Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process
Cocoa production has emerged as an effective agricultural strategy to reduce conflict in Colombia, transitioning from coca to cocoa cultivation. While this shift has provided economic benefits, it has also resulted in the generation of substantial cocoa by-products. Although there are various altern...
- Autores:
-
Salazar-Camacho, Natalia Andre
Delgadillo-Mirquez, Liliana
Sanchez-Echeverri, Luz Adriana
Tovar-Perilla, Nelson Javier
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5842
- Acceso en línea:
- https://doi.org/10.3390/ su16177817
https://hdl.handle.net/20.500.12313/5842
https://www.mdpi.com/2071-1050/16/17/7817
- Palabra clave:
- Alternativas sostenibles - Evaluación
Desechos de cacao
Jerarquía analítica - Proceso
Analytic Hierarchy Process
cocoa waste
renewable energy
rural development
- Rights
- openAccess
- License
- © 2024 by the authors.
| id |
UNIBAGUE2_17096e65d4760f28bdd236589ba85753 |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5842 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process |
| title |
Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process |
| spellingShingle |
Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process Alternativas sostenibles - Evaluación Desechos de cacao Jerarquía analítica - Proceso Analytic Hierarchy Process cocoa waste renewable energy rural development |
| title_short |
Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process |
| title_full |
Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process |
| title_fullStr |
Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process |
| title_full_unstemmed |
Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process |
| title_sort |
Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process |
| dc.creator.fl_str_mv |
Salazar-Camacho, Natalia Andre Delgadillo-Mirquez, Liliana Sanchez-Echeverri, Luz Adriana Tovar-Perilla, Nelson Javier |
| dc.contributor.author.none.fl_str_mv |
Salazar-Camacho, Natalia Andre Delgadillo-Mirquez, Liliana Sanchez-Echeverri, Luz Adriana Tovar-Perilla, Nelson Javier |
| dc.subject.armarc.none.fl_str_mv |
Alternativas sostenibles - Evaluación Desechos de cacao Jerarquía analítica - Proceso |
| topic |
Alternativas sostenibles - Evaluación Desechos de cacao Jerarquía analítica - Proceso Analytic Hierarchy Process cocoa waste renewable energy rural development |
| dc.subject.proposal.eng.fl_str_mv |
Analytic Hierarchy Process cocoa waste renewable energy rural development |
| description |
Cocoa production has emerged as an effective agricultural strategy to reduce conflict in Colombia, transitioning from coca to cocoa cultivation. While this shift has provided economic benefits, it has also resulted in the generation of substantial cocoa by-products. Although there are various alternative methods of utilizing these by-products, many farmers are unaware of them, and others lack the necessary tools to determine which alternative is the best to pursue. This study sought to explore sustainable options for cocoa waste utilization through the application of the Analytic Hierarchy Process (AHP). By employing technological surveillance, viable options for reusing cocoa residues were identified. The AHP results indicate that pellet production is a promising alternative for rural communities. It is also a potential source of energy that could address the community’s need for alternative energy sources. Initially, other energy production alternatives were not explored. However, in response to the AHP findings, this study also explored the use of cocoa waste combined with animal manure for energy generation through anaerobic digestion. |
