Sarmiento Vásquez, Z.; Zwiercheczewski de Oliveira, P.; Vinícius de Melo Pereira, G.; Ricardo Soccol, C. Added-Value Biomolecules’ Production from Cocoa Pod Husks: A Review. Bioresour. Technol 2022, 344, 126252.Mansur, D.; Tago, T.; Masuda, T.; Abimanyu, H. Conversion of Cacao Pod Husks by Pyrolysis and Catalytic Reaction to Produce Useful Chemicals. Biomass Bioenergy 2014, 66, 275–285.San Cristóbal, J.R. Multi-Criteria Decision-Making in the Selection of a Renewable Energy Project in Spain: The VIKOR Method. Renew. Energy 2011, 36, 498–502Pohekar, S.D.; Ramachandran, M. Application of multi-criteria decision making to sustainable energy planning—A review. Renew. Sustain. Energy Rev. 2004, 8, 365–381.Caravaggio, N.; Caravella, S.; Ishizaka, A.; Resce, G. Beyond CO2: A multi-criteria analysis of air pollution in Europe. J. Clean. Prod. 2019, 219, 576–586.Nautiyal, H.; Goel, V. Sustainability Assessment: Metrics and Methods. In Methods in Sustainability Science; Ren, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 27–45.Tovar-Perilla, N.J.; Bermeo-Andrade, H.P.; Torres-Delgado, J.F.; Gómez, M.I. Methodology to Support Decision-Making in Prioritization Improvement Plans Aimed at Agricultural Sector: Case Study. DYNA 2018, 85, 356–363.Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980.Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: Berlin, Germany, 1981.Brans, J.P.; Vincke, P. A Preference Ranking Organization Method: The PROMETHEE Method for MCDM. Manag. Sci. 1985, 31, 647–656.Din, G.Y.; Yunusova, A.B. Using AHP for evaluation of criteria for agro-industrial projects. Int. J. Hort. Agric. 2016, 1, 6.Akıncı, H.; Özalp, A.Y.; Turgut, B. Agricultural land use suitability analysis using GIS and AHP technique. Comput. Electron. Agric. 2013, 97, 71–82.Veisi, H.; Deihimfard, R.; Shahmohammadi, A.; Hydarzadeh, Y. Application of the Analytic Hierarchy Process (AHP) in a Multi-Criteria Selection of Agricultural Irrigation Systems. Agric. Water Manag. 2022, 267, 107619Saaty, R.W. The Analytic Hierarchy Process—What It Is and How It Is Used. Math. Model. 1987, 9, 161–176Lu, F.; Rodriguez-Garcia, J.; Van Damme, I.; Westwood, N.J.; Shaw, L.; Robinson, J.S.; Warren, G.; Chatzifragkou, A.; McQueen Mason, S.; Gomez, L.; et al. Valorisation Strategies for Cocoa Pod Husk and Its Fractions. Curr. Opin. Green Sustain. Chem. 2018, 14, 80–88.Tsai, C.H.; Tsai, W.T.; Liu, S.C.; Lin, Y.Q. Thermochemical Characterization of Biochar from Cocoa Pod Husk Prepared at Low Pyrolysis Temperature. Biomass Convers. Biorefinery 2018, 8, 237–243Akinola, A.O.; Eiche, J.F.; Owolabi, P.O.; Elegbeleye, A.P. Pyrolytic Analysis of Cocoa Pod for Biofuel Production. Niger. J. Technol. 2018, 37, 1026–1031.Billah, M.; Agratiyan, T.D.; Ayu, D.; Erliyanti, N.K.; Saputro, E.A.; Yogaswara, R.R. Synthesis of Bioethanol from Cocoa Pod Husk Using Zymomonas mobilis. Int. J. Environ. Innov. Sustain. Energy 2020, 1, 31–3Antwi, E.; Engler, N.; Nelles, M.; Schüch, A. Anaerobic Digestion and the Effect of Hydrothermal Pretreatment on the Biogas Yield of Cocoa Pod Residues. Waste Manag. 2019, 88, 131–140Widjaja, T.; Nurkhamidah, S.; Altway, A.; Rohmah, A.A.Z.; Saepulah, F. Chemical Pre-Treatments Effect for Reducing Lignin on Cocoa Pulp Waste for Biogas Production. AIP Conf. Proc. 2021, 2349, 020058.Rojas, J.; Ramirez, K.; Velasquez, P.; Acevedo, P.; Santis, A. Evaluation of Bio-Hydrogen Production by Dark Fermentation from Cocoa Waste Mucilage. Chem. Eng. Trans. 