| publishDate |
2024 |
| dc.date.issued.none.fl_str_mv |
2024-09 |
| dc.date.accessioned.none.fl_str_mv |
2025-10-28T20:42:31Z |
| dc.date.available.none.fl_str_mv |
2025-10-28T20:42:31Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
Salazar-Camacho, N.A.; Delgadillo-Mirquez, L.; Sanchez-Echeverri, L.A.; Tovar-Perilla, N.J. Evaluating Sustainable Alternatives for CocoaWaste Utilization Using the Analytic Hierarchy Process. Sustainability 2024, 16, 7817. https://doi.org/10.3390/ su16177817 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/ su16177817 |
| dc.identifier.issn.none.fl_str_mv |
20711050 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/5842 |
| dc.identifier.url.none.fl_str_mv |
https://www.mdpi.com/2071-1050/16/17/7817 |
| identifier_str_mv |
Salazar-Camacho, N.A.; Delgadillo-Mirquez, L.; Sanchez-Echeverri, L.A.; Tovar-Perilla, N.J. Evaluating Sustainable Alternatives for CocoaWaste Utilization Using the Analytic Hierarchy Process. Sustainability 2024, 16, 7817. https://doi.org/10.3390/ su16177817 20711050 |
| url |
https://doi.org/10.3390/ su16177817 https://hdl.handle.net/20.500.12313/5842 https://www.mdpi.com/2071-1050/16/17/7817 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationissue.none.fl_str_mv |
17 |
| dc.relation.citationvolume.none.fl_str_mv |
16 |
| dc.relation.ispartofjournal.none.fl_str_mv |
Sustainability |
| dc.relation.references.none.fl_str_mv |
DNP Función Pública. Documento CONPES 3654 de 2010; Gestor Normativo; DNP Función Pública: Bogotá, Colombia, 2010 Fedecacao. Producción Cacaotera Presentó una Reducción del 10% en 2022 por Lluvias; Fedecacao: Bogotá, Colombia, 2023 Consejo Privado de Competitividad. Informe Nacional de Competitividad 2019–2020; Consejo Privado de Competitividad: Bogotá, Colombia, 2019 Fidelis, C.; Rajashekhar Rao, B.K. Enriched Cocoa Pod Composts and Their Fertilizing Effects on Hybrid Cocoa Seedlings. Int. J. Recycl. Org. Waste Agric. 2017, 6, 99–106. Porto de Souza Vandenberghe, L.; Kley Valladares-Diestra, K.; Amaro Bittencourt, G.; Fátima Murawski de Mello, A.; Sarmiento Vásquez, Z.; Zwiercheczewski de Oliveira, P.; Vinícius de Melo Pereira, G.; Ricardo Soccol, C. Added-Value Biomolecules’ Production from Cocoa Pod Husks: A Review. Bioresour. Technol 2022, 344, 126252. Mansur, D.; Tago, T.; Masuda, T.; Abimanyu, H. Conversion of Cacao Pod Husks by Pyrolysis and Catalytic Reaction to Produce Useful Chemicals. Biomass Bioenergy 2014, 66, 275–285. San Cristóbal, J.R. Multi-Criteria Decision-Making in the Selection of a Renewable Energy Project in Spain: The VIKOR Method. Renew. Energy 2011, 36, 498–502 Pohekar, S.D.; Ramachandran, M. Application of multi-criteria decision making to sustainable energy planning—A review. Renew. Sustain. Energy Rev. 2004, 8, 365–381. Caravaggio, N.; Caravella, S.; Ishizaka, A.; Resce, G. Beyond CO2: A multi-criteria analysis of air pollution in Europe. J. Clean. Prod. 2019, 219, 576–586. Nautiyal, H.; Goel, V. Sustainability Assessment: Metrics and Methods. In Methods in Sustainability Science; Ren, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 27–45. Tovar-Perilla, N.J.; Bermeo-Andrade, H.P.; Torres-Delgado, J.F.; Gómez, M.I. Methodology to Support Decision-Making in Prioritization Improvement Plans Aimed at Agricultural Sector: Case Study. DYNA 2018, 85, 356–363. Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: Berlin, Germany, 1981. Brans, J.P.; Vincke, P. A Preference Ranking Organization Method: The PROMETHEE Method for MCDM. Manag. Sci. 1985, 31, 647–656. Din, G.Y.; Yunusova, A.B. Using AHP for evaluation of criteria for agro-industrial projects. Int. J. Hort. Agric. 2016, 1, 6. Akıncı, H.; Özalp, A.Y.; Turgut, B. Agricultural land use suitability analysis using GIS and AHP technique. Comput. Electron. Agric. 2013, 97, 71–82. Veisi, H.; Deihimfard, R.; Shahmohammadi, A.; Hydarzadeh, Y. Application of the Analytic Hierarchy Process (AHP) in a Multi-Criteria Selection of Agricultural Irrigation Systems. Agric. Water Manag. 2022, 267, 107619 Saaty, R.W. The Analytic Hierarchy Process—What It Is and How It Is Used. Math. Model. 1987, 9, 161–176 Lu, F.; Rodriguez-Garcia, J.; Van Damme, I.; Westwood, N.J.; Shaw, L.; Robinson, J.S.; Warren, G.; Chatzifragkou, A.; McQueen Mason, S.; Gomez, L.; et al. Valorisation Strategies for Cocoa Pod Husk and Its Fractions. Curr. Opin. Green Sustain. Chem. 2018, 14, 80–88. Tsai, C.H.; Tsai, W.T.; Liu, S.C.; Lin, Y.Q. Thermochemical Characterization of Biochar from Cocoa Pod Husk Prepared at Low Pyrolysis Temperature. Biomass Convers. Biorefinery 2018, 8, 237–243 Akinola, A.O.; Eiche, J.F.; Owolabi, P.O.; Elegbeleye, A.P. Pyrolytic Analysis of Cocoa Pod for Biofuel Production. Niger. J. Technol. 2018, 37, 1026–1031. Billah, M.; Agratiyan, T.D.; Ayu, D.; Erliyanti, N.K.; Saputro, E.A.; Yogaswara, R.R. Synthesis of Bioethanol from Cocoa Pod Husk Using Zymomonas mobilis. Int. J. Environ. Innov. Sustain. Energy 2020, 1, 31–3 Antwi, E.; Engler, N.; Nelles, M.; Schüch, A. Anaerobic Digestion and the Effect of Hydrothermal Pretreatment on the Biogas Yield of Cocoa Pod Residues. Waste Manag. 2019, 88, 131–140 Widjaja, T.; Nurkhamidah, S.; Altway, A.; Rohmah, A.A.Z.; Saepulah, F. Chemical Pre-Treatments Effect for Reducing Lignin on Cocoa Pulp Waste for Biogas Production. AIP Conf. Proc. 2021, 2349, 020058. Rojas, J.; Ramirez, K.; Velasquez, P.; Acevedo, P.; Santis, A. Evaluation of Bio-Hydrogen Production by Dark Fermentation from Cocoa Waste Mucilage. Chem. Eng. Trans. 2020, 79, 283–288. Syamsiro, M.; Saptoadi, H.; Tambunan, B.H. Experimental Investigation on Combustion of Bio-Pellets from Indonesian Cocoa Pod Husk. Asian J. Appl. Sci. 2011, 4, 712–719. Acosta, N.; Kang, I.D.; Rabaey, K.; De Vrieze, J. Cow Manure Stabilizes Anaerobic Digestion of Cocoa Waste. Waste Manag. 2021, 126, 508–516. Leckner, B.; Lind, F. Combustion of Municipal Solid Waste in Fluidized Bed or on Grate—A Comparison. Waste Manag. 2020, 109, 94–108 Dahunsi, S.O.; Osueke, C.O.; Olayanju, T.M.A.; Lawal, A.I. Co-Digestion of Theobroma cacao (Cocoa) Pod Husk and Poultry Manure for Energy Generation: Effects of Pretreatment Methods. Bioresour. Technol. 2019, 283, 229–241. Hernández-Sarabia, M.; Sierra-Silva, J.; Delgadillo-Mirquez, L.; Ávila-Navarro, J.; Carranza, L. The Potential of the Biodigester as a Useful Tool in Coffee Farms. Appl. Sci. 2021, 11, 6884 Kumar Khanal, S.; Lü, F.; Wong, J.W.C.; Wu, D.; Oechsner, H. Anaerobic Digestion beyond Biogas. Bioresour. Technol. 2021, 337, 125378. Sánchez-Torres, J.; Palop-Marro, F. Herramientas de Software Para La Práctica En La Empresa de La Vigilancia Tecnológica e Inteligencia Competitiva: Evaluación Comparativa; TRIZ: Valencia, Spain, 2002; Volume 1. Arango Alzate, B.; Tamayo Giraldo, L.; Fadul Barbosa, A. Vigilancia Tecnológica: Metodologías y Aplicaciones. Gestión Pers. Tecnol. 2012, 13, 2–8 UNE 166006:2018; Technology Watch System. Guidelines for Implementation. Asociación Española de Normalización: Madrid, Spain, 2018. Carrillo-Zambrano, E.; Páez-Leal, M.C.; Suárez, J.M.; Luna-González, M.L. Modelo de Vigilancia Tecnológica Para la Gestión de Un Grupo de Investigación en Salud. MedUNAB 2018, 21, 84–99. Vega-Almeida, R.L.; Iglesias-Alfonso, C.; Moura-Delgado, M.; Cossio-Cárdenas, G. Plan de Comunicación Del Sistema de Inteligencia Colaborativa Para el Empresarial BioCubaFarma. Rev. Cubana Inf. Cienc. Salud 2020, 31, 1–24 Ojikutu, A.O.; Osokoya, O.O. Evaluation of Biogas Production from Food Waste. Int. J. Eng. Sci. 2014, 3, 1–7 Esposito, G.; Frunzo, L.; Liotta, F.; Panico, A.; Pirozzi, F. Bio-Methane Potential Tests to Measure the Biogas Production from the Digestion and Co-Digestion of Complex Organic Substrates. Chem. Eng. Trans. 2012, 5, 39–44. APHA/AWWA/WEF; American Public Health Association; American Water Works Association; Water Environment Federtion (APHA-AWWA-WEF). Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Water Works Association: Denver, CO, USA, 2001. Candia-García, C.; Delgadillo-Mirquez, L.; Hernandez, M. Biodegradation of Rice Straw under Anaerobic Digestion. Environ. Technol. Innov. 2018, 10, 215–222. Li, D.; Liu, S.; Mi, L.; Li, Z.; Yuan, Y.; Yan, Z.; Liu, X. Effects of Feedstock Ratio and Organic Loading Rate on the Anaerobic Mesophilic Co-Digestion of Rice Straw and Cow Manure. Bioresour. Technol. 2015, 189, 319–326. Castañeda-Morales, Y.; Arciniegas-Benavides, N.C. Diseño de una Planta Productora de Pellets de Madera a Partir Del Aprovechamiento de Residuos Forestales de Un Aserrío Ubicado en la Ciudad de Bogotá; Universidad Distrital Francisco José de Caldas: Bogotá, Colombia, 2019. Harinera del Valle. Harinera Del Valle. Available online: https://www.hv.com.co/ (accessed on 29 July 2024) Rojas González, L.M. Aprovechamiento de La Cáscara de Cacao Para La Elaboración de Un Biocomposito Con Aplicación En La Construcción Sostenible; Universidad El Bosque: Bogotá, Colombia, 2019. Navarro-García, G.; Navarro-García, S. Fertilizantes Química y Acción; Mundi-Prensa; Ediciones Mundi-Prensa: Madrid, Spain, 2014; Volume 1. Villamizar-Jaimes, Y.; Rodriguez-Guerrero, J.S.; Leon-Castrillo, L.C. Characterization Physicochemical, Microbiological and Functional of Cacao Shell Flour (Theobroma cacao L.) Variety CCN-51. Cuad. Act. 2017, 9, 65–75 Ramírez, A.Q.; González, Y.V.; Valencia, L.A.L. Effect of Solid Wastes Leachates on a Tropical Soil. DYNA 2017, 84, 283–290. Suhartini, S.; Hidayat, N.; Hadi, M.W.R. Co-Digestion of Cocoa Pods and Cocoa Leaves: Effect of C/N Ratio to Biogas and Energy Potential. IOP Conf. Ser. Earth Environ. Sci. 2021, 733, 012139 Messineo, A.; Maniscalco, M.P.; Volpe, R. Biomethane Recovery from Olive Mill Residues through Anaerobic Digestion: A Review of the State of the Art Technology. Sci. Total Environ. 2020, 703, 135508. Xu, F.; Wang, Z.-W.; Li, Y. Predicting the Methane Yield of Lignocellulosic Biomass in Mesophilic Solid-State Anaerobic Digestion Based on Feedstock Characteristics and Process Parameters. Bioresour. Technol. 2014, 173, 168–176. Mosquera, J.; Varela, L.; Santis, A.; Villamizar, S.; Acevedo, P.; Cabeza, I. Improving Anaerobic Co-Digestion of Different Residual Biomass Sources Readily Available in Colombia by Process Parameters Optimization. Biomass Bioenergy 2020, 142, 105790. Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic Co-Digestion Process for Biogas Production: Progress, Challenges and Perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496. Kim, M.-J.; Kim, S.-H. Conditions of Lag-Phase Reduction during Anaerobic Digestion of Protein for High-Efficiency Biogas Production. Biomass Bioenergy 2020, 143, 105813. Dinkler, K.; Li, B.; Guo, J.; Hülsemann, B.; Becker, G.C.; Müller, J.; Oechsner, H. Adapted Hedley Fractionation for the Analysis of Inorganic Phosphate in Biogas Digestate. Bioresour. Technol. 2021, 331, 125038. |