2020, 79, 283–288.Syamsiro, M.; Saptoadi, H.; Tambunan, B.H. Experimental Investigation on Combustion of Bio-Pellets from Indonesian Cocoa Pod Husk. Asian J. Appl. Sci. 2011, 4, 712–719.Acosta, N.; Kang, I.D.; Rabaey, K.; De Vrieze, J. Cow Manure Stabilizes Anaerobic Digestion of Cocoa Waste. Waste Manag. 2021, 126, 508–516.Leckner, B.; Lind, F. Combustion of Municipal Solid Waste in Fluidized Bed or on Grate—A Comparison. Waste Manag. 2020, 109, 94–108Dahunsi, S.O.; Osueke, C.O.; Olayanju, T.M.A.; Lawal, A.I. Co-Digestion of Theobroma cacao (Cocoa) Pod Husk and Poultry Manure for Energy Generation: Effects of Pretreatment Methods. Bioresour. Technol. 2019, 283, 229–241.Hernández-Sarabia, M.; Sierra-Silva, J.; Delgadillo-Mirquez, L.; Ávila-Navarro, J.; Carranza, L. The Potential of the Biodigester as a Useful Tool in Coffee Farms. Appl. Sci. 2021, 11, 6884Kumar Khanal, S.; Lü, F.; Wong, J.W.C.; Wu, D.; Oechsner, H. Anaerobic Digestion beyond Biogas. Bioresour. Technol. 2021, 337, 125378.Sánchez-Torres, J.; Palop-Marro, F. Herramientas de Software Para La Práctica En La Empresa de La Vigilancia Tecnológica e Inteligencia Competitiva: Evaluación Comparativa; TRIZ: Valencia, Spain, 2002; Volume 1.Arango Alzate, B.; Tamayo Giraldo, L.; Fadul Barbosa, A. Vigilancia Tecnológica: Metodologías y Aplicaciones. Gestión Pers. Tecnol. 2012, 13, 2–8UNE 166006:2018; Technology Watch System. Guidelines for Implementation. Asociación Española de Normalización: Madrid, Spain, 2018.Carrillo-Zambrano, E.; Páez-Leal, M.C.; Suárez, J.M.; Luna-González, M.L. Modelo de Vigilancia Tecnológica Para la Gestión de Un Grupo de Investigación en Salud. MedUNAB 2018, 21, 84–99.Vega-Almeida, R.L.; Iglesias-Alfonso, C.; Moura-Delgado, M.; Cossio-Cárdenas, G. Plan de Comunicación Del Sistema de Inteligencia Colaborativa Para el Empresarial BioCubaFarma. Rev. Cubana Inf. Cienc. Salud 2020, 31, 1–24Ojikutu, A.O.; Osokoya, O.O. Evaluation of Biogas Production from Food Waste. Int. J. Eng. Sci. 2014, 3, 1–7Esposito, G.; Frunzo, L.; Liotta, F.; Panico, A.; Pirozzi, F. Bio-Methane Potential Tests to Measure the Biogas Production from the Digestion and Co-Digestion of Complex Organic Substrates. Chem. Eng. Trans. 2012, 5, 39–44.APHA/AWWA/WEF; American Public Health Association; American Water Works Association; Water Environment Federtion (APHA-AWWA-WEF). Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Water Works Association: Denver, CO, USA, 2001.Candia-García, C.; Delgadillo-Mirquez, L.; Hernandez, M. Biodegradation of Rice Straw under Anaerobic Digestion. Environ. Technol. Innov. 2018, 10, 215–222.Li, D.; Liu, S.; Mi, L.; Li, Z.; Yuan, Y.; Yan, Z.; Liu, X. Effects of Feedstock Ratio and Organic Loading Rate on the Anaerobic Mesophilic Co-Digestion of Rice Straw and Cow Manure. Bioresour. Technol. 