| dc.rights.none.fl_str_mv |
© 2024 by the authors. |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.license.none.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| rights_invalid_str_mv |
© 2024 by the authors. http://purl.org/coar/access_right/c_abf2 Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
| dc.publisher.place.none.fl_str_mv |
Suiza |
| publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/dee0a3de-ccdd-4977-b2ba-b3fea4bc4e60/download https://repositorio.unibague.edu.co/bitstreams/f8aa8d59-1a92-4b7f-b531-3cbd4a384a91/download https://repositorio.unibague.edu.co/bitstreams/e741ccb1-0d0e-46f8-9160-88070beba9ac/download https://repositorio.unibague.edu.co/bitstreams/7c0f2d6a-1805-4715-acba-ed6b869268b6/download https://repositorio.unibague.edu.co/bitstreams/b1b13d20-3e11-4e50-9dad-b35b21d470f8/download |
| bitstream.checksum.fl_str_mv |
2fa3e590786b9c0f3ceba1b9656b7ac3 63abbb3eb8381be49fe25268b58831b6 b30dc4bbd6695f4c348dfc1f551b9f89 ec765c860f2e688ed1c3994fa589443c aded38eb05082d879683aba0c08f8b30 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059964044378112 |
| spelling |
Salazar-Camacho, Natalia Andreb5a8043c-208f-4c10-9231-088353959e2a-1Delgadillo-Mirquez, Liliana0025fadf-fa3c-4261-be25-74ff2de2b494-1Sanchez-Echeverri, Luz Adriana3335d48d-a9a9-4e56-be86-a6c4fe67217e-1Tovar-Perilla, Nelson Javier3632db5a-0c8c-42d3-8590-718e1e6fb6f6-12025-10-28T20:42:31Z2025-10-28T20:42:31Z2024-09Cocoa production has emerged as an effective agricultural strategy to reduce conflict in Colombia, transitioning from coca to cocoa cultivation. While this shift has provided economic benefits, it has also resulted in the generation of substantial cocoa by-products. Although there are various alternative methods of utilizing these by-products, many farmers are unaware of them, and others lack the necessary tools to determine which alternative is the best to pursue. This study sought to explore sustainable options for cocoa waste utilization through the application of the Analytic Hierarchy Process (AHP). By employing technological surveillance, viable options for reusing cocoa residues were identified. The AHP results indicate that pellet production is a promising alternative for rural communities. It is also a potential source of energy that could address the community’s need for alternative energy sources. Initially, other energy production alternatives were not explored. However, in response to the AHP findings, this study also explored the use of cocoa waste combined with animal manure for energy generation through anaerobic digestion.application/pdfSalazar-Camacho, N.A.; Delgadillo-Mirquez, L.; Sanchez-Echeverri, L.A.; Tovar-Perilla, N.J. Evaluating Sustainable Alternatives for CocoaWaste Utilization Using the Analytic Hierarchy Process. Sustainability 2024, 16, 7817. https://doi.org/10.3390/ su16177817https://doi.org/10.3390/ su1617781720711050https://hdl.handle.net/20.500.12313/5842https://www.mdpi.com/2071-1050/16/17/7817engMultidisciplinary Digital Publishing Institute (MDPI)Suiza1716SustainabilityDNP Función Pública. Documento CONPES 3654 de 2010; Gestor Normativo; DNP Función Pública: Bogotá, Colombia, 2010Fedecacao. Producción Cacaotera Presentó una Reducción del 10% en 2022 por Lluvias; Fedecacao: Bogotá, Colombia, 2023Consejo Privado de Competitividad. Informe Nacional de Competitividad 2019–2020; Consejo Privado de Competitividad: Bogotá, Colombia, 2019Fidelis, C.; Rajashekhar Rao, B.K. Enriched Cocoa Pod Composts and Their Fertilizing Effects on Hybrid Cocoa Seedlings. Int. J. Recycl. Org. Waste Agric. 2017, 6, 99–106.Porto de Souza Vandenberghe, L.; Kley Valladares-Diestra, K.; Amaro Bittencourt, G.; Fátima Murawski de Mello, A.; Sarmiento Vásquez, Z.; Zwiercheczewski de Oliveira, P.; Vinícius de Melo Pereira, G.; Ricardo Soccol, C. Added-Value Biomolecules’ Production from Cocoa Pod Husks: A Review. Bioresour. Technol 2022, 344, 126252.Mansur, D.; Tago, T.; Masuda, T.; Abimanyu, H. Conversion of Cacao Pod Husks by Pyrolysis and Catalytic Reaction to Produce Useful Chemicals. Biomass Bioenergy 2014, 66, 275–285.San Cristóbal, J.R. Multi-Criteria Decision-Making in the Selection of a Renewable Energy Project in Spain: The VIKOR Method. Renew. Energy 2011, 36, 498–502Pohekar, S.D.; Ramachandran, M. Application of multi-criteria decision making to sustainable energy planning—A review. Renew. Sustain. Energy Rev. 2004, 8, 365–381.Caravaggio, N.; Caravella, S.; Ishizaka, A.; Resce, G. Beyond CO2: A multi-criteria analysis of air pollution in Europe. J. Clean. Prod. 2019, 219, 576–586.Nautiyal, H.; Goel, V. Sustainability Assessment: Metrics and Methods. In Methods in Sustainability Science; Ren, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 27–45.Tovar-Perilla, N.J.; Bermeo-Andrade, H.P.; Torres-Delgado, J.F.; Gómez, M.I. Methodology to Support Decision-Making in Prioritization Improvement Plans Aimed at Agricultural Sector: Case Study. DYNA 2018, 85, 356–363.Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980.Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: Berlin, Germany, 1981.Brans, J.P.; Vincke, P. A Preference Ranking Organization Method: The PROMETHEE Method for MCDM. Manag. Sci. 1985, 31, 647–656.Din, G.Y.; Yunusova, A.B. Using AHP for evaluation of criteria for agro-industrial projects. Int. J. Hort. Agric. 2016, 1, 6.Akıncı, H.; Özalp, A.Y.; Turgut, B. Agricultural land use suitability analysis using GIS and AHP technique. Comput. Electron. Agric. 2013, 97, 71–82.Veisi, H.; Deihimfard, R.; Shahmohammadi, A.; Hydarzadeh, Y. Application of the Analytic Hierarchy Process (AHP) in a Multi-Criteria Selection of Agricultural Irrigation Systems. Agric. Water Manag. 2022, 267, 107619Saaty, R.W. The Analytic Hierarchy Process—What It Is and How It Is Used. Math. Model. 1987, 9, 161–176Lu, F.; Rodriguez-Garcia, J.; Van Damme, I.; Westwood, N.J.; Shaw, L.; Robinson, J.S.; Warren, G.; Chatzifragkou, A.; McQueen Mason, S.; Gomez, L.; et al. Valorisation Strategies for Cocoa Pod Husk and Its Fractions. Curr. Opin. Green Sustain. Chem. 2018, 14, 80–88.Tsai, C.H.; Tsai, W.T.; Liu, S.C.; Lin, Y.Q. Thermochemical Characterization of Biochar from Cocoa Pod Husk Prepared at Low Pyrolysis Temperature. Biomass Convers. Biorefinery 2018, 8, 237–243Akinola, A.O.; Eiche, J.F.; Owolabi, P.O.; Elegbeleye, A.P. Pyrolytic Analysis of Cocoa Pod for Biofuel Production. Niger. J. Technol. 2018, 37, 1026–1031.Billah, M.; Agratiyan, T.D.; Ayu, D.; Erliyanti, N.K.; Saputro, E.A.; Yogaswara, R.R. Synthesis of Bioethanol from Cocoa Pod Husk Using Zymomonas mobilis. Int. J. Environ. Innov. Sustain. Energy 2020, 1, 31–3Antwi, E.; Engler, N.; Nelles, M.; Schüch, A. Anaerobic Digestion and the Effect of Hydrothermal Pretreatment on the Biogas Yield of Cocoa Pod Residues. Waste Manag. 