2015, 189, 319–326.Castañeda-Morales, Y.; Arciniegas-Benavides, N.C. Diseño de una Planta Productora de Pellets de Madera a Partir Del Aprovechamiento de Residuos Forestales de Un Aserrío Ubicado en la Ciudad de Bogotá; Universidad Distrital Francisco José de Caldas: Bogotá, Colombia, 2019.Harinera del Valle. Harinera Del Valle. Available online: https://www.hv.com.co/ (accessed on 29 July 2024)Rojas González, L.M. Aprovechamiento de La Cáscara de Cacao Para La Elaboración de Un Biocomposito Con Aplicación En La Construcción Sostenible; Universidad El Bosque: Bogotá, Colombia, 2019.Navarro-García, G.; Navarro-García, S. Fertilizantes Química y Acción; Mundi-Prensa; Ediciones Mundi-Prensa: Madrid, Spain, 2014; Volume 1.Villamizar-Jaimes, Y.; Rodriguez-Guerrero, J.S.; Leon-Castrillo, L.C. Characterization Physicochemical, Microbiological and Functional of Cacao Shell Flour (Theobroma cacao L.) Variety CCN-51. Cuad. Act. 2017, 9, 65–75Ramírez, A.Q.; González, Y.V.; Valencia, L.A.L. Effect of Solid Wastes Leachates on a Tropical Soil. DYNA 2017, 84, 283–290.Suhartini, S.; Hidayat, N.; Hadi, M.W.R. Co-Digestion of Cocoa Pods and Cocoa Leaves: Effect of C/N Ratio to Biogas and Energy Potential. IOP Conf. Ser. Earth Environ. Sci. 2021, 733, 012139Messineo, A.; Maniscalco, M.P.; Volpe, R. Biomethane Recovery from Olive Mill Residues through Anaerobic Digestion: A Review of the State of the Art Technology. Sci. Total Environ. 2020, 703, 135508.Xu, F.; Wang, Z.-W.; Li, Y. Predicting the Methane Yield of Lignocellulosic Biomass in Mesophilic Solid-State Anaerobic Digestion Based on Feedstock Characteristics and Process Parameters. Bioresour. Technol. 2014, 173, 168–176.Mosquera, J.; Varela, L.; Santis, A.; Villamizar, S.; Acevedo, P.; Cabeza, I. Improving Anaerobic Co-Digestion of Different Residual Biomass Sources Readily Available in Colombia by Process Parameters Optimization. Biomass Bioenergy 2020, 142, 105790.Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic Co-Digestion Process for Biogas Production: Progress, Challenges and Perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496.Kim, M.-J.; Kim, S.-H. Conditions of Lag-Phase Reduction during Anaerobic Digestion of Protein for High-Efficiency Biogas Production. Biomass Bioenergy 2020, 143, 105813.Dinkler, K.; Li, B.; Guo, J.; Hülsemann, B.; Becker, G.C.; Müller, J.; Oechsner, H. Adapted Hedley Fractionation for the Analysis of Inorganic Phosphate in Biogas Digestate. Bioresour. Technol. 2021, 331, 125038.© 2024 by the authors.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/Alternativas sostenibles - EvaluaciónDesechos de cacaoJerarquía analítica - ProcesoAnalytic Hierarchy Processcocoa wasterenewable energyrural developmentEvaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy ProcessArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/dee0a3de-ccdd-4977-b2ba-b3fea4bc4e60/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf116230https://repositorio.unibague.edu.co/bitstreams/f8aa8d59-1a92-4b7f-b531-3cbd4a384a91/download63abbb3eb8381be49fe25268b58831b6MD52Artículo.pdfArtículo.pdfapplication/pdf116225https://repositorio.unibague.edu.co/bitstreams/e741ccb1-0d0e-46f8-9160-88070beba9ac/downloadb30dc4bbd6695f4c348dfc1f551b9f89MD53TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain4017https://repositorio.unibague.edu.co/bitstreams/7c0f2d6a-1805-4715-acba-ed6b869268b6/downloadec765c860f2e688ed1c3994fa589443cMD54THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg32882https://repositorio.unibague.edu.co/bitstreams/b1b13d20-3e11-4e50-9dad-b35b21d470f8/downloadaded38eb05082d879683aba0c08f8b30MD5520.500.12313/5842oai:repositorio.unibague.edu.co:20.500.12313/58422025-10-29 03:01:26.869https://creativecommons.org/licenses/by/4.0/© 2024 by the authors.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=