2019, 88, 131–140Widjaja, T.; Nurkhamidah, S.; Altway, A.; Rohmah, A.A.Z.; Saepulah, F. Chemical Pre-Treatments Effect for Reducing Lignin on Cocoa Pulp Waste for Biogas Production. AIP Conf. Proc. 2021, 2349, 020058.Rojas, J.; Ramirez, K.; Velasquez, P.; Acevedo, P.; Santis, A. Evaluation of Bio-Hydrogen Production by Dark Fermentation from Cocoa Waste Mucilage. Chem. Eng. Trans. 2020, 79, 283–288.Syamsiro, M.; Saptoadi, H.; Tambunan, B.H. Experimental Investigation on Combustion of Bio-Pellets from Indonesian Cocoa Pod Husk. Asian J. Appl. Sci. 2011, 4, 712–719.Acosta, N.; Kang, I.D.; Rabaey, K.; De Vrieze, J. Cow Manure Stabilizes Anaerobic Digestion of Cocoa Waste. Waste Manag. 2021, 126, 508–516.Leckner, B.; Lind, F. Combustion of Municipal Solid Waste in Fluidized Bed or on Grate—A Comparison. Waste Manag. 2020, 109, 94–108Dahunsi, S.O.; Osueke, C.O.; Olayanju, T.M.A.; Lawal, A.I. Co-Digestion of Theobroma cacao (Cocoa) Pod Husk and Poultry Manure for Energy Generation: Effects of Pretreatment Methods. Bioresour. Technol. 2019, 283, 229–241.Hernández-Sarabia, M.; Sierra-Silva, J.; Delgadillo-Mirquez, L.; Ávila-Navarro, J.; Carranza, L. The Potential of the Biodigester as a Useful Tool in Coffee Farms. Appl. Sci. 2021, 11, 6884Kumar Khanal, S.; Lü, F.; Wong, J.W.C.; Wu, D.; Oechsner, H. Anaerobic Digestion beyond Biogas. Bioresour. Technol. 2021, 337, 125378.Sánchez-Torres, J.; Palop-Marro, F. Herramientas de Software Para La Práctica En La Empresa de La Vigilancia Tecnológica e Inteligencia Competitiva: Evaluación Comparativa; TRIZ: Valencia, Spain, 2002; Volume 1.Arango Alzate, B.; Tamayo Giraldo, L.; Fadul Barbosa, A. Vigilancia Tecnológica: Metodologías y Aplicaciones. Gestión Pers. Tecnol. 2012, 13, 2–8UNE 166006:2018; Technology Watch System. Guidelines for Implementation. Asociación Española de Normalización: Madrid, Spain, 2018.Carrillo-Zambrano, E.; Páez-Leal, M.C.; Suárez, J.M.; Luna-González, M.L. Modelo de Vigilancia Tecnológica Para la Gestión de Un Grupo de Investigación en Salud. MedUNAB 2018, 21, 84–99.Vega-Almeida, R.L.; Iglesias-Alfonso, C.; Moura-Delgado, M.; Cossio-Cárdenas, G. Plan de Comunicación Del Sistema de Inteligencia Colaborativa Para el Empresarial BioCubaFarma. Rev. Cubana Inf. Cienc. Salud 2020, 31, 1–24Ojikutu, A.O.; Osokoya, O.O. Evaluation of Biogas Production from Food Waste. Int. J. Eng. Sci. 2014, 3, 1–7Esposito, G.; Frunzo, L.; Liotta, F.; Panico, A.; Pirozzi, F. Bio-Methane Potential Tests to Measure the Biogas Production from the Digestion and Co-Digestion of Complex Organic Substrates. Chem. Eng. Trans. 2012, 5, 39–44.APHA/AWWA/WEF; American Public Health Association; American Water Works Association; Water Environment Federtion (APHA-AWWA-WEF). Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Water Works Association: Denver, CO, USA, 2001.Candia-García, C.; Delgadillo-Mirquez, L.; Hernandez, M. Biodegradation of Rice Straw under Anaerobic Digestion. Environ. Technol. Innov. 2018, 10, 215–222.Li, D.; Liu, S.; Mi, L.; Li, Z.; Yuan, Y.; Yan, Z.; Liu, X. Effects of Feedstock Ratio and Organic Loading Rate on the Anaerobic Mesophilic Co-Digestion of Rice Straw and Cow Manure. Bioresour. Technol. 2015, 189, 319–326.Castañeda-Morales, Y.; Arciniegas-Benavides, N.C. Diseño de una Planta Productora de Pellets de Madera a Partir Del Aprovechamiento de Residuos Forestales de Un Aserrío Ubicado en la Ciudad de Bogotá; Universidad Distrital Francisco José de Caldas: Bogotá, Colombia, 2019.Harinera del Valle. Harinera Del Valle. Available online: https://www.hv.com.co/ (accessed on 29 July 2024)Rojas González, L.M. Aprovechamiento de La Cáscara de Cacao Para La Elaboración de Un Biocomposito Con Aplicación En La Construcción Sostenible; Universidad El Bosque: Bogotá, Colombia, 2019.Navarro-García, G.; Navarro-García, S. Fertilizantes Química y Acción; Mundi-Prensa; Ediciones Mundi-Prensa: Madrid, Spain, 2014; Volume 1.Villamizar-Jaimes, Y.; Rodriguez-Guerrero, J.S.; Leon-Castrillo, L.C. Characterization Physicochemical, Microbiological and Functional of Cacao Shell Flour (Theobroma cacao L.) Variety CCN-51. Cuad. Act. 2017, 9, 65–75Ramírez, A.Q.; González, Y.V.; Valencia, L.A.L. Effect of Solid Wastes Leachates on a Tropical Soil. DYNA 2017, 84, 283–290.Suhartini, S.; Hidayat, N.; Hadi, M.W.R. Co-Digestion of Cocoa Pods and Cocoa Leaves: Effect of C/N Ratio to Biogas and Energy Potential. IOP Conf. Ser. Earth Environ. Sci. 2021, 733, 012139Messineo, A.; Maniscalco, M.P.; Volpe, R. Biomethane Recovery from Olive Mill Residues through Anaerobic Digestion: A Review of the State of the Art Technology. Sci. Total Environ. 2020, 703, 135508.Xu, F.; Wang, Z.-W.; Li, Y. Predicting the Methane Yield of Lignocellulosic Biomass in Mesophilic Solid-State Anaerobic Digestion Based on Feedstock Characteristics and Process Parameters. Bioresour. Technol. 2014, 173, 168–176.Mosquera, J.; Varela, L.; Santis, A.; Villamizar, S.; Acevedo, P.; Cabeza, I. Improving Anaerobic Co-Digestion of Different Residual Biomass Sources Readily Available in Colombia by Process Parameters Optimization. Biomass Bioenergy 2020, 142, 105790.Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic Co-Digestion Process for Biogas Production: Progress, Challenges and Perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496.Kim, M.-J.; Kim, S.-H. Conditions of Lag-Phase Reduction during Anaerobic Digestion of Protein for High-Efficiency Biogas Production. Biomass Bioenergy 2020, 143, 105813.Dinkler, K.; Li, B.; Guo, J.; Hülsemann, B.; Becker, G.C.; Müller, J.; Oechsner, H. Adapted Hedley Fractionation for the Analysis of Inorganic Phosphate in Biogas Digestate. Bioresour. Technol. 2021, 331, 125038.© 2024 by the authors.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/Alternativas sostenibles - EvaluaciónDesechos de cacaoJerarquía analítica - ProcesoAnalytic Hierarchy Processcocoa wasterenewable energyrural developmentEvaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy ProcessArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/dee0a3de-ccdd-4977-b2ba-b3fea4bc4e60/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf116230https://repositorio.unibague.edu.co/bitstreams/f8aa8d59-1a92-4b7f-b531-3cbd4a384a91/download63abbb3eb8381be49fe25268b58831b6MD52Artículo.pdfArtículo.pdfapplication/pdf116225https://repositorio.unibague.edu.co/bitstreams/e741ccb1-0d0e-46f8-9160-88070beba9ac/downloadb30dc4bbd6695f4c348dfc1f551b9f89MD53TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain4017https://repositorio.unibague.edu.co/bitstreams/7c0f2d6a-1805-4715-acba-ed6b869268b6/downloadec765c860f2e688ed1c3994fa589443cMD54THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg32882https://repositorio.unibague.edu.co/bitstreams/b1b13d20-3e11-4e50-9dad-b35b21d470f8/downloadaded38eb05082d879683aba0c08f8b30MD5520.500.12313/5842oai:repositorio.unibague.edu.co:20.500.12313/58422025-10-29 03:01:26.869https://creativecommons.org/licenses/by/4.0/© 2024 by the authors.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
